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Abstract

In this paper, we investigate a new paradigm for studying the development of the colour ‘signal’ by having observers
discriminate and categorize the same set of controlled and calibrated cardinal coloured stimuli. Notably, in both tasks, each
observer was free to decide whether two pairs of colors were the same or belonged to the same category. The use of the
same stimulus set for both tasks provides, we argue, an incremental behavioural measure of colour processing from
detection through discrimination to categorisation. The measured data spaces are different for the two tasks, and
furthermore the categorisation data is unique to each observer. In addition, we develop a model which assumes that the
principal difference between the tasks is the degree of similarity between the stimuli which has different constraints for the
categorisation task compared to the discrimination task. This approach not only makes sense of the current (and associated)
data but links the processes of discrimination and categorisation in a novel way and, by implication, expands upon the
previous research linking categorisation to other tasks not limited to colour perception.
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Introduction

‘‘…the opponent-colours theory and the Young-Helmholtz three-colour

theory could, with some modifications, very well exist side by side if one

strictly distinguished between the process of excitation and the process of

sensation and use the three colour theory for the former and my theory for

the latter’’ (Ewald Hering, 1834–1918).

Human colour vision has been simultaneously one of the most

popular and productive, yet elusive and controversial areas of

enquiry for well over a century [1–4]. It is one of the most

fascinating areas of human research whether one examines this

from a perspective of neurophysiology, psychology, philosophy, or

the arts. The significance and generality of the work in colour

vision is illustrated both by its longevity and by the regular

occurrence of reviews, analysis and commentary related to

different aspects of the issue from the neurosciences [5–7], through

the cognitive sciences [8–14] to theoretical pattern recognition

[15] and philosophy [16]. Each perspective contributes its own

particular novel viewpoint, and each brings its own set of

underlying assumptions to the area. Each of the cited authors

acknowledge, from their own particular perspective, that the

fundamental question of how we see colour not only remains

unanswered, but is perhaps even less well defined than in its

original form. It is also, notably, one of the few areas of research

where no one viewpoint holds sway, and where the subjective and

objective perspectives share much the same framework.

Categorisation and identification of stimuli has similarly been a

mainstay of cognitive science research over the past decades [17–

20]. The obvious link between these two areas is the observation

that colour vision has been said to be categorical in nature; a

common example of this being the perception of a rainbow as

being split into categorically distinct hues. However, it is also self-

evident that we perceive a continuum of hue and that to over-

quantise this continuum, an underlying tenet of categorical

perception [19,21], is potentially counterproductive to the process

of colour perception and vision more generally.

The current paper is concerned with furthering our under-

standing of these discrepant experiences by measuring and

quantifying the link between the most basic of visual tasks:

detection and discrimination of a coloured stimulus on the one

hand, and the recognition and categorisation of that stimulus on

the other. Theoretically our aim is to outline a consistent

framework for understanding the relationship between discrimi-

nation and categorisation of visual stimuli, the time course of these

two processes, and at what stage of processing the formation of a

categorical stimulus representation i.e. being able to report

identity, may come about. The work described here approaches

this issue from a behavioural perspective with an examination of

the relationship between discrimination and categorisation of

stimuli which have a largely known effect upon early (detection)

mechanisms in the visual pathway: cardinal chromatic stimuli

[22].

Cardinal stimuli and colour perception
The cardinal axes of colour space describe the chromatic

properties of underlying opponent mechanisms instrumental in

mediating the detection and discrimination of near-threshold

chromatic stimuli. They only exist as independent behaviourally-
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orthogonal mechanisms at the threshold levels of stimulus contrast

and as such form a specialised subset of psychophysically-defined

mechanisms concerned more generally with the detection and

discrimination of chromatic stimuli; by this we mean to say that

the underlying properties of the mechanism(s) are defined through

behavioural studies; the neural analogue (or mechanism) is far

from clear ([22–25]; for specific reviews see [8,9,26]). In defining

and articulating the properties of these cardinal stimuli, Krauskopf

et al (1982) noted that the poles of the cardinal axes did not align

with those of traditionally identified unique hues (e.g. red, green,

blue & yellow) which, in turn, were thought to be a product of a

specialised subset of psychophysically-defined mechanisms instru-

mental in the perception of colour [27]. Later work has taken this

observation further and suggested that not only do cardinal axes

fail to align with unique hue axes, but that the unique hue axes are

not linear when plotted through the white point in cardinal space

([28–34]; for an excellent brief review see the introduction to

Malkoc and Kingdom [35]. The lack of correspondence between

these two sets of axes, cardinal and unique-hue, implies that the

perception of unique hues cannot be explained by a simple linear

transformation of the cone-opponent signal [34,36,37]. Providing

a satisfactory explanation for this discrepancy between excitation

(what we might predict from neural properties) and sensation

(what we observe), as embodied in the quote by Hering at the head

of this paper, persists as a fundamental question in colour vision,

and indeed in vision more generally. Boynton’s overview of this

outstanding issue as a fundamental problem of colour vision

remains one of the most cogent [38].

There have been several studies that have approached the issue

of reconciling the opponent-cone processes with the psychological

experience of unique hues using cone-modulating or cardinal

stimuli for higher-level colour-perception tasks. These studies have

shown that when observers are forced to make a decision about

how ‘red’ or ‘green’ a cardinal (or cone-modulating) stimulus is,

they are able to do so [22,35,39–43], even though the stimulus is

not a good example of ‘red’ or ‘green’ in the sense traditionally

implied by colour naming [27,38,44–48] being somewhat

desaturated and perceptually more mixed than monochromatic

light sources [35]. While colour naming categories can, therefore,

be imposed on and plotted into a cardinal space, they do not fall

out naturally from such relatively broadband stimuli and the basis

of categorisation within this space remains controversial and not

well defined. Nevertheless, there is evidence for enhanced

sensitivity to colour (more precisely, binary-hue differences) close

to a boundary defined by a line drawn in CIE XYZ colour-space

between a unique yellow and unique blue [40,49]. This enhanced

sensitivity can be considered to be a form of a category boundary

effect [19]. Hence, although cardinal stimuli generally do not

provide good examples of learned colour names and are not

usually used for the purpose of colour categorisation and naming,

observers are able to categorise and identify these stimuli under

two-alternative forced-choice conditions. However, it remains

unclear whether the general increased sensitivity applies through-

out the colour space when the number of colour categories is not

limited to two and is instead potentially unbounded.

Relationship between Categorisation and Discrimination
At a more general level, categorisation and discrimination might

both involve similar underlying processes albeit with differences in

the specific parameters involved in those processes. For one, there

is evidence that people categorise colours based on their similarity

to previously experienced colours [50–52]. This type of similarity-

based judgement is also implicated in other types of tasks such as

old-new recognition [53,54], categorisation and inductive reason-

ing [55–57], and same-different discrimination [58]. Nosofsky et

al. (2012) showed that the rather than representing fundamentally

different tasks, categorisation and old-new recognition are best

thought of as the same similarity-based process but with a lower

threshold of evidence required for categorisation than for

recognition. The same argument applies to the relationship

between discrimination, which can be thought of as a single item

recognition judgement when stimuli are presented sequentially,

and categorisation; that is, discrimination capitalises on fine-

grained differences between stimuli whereas even a coarse level of

similarity might permit two stimuli to be judged as members of the

same category.

The view that categorization and discrimination involve the

same underlying processes sits in contrast to the view that

discrimination is somehow altered by the presence of a category

boundary. From a similarity-based perspective, optimal placement

of category boundaries coincide with locations which are equally

likely to belong to either of two categories (Ashby & Maddox,

1993); however, in the absence of other mechanisms like selective

attention, which might act to perceptually stretch a relevant

stimulus dimension along which a boundary falls, there is no a

priori reason why discrimination would be improved at a category

boundary.

On the other hand, it might be desirable for a system to have

heightened sensitivity around a category boundary; however this

enhanced sensitivity is likely to come after the initial stages of the

stimulus processing. The boundary location is essentially an

arbitrary judgement about a position along a stimulus dimension

that has already been coded by the system; the location of that

boundary being important for some subsequent (learned) processes

but not the initial dimension-coding. This is particularly true in the

case of colours, for which the relevant dimensions of hue,

saturation and brightness are perceived holistically, are essentially

co-dependent [51,59–63] and on which selective attention is

inefficient [50]. Nonetheless, enhanced sensitivity at category

boundary locations has been demonstrated for Munsell colours

[64,65]. Whether this is the case for broadband cardinal colours is

the focus of the current study.

Colour, Categorisation and the Current Study
That colour perception is categorical has become somewhat of a

common assertion more than an evidence-based observation. On

the one hand we do see bands of colour in a rainbow, but we are

also fully aware of gradual and consistent change of hue in the

environment and even in the same rainbow upon careful

examination. It is also the case that while categorical perception

is inextricably linked to language and naming, it must be linked to

perception free from language, as far as is possible, in order to be

considered a truly perceptual quality. Non-verbal (i.e. not directed

by learned colour names) categorical distinctions have been

examined in the form of colour-sorting or ordering in perceptual

colour space (e.g. [66–68] but the same non-verbal colour category

distinctions have not been examined with stimuli more aligned to

the early detection mechanisms. We adopt this as the starting point

for the current study.

In the experiment described here, observers were presented

with two coloured stimuli, one after the other, and required to

decide whether they were identical (discrimination) or whether

they were in the same (subjective) category (categorisation). In this

way we are able to quantify task-driven differences in performance

with a single comprehensive stimulus set; this, in turn, allows a

single model to be applied to the data for both tasks and coherent

link to be drawn between detection and categorisation of simple

visual stimuli. This approach is slightly different from the norm,
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which typically only uses two categories and the observer has to

judge between them. In our task there are no strictly enforced

categories and the decisions are entirely up to the observers. This

should minimise any learned selective attention processes since

there is no objectively correct judgement to that the observer is

trying to maximise. As an additional variable, we manipulate

stimulus duration for the two tasks, since there have been

suggestions that colour perception in particular should be affected

by stimulus duration [43,69–71] which facilitates contextualisation

of our behavioural and theoretical approaches to some putative

cortical properties.

Methods

Participants
Three observers (two males) with ages ranging from 19 to 25

participated in the current experiment. All had normal colour

vision and normal or corrected-to-normal visual acuity. Each

observer participated for approximately 60 hours in total, with

each session typically lasting 30–40 minutes and consisting of four

blocks of trials. All research was approved by the university’s

Human Research Ethics Committee. Participation was voluntary

and contingent on the provision of written informed consent.

Travel costs were reimbursed to participants after the experiment

was over.

Observers were naive to the purposes of the experiment except

for the obvious fact that we were measuring their discrimination

and categorisation data spaces. As all trial blocks were randomly

interleaved it was possible to examine the effect of experience to

some degree; the boundaries of either space (discrimination and

categorisation) remained unchanged over time. We examine the

effect of learning in companion work in preparation.

Apparatus and Stimuli
All stimuli were digitally-generated modulations of colour and

luminance (when corrected for subjective factors - see below) and

were displayed to a contrast-resolution of 14-bits per pixel by the

TMS30c25 DSP chip on a VSG2/5 (Cambridge Research

Systems) stimulus generator. The patterns were presented on a

Sony G520 21’’ colour monitor with a mean luminance of 90 cd/

m2 and CIE co-ordinates of the point of constant adaptation

(whitepoint) calibrated to be (x = 0.333, y = 0.377). The monitor

was driven at a frame rate of 75 Hz and a line rate of 52 kHz. All

patterns were generated digitally during the line-flyback prior to

presentation (i.e. there was no frame or line interleaving). The

non-linear voltage-to-luminance relationship of the display was

regularly measured using a photometric head (Graseby S351G)

and was gamma-corrected using internal lookup tables on the

VSG. The spectral properties of the monitor and calibration of the

colour space were initially calculated from the individual monitor-

phosphor outputs and the Smith/Pokorny cone fundamentals [72–

74], correcting for the disparity between the vl curve and Judd’s

revised short-wavelength sensitivity [75]. Day to day calibration

was performed using the photometric head. The DACs were

calibrated and checked occasionally and remained stable. The

curve fitting procedure gave an R-value accounting for 0.998 of

the variance. The total viewable display subtended a visual angle

of 30 deg by 24 deg at the viewing distance of 0.5 m, with an

effective pixel size of 0.036 deg by 0.036 deg. A small dark fixation

point was located at the centre of the display. Viewing was

conducted in a semi-darkened room (ambient light level approx-

imately 10 cd/m2) and was binocular with natural pupils. No head

restraint was used.

All stimuli were circular discs of subjectively equiluminant

colour presented in the centre of a uniform grey field. The colour

discs subtended 8 degs of visual angle, and were presented at 20-

times detection threshold for each observer (see below) within a

half-width raised cosine temporal envelope for a duration of

500 ms in the ‘long’ condition and 50 ms in the ‘short’ condition.

The colours of the stimuli were drawn from the cardinal colour

space described by Derrington, Krauskopf and Lennie (1984). The

L and M polarities of the cardinal colour space were represented

by a colour angle (the azimuth in the cardinal space) of 0 deg and

18 deg, respectively, while the –S and S points were represented by

90 deg and 270 deg respectively.

Subjective Equiluminance. The luminance angle (the

elevation in the cardinal representation) of the minimal perceptual

flicker of a 5 Hz counterphased grating, at a contrast of

approximately 40-times detection threshold, was measured and

taken as the subjective equiluminant point for each observer and

each stimulus configuration: this setting was also checked

regularly. The observers had to adjust the luminance angle until

the flicker appeared minimal. The stimulus automatically

refreshed to a new random luminance angle after 15 secs to avoid

prolonged exposure and subsequent habituation being a con-

founding factor in the measurement. The final step size in the

adjustment was 0.32 deg within the colour space and the mean of

10 estimates was taken for each stimulus. It was verified that both

minimum motion and quadrature phase measures gave the same

result as minimal flicker at our spatial and temporal frequencies

[76,77]. There was no significant difference between measures, in

line with previous work [78–81].

Detection Thresholds. Detection thresholds for each stim-

ulus were measured in a standard two-alternative forced-choice

(2AFC) detection task. A stimulus was presented in one of two

intervals and the observer indicated which interval the stimulus

had appeared in by means of a mouse button-press. A feedback

tone was provided. The contrast of the stimulus was adjusted

according to the observer’s response by a modified PEST staircase

procedure [82] which gave a final threshold estimate of

performance at the level of 75% correct. The contrasts of the

stimuli used subsequently were scaled to the individual’s detection

threshold for each stimulus alone. Thus all stimuli were equidistant

(in threshold multiples) from the neutral centre (white-point) of the

colour space effectively scaling the space uniquely for each

observer.

Categorisation and Discrimination. Stimuli for the cate-

gorisation and discrimination tasks were exactly the same; this is a

critical and important feature of this study. The stimulus set

consisted of colours distributed across the subjectively equilumi-

nant plane of cardinal colour space, scaled to twenty times (20) an

individual’s detection threshold for that stimulus (colour) angle.

There were a total of 220 different coloured stimuli giving a step of

1.6 deg between individual stimuli. Preliminary trials indicated this

step-size to be of sufficient resolution while keeping the observing

time to an acceptable level. The maximum angular resolution of

the space was 0.35 deg (1024 subdivisions). The trial-blocks were

set up so that each block spanned 17.6 deg of the equiluminant

plane of cardinal colour space and consisted of 11 colours; 1

reference colour bisecting 10 test colours in angular space,

resulting in 5 test stimuli either side of the reference stimulus in

colour space. Thus, observers made a 360 deg sweep through

colour space over the course of the experiment. Reference stimuli

from each trial block were spaced 8 deg apart ensuring significant

stimulus-overlap between neighbouring observing-blocks. This

arrangement was critical for the calculation of category boundaries

in the space as detailed below and has relevance of the influence of

The Categorisation of Non-Categorical Colours
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stimulus set on category boundary location [83]. Blocks were

randomly interleaved throughout.

Procedure
Once subjective equiluminance and detection thresholds had

been measured, each participant completed both the categorisa-

tion and discrimination tasks interleaved in random order, with

each data set being collected concurrently for each observer.

Preliminary observation showed there to be no effect of trial order.

In discrimination trial-blocks, the observer was required to

indicate, by means of a mouse button-press, whether the two

stimuli appeared to be physically identical or not. In the

categorisation trial-blocks, the observer was required to indicate

whether they would choose to put the stimuli in the same category

or not. No definition of ‘category’ was given to the observers,

rather they were encouraged to use their own definition; a

deliberate decision upon in order to minimise the influence of

learned colour names. Across all trials, in each block, test stimuli

were presented followed by the reference stimulus for that block.

Test stimuli were presented in a randomised order and included

any of the possible colours from the block; giving 11 possible

different colour pairs (one test plus reference in that order). In all

cases the inter-stimulus-interval between test and reference was

0.67 seconds (50 frames). The presentation and arrangement of

stimuli was identical for either task apart from the random

ordering of pairs within each block. For each of the discrimination

and categorisation tasks, all 20 blocks were shown and repeated

four times each, with two practice blocks being presented at the

start for each observer. This gave 40 (4610) trials per data point

for each of the two tasks.

Data analysis
Data from both tasks, categorisation and discrimination, were

treated in exactly the same way. Because each task is a yes-no

judgement, the raw responses from each observer were trans-

formed into d9 values to give a bias-free estimate of performance

[84,85].

For each block, a d9 value was calculated for the different colour

stimuli pairs producing ten d9 values for each individual block (40

trials per d9 value). The five d9 values either side of the central d9

value represent measures of observer sensitivity (or judgement of a

difference in category) as the test moved away from the reference

in distance in colour space. The d9 value was then transformed

back into an unbiased proportion of ‘same’ for each stimulus pair

for clarity, and this value then used in the figures and modeling.

Unlike the discrimination condition, in the categorization task

there is not necessarily a correct or incorrect response; nonetheless,

for consistency we treat the categorisation data as if it were the

same as the discrimination data for the purpose of computing d9.

Thus the ‘hit’, ‘miss’, ‘false alarm’ and ‘correct reject’ were defined

in the same way for both tasks. The fundamental characteristics of

the data were not changed by this approach, indeed there was

minimal impact upon the data overall (well within the error

estimate of the raw data) but we felt to be the appropriate course of

action.

Estimation of boundaries in the two data spaces
A common and clear way of presenting discrimination data is to

use a measure of Just Noticeable Difference (JND); for consistency

we have adopted this approach for both the discrimination and the

categorization data. As described above, for each block a d9 value

of performance was calculated for each of the stimulus pairs

indicating performance on the discrimination task. To calculate

the difference in colour angle (either side of the central reference)

required to give a performance of 80% ‘different’ the measured

values were fitted with a cumulative Weibull curve. The values of

this curve-fit were then used to calculate the 80% (d9 = 1.68) JND

threshold either side of the reference colour. Given each reference

stimulus was judged the same or different from stimuli either side

of its location in colour space, two initial 80% JND thresholds

emerged for each region.

An approximate category boundary was defined as the colour

angle (x-axis) where two categorisation curves intersected below a

value (proportion ‘same’ category) of 0.8. Some category

boundaries are more definitive than others, depending on exactly

where the curves cross on the y-axis. This is realised visually in the

polar plots (Figures 1, 2, 3, 4) by the extent to which each curve

forms a distinct ‘petal’.

Each of these two methods take a conservative criterion on both

tasks (80% correct in discrimination; 80% of the time considered

to be in the same category), facilitating the utility of comparison

within-subjects between the two tasks. Similar treatment for all

observers facilitates between-subject comparisons.

We are mindful that to some degree these are arbitrary

definitions; however, in conjunction with the full data sets and the

modeling they are nonetheless a useful representation

Empirical Results

Figure 1 plots the data from the discrimination task in the long

(500 ms) condition for three observers. The colour angle of the test

stimulus is plotted against the proportion of trials that the observer

considered the test and reference stimuli to be physically the same

in polar coordinates. Data for the categorisation task in the 500 ms

condition is plotted similarly in Figure 2. Figures 3 and 4 plot

discrimination and categorisation performance for the same three

observers in the short, 50 ms, condition. Figures 5 and 6

summarise (and inevitably approximate) these data as pie charts

where the discrimination task performance can be compared to

the category boundaries estimated in the categorisation task.

The polar plots are most easily interpreted qualitatively by the

degree to which they appear to form a symmetrical and regular

petal arrangement as in a flower. The width of the individual petal

represents the ‘performance’ in the task, the narrower the petal the

greater the sensitivity to the difference between reference and test.

Performance is a slightly misleading term as only discrimination

‘performance’ can be thought of in this way, not categorisation.

However, in keeping with considering both data sets identically,

we retain the term at this stage. The axial symmetry of each petal

represents the degree to which the direction around the space

affects the performance on either task and the overall regularity of

the petal structure indicates how uniform this performance is

throughout the colour space. Examining the data in this way

reveals that observers identify physical dissimilarity (discrimina-

tion) over a much reduced distance around the colour space than

they do categorical dissimilarity. It is also the case that categorical

dissimilarity is not symmetrical around the reference point nor is it

uniform across the colour space or between observers; Figures 5

and 6 emphasise these observations. The computational modeling

reported below provides quantitative support for these conclu-

sions.

The effect of stimulus duration appears to be minor for both

categorisation and discrimination (bear in mind these stimuli are

scaled to their respective contrast detection thresholds) and no

systematic variation is obvious for either task. Most critically, for

the underlying motivation for varying duration [43,69,71], colour

categorisation (which we take as a proxy for colour perception)

does not simply revert to discrimination at short stimulus

The Categorisation of Non-Categorical Colours
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durations. There is a suggestion that fewer categories may be

clearly identified when the stimulus is on for longer and this may

have some relationship to the ability to more clearly and reliably

identify a particular colour.

Put most simply, the important point made by Figures 1, 2, 3, 4,

5, and 6 is that these two tasks, discrimination and categorisation,

yield different results even though they are performed with exactly

the same stimulus set; only the observers’ internal decision process

changes between the two conditions, not the stimulus input.

A related, and critical, characteristic of the data to notice is that

the category data are quite idiosyncratic to each observer whereas

the discrimination data are much more similar between observers,

as we would expect; categorical judgements are far more subjective

than the objective measure of discrimination. Both these

characteristics of the data are present in all of the 19 subjects

measured to date (publications in preparation), and would be

present regardless of the method by which a category or JND

boundary were delineated. The discrimination data are generally

consistent with other recent work [86,87]; the categorisation data

are entirely novel.

Finally, Table 1 expresses the difference between discrimination

and categorisation in statistical terms through the output of a

paired-sample t-test comparing percentage of ‘same category’

response in the categorisation task with unbiased percentage

probability of ‘same’ response in the discrimination task. All the

differences were significant (with a p,0.001) indicating that

categorisation and discrimination tasks yielded significantly

different data for all observers and conditions.

JNDs and the Category Boundary Effect
As we have outlined, one of the hallmarks of categorical

perception is the increased sensitivity to physical stimulus

difference (discrimination) across a category boundary. Quantita-

tively, discrimination JNDs are relatively evenly distributed

throughout the colour plane with a mean degree value for each

observer of DC (Long 16.76 60.95; Short 16.5461.43), DO

(20.5861.06; 32.2161.56) and AR (30.7161.42; 31.1761.18) and

are symmetrical about the reference (see modeling section). There

is the suggestion of an (non-significant) trend toward higher JNDs

around the horizontal S-(L+M) axis (90–270 deg) compared to the

vertical L-M axis [86,87] but the distribution of JNDs is far more

even than the categorisation data which is entirely subjective and

asymmetrical about the reference stimulus. Again, it should be

stressed that while the choice of reference stimulus, in terms of its

colour, clearly influences the data and the ‘category’ placement in

the whole colour plane, comparing the discrimination and

categorisation data for the same stimulus set ameliorates this

issue: Any category boundary effect, causing enhanced discrimi-

nability across boundaries, should be revealed in the discrimina-

tion data by asymmetry in the individual curves in the proximity of

a boundary. This is not seen in the data either qualitatively or

quantitatively and this is examined in more depth in the modeling

section. In a parallel study the JNDs were measured directly across

and within the boundaries and we found no boundary effect [88].

The primary difference between the categorization and

discrimination data can be efficiently summarized as follows:

The generalisation gradients (i.e., the proportion of same

responses) in the discrimination condition drop off quickly in the

discrimination condition. Further, these gradients are relatively

symmetric in the discrimination condition. By contrast, the

generalisation gradients in the categorisation condition are

characterised by marked asymmetry and drop off much slower

as one moves further from the reference stimulus (see Figures 1, 2,

3, 4).

Computational Modeling

To characterize the relationship between categorisation and

discrimination in the current study and more directly map

categorisation generalisation gradients from the reference stimuli,

we applied an exemplar model; the Generalized Context Model

(GCM; Nosofsky, 1986). The GCM is perhaps the most well-

known model of categorisation; this model assumes that categor-

isation decisions are made by comparing the to-be-categorized

probe item to all previously seen exemplars. In a standard, two-

category task, the similarity of the probe item is computed to

members of both categories, the similarities are summed within

each category and the relative summed similarities are used to

determine the probability of responding with each respective

category. Importantly, the model provides excellent quantitative

fits to not only observed categorisation data but also other tasks

that may rely on the same types of similarity computations, such as

identification, old-new recognition, and same-different discrimi-

nation judgments [53,54,58] and inductive reasoning [55–57].

In the present task, we assume that for both categorisation and

discrimination, similarity is computed only between the probe

stimulus and the reference stimulus. This assumption has been

used previously to model similarity-based processes underlying

same-different judgments with other colour stimuli (Munsell

colours varying in hue, saturation and brightness; Cohen &

Nosofsky, 2000). In that study, the primary focus was on variation

in response time to do specific locations of pairs of stimuli in either

dense or isolated regions of the stimulus space. Consequently,

Cohen and Nosofsky included additional assumptions about the

retrieval of previously seen pairs of items in order to account for

the variability in response times on trials in which the two stimuli

were the same in both discrimination and categorisation (their

Experiment 2). By contrast, in the present study, we are concerned

with the proportion of ‘same’ responses in the two tasks of

categorisation and discrimination rather than response time. In

addition, the stimuli compared in each block are equivalent in

‘density’ between trial blocks; although, as we explain below, the

stimulus space as a whole and distances between the stimuli in that

space play a central role in explaining the observed data. A further

distinction between that study and the present study is that Cohen

and Nosofsky examined simultaneously presented stimuli from one

particular region of colour space, where we examine the relation

between categorisation and discrimination across the entire colour

space using sequentially presented stimuli and, between condi-

tions, varying the presentation time of each to-be-compared

stimulus (the ‘long’ and ‘short’ conditions).

The GCM assumes that stimuli are represented as points on a

multidimensional psychological space. Hence, the perceived

distances between stimuli can be used to determine their similarity.

Although the cardinal colour space captures the opponent-process

visual properties of the colour signal when scaled in terms of their

subjective detectability, colours represented in cardinal space are

not necessarily perceptually uniform in terms of perceived hue.

Figure 1. Polar plots showing performance in the long duration (500 ms) discrimination condition. Radial coordinates give the colour
angle of the test stimulus, axial coordinates the unbiased proportion considered ‘same’ (see text). Reference stimuli are located at the central colour
angle of each ‘petal’ which also coincides with the apex of the petal.
doi:10.1371/journal.pone.0059945.g001
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That is, the perceived ‘colour distance’ between two colours is not

equivalent in all regions of the cardinal space. Psychological space

is usually established through multidimensional scaling of perfor-

mance to the given stimulus dimensions; however, because the

current task requires exhaustive pairwise comparisons, the

standard approach is not feasible here. Consequently, in order

to appropriately capture the distances between stimuli, we

transformed the cardinal colour space to CIE Luv space (cf.

[89,90] and used the transformed values as input to the model (see

Figure 7). The u and v dimension of the CIE Luv space do not

correspond directly to physiologically or psychologically valid

colour dimensions like the opponent axes of the cardinal colour

space or the brightness, saturation and hue dimensions of the

Munsell colour space, which is often employed in studies of

categorisation [50,51]. Instead, the dimensions of CIE Luv space

correspond to transformed axes of CIE XYZ space, which itself is

ultimately derived from CIE RGB space. This space is, in turn,

constructed from psychophysically-measured colour-matching

functions whereby a single monochromatic light is matched by

three primaries (fixed chromaticity but observer-variable brightness)

each predominantly stimulating one of each of the three cone

subtypes [91,92]. The transformations used to derive CIE Luv

space result in a more uniform distribution of colours with

approximately equivalent perceptual distances in all regions of the

colour space [89]

We measured the CIE Luv coordinates, u9 and v9, of the stimuli

using a Textronix J18 LumaColourE II Photometer. As only the

relative distances between the stimuli are important for modeling

the data in the present case, we fit an ellipse to the measured

coordinates using a least squares criterion. These coordinates were

then standardized in order to ensure that both dimensions had the

same range of values. Luminance was not varied; hence, the

stimuli are represented solely by the standardized u and v

coordinates.

As shown in Figure 7, the coordinates form an ellipse, which

implies that in some blocks, colours on one side of the reference

stimulus may be perceived to be closer together (i.e., less distant in

CIE Luv space) than colours on the other side of the reference

stimulus. This provides one hypothesized locus for the asymme-

tries observed in the categorisation data; namely, stimuli in some

regions of the space might be perceived as more similar than

stimuli in other regions of the space. Consequently, the probability

of responding same may change depending on the location of the

colours within the larger colour space. Note that this hypothesis

cannot account for the relative symmetry seen in the generaliza-

tion gradients of the discrimination condition; consequently, the

explanation for the difference between categorisation and

discrimination must rely on key differences in the parameters

assumed to underlie performance in these tasks.

Model Specification
Formally, the distance between the reference, xi, and the test

stimulus, xj is given by:

dij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

wk xik{xjk

� �2

s
ð1Þ

In the present case, the k dimensions of x are the u and v

coordinates, and the distance is computed by taking the square

root of the summed squared differences between the standardized

u and v coordinates weighted by an attention parameter, w; the

attention parameter is constrained to sum to one across both

dimension. The attention parameter adjusts the amount of weight

given to each dimension, which may vary due to the elliptical

nature of the category space. The similarity between any two

stimuli is an exponentially-decreasing function of the distance

between the stimuli [93]:

sij~exp {cdij

� �
ð2Þ

The specificity parameter, c, determines how steeply similarity

declines with distance (Nosofsky, 1986). High values of c will result

in low similarity, even between items which are close together in

the stimulus space. Low values are c will result in high similarity

even between items which are far apart in the stimulus space. Put

another way, for high values of c, small differences between stimuli

become more salient resulting in lower similarity between stimuli

than when c takes on a lower value.

The probability of responding that a probe item either belongs

to the same category as the reference stimulus or that a probe item

is the same item as a reference stimulus is given by:

p SAMEð Þ{ sij
c

sij
czkc

ð3Þ

where k and c are free parameters. The parameter, k, is a criterion

used to transform similarity to the probability of responding same.

The response scaling parameter, c, allows responding to vary

according to the ratio of sij and k, when c is near one, to

deterministic responding when c is greater than one.

In summary, the base version of the model has four free

parameters, w, c, k, and c. In typical applications of the GCM to

integral-dimensioned stimuli [50,53], the attention parameter, w,

is unlikely to play a crucial role; however, because of the elliptical

nature of space, across different blocks, the reference point will

differ to the comparison stimulus along either or both of the

dimensions. Consequently, attention is likely to vary across blocks

reflecting the specific location of stimuli within the elliptical space.

Categorisation and discrimination are likely to differ on the value

of the specificity parameter, c, needed to predict the behaviour

observed in both tasks with higher values predicted in discrimi-

nation than in categorisation. It is also possible that different

specificity parameters might be required in different parts of the

stimulus space. For example, in some regions of the space, for

some observers, especially near the major axis of the ellipse,

discrimination performance remains largely symmetrical but large

asymmetries are apparent in the categorisation data; the

categorisation asymmetries may depend on higher values of the

specificity parameter in those regions of the stimulus space.

Finally, the criterion and response scaling parameters may vary by

task and by block. More specifically, the response scaling

parameter is likely to differ between categorisation and discrim-

ination with a lower criterion expected in the former task relative

to the latter (a similar difference is found between categorisation

and old-new recognition, see e.g., [54]. Consequently, we fit a

number of different versions of the model which constrained the

Figure 2. Polar plots showing performance in the long duration (500 ms) categorisation condition. Radial coordinates give the colour
angle of the test stimulus, axial coordinates the unbiased proportion considered ‘same’ (see text). Reference stimuli are located at the central colour
angle of each ‘petal’ which also coincides with the apex of the petal.
doi:10.1371/journal.pone.0059945.g002
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model parameters in different ways (i.e., either across blocks or

tasks or both). By comparing the fits of the constrained models to

an unconstrained model in which all parameters are free to vary

across tasks and blocks and to the base version of the model in

which all parameters are fixed across task and block, we can reveal

which parameters best account for behaviour in both tasks.

Model fitting procedure
Because the data from each observer are binomially distributed,

we used the log of the binomial likelihood to optimize the

parameters for the fits to each observer’s data:

ln Lð Þ~
X

j

rj ln pj

� �
{ fj{rj

� �
ln 1{pj

� �
ð4Þ

where pi is the model’s predicted probability responding same for

item j, rj is the observed number of same responses for item j, and fj
is the frequency of item j (i.e., the number of times item j was

presented). Parameters were optimized separately for each

observer in each condition using a Hooke and Jeeves algorithm

to minimize the negative log likelihood function from a large

number of different starting points [94].

We fit a version of the model in which all parameters were

allowed to vary by task and by block. This resulted in a very

flexible model (hereafter, the fully flexible model) with 160 free

parameters fit to 440 data points (20 blocks of 11 stimuli in both

the categorisation and discrimination tasks). The log-likelihood

values of the model were converted to Bayesian information

criteria (BIC; [95]) by adding a penalty term which is a function of

the number of free parameters in the model, np, and the number of

data observations being fit, M:

BIC~{2 ln Lð ÞznP ln Mð Þ ð5Þ

We then systematically constrained parameters across tasks or

blocks or both, computed the log-likelihoods for the constrained

models and compared the model fits using BIC. The model that

yields the smallest BIC is preferred as it balances the fit to the data

against complexity due to excess parameters. Any constrained

model can never have a maximum likelihood better than the fully

flexible model; however, reduction in the number of free

parameters results in a lower penalty effectively improving the

goodness of the model fit to the data. This approach does not favor

any constraint a priori but rather allows us to compared different

constrained versions of the model and focus on the model which

best captures the data without excessive parameters.

Modeling results
In the fully flexible model, the exponent, c, in Equation 3 took

on a large value across tasks and blocks. Since variation in this

parameter has little effect when the parameter is large, we fixed

the parameter across the remaining model fits; as expected, the

log-likelihoods were unchanged by this constraint (see Table 2). In

addition to the fully flexible and fully constrained comparison

models, the modeling results indicated that two additional models

were particularly relevant for explaining the current results. As

shown in Table 2, observer AR’s data in the long and short

duration conditions and observer DC’s data in the short duration

condition were best fit by a version of the model in which the

attention weight, w, and the specificity parameter, c, varied by

block and the criterion parameter, k, was varied across both blocks

and tasks (i.e., categorisation and discrimination). This model is

hereafter referred to as the flexible criterion model. By contrast,

observer DC’s data in the long duration condition and observed

DO’s data in the short duration condition were best fit by a version

of the model in which attention, w, varied by block, specificity, c,

varied by block and by task and the criterion parameter, k, was

fixed across task; hereafter, this model is referred to as the flexible

specificity model. Observed DO’s long duration results were best fit

by the fully flexible model.

The fits of the model with the lowest BIC to each observer’s

discrimination and categorisation data are shown in Figures 8, 9,

10, and 11. As is evident from the figures, the model accurately

captures the generalization gradients across the discrimination and

categorisation data. In support of this claim, we computed the root

mean squared deviations (RMSD) between the model predictions

and the data for each block. The average RMSD for each observer

in each condition are shown in Table 3. The order of RMSD

roughly follows the amount of asymmetry present in the

generalization curves with lower RMSD’s (i.e., better fits) for

more symmetrical curves. Inspection of the model fits within each

block revealed a small proportion of the blocks (.07) had RMSDs

larger than.15. These poor fits were generally in blocks in which

the participant showed extensive asymmetry, but the model only

predicted mild asymmetry or asymmetry in the wrong direction.

Consequently, although the model can predict asymmetries based

on smaller distances between the stimuli on one side of the

reference point than the other, the model does not adequately

handle all of the asymmetry and in some cases, predicts

qualitatively different asymmetry than what is observed. Although

this is clearly a failing of the model, it provides a compelling clue

about the types of additional or alternative mechanisms that may

be influencing the categorisation behaviour; we return to these

mechanisms below.

Model parameters
Attention parameter. The attention parameters for each

observer and each condition are shown in Figure 12. The attention

parameters are highly consistent across observers and conditions

with attention near unity (i.e., complete attention to the u

dimension) particularly for blocks that have reference points

between 0 and 90 degrees and near 270 degrees. Consistent near

zero attention weights (i.e., complete attention to the v dimension)

is found for blocks that have reference points between 180 and 270

and between 270 and 360 degrees. A small number of other blocks

show varied attention weights between observers and conditions;

however, the consistency across a large number of blocks suggests

that the attention weight is primarily influenced by the position of

colours within the elliptical colour space. This is logical as it makes

little sense for the model to heavily weight dimensions on which

the colours within a block show only small variation.

Specificity. The specificity parameter is also consistent across

observers and durations with all observers showing distinct peaks

of various magnitude in the value of the specificity parameter for

some blocks, specifically those blocks with reference colours at 90,

160, 286 and 340 degrees (see Figure 13). The specificity

parameter did not vary dramatically between the categorisation

Figure 3. Polar plots showing performance in the short duration (50 ms) discrimination condition. Radial coordinates give the colour
angle of the test stimulus, axial coordinates the unbiased proportion considered ‘same’ (see text). Reference stimuli are located at the central colour
angle of each ‘petal’ which also coincides with the apex of the petal.
doi:10.1371/journal.pone.0059945.g003
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and discrimination conditions, with three of the observer/duration

conditions better fit by a model in which specificity did not vary by

task. For the other three observer/duration conditions, the

differences between the tasks are small. The specificity parameter

adjusts the steepness in the exponential similarity function;

consequently, high values of this parameter in specific locations

may represent areas of the space in which the observer is most

sensitive to small changes in the stimulus. It is unclear why the

specificity parameter peaks at the locations shown in Figure 13;

however, we offer some possibilities in the General Discussion.

Criterion. As shown in Equation 3, the criterion parameter

in the denominator is exponentiated. Since the exponent is

constant across blocks and tasks, we plot the exponentiated

criterion in Figure 14. Consistent with expectation, the criterion in

the discrimination conditions is consistently higher than in the

categorisation conditions (with the exception of two blocks for

observer DO’s long duration data). This is consistent with the idea

that a ‘‘same’’ decision in discrimination requires more confirma-

tory evidence than in categorisation (cf. [54]).

In summary, there is remarkable consistency in the parameters

across and within observers and across tasks. Consistency in the

attention parameter is largely the result of constraints imposed by

the elliptical nature of the colour space. Consistency in the

specificity parameter may also be due to specific aspects of the

category space; however, the peaks in the specificity parameter do

not appear to be tied directly to observed asymmetry in the data,

nor to specific areas of the elliptical category space in which the

colours are compressed. The criterion required for discrimination

is consistently higher in discrimination than in categorisation.

Despite the having parameters which vary across blocks and

tasks, the model makes qualitatively inaccurate predictions in some

of the blocks predicting asymmetries which are in the opposite

direction to that actually observed. This occurs only in the

categorisation condition; by contrast, the high discrimination

criterion allows the model to accurately predict the symmetrical

generalization gradients for the discrimination data. It is important

to note that the model can only predict asymmetry when stimuli

Figure 4. Polar plots showing performance in the long duration (50 ms) categorisation condition. Radial coordinates give the colour
angle of the test stimulus, axial coordinates the unbiased proportion considered ‘same’ (see text). Reference stimuli are located at the central colour
angle of each ‘petal’ which also coincides with the apex of the petal.
doi:10.1371/journal.pone.0059945.g004

Figure 5. Just Noticeable Differences (JNDs) for the discrimi-
nation task arranged by observer (rows) and duration
(columns). See text for details of calculation.
doi:10.1371/journal.pone.0059945.g005

Figure 6. Estimated category boundaries for each observer and
duration. See text for details of calculation.
doi:10.1371/journal.pone.0059945.g006
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on one side of the reference point are closer together than stimuli

on the other side. Further, the model can only predict asymmetry

in the direction of the compressed stimuli (i.e., the model predicts

that the probability of responding same should be higher in the

direction of the compressed stimuli than in the opposite direction).

To characterize the degree of asymmetry which is not well-

predicted by the model, we created a measure of stimulus

compression by finding the distance between the two stimuli

furthest to the left of the reference stimulus (d1,2) and the two

stimuli furthest to the right of the reference stimulus (d10, 11) using

Equation 1. We then identified blocks with compression to the left

(d1,2,d10,11) or to the right (d1,2.d10,11). We also computed a

measure of asymmetry by finding blocks in which different in the

probability of responding ‘‘same category’’ between items 1 and

11, x1 and x11, was greater than or less than some asymmetry

threshold (i.e., how much difference is necessary before classifying

the data as asymmetrical). We then computed the proportion of

blocks in which the compression and the asymmetry of responding

same category were in the same direction. These proportions vary

according to the size of the asymmetry threshold (i.e., because the

number of blocks showing asymmetry decreases with the

asymmetry threshold); hence, we used a range of thresholds from

.2 to .4. Averaged across the threshold range, observer DC had the

most asymmetrical blocks with 13 and 12 in the long and short

duration conditions, respectively, observer AR had 8 and 9

asymmetrical blocks in the long and short duration condition,

respectively, and observer DO had an average of 4 and 1

asymmetrical blocks in the long and short duration conditions,

respectively.

As shown in Figure 15, for observers AR and DC, compression

in the stimulus space is in the same direction as the asymmetry in

over half of the asymmetrical blocks and completely in the same

direction for the short duration condition for observer DO. In

addition, these proportions are always higher in the short duration

condition than in the long duration condition across all observers

implying that extra observation times in the long duration

condition allows for some aspects of the colour signal to influence

processing in a manner which results in asymmetries which do not

accord with the compression in the category space.

Modeling Summary
What then does the modeling tell us about behaviour?

1) The model fully characterizes the primary differences

between categorisation and discrimination as a difference

in criterion, with a lower criterion required for making a

‘same’ response in categorisation than in discrimination.

2) Asymmetries in the categorisation data are primarily

explained by the elliptical nature of the stimulus space

when plotted on a particular (CIE Luv) set of axes; that is,

due to the shape of the colour space, in some blocks stimuli

on one side of the reference are spaced further apart than

stimuli on the other side of the space resulting in a lower

similarity and the reference and a sharper drop-off in the

proportion of same response for those stimuli.

3) For blocks in which the data (including the asymmetry in the

categorisation data) are well-predicted by the model, the

implication is that the responses are based solely on

comparison between the target and reference stimuli.

4) There remain some asymmetries which are not well-

predicted by the model, and this is true in the long duration

more than the short duration condition, suggesting that

whatever is driving the asymmetry is a consequence of

having extra time to process the stimulus. There are at least

two possible explanations for the mispredicted asymmetry.

First, our assumptions about the spacings of the stimuli in

CIE Luv space may be incorrect. Individuals most likely

vary in the perceived distances between the stimuli;

consequently, in some blocks, the CIE Luv space, which is

a derived space based on averaged data may not be

appropriate for some observers. A second possibility is that

Table 1. Results of a paired 2-tailed T-test comparing discrimination (dis) to categorisation (cat) for each observer (AR, DO, DC) at
long and short stimulus durations.

Paired Differences

Mean Std. Deviation Std. Error Mean

95% Confidence Interval of
the Difference t df

Sig. (2-
tailed)

Lower Upper

Pair 1 Long duration ARdis - ARcat 226.93182 16.60946 1.11981 229.13880 224.72483 224.050 219 .000

Pair 2 DOdis - DOcat 234.50000 27.00900 1.82095 238.08882 230.91118 218.946 219 .000

Pair 3 DCdis - DCcat 245.26136 32.63215 2.20006 249.59736 240.92537 220.573 219 .000

Pair 1 Short duration ARdis - ARcat 226.84091 18.15452 1.22398 229.25319 224.42863 221.929 219 0.000

Pair 2 DOdis - DOcat 220.31818 41.00633 2.76465 225.76690 214.86946 27.349 219 0.000

Pair 3 DCdis - DCcat 236.73864 22.55548 1.52069 239.73570 233.74158 224.159 219 0.000

All values significant (p,.001).
doi:10.1371/journal.pone.0059945.t001

Figure 7. Left panel shows the reference points from each
block in cardinal colour space. Right panel shows the reference
points from each block in CIE Luv space.
doi:10.1371/journal.pone.0059945.g007
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there are regions of the stimulus space for which observers

are influenced by information other than that contained in

the colour stimulus. For example, if the reference and the

target colour belong to different categories specified by a

unique hue boundary, then asymmetries might result simply

from the stimuli within a block crossing over that boundary

(we address this further below).

Figure 8. Discrimination Long Duration (500 ms): Predictions of the model to each of the blocks for Observers AR (top panel), DC
(middle panel) and DO (bottom panel). Data are shown as dots; the model predictions are shown as lines fit to the data. Color and style of lines
and dots are alternated for clarity.
doi:10.1371/journal.pone.0059945.g008

Figure 9. Categorization Long Duration (500 ms): Predictions of the model to each of the blocks for Observers AR (top panel), DC
(middle panel) and DO (bottom panel). Data are shown as dots; the model predictions are shown as lines fit to the data. Color and style of lines
and dots are alternated for clarity.
doi:10.1371/journal.pone.0059945.g009
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General Discussion

The work presented in the paper has relevance both to the study

of colour vision and to the examination of categorisation of stimuli

in general.

Colour
What we have shown is that observers are able consistently to

perform a categorisation task on a stimulus set largely used for

simple tasks of colour perception (detection and discrimination).

Not only do the data reveal that there is some measurable

intermediate stage of colour sensation prior to learned colour-

Figure 10. Discrimination Short Duration (50 ms): Predictions of the model to each of the blocks for Observers AR (top panel), DC
(middle panel) and DO (bottom panel). Data are shown as dots; the model predictions are shown as lines fit to the data. Color and style of lines
and dots are alternated for clarity.
doi:10.1371/journal.pone.0059945.g010

Figure 11. Categorization Short Duration (50 ms): Predictions of the model to each of the blocks for Observers AR (top panel), DC
(middle panel) and DO (bottom panel). Data are shown as dots; the model predictions are shown as lines fit to the data. Color and style of lines
and dots are alternated for clarity.
doi:10.1371/journal.pone.0059945.g011
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naming but that this psychophysical ability does not affect

discrimination in any way; there is no evidence for a category-

boundary effect in the data [19,88]. This suggests that the oft-cited

categorical nature of colour perception needs to be clearly

qualified as being a property of a named and learned colour

stimulus-set, which in turn makes it a quite restricted and far less

interesting property from the perspective of human colour vision

and is perhaps far more founded in language and communication,

around which there is significant debate [44,65,96–103]. When

considered in the context of the ‘problem’ faced by the visual

system, or any sensory system [104], this observation is less

contentious if the purpose of categorical perception is to optimise

the system performance by effectively enhancing sensitivity across

a boundary at the expense of reducing sensitivity between the

boundaries [19]. Such an approach makes good sense for stimuli

such as phonemes, when judgement of the stimulus characteristics

must be fast and effective in order to understand speech, but

makes no logical sense for the fine graded perception of colour

(and brightness) in a complex scene. In this paper we offer an

alternative explanation of the categorisation and discrimination

data which assumes that same/different decisions in both tasks are

based on a common similarity-based mechanism.

The relatively uniform nature of the discrimination space

compared to the asymmetrical and quite idiosyncratic form of the

free-categorical space suggests that the observers are clearly

performing different tasks even though the stimulus set remains

unchanged for each task. We suggest that the free-categorisation

task examined here may be the simplest form of colour sensation,

and provides some intermediate psychophysical measure of colour

perception between discrimination and colour-naming, and we

speculate that its neural analogue may be the population response

of colour selective neurones seen in V1 [105,106], a suggestion

made previously in the context of chromatic motion discrimination

[107].

As outlined in the context of the motivation for this study, the

perception of colour, as opposed to the detection and discrimina-

tion of different coloured stimuli, has generally, although not

exclusively, been examined using stimuli specifically constructed

around a perceptual colour space, initiated from an artistic

perspective by Albert Munsell [108]. There are extensive data on

the behavioural properties of stimuli such as these both in isolation

and in the context of different environments and illuminants (see

[14] for a thorough recent review). The difficulty has been, to date,

to link these perceptual data to the detection and discrimination

data, at least in part due to between-task differences in the stimuli

and conditions [8,9,12]. From a task perspective the obvious

overlap between the two approaches has been the Just Noticeable

Difference (JND) which forms the scalar of the perceptual space,

and is the result of any discrimination task in cone or cardinal

space. Here we have taken this overlap one stage further with the

free-categorisation task.

Other recent approaches to this issue of bridging the gap

between the two streams of research have included naming colours

represented in a cone-contrast space [33,42] and mapping unique

hues [34], modelling the response of LGN neurones to Munsell

colour chips [5,6], and examining the effect of prolonged

adaptation to the perception of Unique Yellow [109]. Several

studies have looked at the ability of observers to classify cone

modulating stimuli in terms of how much of two opponent colours

(eg Red-Green, Blue-Yellow or Black-White) they are thought to

contain [39,40,42,49]. Observers are able to perform the task, to

perceptually extract a given hue, even though the coloured

stimulus is itself perceptually mixed (Malkoc & Kingdom, 2012). In

each of these studies the observers were required to use their

internal representation of the named hue to perform the task. The

current study extends these studies in two ways; we allow and

encourage the observers to define their own category and

discourage the use of remembered named colours, and we

measure the difference between discrimination and categorisation

Table 3. Root mean-squared deviation (RMSD) averaged across blocks for each observer and duration.

Long Duration Short Duration

AR DC DO AR DC DO

Categorization 0.09 (0.05) 0.13 (0.09) 0.08 (0.04) 0.09 (0.05) 0.10 (0.05) 0.08 (0.04)

Discrimination 0.10 (0.04) 0.09 (0.04) 0.07 (0.03) 0.10 (0.04) 0.10 (0.06) 0.07 (0.03)

doi:10.1371/journal.pone.0059945.t003

Figure 12. Attention parameter, w, from the best fitting model
(see text for details) plotted at each reference point for the
categorization condition (red) and discrimination condition
(green). Left hand panels show the long duration condition; right
panels show the short duration condition.
doi:10.1371/journal.pone.0059945.g012
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around the circumference of a colour ellipse rather than effectively

across the middle, as is the case with opponent hues. While we

accept that observers are free to use named colours if they wish, we

do not consider this to be the case. In a subsequent study when

observers were given colour names for previously unnamed

stimuli; the rate at which they learned a new category increased

significantly although the category properties themselves remained

the same (Unpublished data; manuscript in preparation). In terms

of the suggestions made by the modelling, it also seems far more

intuitive for the observers to use a more general definition of

category such as of degree of similarity between two perceptually

mixed colours, than try to identify a particular characteristic hue

within a mixed stimulus, upon which to make their judgement.

The large stimulus array and presentation structure also suggests

this might be the most straightforward approach to the task; future

work is aimed at disentangling this issue.

In summary, each of the studies cited above, as well as the

current study, has contributed to the process of mapping the

development of the colour ‘signal’ in the system and all largely

conclude that the perception of colour is a multi-dimensional

property which exhibits characteristics of every stage of the process

in its measured properties, whichever behavioural task is chosen.

The current data are congruent with this view in that the task of

categorisation is shown to be a property of cardinal stimuli and

operates as a ‘stripped down’ version of the behavioural measure,

showing no category boundary effect, when the current stimuli

and conditions are used.

Categorisation
The data revealed two primary differences between the

discrimination and categorisation data: Firstly, the curves within

each block were much narrower in the discrimination task than in

the categorisation task. This reflects highly accurate performance

in the discrimination task (i.e., responding ‘same’ only when the

test colour was very similar to the reference colour). In the

categorisation task, the curves were wider indicating a tendency to

endorse test colours which were further from the reference colour

(in comparison to discrimination) as belonging to the same

category. This result is qualified by, secondly, a marked

asymmetry in the curves for the categorisation condition but not

the discrimination condition.

Figure 13. Specificity parameter, c, from the best fitting model
(see text for details) plotted at each reference point for the
categorization condition (red) and discrimination condition
(green). Left hand panels show the long duration condition; right
panels show the short duration condition. The specificity parameters
were standardized to have a maximum value of 1 by dividing by the
maximum estimated specificity (i.e., cmax = [45.31, 57.38, 15.86] for
observers AR, DC and DO in the long duration condition and
cmax = [34.25, 407.2, 23.59] for observers AR, DC and DO in the short
duration condition).
doi:10.1371/journal.pone.0059945.g013

Figure 14. Exponentiated criterion parameter, kc, from the best
fitting model (see text for details) plotted at each reference
point for the categorization condition (red) and discrimination
condition (green). Left hand panels show the long duration
condition; right panels show the short duration condition. The response
scaling parameter, c, parameter for each observer was as follows: Long
duration condition = [1.85, 5.32, 6.02] for observers AR, DC, and DO,
respectively. Short duration condition = [2.10, 0.25, 5.17] for observers
AR, DC, and DO, respectively. The exponentiated criterion parameter
was scaled to be comparable to the other parameters by dividing by
the 1.5 times the maximum estimated exponentiated criterion (i.e.,
kc

max = [0.40, 0.29, 0.16] for observers AR, DC, and DO, respectively, in
the long duration condition and kc

max = [0.40, 0.29, 0.18] for observers
AR, DC, and DO, respectively, in the short duration condition).
doi:10.1371/journal.pone.0059945.g014
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The computational modeling revealed a close correspondence

in the parameter estimates across observers and within observers

across task durations. This is the first examination of how these

model parameters change across the entire color space; conse-

quently, the parameter estimates reported here offer a key

benchmark for future research. Namely, the discrimination

criterion is higher than the categorization criterion explaining

the steep discrimination generalization gradients and the relatively

shallow categorization generalization gradients. The attention

parameter varies in specific locations of the stimulus space

influence primarily by the elliptical nature of CIE Luv space.

We note that the specificity parameter is increased in blocks which

roughly fall between the unique hue locations as measured by

Malkoc and Kingdom (2012). Consequently, increased specificity

might indicate the location of a boundary between two unique hue

regions, though these regions are not equivalently-sized. For

instance, the locations of unique red and unique yellow are near 0

(or 360) degrees and 300 degrees, respectively, but specificity is

peaked near 340 degrees [35] By contrast, the peak between

unique red and unique blue (at 125 degrees) is around 90 degrees.

This could indicate a bias in how the broadband color stimuli are

allocated to the unique hue categories (e.g., it might be reasonable

for a ‘‘red’’ stimulus to contain a substantial amount of blue but it

is more likely to be called ‘‘yellow’’ if it contains even a small

amount of yellow). This would imply the unique (or best example)

colors do not fall in the center of their respective categories. We

leave this as a direction for future research which might address

this question by adequately measuring both the distances between

the stimuli in a uniform colour space and the locations of unique

hues in relation to the reference and target colour locations.

Conclusions

From the stimulus-driven perspective of colour, the data show

there is some intermediate stage of colour sensation prior to, and

possibly functionally independent of, colour-naming and that this

psychophysical ability does not affect discrimination in any way.

From the task-driven perspective of categorisation and its

relationship to other forms of stimulus recognition and identifica-

tion, the data provide a clear quantitative link to the simpler task

of discrimination and give a more coherent behavioural analogue

of the development of a neural representation of a stimulus. While

discrimination and categorisation in the same stimulus set are

statistically different decision-processes, they can be delineated

from each other simply on the basis of prior knowledge of the

stimulus set; in this case the sensory quality of colour.

Strongly influenced by Hering, we are encouraged that this

approach contributes toward a unifying framework for colour

perception, which in turn gives an unusually coherent exemplar of

the nature of stimulus detection, discrimination, categorisation and

identification.
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