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Abstract

Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has
resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally
administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal
treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning.
Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor
behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine
and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during
gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter
brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they
showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was
associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in
adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-
seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of
which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero.

Citation: Farid WO, Lawrence AJ, Krstew EV, Tait RJ, Hulse GK, et al. (2012) Maternally Administered Sustained-Release Naltrexone in Rats Affects Offspring
Neurochemistry and Behaviour in Adulthood. PLoS ONE 7(12): e52812. doi:10.1371/journal.pone.0052812

Editor: Giorgio F. Gilestro, Imperial College London, United Kingdom

Received July 23, 2012; Accepted November 21, 2012; Published December 26, 2012

Copyright: � 2012 Farid et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was supported by the Australian Children’s Trust and a Woodside Neurotrauma Award. AJL is supported by the Victorian Government’s
Operational Infrastructure Support Program. SAD (Grant number: APP1002347) and AJL (Grant number: PRF1020737) are NHMRC Principal Research Fellows. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sarah.dunlop@uwa.edu.au

. These authors contributed equally to this work.

Introduction

Naltrexone is a non-selective opioid receptor antagonist [1],

used clinically for persons wanting to abstain from opiates [2]

and/or alcohol [3,4]. However, naltrexone is not recommended

during pregnancy [5]. Unfortunately, some pregnant opioid-

dependent women have received oral naltrexone [6]. Moreover,

with the advent of sustained-release naltrexone preparations and

their emerging clinical use, inadvertent foetal naltrexone exposure,

particularly around conception, is a genuine possibility [7]. To

date, 52 women have become pregnant while being treated with

an Australian naltrexone implant (GKH, personal communica-

tion).

Limited data from humans treated with oral or sustained-release

naltrexone suggest no major adverse neonatal outcomes with

respect to birth-weights, APGAR scores and head circumferences

[6,8,9] but long-term follow-up is lacking. However, animal

studies, primarily in rat, show adverse neonatal outcomes, but

involved daily subcutaneous injections given directly to postnatal

offspring rather than clinically relevant maternal (i.e. indirect) and

sustained naltrexone exposure. The primary objective of this study

was to use a rat model of maternal administration involving

sustained-release of naltrexone throughout gestation and lactation

at a clinically-relevant plasma concentration of ,2–10 ng/ml

[7,10] and to determine outcomes in neonates and adult offspring.

Previous studies show that rat neonates directly receiving low-

dose naltrexone (1 mg/kg/day) are growth retarded [11,12]

whereas those exposed to high doses (50 mg/kg/day) have

increased birth-weights [13,14]. We therefore assessed the

morphometric impact of our sustained-release maternal naltrex-

one exposure regime hypothesizing that low-dose sustained-release

naltrexone exposure would result in reduced birth-weights.

Furthermore, it has been shown that perinatal exposure to

naltrexone (1–50 mg/kg/day) can alter aspects of adult offspring

behaviour pertaining to emotionality, exploratory drive and
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analgesic response to morphine [15,16,17,18]. However, changes

to locomotor activity are reported not to occur, and to date, no

studies are known to have assessed morphine-induced psychomo-

tor sensitization, an indicator of drug-induced plasticity pertinent

to aspects of addiction [19,20]. Moreover, morphine self-

administration experiments have not yet been undertaken in

naltrexone-exposed offspring. Nonetheless, prenatal exposure to

naltrexone can reduce sensitivity to morphine as indicated by

decreased open-field locomotion [18]. We therefore assessed

morphine-induced sensitization and intravenous morphine self-

administration in maternally exposed adult offspring. Given that

prenatal naltrexone exposure reduces the density of m-opioid

receptors in offspring with reduced morphine-induced locomotor

activity [18], we analysed opioid neurochemistry, namely m-opioid

receptor [21,22] as well as mRNA for preproenkephalin (PPE) and

preprodynorphin (PPD) [23].

Materials and Methods

Animals
Experiments adhered to the Prevention of Cruelty to Animals

Act, 1986 and the Australian National Health and Medical

Research Council Code of Practice for the Care and Use of

Animals for Experimental Purposes in Australia. There were 3

cohorts. Procedures for cohort 1 were approved by the Animal

Ethics Committee of the University of Western Australia, Perth,

Australia (Approval Number: RA 3 100 423) and the Florey

Neuroscience Institutes, Melbourne, Australia (Approval Numbers

05-061). Procedures for cohorts 2 and 3 were approved by the

Animal Ethics Committee of the University of Western Australia,

Perth, Australia (Approval Number: RA 3 100 618) and the Florey

Neuroscience Institutes, Melbourne, Australia (Approval Number:

08-001).

Three cohorts (Figure 1) of Sprague-Dawley rats (Animal

Resource Centre, Murdoch University, Australia) were housed in

pairs or threes (23uC; 12-h light/dark cycle) with food/water

available ad libitum. All females were nulliparous and 9–11 weeks of

age upon arrival. In cohort 1, there were 16 dams (180–270 g), in

cohort 2 there were 12/treatment group (197–315 g) and in

cohort 3 there were 6/treatment group (240–290 g). Ten males

(330–460 g) were used for husbandry.

Drugs
Morphine hydrochloride: Glaxo, Australia, in sterile 0.9%

saline. Ketamine: Parnell Laboratories, Australia; meloxicam:

Boeringher Ingleheim, Germany; neomycin sulfate: Delta Veter-

inary Laboratories, Australia; and carprofen: Norbrook Labora-

tories, Australia. Heparinised saline was diluted at 90 IU/ml.

Custom-sized naltrexone implants comprised the same formu-

lation as for humans (naltrexone-loaded poly[trans-3,6-dimethyl-

1,4-dioxyane-2,5-dione] (DL-lactide) microspheres, average mo-

lecular weight 700,000 Mv, inherent viscosity 0.5 dl/g, specific

Figure 1. Timelines and overall study design. Timelines and overall study design is shown for all 3 cohorts, including main procedures (i.e.
events) and offspring ages (A and B), experimental outcome measures (A), and sampling of blood/amniotic fluid (B). Each cohort can be identified by
their respective arrows (cohort 1, black-dashed; cohort 2, black-filled; cohort 3, gray-filled), which provide a guide for the procedures that were
undertaken and the approximate end-point. * maternal implant excision and histopathology data published elsewhere [45]. More detailed timelines
for the behavioural sensitization and operant self-administration experiments are presented in Figures 2 and 3, respectively.
doi:10.1371/journal.pone.0052812.g001
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rotation of –2u to +2u) compressed into a tablet (total weight:

50 mg; 25 mg naltrexone, 25 mg poly[DL-lactide]; 5 mm diam-

eter 6 2 mm height) surrounded by a single coat of poly(DL-

lactide) [24]. Placebo implants had the same dimensions and

contained 50 mg of poly(DL-lactide) microspheres. All implants

were sterilised using irradiation (range 25–40 KGy). Previous

in vitro (data not shown) and in vivo experiments [24] demonstrate

that the custom-sized implant used here has similar release rates

(0.4–0.8%/day) and plasma levels (2–10 ng/ml) to that measured

during their use in humans [10,25].

General Procedures
Three cohorts were used in the current study to evaluate the

extent of naltrexone exposure in offspring and dams during

pregnancy (cohort 1) and before/after pregnancy (cohorts 2 and

3), evaluate gross anatomical outcomes in offspring at birth and

adulthood and changes in neurochemistry in adulthood (cohort 2),

as well as evaluate behavioural outcomes in adult offspring

(cohorts 2 and 3). An overview of the experimental design and

timing of events/outcome measures for cohorts 1, 2 and 3 is

presented in Figure 1A.

Surgery. Dams had a single naltrexone or placebo implant

inserted subcutaneously under general anaesthesia (2–3% isoflur-

ane). Carprofen (5 mg/kg, s.c.) and neomycin (50 mg/kg, s.c.)

were injected post-operatively. Dams in cohort 1 were implanted

with naltrexone and those in cohorts 2 and 3 with naltrexone or

placebo implants.

Blood sampling and analysis. Blood was collected into

lithium-heparinised tubes and frozen at 280uC. For cohort 1,

maternal blood was obtained from a lateral tail vein [26] and

samples from foetal/neonatal rats by jugular incision, pooling

from each litter. Amniotic fluid was also pooled. All other maternal

and offspring samples (cohorts 1, 2 and 3) were obtained by

incising the atrium after terminal anaesthesia. The concentrations

of free naltrexone and 6,b-naltrexol in blood and amniotic fluid

samples were determined (Perth Chemistry Centre, Australia) by

liquid-chromatography/mass-spectrometry (LCMS) [27]. Report-

ing limits were 0.2 ng/ml for naltrexone and 0.1 ng/ml for 6,b-

naltrexol.

Timed mating. Initiation of timed mating took place 12 days

after surgical insertion of implants. Timed-matings were under-

taken by placement of nulliparous rat dams with 2–3 males

overnight; mating was confirmed the following morning by the

presence of spermatozoa in vaginal smears. In most cases,

conception occurred within 3–5 days of initial presentation to

males.

Figure 2. Timeline and paradigm for behavioural sensitization experiment: offspring from cohort 2. Treatments are shown (habituation,
daily injection with morphine [10 mg/kg] or saline, period of abstinence, challenge with morphine [5 mg/kg] or saline injection, brains fresh frozen
for neurochemistry experiments), with corresponding day since start of locomotor sensitization testing, and number of days for each treatment (i.e.
duration).
doi:10.1371/journal.pone.0052812.g002

Figure 3. Timeline and paradigm for operant self-administration experiment: offspring from cohort 3. Treatments are shown (oral
sucrose training, morphine self-administration at 0.1 mg/kg/infusion dose, then at 0.3 mg/kg/infusion dose, period of abstinence, cue-induced drug-
seeking), with corresponding schedule of reinforcement (FR1 and FR2, fixed ratio of 1 and 2, respectively; PR9-4 and PR3-4, progressive ratio 9-4 and
3–4, respectively [see Table 1]; no schedule of reinforcement represented by ‘–’), and corresponding number of days for each treatment schedule (i.e.
duration).
doi:10.1371/journal.pone.0052812.g003

Maternal Naltrexone Affects Adult Offspring

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e52812



Cohort 1
Naltrexone and 6, b-naltrexol levels during

pregnancy. All 16 dams received a naltrexone implant, were

mated, and sampled at either gestation day 13, 15 18 or at birth,

following euthanasia (n = 4 per time-point). Offspring blood was

collected at gestation day 18 and at birth, and was pooled into one

sample per litter. At gestation days 13 and 15, amniotic fluid was

collected and also pooled into a single sample for each litter

(n = 4 per time-point). Naltrexone and 6,b-naltrexol levels in all

samples were measured as above. The sampling time-points for

maternal rats and offspring from cohorts 1, 2 and 3 are

summarised in Figure 1B.

Cohort 2
Naltrexone and 6, b-naltrexol levels before conception, at

birth and at weaning. Cohort 2 females were randomly

allocated to receive either a naltrexone or placebo implant, were

impregnated and gave birth (n = 12/treatment group). Blood was

obtained from all maternal rats 1 day prior to mating and at birth.

Offspring were either euthanised, sampled for blood and

examined at birth (from 6 maternal rats per group), or were

raised to 4 weeks, weaned, and raised until 10 weeks (using the

remaining 6 dams per group), whereupon they were transferred to

the Florey Neurosciences Institute, for evaluation of locomotor

behaviour and neurochemistry. Maternal rats fostering these

offspring had a blood sample taken at weaning. Individual blood

samples were collected from one male and one female from each

litter at weaning and at 8 weeks.

Body and brain morphometry. Duration of pregnancy,

litter size and gender were recorded. At birth and 8 weeks,

offspring body-weight was recorded and heel-toe, occipital-snout

and biparietal lengths were measured using vernier callipers. At 8

weeks, one male and female per litter were perfused transcardially

with heparinised saline (5000 IU/L), followed by 250 ml 4%

paraformaldehyde in 0.2 M phosphate buffer (pH 7.2–7.4) for

brain morphometry. Brain weight was recorded and cerebrum

length, width, height, as well as brain length (i.e. cerebrum+cer-

ebellum) were measured using vernier callipers, and brain volume

was calculated by water displacement as described previously

[28,29,30].

Behavioural sensitization. Upon arrival of offspring at the

Florey Neuroscience Institutes, animals were acclimatised for 2

weeks and no procedures were undertaken. At 12–14 weeks of age,

sensitization to locomotor responses induced by repeated mor-

phine treatment was performed as previously described [31,32].

Briefly, adult male and female offspring were placed individually

in photo-optic locomotor cells (Truscan Photobeam; Coulbourn

Instruments, Allentown, PA, USA) in a low luminosity (20 lux),

controlled environment, for 60 minutes per day for 3 consecutive

days. Vertical (rearing) and horizontal (ambulatory) movements

were measured by optic sensor beams.

Table 1. Instrumental requirement for PR9-4 and PR3-4 schedules.

Infusion Step Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Lever Response Requirement, PR9-4 1 1 1 2 2 2 3 3 4 4 5 5 6 6 7

Lever Response Requirement, PR3-4 1 2 4 6 9 12 15 20 25 32 40 50 62 77 95

Lever response requirement values indicate the number of lever presses necessary for the acquisition of each subsequent infusion (infusion step number). Progressive
increases vary between the two schedules such that for the 10th infusion, 4 lever presses will result in an infusion using the PR9-4 schedule [42], whereas 32 lever presses
are required for the 10th infusion using PR3-4 schedule [43]. Accordingly, the PR3-4 schedule is deemed more difficult as it progressively requires a greater lever
response for an infusion than the PR9-4 schedule. Rat responding for morphine was assessed in the current study using both schedules.
doi:10.1371/journal.pone.0052812.t001

Table 2. Cohort 2 offspring body and brain morphometric
measurements following maternal treatment with naltrexone
or placebo implants.

DRUG GROUP

ASSESSED PARAMETERS Placebo Naltrexone

Body Parameters at Birth n = 60 n = 70

Body Weight (g) 6.0960.08 5.4260.09***

Heel-to-toe length (mm) 9.1760.09 8.9860.10

Occipital-to-snout length (mm) 18.2160.12 18.0860.13

Biparietal length (mm) 10.5460.08 10.2960.09

Body Parameters in
Adulthood

n = 57 n = 74

Body Weight (g) 250.5162.99 256.2662.61

Heel-to-toe length (mm) 43.0660.17 43.4060.15

Occipital-to-snout length (mm) 56.9660.34 55.6660.30{

Biparietal length (mm) 24.4060.14 24.2160.12

Brain Parameters in Adult
Males

n = 29 n = 37

Brain Weight (g) 1.9260.06 1.9360.04

Brain Volume (cm3) 1.8460.05 1.8660.04

Brain Length (mm) 19.9960.13 20.0260.12

Cerebral Length (mm) 15.3560.19 15.1760.15

Cerebral Height (mm) 10.1160.19 10.2560.09

Cerebral Width (mm) 15.7460.16 15.5560.12

Brain Parameters in Adult
Females

n = 28 n = 37

Brain Weight (g) 1.7960.021 1.7660.011

Brain Volume (cm3) 1.7260.021 1.7060.011

Brain Length (mm) 19.4860.131 19.4560.061

Cerebral Length (mm) 15.0260.18 14.8760.19

Cerebral Height (mm) 9.8360.081 9.8560.121

Cerebral Width (mm) 15.5160.15 15.2560.12

Morphometric effects of maternal treatments during pregnancy and/or
weaning on offspring body parameters (body weight, foot and head lengths), at
birth and in adulthood (at 8 weeks-of-age). Morphometric effects on brain
parameters (brain [cerebral+cerebellar] weight, volume and length, and
cerebral length, height and width) are shown for adult male and female
offspring and all values represent the mean 6 SEM. Using one-way ANOVA: ***
p,0.001, significant difference for naltrexone versus placebo; { p = 0.04, trend
for difference between naltrexone versus placebo; 1 p,0.01, significant
difference for male versus female (within naltrexone or placebo group).
doi:10.1371/journal.pone.0052812.t002
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Testing proceeded as follows. Habituation to the test environ-

ment was established using 3 daily 60 min sessions within

locomotor chambers. On days 4–8, rats were placed in the

locomotor chambers 30 min after an injection of saline (1 ml/kg)

or morphine (10 mg/kg, s.c.) and activity recorded for 60 min.

From days 9–15, animals underwent a period of home-cage

abstinence (i.e. they received no injections). On day 16, rats were

challenged with saline or morphine (5 mg/kg) and returned to the

locomotor chambers (Figure 2). Treatment groups were: saline-

saline, (saline: days 4–8 and 16, SS); saline-morphine (SM);

morphine-morphine (MM).

For these experiments, we did not observe differences between

males and females. Therefore, for logistical reasons relating to

Animal Ethics approval (i.e. minimising animal numbers), only

males were used for the subsequent neurochemical and operant

self-administration experiments.

Neurochemistry. At 14 weeks, after behavioural sensitiza-

tion testing (,3 h after final treatment), male rats were terminally

anaesthetised (pentobarbitone, 80 mg/kg, i.p.) and brains re-

moved and frozen. Serial sagittal brain sections (4.2–3.4 mm

lateral to the mid-sagittal sinus, 14 mm; [33] were thaw-mounted

onto slides and stored at 280uC.

[125I]DAla2,N-Me-Phe4,Met(O)5-ol enkephalin (FK33,824) was

used to label high affinity m-opioid receptors [34,35]. Slides were

incubated in 50 mM Tris-HCl (pH 7.4; 0.1% bovine serum

albumin, 0.1 nM [125I]FK33,824, 2000 Ci/mmol) for 60 min.

Non-specific binding was determined by addition of 10 mM

naloxone to the incubation medium. Slides were washed, dried

and apposed to Biomax AR film (Kodak XAR-5) with [14C]mi-

croscales. Films were developed automatically (100 Plus Automatic

x-ray film processor: All-Pro Imaging).

Expression of PPE and PPD mRNA has previously been

described [36]. Oligonucleotides were 39-end labelled with

[a33P]d-adenosine triphosphate using terminal deoxynucleotidyl

transferase. Labelled probes (1 pg/ml, 100 ml) and applied to

adjacent sections in hybridisation buffer (50% formamide,

46saline sodium citrate, pH 7.0, 10% dextran sulfate). Controls

used a 100-fold molar excess of unlabelled oligonucleotide.

Sections were hybridised in sealed humidified chambers at 42uC
overnight, rinsed (16saline sodium citrate, 1 h, 55uC), dehydrated

in ethanol and air-dried. Dry sections were apposed to x-ray film

with [14C]microscales and then developed.

Autoradiographs showing binding of radioligand to m-opioid

receptor, and binding of oligonucleotide probes to PPE and PPD

mRNA, were captured using a Sony XC-77CE CD Video

Camera with an attached Nikon Micro-Nikkor 55 mm lens.

Sufficient contrast to background intensity allowed manual

delineation of brain regions [33]. Tissue was analysed with an

MCID M4 image analysis system under constant illumination;

Scion Image software was used to convert optical densities to

radioactivity per unit area (disintegrations per minute per

millimeter squared; DPM/mm2) by means of a calibration curve

derived from autoradiograms of the simultaneously-apposed

[14C]microscales.

Cohort 3
Naltrexone and 6, b-naltrexol levels at birth and at

weaning. Dams from cohort 3 were randomly allocated to

receive either a naltrexone or placebo implant, were mated and

gave birth. At birth, litters were reduced to 10 (5 males and 5

females) and culled neonates from each litter had blood pooled

into one sample per litter. Surviving offspring were weaned at 4

weeks, at which point maternal blood was collected, and offspring

were reared until 10 weeks of age, whereupon they were

transported to the Florey Neuroscience Institutes for assessment

for operant self-administration of morphine. Upon arrival, animals

were acclimatised for 2 weeks and no procedures undertaken.

Operant self-administration. Self-administration of intra-

venous morphine (0.1 or 0.3 mg/kg/infusion) was assessed using

operant chambers (Med Associates, USA) with two levers. Rats

were connected via a jugular cannula to an intravenous line

(polyethylene, inner diameter (ID): 0.6 mm, outer diameter (OD):

1.2 mm) connected to a 22-gauge swivel (Instech Solomon, USA)

and a syringe held in an infusion pump (PHM-100SVA; Med

Associates) with Bcoex-T22 tubing (Tygon, ID 0.6 mm, OD:

1.6 mm; Instech Soloman). A light (conditioned stimulus, CS)

came on for 20 s, contingent with an active lever press and reward

delivery. In addition, a drop of vanilla essence provided an

olfactory cue (S+) for the location of the active lever. The

chambers were housed in sound attenuated boxes and ventilated

with fans. Med-PC IV software (Med Associates) was used to

record lever presses.

The cannulae consisted of a 10 cm length of silastic tubing

(inner diameter 0.635 mm, outer diameter 1.194 mm, Dow

Corning Corporation, Midland, MI, USA) sleeved over a 22-

gauge cannula (Plastics One, Roanoke, VA, USA). All cannulae

were autoclaved. At 12 weeks, rats were anaesthetised (2–3%

isoflurane) and cannulae implanted into the jugular vein and

flushed with 0.15 ml of antibiotic (1.2 mg trimethoprim and 6 mg

sulfadoxin) and heparinised saline. Meloxicam (0.75 mg, i.p.) was

given for pain relief. The day after surgery, cannulae were flushed

with heparinised antibiotic; thereafter, cannulae were flushed

twice daily with heparinised saline. Starting on the day of

cannulation, rat daily food intake was restricted to 15 g as this is

known to facilitate self-administration of abused drugs

[37,38,39,40,41].

After 3 days of recovery in the home cage, rats underwent

operant self-administration training to respond for oral sucrose

(5%) at a fixed-ratio of 2 (FR2) schedule. Each of these training

sessions were 15 h in duration and took place once daily until lever

Table 3. The effects of maternal naltrexone, or placebo, implants on offspring.

Gender ratio:

Drug group Litters: n Male n (%) Female n (%) Litter size: mean (StdDev)Term (days): median (IQR)

Placebo 10 71 (61) 46 (39) 11.7 (2.0) 21 (21–22)

Naltrexone 10 72 (50) 72 (50) 14.4 (1.2)** 21 (21–21)

The effects of maternal implant treatments during pregnancy on total litter size (observed live and still births), sex ratio of litters and term of pregnancy. Term refers to
the length of pregnancy, measured in days. IQR = inter-quartile range. The mean and standard deviation (StdDev) are also shown (one-way ANOVA: ** p,0.01,
naltrexone versus placebo).
doi:10.1371/journal.pone.0052812.t003
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discrimination was demonstrated (after 3 days in most cases).

Subsequently, rats were connected to morphine via the jugular

cannula to the intravenous line. The injection volume was 48 ml

per infusion and duration of injection was 2.3 s. A maximum of 50

drug infusions was set, with a 20-s timeout period after an infusion.

All post-training sessions (except for cue-induced drug-seeking

session at the very end) were 2 h in length, unless 50 infusions were

obtained, and were held just before the dark phase of the

photoperiod. The active lever remained the same for both oral

sucrose training and intravenous self-administration of morphine

experiments, as did the position of the olfactory cue and

contingent light stimulus.

Rats responded for intravenous morphine (0.3 mg/kg/infusion)

at a fixed-ratio of 1 (FR1) schedule (3 weeks), with subsequent

assessment on a progressive-ratio (PR) 9–4 schedule [42] for 2

days, then PR3-4 [43] for 2 days (Table 1). The following day, the

rats were returned to FR1 as before, but using a morphine dose of

0.1 mg/kg/infusion; the order and durations for each phase of

testing were the same as for the higher morphine dose.

Subsequently, rats remained drug-free in the home cage for 6

weeks. Then, drug-seeking was assessed under extinction condi-

tions (FR1 response resulted in CS but no infusion of morphine)

for 1 h. An overview of this experimental paradigm of different

responding schedules is presented as a timeline in Figure 3.

The patency of the cannulae was evaluated periodically using

ketamine (5 mg). If loss of righting reflex was not apparent within

3 s of infusion, the rat was excluded. In addition, rats were

excluded if any cannula blockage or leakage was identified during

daily flushing. During assessment of FR1 responding for

morphine, criteria were set at a lever discrimination of $65%

and ,25% variation between the numbers of infusions over 3

days.

Statistical Analyses
Unless otherwise indicated, statistical analysis was undertaken

using SPSS for Windows and two-tailed tests. Results for free

naltrexone and 6,b-naltrexone, in blood or amniotic fluid, were

examined with Pearson Correlation coefficient between maternal

and offspring levels, stage of pregnancy and time post-implant.

Where data failed tests of normality, a Kruskal-Wallis nonpara-

metric ANOVA was employed. Results are for male and females

combined unless mentioned otherwise.

Observational and morphometric data were evaluated by one-

way ANOVA because violations of the underlying data prevented

the use of multiple analysis of variance; accordingly, to reduce the

potential for Type 1 errors [44], stringent alpha levels of p,0.0125

and p,0.008 were used for measures of body and brain

morphometry, respectively. Morphometric data are reported

separately for male and female offspring (Table 2).

Data from locomotor studies were analysed using a two-way

ANOVA, with drug treatment and exposure duration as factors,

and with post-hoc Student-Newman-Keuls analysis. To evaluate

overall differences in activity between treatment groups, a

generalised linear model for repeated measures was used.

Neurochemistry data (from examination of only male brains)

were incorporated into generalised linear mixed models for

statistical analysis using SAS; significance and interactions were

assessed between the following fixed factors: maternal drug

exposure (naltrexone and placebo); duration of morphine expo-

sure; and ligand ([125I]FK33,824)/probe ([33P]preproenkephalin,

[33P]preprodynorphin).

Operant self-administration data were obtained for male

offspring only. For time course analyses (PR and drug-seeking

cumulative responses), and analyses of the effect of implant

treatment and dose on morphine self-administration, a two-way

ANOVA was performed. Comparisons of the PR data between

the offspring groups were analysed using an unpaired t-test. Drug-

seeking data were analysed by one-way ANOVA, with Student-

Newman-Keuls post-tests. Differences were deemed significant if

p,0.05, and for pair-wise comparisons, if p,0.05 after adjust-

ments using the Dunn-Sidák procedure.

Results

General Observations
Data from cohort 2 offspring were combined for analysis of litter

size, length of gestation and gender ratio. In cohort 2, there were

10 naltrexone-exposed litters and 10 placebo-exposed litters

which, respectively, produced 144, and 117 live pups. There were

,23% more pups per litter following maternal naltrexone

treatment compared to placebo (F(1,19) = 13.53; p,0.01; Table 3).

There was no significant effect of drug treatment on term of

pregnancy (F(1,19) = 2.70; p.0.05; Table 3), nor in gender ratio at

birth (x2
(1,19) = 3.29; p.0.05; Table 3).

Naltrexone and 6, b-naltrexol Levels in Dams and
Offspring

In both dams and offspring, free 6,b-naltrexol blood-levels were

low with many below the limit of detection (.0.1 ng/mg) and a

maximum blood concentration of 0.3 ng/ml found in two

maternal samples. Nevertheless, a positive correlation existed

between naltrexone and 6,b-naltrexol maternal levels: r ,0.01,

N = 94 (data not shown).

Free naltrexone was quantified in maternal and offspring blood

samples, as well as in amniotic fluid (cohort 1). The weight-

adjusted naltrexone concentration in maternal blood was

1.1960.19 ng/ml; raw offspring naltrexone concentration in

blood or amniotic fluid was 1.2360.25 ng/ml. Further analysis

revealed that offspring levels correlated with maternal levels: r

,0.001, N = 15 (Figure 4A). Furthermore, both maternal (p,0.01)

and offspring (p,0.05) levels correlated with time post-implant

(Figure 4A).

For cohort 2, naltrexone was detected in maternal and offspring

blood at birth and at weaning (postnatal day 28). Naltrexone was

Figure 4. Free naltrexone levels in dams and offspring with naltrexone implant. Temporal profiles of free naltrexone concentration are
shown in offspring blood or amniotic fluid (A, cohort 1) or maternal blood (A and B, cohorts 1, 2 & 3.) after maternal administration with a naltrexone
implant (25 mg, s.c.). A: Temporal profiles of free naltrexone concentration in offspring blood (GD18 [purple] and Birth [blue]) or amniotic fluid (GD13
[yellow] and GD15 [green]) or maternal blood (black) after maternal administration with a naltrexone implant (25 mg, s.c.). Cohort 1 maternal and
offspring rats were sampled throughout gestation. Exponential lines of best fit are shown for maternal rats (y = 6.76e20.07x, filled line) and offspring
(y = 9.45e20.09x, dashed line). Offspring levels correlated with maternal levels (Pearson Correlation [ = 0.75] significant at 0.001 level; N = 15); and both
maternal (p,0.01; R2 = 0.62) and offspring (p,0.05; R2 = 0.55) levels correlated with the number of days post-implant. To allow appropriate
comparison with offspring, unadjusted maternal data are presented here. C: conception; GD: gestation day; B: birth. B: Maternal naltrexone-blood
levels prior to conception, at birth and at weaning from cohorts 1 (closed circles), 2 (open circles) and 3 (crosses) were associated with days post-
implant (p,0.01, N = 54; mean 6 SEM: 2.8660.62 ng/ml). A polynomial line of best fit indicated a moderate level of association (R2 = 0.68). C:
conception, B: birth, W: weaning.
doi:10.1371/journal.pone.0052812.g004
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Figure 5. Comparison of locomotor activity between offspring groups in response to a novel environment. Locomotor activity is
shown on days 1–3, after saline or morphine administration on days 4–8 (10 mg/kg, s.c.), and after a final morphine challenge on day 16 (5 mg/kg,
s.c.). A: Total activity scores in the vertical plane and B: in the horizontal plane, reveal that habituation was greater among naltrexone-exposed
offspring. C: Total horizontal locomotor activity did not differ between groups treated with saline and challenged with morphine (saline-morphine).
D: Total horizontal locomotor activity did not differ between groups treated with morphine, although sensitization was expressed in both groups
after challenge with morphine (morphine-morphine). E: Analysis of data expressing total morphine-induced locomotor activity as a function of basal
locomotor activity on day 3 revealed significantly greater activity values for naltrexone-exposed offspring, indicating an increased development of

Maternal Naltrexone Affects Adult Offspring

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e52812



not detected at postnatal day 56 (adulthood). In some offspring at

weaning, naltrexone was not detected (n = 8) and these data were

excluded from the calculation of means. Unadjusted maternal

naltrexone-blood levels are reported elsewhere [45]. Here, we

report weight-adjusted maternal mean 6 SEM, which declined

from 9.7461.59 ng/ml (n = 12) at 1 day prior to conception to

1.1860.50 ng/ml (n = 5) at ,24 h of birth, 1.1860.33 ng/ml

(n = 5) at postnatal day 3 and 0.3060.15 ng/ml (n = 5) at weaning.

Offspring levels (mean 6 S.E.M) were 0.9960.27 (n = 5) at ,24 h

of birth and 0.3460.00 ng/ml (n = 3) at weaning.

At weaning, the weight-adjusted mean 6 SEM for free

naltrexone in blood from implanted females (cohort 3) was

0.9560.32 ng/ml (n = 6). Raw data for naltrexone in blood from

offspring culled at birth (pooled into one sample per litter) was

3.1761.65 ng/ml. Weight-adjusted maternal values for free

naltrexone-blood concentration with respect to the number of

days post-implant are represented for all mothers (cohorts 1, 2 and

3) in Figure 4B. Maternal blood levels sampled from all 3 cohorts

correlated with the number of days post-implant (r ,0.01, N = 54;

Figure 4B). Levels after the initial sample taken at preconception

(12 days post-implant) also correlated with days post implant (r

,0.01, N = 42; mean 6 SEM: 0.9060.12 ng/ml; Figure 4B).

Body and Brain Morphometry
Total litter size, as well as maternal weights from each group,

were used as covariates. Covariates appearing in the model of

offspring at birth were evaluated at 239.42 (mothers’ weight) and

12.66 (litter size). For offspring evaluated in adulthood, values

were 272.22 mothers’ weight and 13.67 for litter size.

After adjusting for covariates, naltrexone had a significant effect

on offspring body weight at birth (F(1,129) = 14.93; p,0.001;

Table 2). Estimated marginal means for body weight were

10.9% less in the naltrexone-group compared to that of placebo

offspring. There was also a trend for gender to impact on offspring

birth-weight (F(1,129) = 3.81; p = 0.05; Table 2), with males 3.9%

heavier than females. Both male and female pups in the naltrexone

group had lower birth-weights than placebo counterparts.

In adult offspring, there were no effects from drug treatment on

body weight (F(1,130) = 1.73; p.0.05; Table 2). There was,

however, a significant effect of gender on body weight

(F(1,130) = 14.26; p,0.001; Table 2). Naltrexone-exposed adult

offspring did not differ significantly from those exposed to placebo

with respect to occipital-to-snout length, although planned

comparison revealed a trend for naltrexone to affect head size,

with a 2.3% reduction in the estimated marginal mean of

occipital-to-snout length in naltrexone offspring when compared

to placebo (F(1,130) = 3.28; p = 0.04; Table 2).

For brain morphometry, only adult offspring were examined.

Each variable was assessed separately with drug group and gender

as fixed factors. None of the measures showed a significant main

effect of drug group or a significant group by gender interaction.

Each variable showed a significant main effect of gender at the

adjusted alpha level except for brain width (F(1,19) = 8.10; p = 0.01;

Table 2), and cerebrum length (F(1,19) = 7.70; p = 0.01; Table 2);

male offspring had larger and heavier brains (Table 2).

sensitization. Data are expressed as vertical plane entries (A) or horizontal distance moved in centimetres (B, C, D and E) and represent the mean 6
SEM (one-way ANOVA: * p,0.05, ** p,0.01, *** p,0.001; days 1–3 (A and B): placebo: n = 37, naltrexone: n = 53; days 4–16 (C): placebo: n = 12,
naltrexone: n = 19; days 4–16 (D and E): placebo: n = 20, naltrexone: n = 26).
doi:10.1371/journal.pone.0052812.g005

Figure 6. Opioid neurochemistry in brains of offspring. Evaluation of [33P]preproenkephalin (PPE) mRNA binding in the striatum (Str) by in situ
hybridisation histochemistry (ISHH), with comparison between offspring groups (placebo; naltrexone) and drug treatments received during
behavioural sensitization (saline-saline, SS; saline-morphine, SM; morphine-morphine, MM). A: Representative autoradiograms showing localisation of
[33P]PPE mRNA binding sites within midsagittal sections of whole rat brain at approximately 4.0 mm from the midline. Relative PPE mRNA expression
within Str presented in accordance with quantitative ISHH (A), which was performed as described in Materials and Methods. As indicated by the
density scale, the highest binding levels appear as black. B: Quantitative data for PPE mRNA binding in Str are expressed in disintegrations per minute
per millimetre squared (DPM/mm2) and represent the mean 6 SEM. Using generalised linear mixed modelling: * p,0.05, ** p,0.01, *** p,0.001,
naltrexone versus placebo by SS versus SM versus MM, naltrexone: n = 14; placebo: n = 17; n<5/column.
doi:10.1371/journal.pone.0052812.g006
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Locomotor Activity and Behavioural Sensitization
We did not observe differences between males and females;

accordingly, we combined them into a single data set. After initial

placement in locomotor chambers, naltrexone-exposed offspring

(males and females combined) exhibited fewer vertical plane

entries (rearing) compared to placebo-exposed offspring

(F(1,88) = 5.70; p,0.05; 32.6%; Figure 5A) and continued to

display significantly less rearing while habituating over days 2

(F(1,88) = 6.00; p,0.05; 52.3%; Figure 5A) and 3 (F(1,88) = 12.90;

p,0.001; 49.1%; Figure 5A), translating to an overall reduction of

basal activity in the vertical plane (F(1,88) = 20.45; p,0.001;

42.6%). Horizontal plane activity (ambulation) did not differ on

day 1 (F(1,88) = 1.80; p.0.05; Figure 5B), although in naltrexone-

exposed offspring, total horizontal activity was significantly

attenuated compared to placebo offspring by day 3 for males

and females combined (F(1,88) = 6.00; p,0.05; 25.3%; Figure 5B).

Given the difference in horizontal activity between treatment

groups following habituation by day 3, subsequent data for

morphine treatments were calculated as a function of basal

activity. While there was no difference between groups on the first

day of morphine treatment, from day 4 to 5 (i.e. morphine

injection day 1 to 2) there was a significantly greater increase in

ambulation of naltrexone-exposed offspring which was 11.5 fold

greater than placebo-exposed offspring (726.86248.6 cm com-

pared to 37.06204.6 cm; F(1,44) = 4.19; p,0.05; Figure 5D). From

day 5 until the completion of testing (day 16), naltrexone-exposed

offspring continued to exhibit significantly greater development of

sensitization as a function of basal activity (Figure 5E). This was

further validated using a generalised linear model for repeated

measures which confirmed 42.7% greater development of

sensitization during the induction phase and greater overall

ambulation of naltrexone-exposed offspring, in males

(F(1,20) = 5.68; p,0.05), females (F(1,22) = 9.12; p,0.01), and males

and females combined (F(1,44) = 14.98; p,0.001; Figure 5E). There

was no effect of saline injection on locomotor activity with respect

to time and, likewise, no difference between groups in response to

morphine challenge (day 16) following saline pre-treatment (saline-

morphine; F(1,29) = 0.29, p.0.05; Figure 5C).

Opioid Neurochemistry in Offspring Brains
Analysis of brains from male offspring (cohort 2), revealed a

two-way interaction between maternal treatment group (i.e.

naltrexone or placebo), treatment received during behavioural

testing (i.e. saline-saline, saline-morphine, morphine-morphine)

and PPE mRNA expression. Namely, reduced expression was

associated with placebo offspring given morphine, either as saline-

morphine (20.0%; p = 0.018) or morphine-morphine (21.4%;

p = 0.005) compared to expression in morphine-naı̈ve counterparts

(saline-saline) (Figure 6A and B). However, no reduction in

expression was found in naltrexone-exposed offspring, although

striatal PPE mRNA expression was greater in those given

morphine (saline-morphine: 29.6%; p = 0.002 or morphine-mor-

phine: 31.3%; p,0.001) compared to placebo-exposed counter-

parts (Figure 6A and B). This effect on PPE mRNA expression was

not found in other brain regions examined (Table 4). No

significant differences were found with respect to expression of

PPD mRNA or m-opioid receptor expression (Table 4).

Propensity to Self-administer Morphine
Fixed-Ratio responding. Both naltrexone- and placebo-

exposed offspring reliably self-administered morphine (Figure 7).

Analysis of mean total data for FR1 responding revealed

significant discrimination between the two levers at 0.1 mg/kg/

infusion (F(3,20) = 35.94, p,0.001; Figure 7A). Student-Neuman-

Keuls post hoc comparisons revealed significant preference for the

active lever over the inactive lever in placebo- (F(1,10) = 5.97,

Table 4. Mean 6 SEM values (DPM/mm2) for in situ hybridisation histochemistry and autoradiography binding.

MATERNAL TREATMENT
GROUP PLACEBO NALTREXONE

Offspring Treatment Group Saline-Saline Saline-Morphine Morphine-Morphine Saline-Saline Saline-Morphine Morphine-Morphine

PPE mRNA

Striatum 9.3060.48 7.4460.54* 7.3160.48** 8.7960.48 9.6460.48{ 9.5960.401

Dentate Gyrus 9.3260.52 10.1260.58 10.5060.51 10.3660.52 9.5760.51 9.2960.43

Cortex 8.1760.42 8.1060.42 8.6960.70 7.2160.54 7.6060.46 8.1560.54

PPD mRNA

Striatum 0.6560.36 0.6960.40 0.5760.34 0.5660.43 0.6460.35 0.5560.31

Dentate Gyrus 2.5460.45 2.6160.51 2.3760.44 2.0360.49 2.0060.45 2.2660.38

m-Opioid Receptor

Striatum 2.7360.48 2.6260.55 2.5960.48 4.0260.48 3.2360.48 3.7560.36

Cortex 1.9260.06 2.2260.09 2.2060.14 2.1960.11 1.9060.09 2.2160.11

Thalamic Nucleus 2.0760.07 1.9160.13 1.6860.11 2.2660.13 1.8660.12 1.9560.15

Medial Geniculate Nucleus 4.5960.19 4.6460.35 4.6260.25 5.3360.31 4.6060.25 4.2460.26

Dorsal Hippocampus 2.5060.10 2.7460.11 2.4360.15 2.6160.14 2.2860.11 2.2060.07

Ventral Hippocampus 7.0060.31 7.0260.27 6.4460.60 7.2360.32 6.5860.38 5.9760.39

Quantitative data for [33P]preproenkephalin (PPE) mRNA, [33P]preprodynorphin (PPD) mRNA and [125I]FK33,824 (m-opioid receptor) binding in various regions of male rat
brains (striatum, dentate gyrus, cortex, thalamic nucleus, medial geniculate nucleus dorsal hippocampus) with comparison between maternal treatment groups
(placebo; naltrexone). Using generalised linear mixed modelling, significant differences were found in PPE mRNA binding in striatum: * p,0.05, ** p,0.01 for significant
differences with respect to saline-saline treated offspring from maternal rats implanted with placebo; { p,0.01 for significant difference with respect to saline-morphine
treated offspring from maternal rats implanted with placebo; 1 p,0.001 for significant difference with respect to morphine-morphine treated offspring from maternal
rats implanted with placebo; naltrexone: n = 14; placebo: n = 17; n < 5/column.
doi:10.1371/journal.pone.0052812.t004
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p = 0.035) and naltrexone-exposed rats (F(1,10) = 13.54, p = 0.004).

Significant discrimination was also evident at 0.3 mg/kg/infusion

(F(3,38) = 18.68, p,0.001; Figure 7B) with post hoc comparisons

revealing significant preference for the active lever over the

inactive lever in both placebo- (F(1,22) = 17.58, p,0.001) and

naltrexone-exposed rats (F(1,16) = 33.68, p,0.001).

Analysis of the number of morphine infusions received over 7

days revealed an overall significantly augmented response by

naltrexone-exposed offspring at 0.3 mg/kg/infusion over this

period (F(1,15) = 6.17, p = 0.025). This difference between groups

was not observed over a similar period at 0.1 mg/kg/infusion

(F(1,7) = 0.90, p.0.05). At 0.3 mg/kg/infusion, there was a

significant escalation in morphine self-administration by naltrex-

one-offspring, with greater consumption on day 7 compared to

day 1 (t(14.63) = 2.57, p = 0.022; Figure 7D). However, as there was

a lack of escalation in self-administration at 0.1 mg/kg/infusion

(t(16.16) = 0.75, p.0.05; Figure 7C), FR1 testing at the lower dose

was undertaken for 6 days. The number of timeout responses did

not differ between placebo- and naltrexone-exposed offspring at

either 0.1 (F(1,10) = 0.47, p.0.05) or 0.3 mg/kg/infusion

(F(1,19) = 3.50, p.0.05) (data not shown).

Progressive-ratio responding. No difference was seen

between placebo- and naltrexone-exposed offspring for 0.1 mg/

kg/infusion assessed on the PR3-4 schedule with respect to active

lever presses (t(10) = 0.83, p.0.05), breakpoint (t(10) = 0.85, p.0.05),

drug infusions (t(10) = 0.83, p.0.05), or overall cumulative response

(F(1,10) = 0.38, p.0.05) (data not shown). However, at 0.3 mg/kg/

infusion, naltrexone-exposed rats displayed a higher breakpoint

compared to placebo offspring on a PR3-4 schedule. Unpaired t-

tests revealed a significant difference between offspring groups

with respect to the final ratio obtained (breakpoint) (t(12) = 2.91,

p = 0.013; Figure 8B), total number of lever presses for the session

Figure 7. Comparison of naltrexone- and placebo-exposed offspring to fixed ratio morphine self-administration. Morphine self-
administration under a fixed-ratio of 1 lever press and acquisition of a stable response. Data are expressed as the number of active versus inactive
lever responses per 2 h session over 6 days for dose of 0.1 mg/kg/infusion (A), and over 7 days for 0.3 mg/kg/infusion (B), and represent the mean 6
SEM (two-way ANOVA, * p,0.05, ** p,0.01, *** p,0.001, compared to the active lever, 0.1 mg/kg/infusion: placebo: n = 6, naltrexone n = 6; 0.3 mg/
kg/infusion: placebo: n = 12, naltrexone: n = 9). Data are expressed as number of infusions and amount of morphine (mg/kg) obtained each day over 6
days for dose of 0.1 mg/kg/infusion (C) and over 7 days for 0.3 mg/kg/infusion (D) represent the mean 6 SEM (no difference between groups using
two-way ANOVA).
doi:10.1371/journal.pone.0052812.g007
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(t(12) = 2.82, p = 0.015; Figure 8A) and number of infusions

(t(12) = 3.01, p = 0.011; Figure 8C). Furthermore, when assessing

the proportion of rats that reached a ‘true breakpoint’ (when no

reinforcer is earned for a 60 min period), none of the 7 naltrexone-

exposed rats reached a ‘true breakpoint’ in the 2-h session,

whereas 4 of the 7 placebo-exposed rats (57%) did. This is

apparent as the clear plateau in the responding of placebo- but not

for the naltrexone-exposed offspring when examining cumulative

responses (Figure 8D).

Analysis of cumulative responding revealed a significant effect of

offspring group (F(1,13) = 9.24; p = 0.012; Figure 8D) and time

(F(11,66) = 44.06; p,0.001), and a significant interaction between

the two factors (F(1.36,16.28) = 6.89, p = 0.012). Dunn-Sidák post test

comparisons revealed no difference between placebo- and

naltrexone-exposed offspring in the first 10 min time bin

(p.0.05; Figure 8D) but cumulative responses were significantly

greater among naltrexone-exposed offspring, compared to those

exposed to placebo, in all remaining time bins (20–120 min:

t = 7.97, 12.42, 17.61, 22.14, 27.19, 31.58, 32.11, 33.94, 36.64,

39.53 and 39.50, respectively, p,0.05 for all except from 60 to

70 min time bins, p,0.01; Figure 8D).

For the PR9-4 schedule (data not shown) at 0.3 mg/kg/

infusion, groups differed with respect to breakpoint (t(11) = 2.29,

p = 0.043) and infusions (t(11) = 2.30, p = 0.042). Cumulative

responses were significantly greater in naltrexone-, compared to

placebo-exposed rats, in the 30, 40 and 90 min time bins (t = 2.37,

2.20 and 2.23, respectively, with p#0.05).

Cue-induced drug-seeking. Both groups exhibited robust

cue-conditioned drug-seeking behaviour after a period of absti-

nence (Figure 9). Nonetheless, overall cumulative responses for the

active lever were greater among naltrexone-exposed offspring

(F(1.69,23.68) = 4.77, p = 0.023; Figure 9A). Dunn-Sidák post hoc test

comparisons revealed no difference between placebo- and

naltrexone-exposed offspring in the first 10 min time bin

(t(14) = 1.41, p.0.05; Figure 9A) but cumulative responses were

significantly greater among naltrexone-exposed offspring, com-

pared to placebo, in all remaining time bins (20–60 min: t = 2.68,

2.94, 2.73, 2.73 and 2.70, respectively, p,0.05; Figure 9A). A

Figure 8. Comparison of naltrexone- and placebo-exposed offspring to progressive ratio morphine self-administration. Morphine
self-administration under a progressive ratio (PR) schedule of 3–4 (see Table 1 for response requirement) at a dose of 0.3 mg/kg/infusion. Data from
the PR3–4 session are expressed as total active lever presses (A), breakpoint, defined as the final ratio completed within the 2 h session (B), and
number of drug infusions (C) and represent the mean 6 SEM (unpaired t-test, * p,0.05, naltrexone versus placebo (n = 7). D: Cumulative response
record for the PR3-4 session divided into 10 minute time bins. Data are expressed as number of active lever presses and represent mean 6 SEM (two-
way ANOVA, * p,0.05, ** p,0.01, naltrexone versus placebo (n = 7) for each time bin).
doi:10.1371/journal.pone.0052812.g008
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plateau in responding was evident for both placebo- (40 to 60 min)

and naltrexone-exposed offspring (50 to 60 min) (Figure 9A).

Active lever presses were significantly higher on test day (1-h

session) compared to baseline responding (2-h session), despite the

absence of drug infusions during the session. This significant cue-

conditioned drug-seeking was revealed by two-way ANOVA

(F(7,66) = 16.62, p,0.001; Figure 9B), and Student-Newman–Keuls

post hoc analyses for placebo- (p = 0.018; 130%) and naltrexone-

exposed offspring (p,0.001; 163%), confirming enhanced re-

sponding in naltrexone-exposed offspring on the active lever on

test day compared to the FR1 schedule. Moreover, compared to

placebo, there was augmented active lever responding by

naltrexone-exposed offspring on the cue-induced drug-seeking test

day versus baseline day (F(1,14) = 11.48, p = 0.005; 73%; Figure 9B).

Furthermore, during the cue-induced drug-seeking session,

naltrexone-exposed offspring exhibited significantly greater active

lever responding relative to inactive lever presses (p,0.001; 124%;

Figure 9B); conversely, among placebo rats, responding was

comparable between active and inactive levers. There was no

difference in latency to first active lever press between naltrexone-

and placebo-exposed offspring (F(1,14) = 0.046, p.0.05).

Discussion

Maternal Naltrexone Exposure Induces Behavioural
Changes in Adult Offspring

Previous animal studies have shown that prenatal exposure to

cocaine, cannabis and morphine leads to an increased propensity

to self-administer drugs in adulthood [46,47,48] although no effect

was observed following prenatal morphine exposure in another

study [49]. Nonetheless, the current study is the first to suggest that

maternal exposure to sustained-release naltrexone during gestation

and lactation confers increased opioid abuse risk in adulthood.

The enhanced morphine self-administration in naltrexone-ex-

posed offspring suggests that morphine may have an increased

‘reward value’. Furthermore, increases in breakpoint on a PR

schedule suggest increased motivation to obtain the drug [50].

Although both groups showed robust morphine-seeking after 6

weeks of abstinence, naltrexone-exposed offspring exhibited

significantly more responses, supporting enhanced relapse-like

drug-seeking in naltrexone-treated offspring.

Increased drug-seeking behaviour reflects neuroadaptations that

occur with repeated drug exposure [51,52]. Our findings suggest

that developmental opioid receptor antagonism may cause

pathophysiological changes that contribute to compulsive drug-

seeking behaviour. One possible explanation is that in utero

naltrexone exposure may negatively impact upon circuits neces-

sary for extinction learning which would also explain an

apparently increased motivation to obtain morphine under PR.

Interestingly, the endogenous opioid system has been implicated in

goal-directed learning as opioid receptor antagonism facilitates the

transition from goal-oriented to habitual responding [53]. The

present data, therefore, suggest that developmental opioid receptor

antagonism may impact upon the pathways implicated in habit-

forming. Clearly, a definitive answer for the mechanism behind

increased self-administration of opiates and relapse propensity in

adult rats exposed to naltrexone in utero requires further

investigation. One possibility is that striatal enkephalin signalling

is altered following naltrexone exposure, as implicated by the

neurochemical data. Another possibility is that, rather than

naltrexone exposure underlying an increase in reward, the

observed increase in operant responding for morphine and cue-

Figure 9. Comparison of naltrexone- and placebo-exposed offspring to cue-induced drug-seeking. Cue-induced drug seeking (cues
present but no drug infusions;1 h) after an abstinence period of 6 weeks with comparison between offspring groups (placebo, naltrexone). A:
Cumulative response record for cue-induce drug-seeking divided into 10 minute time bins. Data are expressed as number of active lever presses and
represent mean 6 SEM (two-way ANOVA, * p,0.05, naltrexone (n = 9) versus placebo (n = 7) for each time bin). B: Total active and inactive lever
presses during the drug-seeking session (represented by white bars, placebo: n = 9, naltrexone: n = 7) as compared to lever presses during 7 days of
stable responding under a fixed-ratio 1 (represented by black bars, placebo: n = 12, naltrexone: n = 9). Data expressed as number of lever presses and
represent mean 6 SEM (one-way ANOVA: * p,0.05, ** p,0.01, *** p,0.001, naltrexone versus placebo).
doi:10.1371/journal.pone.0052812.g009
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induced drug seeking may be a pharmacodynamic effect from

naltrexone-induced changes in opioid G-protein receptor coupling

or other signalling pathways [54,55]. Regardless of the mecha-

nism, we suggest that our data argue for long-term follow-up of

human cases of foetal naltrexone exposure. For example, the

present data provide a strong argument for interrogation of the

epigenetic effects of in utero naltrexone exposure that may underpin

some of the behavioural differences noted in our current study.

Significant differences between naltrexone- and placebo-ex-

posed offspring occurred at the 0.3 mg/kg but not the 0.1 mg/kg

morphine dose, consistent with an inverted U-shaped dose-response

[56,57], highlighting the importance of using different drug doses.

Moreover, the collective data suggest an increased reinforcing

strength of morphine in naltrexone-exposed rats that may relate to

the relative resistance of striatal enkephalin expression to

morphine-induced down-regulation compared to placebo rats.

Naltrexone-exposed offspring exhibited lower vertical activity

(rearing) compared to placebos, when first introduced to a novel

environment. During subsequent re-exposure to the same envi-

ronment, less rearing (i.e. habituation) occurred in both groups

and remained lower in the naltrexone-exposed group, consistent

with other studies [12,58]. In addition, although similar levels of

overall ambulation (horizontal activity) are consistent with other

studies [17,58,59], we show apparently increased habituation in

this plane. Reduced locomotor activity in a novel environment,

particularly rearing, could indicate reduced exploratory drive [58]

and/or altered motivational systems [60,61].

Moderate morphine doses in rats produce a biphasic locomotor

response [62,63], which was observed acutely in both naltrexone-

and placebo-exposed offspring. Tolerance, the attenuation of a

response over a period of chronic drug treatment [64], and

sensitization, the increase in a response that arises from repeated

drug treatment [62,65], are different neuroadaptive processes that

can occur concomitantly. Repeated morphine treatment produces

a decrease in its sedative effects (tolerance) and an increase in its

stimulatory effects on locomotion (sensitization) [63,66]. Changes

in vertical and horizontal activity can be used respectively to assess

tolerance and sensitization [67]. Drug-induced locomotor sensiti-

zation is a robust and well-established indicator of plasticity that

may relate to aspects of addiction [19,20]. Although the expression

of sensitization did not differ between groups, naltrexone-exposed

offspring showed a greater transition from an initial morphine-

induced depressant response to a stimulant response after repeated

morphine treatment, suggesting enhanced development of sensi-

tization.

Interestingly, this was mirrored by resistance of striatal

enkephalin mRNA expression to down-regulation following

morphine treatment compared to placebos. Enkephalin appears

to mediate morphine-induced tolerance and sensitization

[21,22,23] via networks known to regulate motor behaviour.

Treatment of placebo-exposed offspring with morphine was

associated with decreased striatal PPE mRNA expression relative

to saline-treated placebo rats. However, this effect did not occur in

naltrexone-exposed offspring, indicating that morphine-induced

regulation of enkephalin was a normal process [68,69] not evident

following naltrexone-exposure during development. Importantly,

this occurred in adult rats that had been free of naltrexone since

weaning; indicating that developmental exposure to naltrexone

can result in enduring behavioural changes and neurochemical

alterations to central opioid systems.

Although an effect was observed for PPE mRNA, no such

changes were seen for PPD mRNA or m-opioid receptor

expression. Other studies have shown changes to opioid receptors

following naltrexone exposure [70,71]. For example, in adult mice

implanted with 15 mg naltrexone pellets, up-regulation of m- and

d-opioid receptors was observed after 7 days of naltrexone pre-

treatment [72]. Given that up-regulation of m- and d-opioid

receptors correlate with potency changes of morphine [71,73]

further studies in our model would be interesting to examine

whether changes to k- and/or d-opioid receptors play a role in the

behavioural effects we observed.

Gross Morphological Changes Following Maternal
Naltrexone Exposure are Minimal

Persistent behavioural effects occurred in the absence of

substantial morphological changes in adult offspring but were

preceded by decreased birth-weights. Because litter size impacts on

growth and nutritional intake [74,75], we incorporated the

naltrexone-associated increase in litter size as a covariate and

showed that decreases in neonatal body weight occurred

independently of litter size. Consistent with our findings, offspring

body weight in mice is reduced following low-dose maternal

naltrexone [76] and is associated with intermittent postnatal

opioid receptor antagonism [77,78]. Reduced birth-weight and

head-size following low maternal and foetal naltrexone exposure

(,2 ng/ml) is also consistent with the general inhibitory effects of

low-dose opioid receptor antagonism [13,17,77,78,79,80,81,82].

The trend toward reduced adult offspring head-size, not evident at

birth, highlights the need for follow-up in naltrexone-exposed

human newborns who appear to be developmentally unaffected

[6,8,9,83].

A Pregnant Rat Model for Sustained-release Naltrexone
The sustained-release naltrexone preparation comprised the

same formulation used in humans and yielded comparable release-

(,0.4 mg/kg/day) and blood-levels (,2–10 ng/ml) [7,10]. Fol-

lowing intraperitoneal injection in rat, naltrexone undergoes

placental transfer [84] but does not remain in pre-weaning

offspring blood for more than 2 days after the last injection [85].

Using our customised implant, we have shown transfer of

naltrexone to the amniotic fluid, blood and lactate. Humans and

rats are also similar with respect to naltrexone’s affinity for opioid

receptors [86,87], plasma protein binding [88] and rate of

elimination [89,90], with a half-life range of 2–14 hours in

humans [91,92], and 4.6–11.4 hours in rats [93,94].

In relative terms, brain development in rats and humans occurs

to a common timetable defined by the time between conception

and eye opening (‘‘caecal period’’ rat: 36 days; human: 182 days).

When expressed as a percentage of the caecal period, neurode-

velopmental milestones start and finish at approximately the same

value [95,96,97]. Based on caecal period calculations, blood-

naltrexone levels were sustained above 1 ng/ml, comparable to

levels in humans, for a clinically comparable amount of time (.30

days in rat < 5.5 months in humans). Moreover, the decline in

naltrexone levels in maternal rat plasma was similar to the profiles

in non-pregnant humans [10,98] and a single case study of a

pregnant woman [7].

Future animal studies investigating the developmental effects of

sustained-release naltrexone, particularly on addiction-related

behaviours, would provide greater insight in the clinical context

if maternal rats were opioid-dependent prior to treatment with

naltrexone. Nonetheless, the current study still has much to offer as

a clinically-relevant model in that there are a number of potential

therapeutic uses for naltrexone in the non-opioid dependent

patient, including in the management of alcoholism [3,4,99],

compulsive gambling [100,101,102,103], multiple sclerosis

[104,105,106] and obesity [107,108,109].
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The current study highlights the vulnerability of the developing

brain to drug exposure. Indeed, factors such as ‘‘imprinting’’ may

be critical at the time of birth. For example, in humans, obstetric

administration of opiates, barbiturates or nitrous oxide (.1 hour)

during labour and within 10 hours of birth increased the relative

risk of offspring subsequently becoming addicted to opiates in

adulthood [110,111,112]. Our model examined continuous

naltrexone exposure during pregnancy and lactation but, in future

studies, may be of value to determine whether much shorter

critical period/s of exposure also produce effects in adult offspring.

Conclusion
The current study demonstrates that chronic, low-dose maternal

naltrexone delivered via a sustained-release implant impacts both

behaviour and neurochemistry in adult offspring, but without

obvious morphological effects. Our data are consistent with

perturbations that are reported to result from naltrexone exposure

during development with significant implications for alterations in

morphine-induced neuroplasticity, and increased risk of opioid-

abuse later in life. Our findings highlight the need for greater

information on the safety of using naltrexone during human

pregnancy.
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