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Background: Major depressive disorder is associated with functional alterations in activ-
ity and resting-state connectivity of the extended medial frontal network. In this study
we aimed to examine how task-related medial network activity and connectivity were
affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to
24-years-old, were matched with 19 healthy control participants. We characterized task-
related activations and deactivations while participants engaged with an executive-control
task (the multi-source interference task, MSIT).We used a psycho-physiological interactions
approach to examine functional connectivity changes with subgenual anterior cingulate cor-
tex. Voxel-wise statistical maps for each analysis were compared between the patient and
control groups. Results:There were no differences between groups in their behavioral per-
formances on the MSIT task, and nor in patterns of activation and deactivation. Assessment
of functional connectivity with the subgenual cingulate showed that depressed patients
did not demonstrate the same reduction in functional connectivity with the ventral striatum
during task performance, but that they showed greater reduction in functional connectivity
with adjacent ventromedial frontal cortex.The magnitude of this latter connectivity change
predicted the relative activation of task-relevant executive-control regions in depressed
patients. Conclusion:The study reinforces the importance of the subgenual cingulate cor-
tex for depression, and demonstrates how dysfunctional connectivity with ventral brain
regions might influence executive–attentional processes.
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INTRODUCTION
Major depressive disorder is characterized by symptoms in affec-
tive, somatic, and cognitive domains. The diversity of symptoms
provides an indication that the illness arises from systemic alter-
ations in brain function, and not from specific regional dysfunc-
tion. The brain system that has been most consistently implicated
in the pathophysiology of depression is the extended medial pre-
frontal network (or “medial network”) – a set of ventrally located
brain regions that includes ventromedial frontal cortex, anterior
and posterior cingulate cortex, striatum, amygdala, and thalamus
(Price and Drevets, 2010). The abnormal function of these regions
has been linked to key symptoms of depression such as low mood,
anhedonia, and self-related disturbances (Keedwell et al., 2005;
Grimm et al., 2009; Sheline et al., 2009). In addition to these
disturbances, impairments of goal-directed cognitive processes
are common in patients with depression, who frequently report
problems with sustained attention and concentration (Gotlib and
Joormann, 2010). By and large such processes are thought to reflect
disturbances in the activity of dorsal frontoparietal brain regions,
including the so-called “executive-control network” (Seeley et al.,
2007). While both networks interact dynamically in the service of
goal-directed behavior (Sridharan et al., 2008; Spreng et al., 2010),
disturbances of the executive-control network are hypothesized to

be secondary to medial network alterations in depressed patients
(Price and Drevets, 2010). However, the putative mechanisms by
which medial network activity may influence the engagement
of executive-control processes in depression have not been well
characterized.

The medial network, an essentially anatomical concept, shows
considerable overlap with the hypothesized “default mode net-
work,” with both networks including as core components the
ventromedial prefrontal cortex and ventral and posterior regions
of the cingulate cortex. The default mode network was first
described when it was observed that these regions, together with
temporoparietal regions, showed greater metabolic activity when
a person was at rest compared to when they were engaged in
demanding cognitive tasks (Ghatan et al., 1995; Shulman et al.,
1997; Raichle et al., 2001). This observed rest–task difference was
termed “deactivation” because early imaging studies were primar-
ily focused on “activation” to cognitive–attentional stimuli (Buck-
ner et al., 2008), and we use the term in that sense here: to refer to
brain activity that is reduced during task engagement compared
to rest. It was subsequently noted that the default mode network
showed functionally correlated activity during extended periods of
continuous rest – while a person was engaged in “stimulus inde-
pendent thought” (Greicius et al., 2003; Fox et al., 2005). More
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recently, examination of functional connectivity during these two
types of rest – blocks of rest interleaved within cognitive tasks,
and extended continuous rest – has shown that, while minor dif-
ferences are evident, they are qualitatively and quantitatively very
similar (Fair et al., 2007b).

The extent to which resting-state activity becomes less promi-
nent, or “deactivates,” during the performance of cognitive tasks
has been related to their specific levels of demand (McKiernan
et al., 2003; Mayer et al., 2010; Harrison et al., 2011), and has
been shown to correlate with individual differences in task reac-
tion times and accuracy (Harrison et al., 2007; Anticevic et al.,
2010; Sala-Llonch et al., 2011). In healthy people cognitive tasks
have been shown to affect default mode network connectivity in
two ways: firstly, connectivity between different regions of the
default mode network remains relatively consistent during task
performance (Hampson et al., 2006; Fransson and Marrelec, 2008;
Harrison et al., 2008; Bluhm et al., 2011); and secondly, there is
reduced functional connectivity between default and non-default
mode network regions (Bluhm et al., 2011).

The above observations may be relevant to depression, in which
resting-state alterations in activity and connectivity of ventral
regions of the anterior cingulate cortex (ACC) have been a fre-
quent finding. The subgenual ACC, in particular,has been reported
to show increased resting-state activity in nuclear imaging stud-
ies of depressed patients (Drevets, 1999; Dunn et al., 2002), and
stronger functional connectivity between the subgenual ACC and
other regions of the medial network have been shown using
functional magnetic resonance imaging (Greicius et al., 2007;
Hamilton et al., 2011; Davey et al., 2012). A recent study reported
increased functional connectivity of dorsomedial frontal cortex
(in a region the authors labeled the “dorsal nexus”) with sub-
genual ACC, dorsolateral frontal cortex, and precuneus (Sheline
et al., 2010). Alterations in connectivity with the dorsal ACC – an
important region for cognitive control processes – have also been
reported, with demonstration of reduced connectivity with stria-
tum, amygdala, and medial thalamus (Anand et al., 2005). During
performance of cognitive tasks depressed patients have shown
broadly reduced deactivation of the ventral ACC and extended
medial frontal cortex (Harvey et al., 2005; Wagner et al., 2006).
Connectivity changes in medial network regions during cognitive
task performance, however, have not previously been reported for
depressed patients, despite evidence that such changes may under-
lie task-related cognitive impairment in other psychiatric disorders
(Whitfield-Gabrieli et al., 2009).

The goal of the current study was therefore to examine whether
depressed patients showed differences in deactivation, and in func-
tional connectivity of the subgenual ACC, during cognitive task
performance. We selected the subgenual ACC as a region-of-
interest because of its frequent implication in depression (Hamani
et al., 2011) – including being the site for the placement of electri-
cal leads in deep-brain-stimulation (DBS) treatment of the illness
(Lozano et al., 2008). The subgenual ACC has previously been
shown to be more strongly connected with the default mode
network in depressed compared to control participants (Greicius
et al., 2007), suggesting the possibility of altered changes in con-
nectivity during engagement with cognitive tasks that could be
expected to deactivate the network. Our predictions were that

depressed participants would show less deactivation of default
mode regions during cognitive task performance, in keeping with
other studies. Secondly, we expected that functional connectiv-
ity with the subgenual ACC would be distinctly modulated in
depressed patients when comparing rest and task performance
periods. To assess this, participants were examined with func-
tional MRI while they performed the multi-source interference
task (MSIT; Bush and Shin, 2006). The MSIT is a well-validated
executive-control paradigm that evokes robust activation of dor-
sal frontoparietal regions, and corresponding deactivation of the
default mode network (Bush and Shin, 2006; Harrison et al., 2007;
Yucel et al., 2007). In order to reliably assess changes in deacti-
vation and subgenual ACC functional connectivity from a resting
baseline, we developed a modified version of the MSIT that inter-
leaved specific rest-fixation periods between each task block. We
employed an analysis based on psycho-physiological interactions
(PPI; Friston et al., 1997) in order to identify changes in functional
connectivity of the subgenual ACC between the resting and task
performance states.

MATERIALS AND METHODS
PARTICIPANTS
Depressed participants were recruited for the study from Orygen
Youth Health, a public mental health service for young people
in Melbourne, Australia. Patients were between 15 and 24 years
of age, and had major depressive disorder determined by Struc-
tured Clinical Interview for DSM-IV (SCID; First et al., 1997).
Patients were included from an age range that extended from the
middle teenage years to early adulthood, which accords with a
clinical focus on youth mental health (McGorry, 1998), and is
consistent with our current understanding of the continuities in
brain and social development through this period (Davey et al.,
2008). Patients did not meet the criteria for psychotic disorder,
substance dependence disorder, pervasive developmental disorder,
or intellectual disability; and were not excluded if they were tak-
ing antidepressant medication. The depressed participants were
successfully matched with a group of control participants on age,
gender, and full-scale IQ (Table 1). The control participants were
recruited via advertisement placed in a daily metropolitan news-
paper, and had no history of mental illness, as determined by
SCID. The participants (and their parents if they were younger
than 18 years of age) provided their informed consent to par-
ticipate in the study, which was approved by the local research
and ethics committees. Imaging data from one control partici-
pant and one depressed participant were excluded due to excessive
head movements during scanning (see further), resulting in a
control group of 19 participants and a depressed group of 18
participants.

The illness characteristics of the depressed participants
reflected their relatively young age, and their recruitment via a
public mental health service, which treats young people with rela-
tively severe illness. The mean Beck Depression Inventory (BDI-II)
score for the depressed participants of 34.4 indicates that their ill-
nesses were at the severe end of the illness spectrum (Beck et al.,
1996). Nine of the depressed participants were being treated with
antidepressant medication: fluoxetine (n = 4), citalopram (n = 2),
and venlafaxine (n = 3).
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Table 1 | Characteristics of the control and depressed participants.

Participant variable Mean (SD), median

or % (number)

Mean (SD), median

or % (number)

Age 19.9 (2.7) 18.9 (2.2)

Female 58% (11) 61% (11)

Full-scale IQ 109.8 (11.0) 107.9 (9.3)

BDI score 3.1 (3.6) 34.4 (12.6)

First episode of depression – 50.0% (9)

Median length of episode – 10.5 months

Comorbid anxiety disorder – 33.3% (6)

Antidepressant medication – 50.0% (9)

Median length of treatment – 4 months

TASK DESCRIPTION
Each participant performed a modified block-design version of
the MSIT, which involved responding to eight 30-s task blocks of
congruent (i.e., lower cognitive demand) and incongruent (i.e.,
higher cognitive demand) stimulus trials. During both task con-
ditions, participants were instructed to indicate the identity (not
the position) of a visually presented target number in a three-digit
sequence corresponding to learned button box associations using
the index (1), middle (2), and ring (3) fingers. During congruent
trials the target number always matched its appropriate button box
position and was flanked by zeros (e.g.,“0 2 0”). During incongru-
ent trials, the target never matched its appropriate position and
was flanked by incongruent numbers (e.g., “3 1 1”). Each block
consisted of 12 trials of either the congruent or incongruent stim-
ulus conditions, with the stimulus presented for 2000 ms and an
inter-stimulus interval of 500 ms. As implemented by Harrison
et al. (2011), each task block was interleaved with 15 s periods of
rest-fixation. The main focus of our analysis was on comparison
of the rest blocks with the cognitively demanding incongruent task
blocks.

IMAGE ACQUISITION AND PREPROCESSING
A 3-T Siemens Magnetom Trio magnetic resonance scanner
(Erlangen, Germany) was used to acquire whole-brain functional
T2∗-weighted echo-planar images (EPIs). Functional sequences
consisted of gradient-recalled acquisition in the steady state [time
of repetition (TR), 2400 ms; time of echo (TE), 40 ms; pulse angle,
90˚) within a field of view of 210 mm, with a 64 × 64-pixel matrix,
and with a slice thickness of 3 mm (no inter-slice gap). Thirty-six
interleaved slices were acquired parallel to the anterior–posterior
commissure line, with particular attention paid to ensuring good
coverage of ventral brain areas. Field maps were also acquired to
correct for distortion caused by magnetic field inhomogeneities
(TR, 400 ms; short TE, 5.19 ms; long TE, 7.65 ms; pixel matrix,
64 × 64; slice thickness, 3 mm). While completing the MSIT task
157 whole-brain EPIs were acquired for each participant. In addi-
tion, prior to performing the MSIT, each participant underwent a
single 12.3-min resting-state sequence (they were instructed to
relax, stay awake, and lie still with their eyes closed) with the
acquisition of 307 EPIs. A high-resolution T1-weighted anatomi-
cal image was also acquired to aid co-registration of the functional
sequences to standard neuroanatomical space. During scanning

participants were provided with earphones to reduce scanner
noise, and foam-rubber inserts were used to aid head stability.

Imaging data were transferred and processed on an Apple
OSX platform running MATLAB version 7 (MathWorks, Natick,
MA, USA), and using Statistical Parametric Mapping 8 (SPM8)1.
Motion correction was performed by aligning each participant’s
time series to the first image using least-squares minimization
and a six-parameter (rigid body) spatial transformation, and the
field maps were used to unwarp the images. Participants’ data
were excluded from analysis if translation and rotation estimates
were greater than 2 mm or 2˚, respectively. Excessive movement
resulted in the exclusion of data from one control participant and
one depressed participant. The realigned and unwarped functional
sequences were then coregistered to each participant’s respective
anatomical scan. Anatomical scans were segmented and spatially
normalized to the International Consortium for Brain Map-
ping template using the unified segmentation approach, and the
normalization parameters were applied to the coregistered func-
tional images, which were resliced to 2 mm isotropic resolution.
Functional images were smoothed with a 6-mm (full-width half-
maximum) Gaussian filter. All image sequences were routinely
inspected for potential normalization artifacts.

STATISTICAL ANALYSIS
For each participant primary task regressors were created by spec-
ifying the onset and duration of each task block, followed by
convolution with a canonical hemodynamic response function
and its temporal derivative, and use of a high-pass filter set at
128 s to remove low-frequency drifts. Parameter estimates were
calculated at each voxel using the general linear model and local
autocorrelation correction. Second-level analysis identified voxels
that showed greater activation in the incongruent compared to
congruent task, and in the rest block compared to the incongruent
task (i.e., that were deactivated during the task). To characterize
any between-group differences we thresholded the statistical maps
at P < 0.005, and determined whether any clusters survived whole-
brain cluster-wise correction (PFDR < 0.05) within broad global
masks of relevant activated or deactivated brain regions (formed
by global conjunction of the control and depressed participants,
thresholded at P < 0.05, uncorrected).

Psycho-physiological interactions were examined using seed
regions of interest in the subgenual ACC. PPI analysis allows an
examination of whether connectivity between brain regions dif-
fers in different psychological context. It assesses whether there is
an interaction between correlated brain activations and the psy-
chological task; in other words whether there is an influence of
one brain region on another that is over-and-above correlated
activations and deactivations produced by the task (Friston et al.,
1997). In this study our focus was on how connectivity with the
subgenual ACC changed between resting-state periods and per-
formance of the incongruent MSIT condition. The location of
the seeds was taken from Margulies et al.’s (2007) study of cin-
gulate connectivity: spheres of 3.5 mm radius were created in left
and right subgenual ACC (x = ±5, y = 25, z = −10). Time series

1http://www.fil.ion.ucl.ac.uk/spm/
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were extracted for each seed; and the deconvolved time course,
along with the task model (rest > incongruent task), and their
interaction, were entered into a first-level GLM analysis for each
participant. The voxel-wise statistical maps calculated for each PPI
were then included in group (second-level) random-effects analy-
ses, adopting a 2 × 2 factorial model [group (control, patient) by
hemisphere (right seed, left seed)]. Age and medication status were
included as covariates.

Our primary interest was in characterizing how resting func-
tional connectivity of the subgenual ACC changed in response
to task performance in the two groups. We therefore limited
our analysis to only those regions that showed significant func-
tional connectivity with the subgenual ACC during resting-state
conditions by masking our second-level PPI analyses with an
independently derived resting-state functional connectivity map
(i.e., from the 12-min resting-state scans from the same partic-
ipants; reported in Davey et al., 2012). The map was created by
including the resting-state time-courses for the subgenual ACC
seeds and nuisance signals (white matter, cerebrospinal fluid,
and global brain signal fluctuations) as predictors of interest
and no interest, respectively, in whole-brain, linear regression
analyses. Contrast images were generated for each participant
by estimating the regression coefficient between all brain vox-
els and each seed’s time series, separately for each hemisphere.
These images were then included in group random-effects analy-
ses, using a similar 2 × 2 factorial as above (detailed results
of the analyses are to be presented elsewhere). The resting-
state mask was created for the subgenual ACC by threshold-
ing a conjunction map for control and depressed participants
at voxel-wise PFDR < 0.05, ensuring that the second-level PPI
analyses were restricted to only those brain regions that showed
significant resting-state correlations with the subgenual ACC
in both the depressed and control groups. The mask con-
sisted of the core components of the medial network, includ-
ing ventral cingulate cortex, ventromedial frontal cortex, pos-
terior cingulate cortex, striatum, and anterior thalamus. Analy-
ses of within- and between-group PPI effects were thresholded
at a voxel-wise P < 0.005, and cluster-level probabilities were
calculated using Monte Carlo simulation, as implemented by
AlphaSim2

To investigate potential associations between subgenual ACC
connectivity and other task-related brain and behavioral indices,
we performed second-level GLM covariance analyses in each
group that examined whether changes in connectivity predicted:
(i) the relative magnitude of task-related activation of executive-
control regions during the MSIT; and (ii) individual differences in
task performance with regards to participants’ reaction-time and
accuracy scores. In the first analysis, the strengths of connectivity
between the subgenual ACC and implicated regions of interest (see
Results) were estimated by extracting the first eigenvariate of the
voxels within each region-of-interest using SPM8. These values
were then entered into the second-level model of task activation
effects (incongruent task > rest). In the next analysis, participants’
performance scores were entered as covariates of interest into the

2http://afni.nimh.nih.gov/afni/doc/manual/AlphaSim.

second-level model of task-related subgenual ACC connectivity
changes (rest > incongruent task). For the patient group only, we
additionally examined direct associations between connectivity
changes and clinical severity, as measured with the BDI. All analy-
sis were thresholded at P < 0.005 with whole-brain cluster-wise
correction (P < 0.05).

RESULTS
The control and depressed groups performed the MSIT task
similarly. They showed similar high rates of accuracy (con-
trols: congruent 99.8%, incongruent 97.5%; depressed: congru-
ent 99.6%, incongruent 96.1%; main effect of task: F 1,35 = 22.6,
P = < 0.001; main effect of group: F 1,35 = 0.86, P = 0.36; interac-
tion: F 1,35 = 0.38, P = 0.54); and similar reaction times (controls:
congruent 657 ms, incongruent 1032 ms; depressed: congruent
628 ms, incongruent 1035 ms; main effect of task: F 1,35 = 372.8,
P = < 0.001; main effect of group: F 1,35 = 0.22, P = 0.65; interac-
tion: F 1,35 = 0.64, P = 0.43).

The MSIT paradigm led to robust activation (incongru-
ent task > congruent task) of the bilateral dorsal frontoparietal
cortex, dorsal anterior ACC, supplementary motor cortex, and
other executive-control areas. Prominent task-related deactiva-
tions (rest > incongruent task) were observed in the ventral and
dorsal posterior cingulate cortex, precuneus and the ventromedial
frontal cortex (Figure 1). When comparing the two groups directly,
no significant differences in task-related activation or deactivation
were observed, even at a lenient uncorrected minimum cluster
size of 20 voxels. Further region-of-interest analysis of deactiva-
tions within the subgenual ACC seeds confirmed no differences
between groups (main effect of group: F 1,35 = 1.53, P = 0.23).

FIGURE 1 |The MSIT involved participants completing alternating

blocks of the congruent and incongruent task, interleaved with blocks

of rest (A). Task-induced activations (incongruent > congruent; in orange)
and deactivations (rest > incongruent; in blue) were apparent in
executive-control and default mode network regions, respectively (B). There
were no significant differences between groups. The approximate position
of the subgenual ACC seeds used for the PPI analysis is shown.
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In our assessment of task-related functional connectivity, con-
trol participants demonstrated greater connectivity of the subgen-
ual ACC with the right ventral caudate/nucleus accumbens during
rest when compared to task performance; that is, task engage-
ment was associated with a decreased in connectivity between
the regions. Depressed participants, on the other hand, showed
greater connectivity between the subgenual ACC and adjacent
ventromedial frontal cortex regions at rest compared to task per-
formance: task engagement was associated with a decrease in con-
nectivity. Between-group comparisons confirmed that these task-
related connectivity changes were significantly different between
the healthy and depressed participants (Table 2; Figure 2).

No significant linear associations were observed between the
aforementioned connectivity changes and participants’ behavioral
task performance (i.e., reaction-time and accuracy), nor with
depression severity in the depressed participants. However, cor-
relations were observed between the magnitude of task-induced
reduction in connectivity with the ventromedial frontal cortex in
MDD patients and task-related activation of the left superior pari-
etal cortex [cluster size, 694 voxels; peak coordinate (x y z), −28
−32 40; peak Z -score, 5.3; cluster-level PFDR = 0.002] and left dor-
solateral frontal cortex [cluster size, 287 voxels; peak coordinate
(x y z), −48 26 26; peak Z -score, 4.4; cluster-level PFDR = 0.11;
Figure 2]. That is, patients who demonstrated a more promi-
nent decrease in connectivity between the subgenual ACC and
ventromedial frontal cortex in the rest compared to task condi-
tions also demonstrated more prominent task-related activations
of left frontoparietal regions. No such significant associations were
observed in control participants.

DISCUSSION
The aim of the study was to examine how medial network regions
were affected by cognitive task performance in depression, both in
terms of task-induced deactivations and functional connectivity
changes. The results demonstrate that despite being similarly deac-
tivated during the performance of the MSIT task, the subgenual
ACC was distinctly modulated in its functional connectivity with
other brain regions in depressed participants. Whereas a reduction
in connectivity between this region and the ventral striatum was
characteristic of the transition between rest and task performance

in the control group, a reduction in connectivity with the ventro-
medial frontal cortex was characteristic of depression. Moreover,
the magnitude of this latter connectivity change was found to
predict the corresponding activation of task-related frontoparietal
regions, suggesting a direct link between putative medial network
alterations and executive-control processes in depression.

Medial network areas project prominently to ventral striatum
(which is particularly a target of subgenual ACC) and to the medial
edge of the caudate nucleus (Ferry et al., 2000; Beckmann et al.,
2009). In healthy participants, cognitive task engagement was
found to significantly decrease functional connectivity between
the subgenual ACC and ventral striatum from its resting-baseline
level, which is an observation that has not previously been reported
(we are, in fact, not aware of any studies that have specifically
investigated the effects of cognitive engagement on the functional
connectivity of the subgenual ACC). Given that both regions are
major components of the medial frontal network, which underlies
mood and emotional states, it is possible that a decrease in their
functional connectivity during task performance corresponds with
reduced subjective awareness in these domains. This idea is con-
sistent with a growing body of evidence that has associated the
deactivation of default mode network regions during external task
performance with reduced self-focused spontaneous cognition
that is characteristic of wakeful resting conditions (Mason et al.,
2007; Christoff et al., 2009; Andrews-Hanna et al., 2010; see also
Harrison et al., 2011). Whether task-induced changes in subgenual
ACC connectivity represent a reduction in awareness or experience
of mood or emotional state requires further investigation.

Unlike healthy participants, depressed participants did not
show any modulation of connectivity between the subgenual
ACC and ventral striatum, suggesting that the functional coupling
of these regions persisted between the resting and task condi-
tions. The subgenual ACC and ventral striatum showed significant
resting-state connectivity in both groups (as incorporated in our
resting-state mask), and have not previously been reported to show
resting-state connectivity alterations in depression. The finding is
therefore most likely explained by connectivity differences during
task performance. The striatum has previously been reported to
show decreased activation to rewarding stimuli in both depressed
patients (Pizzagalli et al., 2009) and those at risk of depression

Table 2 | Functional connectivity changes with subgenual ACC from rest to cognitive control task, thresholded at P < 0.005.

Brain region Number of voxels in cluster Peak Z -score Peak voxel coordinates (x y z) Cluster-level probability*

CONTROLS

R. Ventral striatum 155 5.1 16 16 −6 <0.01

DEPRESSED

L. Medial frontal gyrus (BA 10) 57 3.6 −12 34 −10 0.01

CONTROLS > DEPRESSED

R. Ventral striatum 52 3.4 14 16 −6 0.01

DEPRESSED > CONTROL

L. Medial frontal gyrus (BA 10) 61 4.4 −16 34 −8 <0.01

R. Medial frontal gyrus (BA 10) 19 3.5 12 38 −10 (0.06)

*Cluster-level probabilities were calculated using Monte Carlo simulation (as implemented in AlphaSim) within a mask consisting of the resting-state connectivity

map for the subgenual ACC.
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FIGURE 2 | Psycho-physiological interactions analysis demonstrated

between-group differences in connectivity with the subgenual ACC

between rest and task blocks (A). Control participants showed significantly
greater changes in connectivity between rest and task conditions in ventral
striatum (orange), while depressed participants showed greater connectivity
changes in ventromedial frontal cortex (blue). The nature of the changes are
illustrated in the adjacent charts (B), with the parameter values extracted
from a 3.5 mm sphere around the peak voxel: note that a positive parameter

value indicates increased connectivity at rest compared to task (or reduced
connectivity during task performance). For the depressed participants, the
extent of the reduction in connectivity between the subgenual ACC and
ventromedial frontal cortex predicted task-induced activations in left superior
parietal cortex and left dorsolateral frontal cortex (C). The adjacent chart (D)

illustrates the correlation, with the parameter values extracted from 3.5 mm
spheres around the peak voxels from the ventromedial frontal cortex and
superior parietal cortex.

(Gotlib et al., 2010). The results of this study suggest that this
might in part be explained by depression-related impairment
of task-induced connectivity changes with the subgenual ACC,
whereby the altered connectivity influences the responsiveness of
the ventral striatum to certain types of external stimulation. An
examination of such interactions may usefully extend previous
studies on reward processing impairments in depression.

While depressed participants did not show connectivity
changes between subgenual ACC and striatum, they did show
connectivity changes with adjacent ventromedial frontal cortex.
Default mode network functional connectivity has been demon-
strated to be robust and relatively consistent across task condi-
tions in healthy participants (Hampson et al., 2006; Fransson and
Marrelec, 2008; Harrison et al., 2008; Bluhm et al., 2011), and
no differences in connectivity between the subgenual ACC and
default mode regions were observed in control participants in this
study. Not only did depressed participants show reduced con-
nectivity between the subgenual ACC and ventromedial frontal
cortex during task performance compared to rest, but the extent
of the reduction showed correlation with greater activation of

task-relevant executive-control regions. The fact that there were
no differences between the groups in either behavioral perfor-
mance or task-induced activations suggests that the connectivity
changes may be functionally adaptive: that is, the connectivity
changes allowed the depressed participants to perform the task in
a manner similar to the control participants.

The lack of task-induced deactivation changes is in contrast
to previous studies that have reported reduced deactivations in
depressed participants performing cognitive tasks (Harvey et al.,
2005; Wagner et al., 2005) – who, similarly to the findings of our
study, showed no differences in behavioral performances. It is not
clear why our study did not show the same deactivation differ-
ences, though one explanation is that our study included younger
patients in early phases of illness,when cognitive impairment is not
such a significant component (Grant et al., 2001; Kyte et al., 2005).
Despite not showing differences in task-induced deactivations, the
depressed participants did show different patterns of connectivity
changes, which may presage changes in medial network deactiva-
tion and cognitive task performances later in the course of their
illnesses.
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The study has its limitations. Our study sample included young
people ranging in age from late adolescence to early adulthood;
and while the age range is relatively narrow, it does encompass a
developmental period over which significant brain maturational
processes occur, including changes in brain connectivity These
changes from childhood to adulthood include decreases in short-
range connections and increases in longer-range connections (Fair
et al., 2007a; Supekar et al., 2009; Dosenbach et al., 2010) – includ-
ing with cingulate regions (Kelly et al., 2009) – with increasing
coherence in connectivity of the default mode network (Fair et al.,
2008). Age was included as a covariate in our analyses, how-
ever, and is therefore unlikely to have had significant influence
on the results. We included participants who were taking med-
ication, reflective of the nature of the clinical group recruited for
the study. Again, this was added as a covariate to the analyses
to mitigate its influence on the current results. A further lim-
itation of the study is inherent in the PPI methodology used.
While PPI provides a relatively simple and robust way of inves-
tigating functional connectivity changes during task performance,
it cannot provide information on the causal influence that one
brain region exerts on another (or “effective connectivity”). The
results of study could be usefully validated and extended with
the use of a technique such as dynamic causal modeling (DCM;

Friston et al., 2003), which would be able to provide more infor-
mation on what was driving the connectivity changes we have
shown.

The study reinforces the importance of the extended medial
prefrontal network for depression. It demonstrates how alterations
in connectivity in the network, which mainly supports visceromo-
tor function, might also influence cognitive–attentional processes.
The reported dysfunction in cognitive and attentional processes
that are often reported in depressed participants – and in the
underlying frontoparietal brain regions that support them – might
in fact be a secondary consequence of medial network dysfunction.
The subgenual cingulate cortex is an important region for depres-
sion, and the results of the study provide further evidence for how
dysfunction of subgenual ACC contributes to the illness.
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