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Abstract

CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of
CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4
T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell
priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naı̈ve and effector CD4 T-cells
specific for ovalbumin were transferred into TF-OVA mice alone or together with naı̈ve ovalbumin-specific CD8 T-cells. T-cell
activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in
vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of
bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective
Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-
cells. Th1-effector but not naı̈ve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data
demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector
function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell
function against hepatic antigens.
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Introduction

While activation of CD8 T-cells proceeds in the absence of CD4

T-cells, the latter’s help is crucial for the development of long

lasting memory. Although the primary response of CD8 T-cells

activated in the absence or presence of CD4 T-cells is comparable,

CD8 T-cells generated in the absence of CD4 T-cell help display

poor recall responses and produce little cytokines upon their

second encounter with antigen [1,2]. CD8 T-cells primed in the

absence of CD4 T-cell help display an exhausted phenotype

characterized by high levels of PD-1 [3]. This exhausted

phenotype and the lack of CD4 T-cell help may contribute to

the persistence of virus in chronic hepatitis. Indeed, lack of CD4

T-cells help may explain why CD8 T-cells fail to eradicate

hepatitis C virus [4].

The liver represents a unique environment for antigen

presentation because several populations of professional and

non-professional antigen-presenting cells (APCs) reside there,

and its environment in general skews T-cell responses towards

tolerance (reviewed in [5]). In addition to the possibility of antigen

presentation within the liver by resident dendritic cells (DCs) [6],

Kupffer cells (KCs) [7], liver sinusoidal endothelial cells (LSECs)

[8], and hepatocytes [9], the liver is also sampled by dendritic cells,

which subsequently migrate to secondary lymphatic organs and

present antigen there [10]. While CD4 T-cells recognize antigen

obtained by phagocytosis and presented by APCs, CD8 T-cell

responses are restricted to antigens derived from brake-down

products within the target cell. However, through a mechanism

termed cross-presentation, CD8 T-cells may also respond to

exogenous or endogenous antigens presented by professional

APCs after uptake and processing [11].

CD4 T-cells need to have access to the same antigen that is

recognized by CD8 T-cells to be able to provide help. We and

others have developed mouse models, in which a neoantigen is

expressed in the liver and which allow the investigation of both

CD8 and CD4 T-cell activation by this antigen [12,13,14,15].

Using these models, it has become evident that CD8 T-cells

primed in the liver by APCs acquire effector function rather than

become tolerant. The ability of liver APCs to prime CD4 T-cells in

an antigen specific manner is less well characterized. Expression of

MHC-II molecules on hepatocytes triggers CD4 T-cell activation

[16], but T-cells primed under these conditions are defective [17].

LSECs constitutively express MHC-II but it is still a matter of

debate whether they are capable of stimulating CD4 T-cells

[18,19,20,21]. In vitro experiments demonstrate that CD4 T-cells

primed by LSECs lack effector function [18] or display a

regulatory phenotype [22]. CD4 T-cells primed by liver DCs in

vitro proliferate, yet little Th1 effector cytokines are produced [23].
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We have analyzed CD4 T-cell activation by liver-derived

antigen in vitro and in vivo and investigated the role of CD4 T-cell

help in a CD8 T-cell dependent model of immune-mediated liver

injury.

Results

Failure of naı̈ve CD4 T-cells to respond to liver-derived
antigen in vitro

To determine the capability of specific populations of liver APC to

activate CD4 T-cells, we purified DCs, KCs, or LSECs from the

livers of TF-OVA mice, which express ovalbumin in hepatocytes.

The endogenous antigen should be present in the different types of

APCs, which acquire the antigen through phagocytosis of hepa-

tocyte remnants. Therefore, incubation of OT-II CD4 or OT-I

CD8 T-cells with specific APCs will test the APCs’ ability to

stimulate naı̈ve T-cells with an antigen that is derived from an endo-

genous source and presented or cross-presented after processing.

OT-I T-cell proliferation was observed after incubation with

DCs, KCs, or LSECs, indicating that liver-derived antigen had

indeed been taken up and processed by the APCs (Fig. 1).

Nevertheless, OT-II T-cells did not proliferate when incubated

with either one of the APCs presenting liver-derived antigen.

When liver APCs were incubated with exogenous ovalbumin

beforehand, proliferation of CD4 T-cells was restored, indicating

that APCs are in principle capable of processing antigen and

activating CD4 T-cells (data not shown). DCs isolated from the

spleens of TF-OVA mice induced proliferation in both OT-I and

OT-II T-cells. These data indicate that liver APCs are incapable

of stimulating naı̈ve CD4 T-cells with liver-derived antigen in vitro

although they do stimulate CD8 T-cells.

Failure of naı̈ve CD4 T-cells to respond to liver-derived
antigen in vivo

Similar to the observed effects in vitro, no priming of naı̈ve OT-II

T-cells in the liver was observed in vivo [13]. Rather, activation

occurred in spleen and liver-draining lymph node (Fig. 2A). Since

the majority of CD4 T-cells were activated in the spleen, we

transferred naı̈ve OT-II T-cells into splenectomized TF-OVA

mice. Priming of OT-II T-cells was observed in the liver draining

lymph node but not in the liver in splenectomized TF-OVA mice.

Our results imply that the spleen is dispensable for the priming of

naı̈ve CD4 T-cells and that APCs within the liver are insufficient

to induce their priming in vivo, leaving the liver draining lymph

node as the key location for priming of CD4 T-cells by liver-

derived antigen.

To investigate more thoroughly the requirements for the

priming of naı̈ve CD4 T-cells by liver-derived antigen in vivo, we

generated bone-marrow chimeras, in which professional APCs are

incapable of presenting the antigen to OT-II T-cells. In TF-OVA

mice reconstituted with bone marrow from MHC-II2/2 mice, no

priming of OT-II T-cells was observed, even after a prolonged

observation period of 68 h (Fig. 2B), indicating that professional

bone-marrow derived APCs are required for the priming of naı̈ve

CD4 T-cells by liver-derived antigen. At the 68 h time point,

proliferating CD4 T-cells were retrieved from the liver. The lack of

proliferation at the earlier time point and the fact that only cells

were retrieved that had divided multiple times suggest that these

cells had migrated to the liver after activation in spleen and lymph

Figure 1. Priming of naive CD4 T-cells by liver-derived antigen
in vitro. Dendritic cells (DC), Kupffer cells (KC) and liver sinusoidal cells
(LSEC) were isolated from livers of TF-OVA mice, DCs were also isolated
from spleens of TF-OVA mice. APCs (26105 cells) were allowed to settle
for 24 h before addition of 16105 CFSE labeled T-cells. After three days
of co-culture, cells were harvested, stained for CD8 or CD4, and
proliferation of OT-I or OT-II T-cells was analyzed (black line) by CFSE
dilution. OT-II and OT-I T-cells incubated alone were used as negative
control (filled gray histogram). Representative results from n = 3–6
experiments are shown. Plots depict data gated on CD8+CFSE+ or
CD4+CFSE+ cells.
doi:10.1371/journal.pone.0021847.g001

Figure 2. Priming of naive CD4 T-cells by liver-derived antigen
in vivo. OT-II T-cells were purified from the lymph nodes and spleen of
OT-II mice and labeled with CFSE. Four million cells were transferred
intravenously into splenectomized TF-OVA mice (A), MHC-II2/2 R TF-
OVA chimeras (B), or TF-OVA mice (control). Cells from the indicated
organs were isolated 44 (A) or 68 hours (B) after cell transfer and
analyzed for the presence of proliferating OT-II T-cells by detection of
CFSE-dilution. All plots depict data gated on CD4+ cells. Events to the
right of the vertical line represent the undivided population. Events at
the far left of the plot represent unlabeled endogenous cells.
Representative results from n = 4 bone-marrow chimeras and n = 4
control mice (A), and n = 6 splenectomized and n = 4 control mice (B)
are shown.
doi:10.1371/journal.pone.0021847.g002
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nodes. CD4 T-cells retrieved from the liver exclusively belonged to

a population that had undergone several rounds of proliferation in

consistence with the liver’s preference to recruit activated rather

than naı̈ve T-cells [24].

Inflammation of the liver leads to up-regulation of MHC-II

molecules on hepatocytes as well as to maturation of professional

APCs. Both mechanisms could influence antigen presentation to

CD4 T-cells and potentially allow their priming within the liver.

To test whether this is the case, we induced hepatitis by transfer of

OT-I T-cells prior to transfer of OT-II T-cells. At the peak of

inflammation (i.e. 6 days after transfer of OT-I T-cells), we

confirmed the presence of inflammation by measuring ALT-levels

(Fig. 3A) before transferring carboxy-fluorescein succinimidyl-ester

(CFSE)-labeled OT-II T-cells. Migration of OT-II T-cells to the

liver and spleen was evaluated at 20 h, before proliferation of CD4

T-cells contributes to increased cell numbers. Significantly

increased numbers of CFSE+ cells were observed in liver and

spleen of mice suffering from hepatitis as compared to controls,

demonstrating enhanced recruitment of CD4 T-cells to these

organs (Fig. 3B). However, even under inflammatory conditions,

we observed virtually no proliferation of transferred OT-II T-cells

in the liver, as compared to the spleen (Fig. 3C). Thus, an

inflammatory response does not promote antigen presentation

sufficiently to allow priming of naı̈ve CD4 T-cells by liver-derived

antigen in the liver.

CD4 T-cells primed by liver-derived antigen display
deficient Th1-effector function

Next we investigated whether naı̈ve CD4 T-cells primed in TF-

OVA mice exert effector function. To this end, CFSE-labeled OT-

II T-cells were transferred into TF-OVA mice. To prove that

activation is antigen-dependent, controls were carried out in B6

mice. Sixty-eight hours after transfer, lymphocytes were isolated

from liver and spleen and re-stimulated in vitro. While re-

stimulation induced considerable production of IL-2, very little

Interferon-c was produced by OT-II T-cells retrieved from liver or

spleen (Fig. 4A).

Figure 3. Priming of CD4 T-cells by endogenous antigen in the inflamed liver. (A) Eight million OT-I T-cells were transferred intravenously
into TF-OVA mice (+ Hepatitis), or mice were left untreated (- Hepatitis). ALT levels were determined at day 6. Values from individual mice and mean
6 SEM are depicted (*** p,0.0001 by Mann-Whitney test). (B) Four million CFSE-labeled OT-II T-cells were transferred intravenously into TF-OVA mice
at day 6 after transfer of OT-I T-cells (+ Hepatitis) or into untreated TF-OVA mice (- Hepatitis). Non-parenchymal cells were isolated from liver and
spleen analyzed for the presence of CFSE+ cells. The absolute number of CFSE+ cells in liver or spleen was determined 20 hours after transfer of OT-II
T-cells. Cumulative results are depicted from n = 6 mice per group (mean 6 SEM, ** p,0.005 by Student’s t-test). (C) Mice were treated as in (B).
Proliferation was analyzed 20 and 44 hours after transfer of OT-II T-cells. Events to the right of the vertical line represent the undivided population.
Events at the far left of the plot represent unlabeled endogenous cells. Representative results are depicted from n = 6 mice in each group. All plots
display data gated on CD4+Va2+ cells.
doi:10.1371/journal.pone.0021847.g003
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To test whether OT-II cells primed in TF-OVA mice acquired

a regulatory phenotype, we stained cells retrieved from liver and

spleen for CD25 and FoxP3. Less than one percent of

CFSE+CD4+ T-cells expressed CD25 and FoxP3 simultaneously

(Fig. 4B), illustrating that induction of a regulatory phenotype in

OT-II T-cells primed in TF-OVA mice is a rare event. Thus,

activation of naı̈ve CD4 T-cells by liver-derived antigen resulted in

induction of cells capable of producing IL-2 but with a defective

Th1-response, rather than in induction of complete anergy or a

regulatory phenotype.

Effector CD4 T-cells accumulate in the liver of TF-OVA
mice

Given the fact that naı̈ve CD4 T-cells are not primed in the liver

of TF-OVA mice, we tested whether effector CD4 T-cells migrate

to the liver of TF-OVA mice and recognize their cognate antigen

there. Effector OT-II cells with a Th1-phenotype were generated

in vitro. Their ability to produce Interferon-c was demonstrated

after in vitro re-challenge with PMA/ionomycin (Fig. 5A). Twenty

hours after transfer into TF-OVA or B6 control mice, effector

OT-II T-cells were present in the liver in larger quantities than

naı̈ve T-cells, independently of antigen-expression (Fig. 5B, 20 h).

Proliferation of these cells was observed 68 h after transfer in liver,

spleen, and draining lymph nodes of TF-OVA mice (Fig. 5B,

68 h). A higher degree of CFSE-dilution was observed in TF-OVA

mice than in B6 controls, indicating antigen-specific activation of

the transferred effector OT-II T-cells. In contrast, no proliferation

occurred after transfer of naı̈ve OT-II T-cells into B6 mice.

Next we tested whether OT-II T-cells accumulate in the liver of

TF-OVA mice after antigen recognition. To this end, 4 million

naı̈ve or effector OT-II T-cells were transferred into TF-OVA

mice, and lymphoid organs and the liver were removed to

enumerate OT-II T-cells at different time points. Since CFSE-

dilution is complete after 3-4 days, the Va2-chain of the OT-II T-

cell receptor was used to estimate the number of OT-II T-cells.

The increase of CD4+Va2+ cells in livers of TF-OVA mice was

much more pronounced than in livers of B6 control mice after

transfer of effector T-cells (Fig. 5C). In the spleen, numbers of

CD4+Va2+ cells increased on days 2 and 3 but decreased to

background levels at day six. In contrast, no accumulation of CD4

T-cells was observed in the liver after transfer of naı̈ve CD4 T-

cells, which accumulated solely in the spleen. In TF-OVA mice

injected with effector OT-II T-cells, a dense lymphocytic infiltrate

in the portal and periportal areas was observed 6 days after

transfer (Fig. 5D).

Our results confirm that activated CD4 T-cells accumulate in

the liver of TF-OVA mice and respond to antigen.

Immune-mediated liver injury is amplified by effector but
not naı̈ve CD4 T-cells

We investigated the capacity of naı̈ve and effector OT-II T-cells

to induce liver damage. No significant increase in ALT-levels was

observed after transfer of 4 million naı̈ve or effector OT-II T-cells

into TF-OVA mice (Fig. 6A), demonstrating that neither naı̈ve nor

effector CD4 T-cells are sufficient to induce hepatitis.

Since provision of help to CD8 T-cells is one of the main tasks

of CD4 T-cells, we examined whether hepatitis induced by CD8

T-cells is augmented by addition of CD4 T-cells. The combination

of naive OT-II and OT-I T-cells did not increase the severity of

hepatitis compared to OT-I T-cells alone, even when transfer of

CD4 T-cells preceded the transfer of CD8 T-cells by three days to

ensure presence of CD4 T-cells in the liver at the time of CD8 T-

cell priming. In contrast, the addition of effector OT-II T-cells to

OT-I T-cells increased the severity of hepatitis, as judged from

ALT-release. Three animals with very high ALT-levels died

during the course of the experiment due to fulminant liver

damage, while no animal died in any of the other groups.

Extensive necrosis was present in the livers (data not shown).

Therefore, we reduced the number of OT-I T-cells in the co-

transfer experiment to such an extent that transfer of CD8 T-cells

alone did not cause ALT-release (Fig. 6B). Co-transfer of effector

OT-II T-cells with low numbers of OT-I T-cells lead to ALT-

release, thus converting a sub-threshold damage elicited by CD8

T-cells alone to overt hepatitis when CD4 T-cell help is provided.

To prove that amplification of CD8 T-cell function by CD4 T-

cell help is responsible for this observation, we determined the

degree of cytolysis exhibited by OT-I T-cells in different settings.

In vivo cytolytic activity was increased by the addition of effector

OT-II T-cells (Fig. 6 C, D), suggesting that augmentation of CD8

T-cell activity is indeed responsible for the observed effect on the

severity of liver damage.

Figure 4. CD4 T-cells primed by liver-derived antigen display
deficient Th1-effector function. (A) Four million CFSE-labeled OT-II
T-cells were transferred intravenously into TF-OVA mice or into B6
control mice. After 68 hours, non-parenchymal cells were purified from
liver and spleen and incubated in vitro with PMA/ionomycin. Production
of Interferon-c and IL-2 was analyzed after 4 hours. Representative
results are depicted (n = 6). (B) Mice were treated as in (A), but cells were
analyzed for CD25 and FoxP3 expression immediately after purification
of cells from the indicated organs. Representative results are depicted
from n = 6 mice in each group. All plots depict data gated on
CD4+CFSE+ cells. CD25/FoxP3 plots on the right depict the frequency
of CD25+FoxP3+ double positive cells.
doi:10.1371/journal.pone.0021847.g004
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Discussion

The advent of mouse models of autoimmune hepatitis that do not

rely on alloreactivity of T-cells [25,26] provides experimental

systems to study the role of T-cells in a model, in which professional

as well as non-professional APCs contribute to T-cell priming

[12,13,14]. These models have challenged the paradigm that CD8

T-cells primed by liver-derived antigen are rendered tolerant.

Rather, effector function and hepatitis result from CD8 T-cell

activation by liver-derived antigen when professional APCs are

presenting the antigen. However, the effect of CD4 T-cells in such a

setting remains elusive. We report here on the role of CD4 T-cells in

an antigen specific model of immune-mediated liver injury.

We employed exogenous TCR-transgenic CD4 T-cells reactive

to the neoantigen expressed in the liver and investigated their

activation by different types of APCs in vivo and in vitro. We

demonstrate that priming is achieved in the liver-draining lymph

node and spleen by professional APCs but not by APCs within the

liver. This finding is in sharp contrast to our findings on CD8 T-

cells, which are efficiently primed within the liver. No proliferation

was observed of CD4 T-cells primed in vitro on LSECs or in vivo in

bone-marrow chimeras, in which only non-professional APCs are

capable of presenting the antigen. Thus, LSECs are insufficient to

prime CD4 T-cells by liver-derived antigen, at least under non-

inflammatory conditions. Likewise, KCs and DCs isolated from

the liver did not prime CD4 T-cells in vitro, and the absence of

proliferating CD4 T-cells in the liver demonstrates that they do

not activate CD4 T-cells by liver-derived antigen in vivo, either.

Wuensch et al. also observed a lack of proliferation of CD4 T-cells

in response to antigen introduced into hepatocytes by viral

infection, albeit in a model in which the antigen is not cross-

presented by professional APCs [27]. Therefore, direct compar-

ison of the priming ability of specific APC populations on CD8

and CD4 T-cells is not possible. Our data indicate that the level of

liver-derived antigen acquired by liver APCs in vivo suffices to

stimulate CD8 T-cells. It is unclear whether the amount of antigen

presented by the various APCs is too little to allow activation of

CD4 T-cells or whether the low expression levels of MHC-II as

well as of co-stimulatory molecules on liver APCs (reviewed in

[28]), particularly KCs and LSECs, prevent activation. Observa-

tions obtained after addition of large amounts of exogenous

antigen in vitro probably do not reflect the physiological situation in

vivo and should therefore be interpreted with caution.

In a study by Lüth et al. [29], in vivo activation of CD4 T-cells by

antigen expressed in the liver was studied. MBP-specific CD4 T-

cells isolated from spleen and liver of mice transgenic for MBP

expressed in hepatocytes proliferated, and a regulatory phenotype

resulted, leading to suppression of experimental autoimmune

encephalitis caused by autoreactive CD4 T-cells. The authors did

not determine the type of APC and the site of activation leading to

induction of the regulatory phenotype. In our experiments, only a

small minority (,1%) of OT-II T-cells retrieved from liver or spleen

displayed a regulatory phenotype as determined by expression of

CD25 and FoxP3. However, we cannot exclude a regulatory

function in the absence of FoxP3 expression, and even the small

population of cells with a regulatory phenotype could suffice to

suppress effector T-cells, as demonstrated by Lüth et al. Varying

levels of antigen expression under the transgenic promoters or

differences in the uptake or processing of the antigen by APCs may

also contribute to the observed discrepancies.

Our findings have implications for the understanding of T-cell

reactivity towards liver antigen. CD4 T-cells are not activated by

liver-derived antigen in contrast to CD8 T-cells, possibly explaining

why CD4 T-cell help is found infrequently in patients with viral

hepatitis and exhaustion of the CD8 T-cell response results, leading

to viral persistence. On the other hand, our data suggest that

autoreactivity against liver antigen is most likely triggered by CD8

and not CD4 T-cells. Patients with autoimmune hepatitis display a

mixed infiltrate of inflammatory cells in the liver, including CD8

and CD4 T-cells. In initial reports, CD4 T-cells were suggested as

the main effector population causing liver damage in autoimmune

hepatitis [30,31,32]. More recently it has become evident that CD8

T-cells play a dominant role, especially in the early phase of the

disease [33,34]. Our data support this notion.

In summary, our data add to existing evidence for a pivotal role

of CD8 T-cells in the development of acute immune-mediated

liver injury. Without CD8 T-cells, no liver damage is observed.

Naı̈ve CD4 T-cells are not primed within the liver by liver-derived

antigen, neither by professional nor by non-professional APCs, but

require activation in spleen or lymph nodes before re-locating to

the liver. Effector CD4 T-cells are capable of infiltrating the liver

but do not cause liver damage by themselves. While help provided

by effector CD4 T-cells augments the severity of liver damage,

CD4 T-cell help is dispensable for the induction of liver injury in

the acute setting. CD4 T-cells likely play a more crucial role in

maintaining the prolonged activation of CD8 T-cells observed in

chronic hepatitis and in the formation of memory CD8 T-cells.

Other cell-types such as NKT-cells [35] further regulate CD8 T-

cell responses.

Materials and Methods

Animals and cells
All animals received humane care according to institutional

criteria. All animal procedures were approved by the Landesamt

für Gesundheit und Soziales, Berlin (registrations G0020/04 and

G0191/09).

TF-OVA mice were described before [13]. Bone-marrow

chimeras were generated by lethal irradiation of TF-OVA mice,

followed by supplementation with C57BL/6 I-Ab2/2 bone-

marrow (Taconic, Hudson, NY). Mice were used for experiments

after 6 weeks. Splenectomy was carried out under anesthesia with

xylazin/ketamin, and mice were used for experiments after 2 weeks.

Naı̈ve OT-I CD8 and OT-II CD4 T-cells were isolated from

lymph nodes and spleen of OT-I [36] or OT-II [37] mice,

respectively, using magnetic sorting (Miltenyi Biotec, Bergisch-

Figure 5. Effector CD4 T-cells accumulate in the liver of TF-OVA mice. (A) Effector OT-II T-cells with a Th1-phenotype were generated in vitro
with the cognate peptide antigen in the presence of IL-12, Interferon-c, and anti-IL-4 antibody. After 6 days in culture, cells were restimulated with
PMA/ionomycin and stained for Interferon-c and IL-4. (B) Four million CFSE-labeled naı̈ve or effector OT-II T-cells were transferred into TF-OVA or B6
control mice. Non-parenchymal cells from the indicated organs were isolated after 20 or 68 hours, and analyzed for the presence of proliferating OT-II
T-cells by CFSE dilution. All plots depict data gated on CD4+Va2+ cells. Events to the right of the vertical line represent the undivided population.
Events at the far left of the plot represent unlabeled endogenous cells. Representative results from n = 4–6 mice in each group are shown. (C) Cells
from the indicated organs were isolated at the indicated days after transfer of 4 million naı̈ve or effector OT-II T-cells, and numbers of CD4+Va2+ cells
were enumerated. Data shown are derived from n = 3–6 mice per group at each time point. Note the different scales for spleen and liver/liver lymph
node (mean 6 SEM; * p,0.05, *** p,0.001 by Student’s t-test). (D) Liver sections from TF-OVA and B6 mice were stained with H&E 6 days after
transfer of 4 million effector OT-II T-cells. Representative images from n = 6 mice per group (magnification 100x) are depicted.
doi:10.1371/journal.pone.0021847.g005
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Gladbach, Germany). Purity of preparations was above 90% for

OT-I T-cells and above 80% for OT-II T-cells. For in vitro co-

culture experiments and generation of CD4 effector cells, CD4+ T-

cells were further selected for CD62L expression using magnetic

beads (Miltenyi Biotec).

Liver APCs were isolated from TF-OVA mice by perfusion of the

liver with 0.5 mg/ml collagenase in RPMI (Sigma, Taufkirchen,

Germany). Fragmented livers were incubated for 20 min in

digestion media at 37uC in an agitating incubator, passed through

a nylon mesh, and briefly centrifuged at 300 rpm. Non-parenchy-

mal cells were purified from the supernatant on a 42% Percoll

gradient (Sigma, 2000 rpm, 20 min). Cells were separated into

LSEC+ and LSEC2 fractions by magnetic separation with anti-

CD146 beads (Miltenyi Biotec). The LSEC+ fraction was further

Figure 6. Hepatitis is amplified by effector but not naive CD4 T-cells. (A) Four million naı̈ve (open squares) or effector (open circles) OT-II
T-cells were transferred alone or together with 4 million naı̈ve OT-I T-cells (filled squares and circles) into TF-OVA mice. Naı̈ve OT-II T-cells were also
transferred three days prior to transfer of OT-I T-cells to allow timely redistribution to the liver (half-filled squares). As a control, 4 million naı̈ve OT-I
T-cells (filled triangles) were transferred alone. Alanine aminotransferase levels were determined at day 5. Individual values and mean 6 SEM are
depicted (**p,0.005 by Mann-Whitney test). (B) One million naı̈ve OT-I T-cells were transferred alone (filled triangles) or together with 4 million
effector OT-II T-cells (half-filled circles) into TF-OVA mice. Alanine aminotransferase levels were determined at day 5. Individual values and mean 6
SEM are depicted (**p,0.005 by Mann-Whitney test). (C) Four million effector OT-II T-cells were transferred alone (CD4) or together with 1 million
naı̈ve OT-I T-cells (CD8+CD4) into TF-OVA mice. As controls, 1 million naı̈ve OT-I CD8 T-cells (CD8) were transferred alone or no cells were transferred
(control). At day 6, equal numbers of CFSEhigh SIINFEKL-pulsed and CFSElow unpulsed B6 splenocytes were injected. After 5 hours cells from the
indicated organs were analyzed for CFSE staining. Histogram blots depict data gated on CFSE-positive cells. (D) Antigen-specific cytolysis was
calculated as described in methods. Cumulative results are depicted from n = 6 mice per group (mean 6 SEM; ** p,0.005 by Mann-Whitney test).
doi:10.1371/journal.pone.0021847.g006
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sorted by FACS for CD31+CD452 LSEC (both antibodies from

ebioscience, San Diego, CA), resulting in .99% purity. From the

LSEC2 fraction, KCs or DCs were isolated by FACS-sorting,

resulting in .90% purity of F4/80+CD11b+ KCs or in .95%

purity of CD11c+ DCs, respectively (antibodies from ebio-

science and BD Biosciences, Heidelberg, Germany). Spleen

DCs were obtained by FACS sorting of CD11c+ cells, resulting in

.95% purity.

For in vitro co-culture experiments, 26105 APCs were cultured

in 96 well flat bottom wells in 200 ml RPMI supplemented with

10% FCS, 1% penicillin/streptomycin, 1% gentamycin (Bio-

chrom, Berlin, Germany), 1% L-Glutamin (Invitrogen, Karlsruhe,

Germany), and 0.05 mM b-mercaptoethanol (Sigma), and allowed

to settle for 24 h before addition of 16105 carboxy-fluorescein

succinimidyl-ester (CFSE, Invitrogen, Karlsruhe, Germany) la-

beled T-cells [38]. Proliferation of OT-II or OT-I T-cells was

analyzed after three days. OT-II and OT-I T-cells incubated alone

were used as negative control. OT-II or OT-I T-cells incubated

with irradiated spleen cells or specific APC populations and

ovalbumin (100 mg/ml) served as positive control.

Effector CD4 T-cells were generated as described [24]. Briefly,

irradiated B6 spleen cells were added at a 1:3 ratio to purified OT-

II T-cells, and 5 mg/mL OVA323–339 (ISQAVHAAHAEI-

NEAGR, Institute of Biochemistry, Charité), 5 mg/ml anti-IL-4

(R&D Systems, Wiesbaden, Germany), 20 ng/mL Interferon-c,

and 5 ng/mL IL-12 (both Invitrogen) were added to RPMI

supplemented with 10% FCS and b-mercaptoethanol. Cell

cultures were split on day 3 and harvested on day 6. Dead cells

were removed by a 24% NycoPrep density gradient (AxisShield,

Oslo, Norway).

Histology
For histology, livers were perfused with PBS and fixed for 24 h

in 4% paraformaldehyd, followed by embedding in paraffin. 4 mm

sections were stained with hematoxylin and eosin.

FACS analysis
To isolate intrahepatic lymphocytes, livers were perfused with

PBS/0.5% BSA, fragmented, passed through a 70 mm nylon

mesh, and then treated as described above, before purification on

a discontinuous 40/70% Percoll gradient. Antibodies against

CD4, CD25, and Va2 were from BD-Biosciences. For intracel-

lular staining, cells were fixed and permeabilized using BD-

Cytofix/CytopermTM (BD-Biosciences). Staining was performed

with antibodies anti-Interferon-c, anti-IL-2 (eBioscience), and

anti-IL-4 (BD-Biosciences). Intracellular staining for FoxP3 was

performed using the APC-FoxP3 staining set (eBioscience),

according to the manufacturer’s instructions. Cells were analyzed

on a Becton Dickinson FacsCalibur using the CellQuest software.

T-cell restimulation and in vivo cytolysis assay
For restimulation experiments, 4 million CFSE-labeled OT-II

T-cells were transferred into TF-OVA mice. Mice were sacrificed

at day 3, non-parenchymal cells were isolated from liver and

spleen, cultured in complete RPMI, and activated in 20 nM

phorbol 12-myristate 13-acetate/1 mM ionomycin (Sigma). After

1 hour, 2 mg/ml brefeldin-A (Sigma) was added, and cells were

analyzed for intracellular cytokines after an additional 3 hours.

Restimulation of in vitro generated effector cells was performed

likewise.

For in vivo cytolysis assays, 4 million naı̈ve or effector OT-II T-

cells, 1 or 4 million naı̈ve OT-I T-cells, or a combination of 1 or 4

million OT-I T-cells and 4 million naı̈ve or effector OT-II T-cells

were transferred into TF-OVA mice. Six days later, splenocytes

from C57/BL6 mice were labeled in 7,5 mM or 0,75 mM CFSE

and pulsed with 1 mg/ml SIINFEKL or left untreated for 1 hour,

respectively. SIINFEKL-pulsed splenocytes and control spleno-

cytes were mixed in equal numbers, and 8 million splenocytes

were injected intravenously. As a control, splenocytes were

injected into mice that had not received T-cells. After 5 hours,

cells were isolated from lymphatic organs and liver and ana-

lyzed for CFSE staining. Specific lysis was calculated as follows:

100x[1-(%CFSElo(control)/%CFSEhigh(control))/(%CFSElo(OT-I)/

%CFSEhigh(OT-I))].

Alanine aminotransferase measurement
Blood was collected into separation tubes and sera were stored

at 220uC before automatic analysis on a Roche modular analyzer

(Grenzach-Wyhlen, Germany).

Statistical analysis
Statistical analyses were performed with GraphPad Prism 5

software (GraphPad Software, San Diego, CA). The Student’ s t

test and the Mann-Whitney test were used as applicable.
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