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A B S T R A C T

Modern data and computational resources, coupled with algorithmic and theoretical advances to exploit these,
allow disease dynamic models to be parameterised with increasing detail and accuracy. While this enhances
models’ usefulness in prediction and policy, major challenges remain. In particular, lack of identifiability of a
model’s parameters may limit the usefulness of the model. While lack of parameter identifiability may be re-
solved through incorporation into an inference procedure of prior knowledge, formulating such knowledge is
often difficult. Furthermore, there are practical challenges associated with acquiring data of sufficient quantity
and quality. Here, we discuss recent progress on these issues.

1. Introduction

Despite progress on many fronts, infectious diseases remain a key
threat to human health worldwide (Heesterbeek et al., 2015). From 1-
12 July 2019, we participated in the workshop “Influencing public
health policy with data-informed mathematical models of infectious
diseases” at the MATRIX institute in Victoria, Australia (MATRIX
Institute, 2019). Much of the discussion and scientific work at this event
concerned the challenges identified five years ago following the In-
fectious Disease Dynamics 2013 programme at the Isaac Newton

Institute, particularly those related to the integration of multiple da-
tasets (De Angelis et al., 2015). In this paper, we return to several of the
challenges identified by De Angelis et al. (2015) and consider both
recent progress and perspectives for this rapidly developing field.

One key challenge relates to the structure of the underlying assumed
mechanistic model and the observed data; in particular, whether the
model parameters can be estimated given the model and the observa-
tions, and whether we can obtain analytical insights into “parameter
identifiability”, a property of a model that must be satisfied for precise
parameter inference to be possible. If parameter identifiability is an
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issue, then can/should the model be reparameterised, and how should
this be done? A natural question that arises here is whether we can
measure something else in the process (included in the model yet or
not) that can help resolve the issue, or build in existing (that is, prior)
knowledge in a structured manner. For identifiable models, particularly
if these are very complicated, there is a question of what we can rea-
sonably do with current inference methods, for example Markov chain
Monte Carlo (MCMC) or Maximum Likelihood estimation.

In this paper, we focus mainly on a Bayesian approach to parameter
inference, which has been commonly adopted in the infectious disease
modelling field since the work of O’Neill and Roberts (1999). This ap-
proach has proliferated for various reasons. One is the difficulty in in-
terpreting an epidemic in terms of frequentist statistical theory, as a
small sample from a larger population, making the Bayesian approach
to parameter estimation more philosophically natural (MacKay, 2003).
Another advantage of Bayesian methods is their ability to accommodate
incomplete observations of the epidemic (O’Neill and Roberts, 1999),
by treating missing data as latent variables. Bayesian methods facilitate
data assimilation and uncertainty quantification in a natural and uni-
fied framework (De Angelis et al., 2015). Finally, computational
methods are rapidly advancing in this space (see Section 5) making
application of those methods to real-world data sets increasingly fea-
sible.

In Bayesian inference, parameters are considered as random
variables and the aim of the inference is to estimate their distribution.
The posterior distribution, p y( | ), is derived from the likelihood, p y( | ),
which comes from a probability model for the observed data y, and the
prior, p ( ), which encodes knowledge available before the current data
was observed:

p y p y p( | ) ( | ) ( )

The essence of Bayesian inference is to update what you believe
about the parameters through the observation of data. This then poses
another major challenge: how do we use prior knowledge in a con-
sistent and convenient way within models of infectious disease? Within
a Bayesian setting, it is natural to specify priors on the model para-
meters themselves. However, experts typically cannot easily quantify
their beliefs about the parameters directly; rather they will have
knowledge of (and so be able to construct a prior on) observables as-
sociated with the underlying process, such as the expected peak pre-
valence or the duration of the outbreak.

Statistical inference based on data generated by a single type of
observation process is routine, but challenges remain when performing
inference based on multiple observation processes, and/or different
types of data from a variety of sources. Another challenge relates to
issues around data and specifically how multiple types of data, drawn
from alternative sources, can be included in the modelling framework.
For example, when modelling a nascent epidemic, we might have access
to case notification data, special studies (such as First Few Hundred
studies), and phylogenetic data. Statistical models that integrate mul-
tiple data sources are beginning to gain traction in infectious disease
modelling (De Maio et al., 2018; Campbell et al., 2019).

There is a need across all of the above issues to develop computa-
tional algorithms that can help end users to automate some of these
processes. With increased volumes of and access to data (from multiple
sources), algorithms need to be efficient and make use of recent ad-
vancements in computational hardware. However, there is still an im-
portant place for expert human input to gain mechanistic model insight
(rather than relying, say, on machine learning techniques only, which
also have their place, but are not a focus of this paper). This insight will
be enhanced by addressing each of the challenges we have focused on,
including considerations of parameter identifiability, the construction
of priors around process observables, and the integration of data from
multiple sources.

Finally, the field of mathematical epidemiology is intimately tied to
the life sciences, epidemiology, and the practice of public health itself.

To make an impact, that is, to contribute to policy with the purpose of
reducing the burden of disease and saving lives, mathematical epide-
miologists need to consider the context in which their work exists.
Towards the end of the article, we provide some commentary on this
broader context, and how it may influence our practice.

2. Identifiability

The mere ability to fit a model to data does not guarantee that the
model’s parameters can be uniquely determined; parameters may not
be identifiable. As an example, consider the well-known deterministic
SIR model:

= = =dS
dt

SI
N

dI
dt

SI
N

I dR
dt

I, , (1)

At the start of the epidemic, we can make the approximation that
susceptibles are not depleted (S N(0) ), which results in an approx-
imation described by:

I t t( ) exp(( ) ) (2)

By inspection we see that the function I t( ) does not change if and
are changed, provided the difference =r remains the same.

Consequently, even if I t( ) is perfectly observed, only the value of r can
be inferred, not the values of and themselves. Given observation of
prevalence then, and are considered unidentifiable, while r is
considered to be identifiable. For non-trivial models, identifiability
analysis – using analytic and/or simulation-based techniques – is re-
quired to determine which model parameters are identifiable.

There are two main aspects to identifiability. “Structural identifia-
bility” (Bellman and Åström, 1970; Whyte, 2013) concerns whether
different parameter vectors produce different probability distributions
of observed data. Structural identifiability ensures true parameter va-
lues can be inferred under idealised conditions: that the model is an
exact representation of the system under study, and that the observa-
tions uniquely determine the probability distribution of the data. (This
latter condition is only possible given an infinite number of observa-
tions.) Structural identifiability is thus a property of the model, not the
specific data observed. For example, a continuous-time deterministic
compartmental model can only be structurally identifiable if different
parameter vectors generate distinct output trajectories, regardless of
how precisely those trajectories are determined by a specific data set. A
continuous-time stochastic compartmental model is structurally identi-
fiable if different parameter vectors result in different probability dis-
tributions for the observables.

On the other hand, “practical identifiability” (Godfrey, 1983) con-
cerns whether or not parameter values can be uniquely, precisely and
accurately determined for realistic measurement frequencies, quantity
and quality, and in light of discrepancies between the model and the
real-world process under study. Practical identifiability is thus less
rigorously defined, and dependent on the specific data observed. For
example, when applying likelihood-based inference methods to a con-
tinuous-time deterministic compartmental model with stochasticity in
the observation process only, the model is practically identifiable if one
set of parameter values maximises the likelihood, given measurements
for a realistic number of measurement time points (and replicates
where relevant).

Structural identifiability is typically assessed using analytic or nu-
merical methods, whereas practical identifiability analysis is often as-
sessed by undertaking a simulation/re-estimation study. In such a
study, one selects a particular parameter vector, uses it to simulate data
from the model subject to noise, conducts parameter inference, and
then investigates the features of parameter estimates to determine if
estimates adequately approximate assumed values.

Within structural identifiability, a distinction is made between
global identifiability, whereby a unique parameter vector in the whole
parameter space can be determined, versus local identifiability, where a
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unique parameter set can be determined in the neighbourhood of the
true parameter set. Within practical identifiability, there is the dis-
tinction between a priori identifiability – where the results of iden-
tifiability analysis apply to all realistic data sets – and identifiability
given a particular data set.

It may be taken as given that unidentifiability of some number of
model parameters will greatly reduce the insight that can be drawn
from fitting a model to data, and this is indeed often the case. However,
the situation is more nuanced. One must consider whether the desired
scientific insight rests upon the values of parameters themselves (“are
the parameter values of intrinsic interest?”); or lies in use of the model
to make predictions; or in testing competing mechanistic hypotheses.
For these latter situations, non-identifiability is not necessarily as sig-
nificant an issue. We now discuss two types of challenges associated
with identifiability. First, what challenges lie in determining a priori
which parameters may be identifiable given a data collection process?
And second, what challenges are faced when interpreting the results of
fitting an unidentifiable model to data?

2.1. Challenges in determining identifiability

Identifiability analysis has not yet seen widespread uptake in bio-
logical system modelling, as described by Nguyen et al. (2016). The
authors noted that (Page 2): “… the booming works on mathematical
models in biological and medical research over the last years have been
accompanied with a disproportionately low amount of assessments on
parameter validity …”. They drew this conclusion by interrogating
publication records in PubMed Central from 1990 to 2015. The authors
noted that publications featuring models composed of ordinary differ-
ential equations were much more common than those which also listed
keywords relating to some form of identifiability. See Nguyen et al.,
2016, Fig. 1 and its associated supplementary text for details.

Part of the challenge in increasing the uptake of identifiability
analysis is raising awareness of the many pitfalls that can occur in the
absence of such analysis, and thus the necessity of performing such an
analysis. We note that some authors in the field have recognised the
value of analytical or numerical methods of scrutinising models, and
have advocated for their inclusion in modelling practice (see Boianelli
et al., 2015 for a relatively recent example). Many studies use simula-
tion/re-estimation methods as described above to determine whether
model parameters can be estimated, but do not explicitly describe this
as identifiability analysis. The clear labelling of identifiability analyses
as such, and references to established methods, would raise awareness
of the benefits of identifiability analysis and change community per-
ceptions both regarding the need to conduct such analyses, and the ease

of doing so.
However, even where researchers are aware of the importance of

identifiability analysis, several practical problems can arise. First, ide-
ally, a model should be practically identifiable a priori, but this is dif-
ficult to establish. Instead, most methods assess practical identifiability
for a given (simulated or actual) data set or a given set of ‘true’ para-
meter values (Raue et al., 2009; Yan et al., 2019). On the other hand,
there is a proliferation of methods to assess structural identifiability (as
reviewed by Chis et al., 2011), but structural identifiability is necessary
but not sufficient for practical identifiability. A challenge arises then in
either improving methods for a priori practical identifiability analysis
and/or making them more accessible, or developing methods to com-
bine the results of structural and practical identifiability analyses for
selected data sets.

Identifiability analysis presents a major technical barrier, especially
to the non-specialist. The barrier is perceived to be particularly high for
structural identifiability analysis, as it involves manipulation of model
equations rather than simulation and parameter estimation, the latter of
which are more readily accessible skills, already used in fitting models
to data. A challenge for the field is to promote the use of automated
tools for structural identifiability analysis. Many tools have already
been developed in the context of systems biology (Bellu et al., 2007;
Chis et al., 2011; Meshkat et al., 2014; Karlsson et al., 2012), but
awareness of their utility in the epidemiological community remains
low, and these are often implemented in proprietary software, limiting
their accessibility.

Difficulties of structural identifiability analysis have encouraged the
alternative of practical identifiability analysis using numerical methods,
although as discussed above, structural and practical identifiability
analyses serve slightly different purposes and are not strictly inter-
changeable. The simulation and estimation processes for practical
identifiability analysis are relatively straightforward (although may be
time-consuming), but automated tools would still lower the barrier for
their application. More importantly, decisions on how to conduct such a
study and interpret results are not straightforward, and there may re-
main issues with convincing journals, editors and reviewers that si-
mulation/re-estimation studies are worthy of publication in and of
themselves and indeed required before data analyses are undertaken
and reported.

Returning to the actual conduct of practical identifiability, a
number of questions arise. For example, what parameter values should
be used to simulate data? How many parameter vectors should be used
to provide confidence that results can be considered general? When
interpreting parameter confidence intervals or posterior distributions,
how narrow do they have to be for us to claim that a parameter is

Fig. 1. Solutions of Equation (1) giving the number of infectious people, with an intervention at Time = 1 that halves the pre-intervention for the post-intervention
period. Multiple parameter pairs reproduce the pre-intervention data (black line), yet distinct parameter pairs ( , ) produce differing post-intervention predictions.
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identifiable? Proposing robust numerical methods to provide insight
into undesirable model features, and guide their remediation, remains a
challenge for the community.

A review of structural identifiability analysis methods and their
suitability for different model structures in infectious disease modelling
would help guide practitioners in their choice of methods, as has been
conducted for systems biology models (Chis et al., 2011). Although the
suitability of analysis methods is obviously independent of the physical
interpretation of model equations, a similar review for common model
structures in infectious disease modelling would enable easier com-
parison between reviewed models and a particular model of interest.

2.2. Challenges in interpreting the results of fitting an unidentifiable model
to data

If a model is unidentifiable, obtaining meaningful results from fit-
ting to data and interpreting these results can be extremely challenging.
Appropriate interpretation begins with an acknowledgment that the
adequacy of the inference depends on how the model is to be used.

If the aim of fitting the model to data is to determine values of
parameters that are of intrinsic interest, then one can examine whether
it is possible (or likely) that changes to the model or to planned data
collection will remedy any lack of identifiability. For example, does
holding some parameters constant (or imposing strong priors on some
parameters in the Bayesian context) or acquiring additional data result
in an identifiable model? Reparameterisation is unlikely to help in this
situation, as the reparameterised model may be identifiable, but the
original unidentifiable parameters of interest will no longer appear in
the model. However, information on identifiable parameters can guide
reparameterization, enabling one to make stronger claims about the
values of the new parameters, the biological interpretation of which can
then be investigated. One advantage of testing a model for global
structural identifiability is that it can reveal the parameter combina-
tions (“observational parameters” (Jacquez and Greif, 1985)) which can
be determined uniquely under the idealised conditions of the test. Used
with a method appropriate for the model class (e.g. one employing the
notion of “structural equivalence” for linear state-space models (Vajda,
1984), knowledge of these combinations can guide the reparameter-
ization of the model into one that is globally identifiable.

On the other hand, if the aim of parameter inference is to make
model predictions – either for the unperturbed system or in the context
of an intervention – we may seek to propagate parameter uncertainty
through our model so as to produce a range of predictions, allowing us
to quantify prediction uncertainty. It is possible that although para-
meters are not individually identifiable, parameter sets consistent with
observations make similar (or identical) predictions, or that the quan-
titative behaviour of certain subsets or functions of parameters are well
determined despite lack of parameter-level identifiability (e.g. Yan
et al., 2019). However, if interventions act by changing the values of
unidentifiable parameters or unidentifiable combinations thereof, pre-
dictions are unlikely to be consistent. For example, consider the SIR
model and suppose that there exists an intervention which halves for
all time after the intervention is applied to System (2). Fig. 1 shows that
alternative values of ( /2, ) lead to a wide range of predictions for I
over this post-intervention time period. As such, uncertainty over the
true values of and creates doubt over the benefit of the proposed
intervention. Additional data collection and/or fixing model para-
meters may be required, as discussed above. Reparameterisation is
unlikely to be helpful in this context, as the new parameters will be
identifiable but not linked directly to the intervention (for example,
reparameterising system (2) as =I t I rt( ) (0)exp( ), removing β). An ex-
ception is if new parameters are subject to stronger priors than the
original parameters, enabling more precise inference of the values of
the original parameters.

In summary, addressing the challenges associated with identifia-
bility will provide the disease modelling community with a systematic

means of comparing models and evaluating their usefulness. In turn, we
expect this to enable progress on the discipline’s fundamental chal-
lenges in using models to direct resources towards ensuring better
health outcomes.

3. Incorporating prior knowledge

The ability to identify parameters, or at least to have distributions
on parameters which capture our full knowledge of the disease process,
is dependent upon use of prior knowledge. When analysing a (new)
data set within the Bayesian framework, we must specify a prior dis-
tribution on the parameters of the model. This provides a natural way
to incorporate existing information (obtained from the literature, past
experience etc.) about plausible values for the parameters. The prior
distribution also offers a way to incorporate information about ob-
servable quantities (i.e., properties of the system that can be measured
and expressed as a function of model parameters). This requires a clear
distinction between knowledge of the real-world system (and our un-
derstanding of it) and knowledge of the model we are using to represent
it (Gelman et al., 2017; Craig et al., 1997).

The Bernstein-Von Mises theorem tells us the likelihood will
(asymptotically) come to dominate over the prior as the amount of data
increases provided relatively mild technical conditions are met (Kleijn
and van der Vaart, 2012). However, one should not use this as an ex-
cuse to neglect the choice of prior distribution. In cases where data is
limited, there is a risk of a (potentially incorrect) prior dominating the
analysis; the result of the analysis will not reflect the data (and desired
distribution over parameters of interest) but rather the (potentially
incorrect) prior information.

Furthermore, when analysing infectious disease data, it is unusual to
have large amounts of high-quality data, and hence it is very attractive
to supplement our data with prior knowledge. A weakly informative
prior can assist with some of the statistical identifiability issues dis-
cussed in the section above on Identifiability, but if the prior distribu-
tion is poorly specified (even if a non-informative prior is used) it can
lead to misleading results (Gelman et al., 2017). A desirable solution is
to select a prior distribution that concentrates prior probability on
plausible parameter values but does not dominate the posterior dis-
tribution, i.e. it allows the information in the data to determine the
outcome of the inference. But doing so may be difficult.

Mechanistic models of infectious disease dynamics are often ex-
pressed in terms of parameters far removed from the aspects of the
process that are observed. It is arguably rare for scientists to have good
knowledge of model parameters; rather, they have, or could construct,
an informed view of various system observables. To make explicit the
difference between model parameters and observables, consider a
mathematical model of influenza infection within a host. A priori, one
may not know plausible orders of magnitude for the rate parameters (of
the mathematical model), but likely they will know that an influenza
infection resolves in days, rather than hours or months.

Given that scientists often have a better grasp on the value of ob-
servable quantities rather than the model parameters themselves, it
makes more sense to articulate our prior belief in terms of these ob-
servable quantities. But of course, we then have a task to translate
between the two. This challenge is not universal across models.
Consider logistic growth describing the size of a population through
time, N(t), with the following differential equation:

=dN
dt

rN N
K

1

It is simple to parameterise this model in terms of the growth rate, r,
and the carrying capacity, K, both of which are natural quantities to
observe. Consequently, if one were interested in developing a prior
distribution for this model, one would only need to specify the dis-
tribution of plausible values to observe for these quantities. Considering
the alternative equation
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=dN
dt

rN cN 2

the observable consequences of different values of the parameter c are
less obvious, and hence it is unclear what plausible values may be. This
situation is common in mathematical epidemiology: the observable
quantities are themselves a function of the solution to the model, and
most disease dynamic models do not have any closed analytic form for
these quantities. Consequently, it is infeasible to develop a clearly in-
terpretable parameterisation – in terms of writing down a prior based
on past observations – of these models.

The problem extends beyond just the parameterisation used. It is
tempting to think that it is sufficient to use published estimates of in-
dividual, model-inferred parameters to construct a prior distribution.
However, even when this is possible, issues will still arise. Reported
parameter estimates are model dependent. The quintessential example
being use of an SIR or an SEIR model, whereby inference may lead to
the same estimates of the basic reproduction number but different es-
timates of the rates of infection and recovery. Understanding the mar-
ginal distributions of parameters is insufficient to construct a plausible
prior distribution when correlations determine model behaviour.

If we are serious about incorporating prior knowledge into future
analyses, then it seems sensible that we should turn to fields where this
has already successfully been implemented. Priors informed by expert
opinion (obtained via expert elicitation) or the results of previous stu-
dies have proved popular in the field of ecological where they have
found diverse applications (Hemming et al., 2017; Low Choy et al.,
2009). However, the use of expert elicitation to inform priors has be-
come much more popular among ecologists over the past decade
(Drescher et al., 2013). Using expert opinion in conjunction with
Bayesian inference is an attractive option for researchers in ecology,
where the types of data collected are likely to involve a high degree of
uncertainty (Kuhnert et al., 2010; Martin et al., 2005), or are difficult or
expensive to collect (O’Hagan, 1998; Martin et al., 2012).

Martin et al. (2005) solicited expert opinion for a study regarding
the effect of livestock grazing on various Australian birds. In cases
where experts agreed with each other, the resulting credible sets for
parameters are typically tightened, this can be an effective and cost-
effective way to improve estimates. This improvement was particularly
noticeable in situations where existing data was weak but the precision,
or agreement, between expert information was high. Just as important
is the case of incorporating expert knowledge where there was notice-
able disagreement between experts; in this situation, results did not
differ significantly from analysis where expert opinion was not used.

Expert opinion can also improve confidence in parameter estimates
obtained from analysing these data, although care should be taken to
ensure the elicitation of this information is carried out correctly (Martin
et al., 2005; Morgan, 2014). There is a need to be rigorous in the se-
lection of experts and the execution of the elicitation (Drescher et al.,
2013). Kadane and Wolfson (1998) and Chaloner and Duncan (1983)
have developed methodology which abstracts much of the mathema-
tical detail, simplifying the elicitation process. However, these meth-
odologies only cover certain types of models, and are limited in scope
and the degree to which they scale with the complexity of the model
being considered. We believe it would be beneficial for the modelling
community to extend this work, and develop statistical methodology
that enables “automatic elicitation” for a wider range of models.

While peer-reviewed literature provides a rich source of 'prior
knowledge' and would typically form the basis for determination of the
prior, caution should be exercised due to potential systematic effects in
publication practice that can make it difficult to reliably source and
account for all (published) primary sources (Reich et al., 2011). In that
paper, Reich et al. demonstrated that, due to publication and referen-
cing practices, so called 'medical facts' can become enshrined as truth in
the absence of strong and sufficient empirical evidence. This strongly
suggests that when using the peer-reviewed literature to establish a

prior, one must proceed carefully, being sure to establish a process to
identify relevant primary source literature and avoid the pitfalls iden-
tified by Reich et al.

Given the importance of the prior distribution and that there may be
substantial amounts of knowledge about observable quantities of the
process being modelled, how might one go about using this knowledge
to specify a prior distribution? An idealised work-flow to utilise prior
knowledge may consist of the following steps: (1) determine a set of
relevant observable quantities which characterise the system and for
which there is some quantitative understanding; (2) construct a prior
distribution on the parameters of the model which reflects this under-
standing; and (3) carry out the remainder of the inference process as
normal. There are three aspects to this work-flow which are challen-
ging: (1) determining appropriate observable quantities; (2) re-
presenting this information in the prior distribution of parameters for
an arbitrary model; and (3) devising a way to do this which is not
prohibitively computationally expensive. We now expand on these
three challenges.

3.1. Which observable quantities?

The first aspect is the most specific to the particular application, in
that it requires some knowledge of the system being modelled to know
what observable quantities of the process characterise it. When multiple
observable quantities are being used, strong correlations between the
quantities leads to redundancy; ideally independent observable quan-
tities would be used. Above, the time required to resolve an influenza
infection was given as an example of an observed quantity. This
quantity may be expressed in terms of the solution to a particular
model, even if it is not one of the parameters of the model. For example,
if one were modelling the number of people hospitalised with influenza
during an epidemic, one might use the total number of patients hos-
pitalised as an observable quantity. Historical records of hospitalisation
could be used to estimate, a distribution for this for previous epidemics.
In the SIR model, the final size is determined by the initial condition
and basic reproduction number, hence information about the final size
can constrain the prior distribution for these parameters (Miller and
Joel, 2012).

3.2. How to represent prior knowledge?

The second aspect involves the process of taking a representation of
the uncertainty in, potentially several, observable quantities, and
translating this into a prior distribution over the parameters of a model.
This is a non-trivial task, even when the distributions on the observable
quantities are self-consistent (and it is easy to construct examples where
this is not the case). Moreover, when there are correlations between
observable quantities this can further complicate matters if one is not
content to assume a joint distribution with independent components.

3.3. Can choosing a prior distribution be made easier?

Finally, the third aspect involves finding a way to efficiently choose
a prior distribution. As discussed above, extensive research from the
field of psychology suggests that eliciting information from experts in a
defensible way is labour-intensive. However, there are alternatives to
obtaining information from domain experts. With the rise of “big data”
there will be an increasing amount of data to be mined to inform prior
distributions. The use of additional data sources brings its own chal-
lenges, e.g., accounting for correlations between the data sets as dis-
cussed further in the subsequent section on Data Challenges.

While solutions to these problems would improve our ability to
carry out inference, there is another equally important conceptual
contribution from this work-flow. Decoupling prior knowledge of ob-
servable quantities and prior distributions from specific mathematical
models allows us to create prior distributions which can be shared
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between models and capture the same information, independent of how
that information translates into a distribution on the parameters of that
particular model. This itself is a powerful idea, as it increases the
portability of parameter estimates as they are no longer attached to the
particular model with which they were obtained. For example, suppose
models X and Y share observable quantities but do not have the same
set of parameters; it is possible to use parameter estimates obtained
with X to construct an equivalent prior for Y, where "equivalent" refers
to having the same distribution on observable quantities. Moreover,
since such observable quantities will often involve a combination of the
model parameters, even if the prior distributions of the observable
quantities are independent, the prior distribution they enforce on the
parameters may have a rich correlation structure.

Spending considerable effort on choosing a prior distribution can
seem indulgent and, provided there is sufficient data, it will often have
only a small effect on the results. Debate over the choice of prior has
inspired many developments in Bayesian statistics, and there are cases
where it has a strong effect on the inferences drawn (Moss et al.,
2019a). In this section we have described some open problems re-
garding the practical application of informative prior distributions
while attempting to motivate why, despite these difficulties, they can
still be very beneficial. In the words of Judea Pearl, "It is plain silly to
ignore what we know" (Pearl, 2001), however this comes with the ca-
veat that it relies on this knowledge being appropriate and accurate.

4. Challenges posed by data

As discussed by De Angelis et al. (2015), precise and accurate model
inference relies on the volume and quality of data, with quality en-
compassing both variability and bias. If the observation process is well-
characterised, parameter estimation can still be performed, although
the precision of these estimates will be limited by the quality of the
data. Combining data from multiple sources can increase the precision
and accuracy of estimates but presents its own challenges. In this sec-
tion we will first discuss challenges in characterising the observation
process for a single epidemiological data set, before moving on to those
for combining multiple data sets.

4.1. Challenges within a single epidemiological data set

When data measuring one quantity is used as a proxy for another
quantity, the relationships involved should be well-characterised to
reduce bias in inferred quantities. For example, the proportion of in-
dividuals reporting influenza-like illness (ILI) in a weekly community
survey can be used as a proxy for influenza prevalence in the general
population (Adler et al., 2014; Carlson et al., 2010). Here, ILI is used as
a proxy for influenza virus infection; however, influenza infection
prevalence may be overestimated due to ILI caused by non-influenza
pathogens, or underestimated due to asymptomatic infections. More-
over, prevalence in the survey population is used as a proxy for pre-
valence in the general population, but demographics of the survey
population may not reflect that of the general population. To reduce
bias during inference, the relationship between reported ILI and influ-
enza virus infection, and between the survey and general population,
should be explicit in the observation process. For example, the former
can be achieved by specifying a reporting probability conditional on
influenza infection, and a background observation probability due to
illnesses other than influenza that may vary over time.

The biases which are likely to affect inference, and are thus im-
portant to model, are likely to differ by both situation and data type.
For example, when performing inference during outbreak scenarios, if
lags in data collection are either ignored or mis-specified, inference may
be poorly affected (Azmon et al., 2014; Moss et al., 2019a). However,
even for the same data type (such as incidence data), such lags may not
drastically affect inference in endemic scenarios. Reporting rates are
also more likely to vary during the course of an outbreak, as indicated

by Flutracking data (Carlson et al., 2010). Many studies calculating
time-varying effective reproduction numbers (e.g. Rosello et al., 2015)
are not robust to time-dependent reporting rates, so if these methods
are used, time-dependent reporting rates should be included in the
observation process.

Where available, data sources covering the same timeframe as the
primary data should be used to inform biases. For example, community
survey data can be used to infer changes in healthcare seeking beha-
viours and testing practices over the course of an epidemic, which can
then be used to improve epidemic forecasts using a different data source
(Peppa et al., 2017; Moss et al., 2019b). In other situations, sensible
observation models and/or parameter values can be obtained using
historical data. For example, observation noise can be estimated for
previous epidemics, and resampled from when proposing parameters to
fit to data from a new epidemic (Ertem et al., 2018). Where the re-
lationship between historical and current observation processes is un-
clear, rather than assuming that the historical and current observation
processes are the same, a better approach may be to use historical
parameter values to inform values of the current observation process.
For example, different outbreaks of the same pathogen may occur in
different locations and in different populations, and it is unclear how
observation biases translate across outbreaks. When we know the di-
rection in which a parameter will change but not by how much – for
example, assuming that testing rates will increase in a pandemic – a
historical parameter value could be used as the lower bound for a prior
distribution on the testing rate or, more conservatively, to construct a
prior distribution where only a small proportion of probability mass is
below this value. Another example is when an intervention increases
the testing probability. This scenario requires particular care, as in-
creased testing may increase observed prevalence even when an in-
tervention is effective, and inference ignoring increased testing may
incorrectly conclude that the intervention increases prevalence (Ali
et al., 2015). Conversely, increased testing (motivated, say, with the
aim of ascertaining every case possible) could decrease test-positivity, if
specimens are collected indiscriminately and testing denominators are
unavailable, and this could lead to under-estimates of prevalence.

When inference is conducted on “incidentally available” data rather
than data collected for the particular inference study, extra attention
has to be paid to modelling of the observation process. This is especially
an issue in outbreaks, as surveillance protocols are developed alongside
the unfolding of the outbreak. Hay et al. (2018) documented that case
definitions for microcephaly became more stringent as the Zika out-
break in 2015-2016 developed, and that many cases were reclassified.
Either a combination of behavioural change and overreporting of cases
under early definitions, or increased Zika surveillance between the two
epidemic waves, were required to explain changes in reported micro-
cephaly incidence. Communication between field workers, policy-
makers and modellers becomes especially important in this context, and
local modellers have the opportunity to inform the data collection
process (see Policy and Communication section).

On the other hand, closer ties between designers of data collection
protocols and developers of inference methods have enabled the col-
lection of data sets designed to infer particular model parameters, as
identifiability of model parameters may depend on the study design
(see Identifiability section). For example, in the 2009 influenza pan-
demic, first few hundred (FF100) studies were conducted specifically to
understand the transmissibility and severity of the disease during the
early stages of the epidemic (McLean et al., 2010). Since the collection
of this dataset, model-based inference methods have been developed to
infer hospitalisation rates and within-household transmission in real
time (Black et al., 2017).

4.2. Challenges when using multiple epidemiological datasets

When modelling transmission of an infectious disease there are
often multiple different epidemiological data types available with
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which to infer model parameters. For example, when inferring key
characteristics of a nascent epidemic, we might have access to con-
firmed case counts, syndromic surveillance data and special studies
(such as FF100), but each carries its own underlying biases and there is
no guarantee that they provide a self-consistent view of disease activity
(e.g. Thomas et al., 2015). While there are established approaches to
performing inference with each of these types of data, we rarely use
methods that can simultaneously consider all available data although
there are notable exceptions (Corbella, 2019). Consequently, typically
the result is either multiple competing parameter estimates – which
leads to obvious challenges for decision-makers – or a single estimate
that ignores some of the available information. The alternative is to
analyse all available, relevant data using a single joint model. Ideally,
the joint model is able to integrate the different data sources in a way
that retains the strengths of each, without losing information. De
Angelis et al. (2015) note that the motivation to combine information
from multiple data sources arises from both a perception that this will
produce more `defendable’, robust outputs and a recognition that
comprehensive outbreak analysis requires multiple data types. Here we
will focus on data-integrating models for multiple epidemiological time
series data but note that models for integrating these and other epide-
miological data types and/or phylogenetic datasets have recently
gained traction in outbreak analysis (De Maio et al., 2018; Campbell
et al., 2019).

Integrating multiple different datasets can increase the precision
and accuracy of parameter estimates and enable a greater range of re-
levant (unobservable) quantities to be estimated (Birrell et al., 2018).
For example, sharing information across abundant, low-quality sur-
veillance data (i.e., high volume, but unknown or poorly characterised
observation processes) and a subset of high-quality surveillance data
(i.e., well-characterised observation processes, but low volume) can
enable the estimation of nuisance parameters, like reporting biases.
This approach has previously been demonstrated in ecology (Fithian
et al., 2015), where data structures are not dissimilar to disease data.
Another advantage of joint inference is the automatic weighting of in-
formation from different data sources. When writing out a joint model,
explicitly describing the observation models for each data type (in-
cluding parameters for reporting biases) provides an objective way to
weight their respective utility.

An important challenge when constructing a joint model is the
handling of dependencies between data sources. Here we separate these
dependencies into two types: 1) data sources observe the same under-
lying epidemiological process, and 2) observation processes themselves
are dependent (for example, individuals may be captured by two or
more surveillance systems).

Understanding dependencies in the observation process will require
close collaboration with data collectors and public health policy-makers
(Muscatello et al., 2017; Doms et al., 2018). In order to understand the
magnitude of dependencies in the observation processes between out-
break surveillance datasets, it is important to know precisely how each
dataset is assembled and to map out all possible research and health
system pathways that could lead to an individual being counted in one
or more dataset(s). For example, during an influenza pandemic,
households participating in FF100 studies are likely to be recruited
from routine case notification systems and would therefore be counted
in both FF100 data and case notifications. Further, if we wanted to add
information from community survey data such as from Flutracking
(Carlson et al., 2010; Moss et al., 2019b), we must consider how du-
plications of these data may arise in FF100 studies and/or case notifi-
cation datasets.

While it may be possible to write out a single model that links all
available datasets, there could be practical hurdles to performing in-
ference for such models. It is important to consider whether inferring
parameters from multiple datasets simultaneously, and thus adding
substantial model complexity, is worthwhile from both a computational
and a decision-making perspective, particularly if supporting decision-

making in real-time is a goal. For example, Shubin and colleagues
(Shubin et al., 2016) made simultaneous use of data from community
and hospital surveillance systems in their transmission model of pan-
demic A(H1N1)pdm09 influenza, but the computation time for in-
ference is reported in months, which is not practical for real-time use
(note that this was not the goal of their analysis). Moreover, if the goal
of such modelling studies is to inform public policy (in real-time or
otherwise), the model structure and appropriate interpretation of its
outputs will need to be clearly communicated to decision-makers, and
more complicated models may be more difficult to translate (see Sec-
tion 6).

It should also be noted that integrating multiple, low-quality data
sources with a single high-quality dataset, will not necessarily provide
benefit over analysing the high-quality dataset alone. For example,
Moss et al. (2017) found that simultaneously using data from three
different surveillance systems only improved retrospective seasonal
influenza forecasts under certain circumstances, and could even reduce
forecasting performance, when compared to forecasts generated using a
single data source. They hypothesised that the synthesis of data from
multiple surveillance systems may only provide benefit if each data
source captures distinct, but complementary, aspects of the epidemio-
logical or observation process.

5. Computational methodology

In common with other areas of mathematical biology, methods for
fitting complex epidemic models have progressed a lot recently, driven
by advances in Bayesian computational statistics (Green et al., 2015).
These methods can be classified in a number of ways and our taxonomy
reflects our personal biases and preference for mechanistic, stochastic,
models. While non-mechanistic models are useful for some forecasting
problems where relatively large amount of historical data are available
(Brooks et al., 2018), small data sets, as would be available in the event
of an outbreak, can only be interpreted in a mechanistic setting, and
likewise the testing and forecasting of various intervention strategies. A
fundamental difficulty with inference from outbreak data is that most of
the underlying process is unobservable, hence the need to infer or in-
tegrate over a large amount of missing data to sample from the para-
meter posterior. One way of classifying existing algorithms is according
to which part of the calculation handles the missing data. This impacts
how suitable they are to be parallelised and hence handle larger pro-
blems as well as incorporate other evidence, including multiple datasets
(Brooks et al., 2011; Birrell et al., 2018).

For models of small, closed populations such as households, con-
tinuous-time Markov chain (CTMC) models have found success, due to
the size of the state-space being small enough to leverage numerical
solutions for calculating the likelihood (Black et al., 2017). For most
models, in larger populations, these methods break down due to the
increased size of the state space. The oldest methods for exact inference
are so called data-augmented (or auxiliary variable) MCMC (DA-
MCMC) (O’Neill and Roberts, 1999). These typically infer the missing
data as well as the parameters as a single Markov chain from which an
expression for the likelihood is trivial to evaluate. Samplers are also
easy to construct using a combination of Gibbs and Metropolis-Hastings
steps. Data-augmented methods are highly flexible, allowing the use of
non-Markovian models, non-homogeneous mixing and detailed spatial
information (Touloupou et al., 2018; Stockdale et al., 2017). The
downsides are common difficulties with convergence and mixing that
get worse as the amount of missing data to be inferred grows (McKinley
et al., 2014). Efficient use is reliant upon conjugate priors (allowing the
posterior to be specified explicitly), so incorporating more general,
informative priors (as discussed earlier) can be challenging. Finally,
DA-MCMC is fundamentally a serial algorithm, so its use on large da-
tasets becomes slow and parallelism is not easily exploited, beyond
running multiple chains.

Although almost all useful epidemic models are analytically
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intractable, they are typically very simple to simulate. Approximate
Bayesian computation (ABC) uses simulations for fitting models where
the likelihood is intractable (Kypraios et al., 2020), but where the si-
mulated data can be compared with summary statistics. This is prob-
ably the most simply implemented method in this class but comes at the
cost of introducing some approximation into the posterior. Other
methods are exact in that they use an estimate of the likelihood, but still
target the correct posterior. The use of sequential Monte Carlo (SMC)
methods (which perform estimation sequentially through data) in epi-
demic modelling is very natural due to the prevalence of time series
data and the need to fit dynamical models (Doucet et al., 2001).
Pseudo-Marginal methods such as particle marginal Metropolis-Hast-
ings exploit the unbiased likelihood estimate obtained from a particle
filter to also perform inference for the underlying parameters (Andrieu
et al., 2010; Brooks et al., 2015). In comparison with data-augmented
methods, these methods can be seen as integrating over the missing
data in the estimation of the likelihood, so the Markov chain targeting
the parameter posterior is greatly simplified.

The key to the efficient operation of these pseudo-marginal algo-
rithms is keeping the variance of the likelihood estimate within tight
bounds (Doucet et al., 2015; Sherlock et al., 2015), otherwise the
mixing of the Markov chain targeting the posterior can become very
poor. An advantage of pseudo-marginal methods is that they are par-
allelised quite naturally, so modern computing hardware can be le-
veraged to reduce the variance in the likelihood estimate by simply
using larger numbers of particles of averaging the estimates of in-
dependent particles. Although these methods represent the current state
of the art in this area, there are still challenges to be overcome. They are
not ‘online’ in that the computational expense (and hence run-time)
increases as the length of the time series increases (Kantas et al., 2015).
Non-Markovian models remain challenging and the overall efficacy is
restricted by the ability to produce simulations that are in some way
close to the observed data. Current research employs variance reduction
techniques to reduce the variance of the likelihood estimate, and in
particular importance sampling has been used to produce realisations
that match data closely (Black, 2019; McKinley et al., 2014). In the case
where the model is not strictly non-identifiable, but there is a complex
posterior distribution over the parameters, then MCMC methods based
on Riemannian geometry can be used (House et al., 2016).

5.1. Model Selection

Using data to accurately infer parameters of epidemic models is an
important step for informing public health policy, forecasting and un-
derstanding the dynamics of diseases. However, if the models are in-
appropriate these tools generate misinformation. Information criteria
such as AIC, BIC, DIC are the most common method for deciding on the
best model. These information criteria are used widely by both fre-
quentists and Bayesians due to their asymptotic properties and their
often ease of calculation. However, in cases where there is little data
and reasonable prior understanding of the epidemic process, these
criteria may fall short. Simply put, this is because AIC, BIC, and DIC are
intrinsically non-Bayesian as their formulations do not account for prior
knowledge of model parameters.

The gold standard for selecting between models while accounting
for prior information is to either calculate Bayes factors or the model
evidence (Kass and Raftery, 1995). These approaches are sometimes
avoided due to their computational difficulty; they either require cal-
culation of the normalising constant of the posterior distribution, or
calculation of a ratio of normalising constants. Although this problem is
difficult via classic methods such as reversible-jump MCMC (Green,
1995), there are increasingly efficient methods for performing this kind
of model selection. One approach is SMC2 (Drovandi and McCutchan,
2016; Chopin et al., 2013), which allows for model selection to be
performed during the inference process. Although this is an attractive
and efficient method, the stochastic error in model selection estimates

is not well understood. An alternative is importance sampling-based
methods (Gelfand and Dey, 1994; Touloupou et al., 2018), which give
unbiased estimates for model selection along with estimates of error.
While these methods are computationally intensive, they are made ef-
ficient if parameter inference is performed a priori. Further, they are
embarrassingly (i.e. trivially) parallelisable, that is, they are able to
take advantage of modern computational architecture.

Another recent approach to model selection has been through the
use of classification methods, and in particular Random Forests (Pierre
et al., 2016). This approach has the benefit of needing only to simulate
from the model, and efficiency of the classification algorithms them-
selves. This is particularly important if one is to consider the optimal
design for model selection (Markus and David, 2018), a particularly
computationally-expensive pursuit, and for which heuristics based
upon the Random Forest approach have been proposed recently (Cope
and Ross, 2020).

6. Policy and communication

Until now, we have concerned ourselves with some of the key
technical challenges in modern day mathematical epidemiology. But for
our work to contribute to public health policy, we must consider the
broader scientific, social and political environment in which it exists.
This is a broad topic and one not unique to health, for example ecology
provides a highly-relevant exemplar discipline in which modelling has
had a sustained and meaningful impact on decision making (e.g. Ball
et al., 2009). A central tenet of the approach in that field is that we must
distinguish, from the outset, between science for knowledge and dis-
covery’s sake, and science for the express purpose of contributing to the
decision-making process. Within this context, we make the following
observations.

Mathematical models are developed by researchers from a broad
range of backgrounds, many of whom do not necessarily have the
knowledge required to translate the intricacies of structural identifia-
bility analysis and Bayesian approaches to parameter estimation into
practice. In general, more complex models tend to be favoured by
policy makers as they are perceived as being more “realistic”, and in-
deed such models likely have more internal validity. Yet they are, in all
likelihood, less general and have weaker external validity, in terms of
providing unbiased predictions for other related scenarios or situations.
Complexity can be a desired quality of a model even if the data are not
available to support the model structure. Thus, there is a tension be-
tween transparency (which correlates with incompleteness but also
with generality) and realism (which correlates with complexity and
opacity, but also completeness and lack of generality). Highly complex
models are in danger of projecting a false sense of accuracy, with the
portrayed accuracy enhancing their attractiveness to policymaking
stakeholders, but with untenable policy recommendations as a potential
outcome of this cycle (Cooper, 2006). And even if accurate for the
scenario at hand, findings drawn from them will be less generalisable
(because they are more specific). Clearer communication of the pitfalls
of the “unconscious use of a non-identifiable model” (Siekmann et al.,
2012) will help to avoid this trap.

As the epidemiological modelling discipline globalises and nascent
modelling groups form in countries previously lacking this capacity, our
community should consider not only training modellers to model, but
also explore how models are used in the policy environment. It is im-
portant to acknowledge that this environment will differ, and in strong
ways, across different social, economic and political contexts. We pro-
pose that such topics are included in future training activities offered by
established groups. We encourage success stories of models influencing
public health policy (or otherwise) be published. The practice of
modelling goes far beyond the technical details of the mathematics,
statistics and biology.

Policy makers are not the only ones with whom the modellers need
to communicate effectively. During the lifecycle of the model
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development, we need to understand the intricacies of the problem, the
available data and the existing views on reasonable values for para-
meters. Therefore, communicating and involving the experts in the
respective biological, medical and health fields should lead to better
calibrated and validated models.

Effective interactions among these three key groups (modellers,
researchers from other disciplines and policymakers) relies on effective
communication, with several themes and foci for improvement (Fig. 2).

6.1. Developing a shared understanding of the problem

Modelling that strives to inform policy is best conducted in con-
sultation with policymakers. Such engagement enables modellers and
policymakers to gain a mutual understanding of the policy question to
be addressed and define specific modelling objectives. It is also an
opportunity to improve modeller understanding of the policy context
and stakeholder understanding of the capabilities and limitations of
mathematical models within this context. Examples of productive en-
gagement between policymakers and modellers exist in many fields,
including infectious disease epidemiology (Lee et al., 2013; Probert
et al., 2016; Knight et al., 2016; Qualls et al., 2017; Moss et al., 2019b).
Recently, researchers have explored the use of participatory approaches
to modelling, where policymakers and modellers “co-develop” models
and applications (Gaydos et al., 2019). These examples suggest that a
variety of approaches to stakeholder engagement, e.g., in terms of the
frequency and timing of consultations within the cycle of model de-
velopment, can lead to successful outcomes. Modelling conducted in the
absence of stakeholder engagement is at risk of being underused, mis-
used or inappropriate for addressing a specific policy question (Glasser
et al., 2011; Muscatello et al., 2017; Doms et al., 2018).

6.2. Understanding the available data

Data is required to calibrate, validate or fit the mathematical
models. As part of the planning phase of the model development,
knowledge of what data are or will become available is essential. If the
data is not publicly available, it is essential that communications are
made with the proprietor of the data and have prior agreement with
them on data usage.

Modellers have to interact with researchers from other disciplines
such as biology, medicine, pharmacology etc. to make more sense of the
available data. In these instances, improved communication of model-
ling ideas to a non-mathematical audience would allow for better dis-
cussion on whether the important biological aspects are captured from
the model and how the data can be used to estimate the model para-
meters.

If multiple datasets are available, the use of all datasets in a single
data-integrating model may be appealing to both modellers and pol-
icymakers – under the assumption that more data will result in greater
precision. As discussed earlier, a data-integrating model may not pro-
vide benefit over the use of any single dataset unless each data source
captures distinct, but complementary, aspects of the epidemiological or
observation process (Moss et al., 2017). When deciding whether data
integration is an appropriate and feasible approach to addressing a
specific policy question, it is important for modellers to understand how
datasets may be dependant and/or complementary. This process will be
most insightful when done in close consultation with data-collectors
and data-users.

6.3. Prior distributions informed by experts

Constructing models to aid decision making in public health

Fig. 2. Essential communications between three key groups in the model development and outcome dissemination.
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requires striking an appropriate balance between accurately re-
presenting the system being modelled, and making simplifying as-
sumptions. It is often helpful to construct these models using domain
knowledge. The Bayesian framework, with its concept of a prior dis-
tribution, provides a natural way to incorporate this information
(Gelman et al., 2004). However, representing this knowledge into
parameter values is not always straight-forward (Kuhnert et al., 2010).
The process of comprehensively eliciting prior knowledge requires
substantial effort from both the elicitor and the responder. However, as
seen in the field of ecology, this can be a worthwhile approach (Kuhnert
et al., 2005; Martin et al., 2005; Choy et al., 2009). Care must be taken
to mitigate the impact of psychological biases such as ‘anchoring’ and
the ‘conjunction fallacy’ which can lead to poor representation of prior
knowledge (Kynn, 2008; Kuhnert et al., 2010). Moreover, if the re-
sponder is unfamiliar with probabilistic concepts this can also hamper
the elicitation process (Morgan, 2014). Substantial effort in the fields of
both statistics and psychology has produced a number of guidelines to
assist in carrying out successful elicitations (Spetzler et al., 1975, Kynn,
2008; Choy et al., 2009; Kuhnert et al., 2010; Morgan, 2014; O’Hagan
and Oakley, 2019).

As discussed in Section 3 above, there are also technical issues re-
lating to the incorporation of the elicited information.

6.4. Sharable methodologies and best-practice for open and transparent
modelling

To prevent reinventing previous work, modellers can provide
adaptable, user-friendly routines or packages with worked examples
supported by published theory and community-wide consensus.
Reproducible methodologies and model source code can be shared on
freely available code repositories such as GitHub [https://github.com/
], Bitbucket [https://bitbucket.org], et cetera. There should be suffi-
cient documentation provided with the source code in order to ensure
reproducibility. Anonymised or simulated data could also be shared if
necessary. Knowledge on the various types of licenses that are available
to protect intellectual property while maintaining reproducibility is
essential for modellers.

Model predictions could be shared through interactive web-appli-
cations such as Shiny apps [http://www.rstudio.com/shiny/] and
plotly/Dash apps [https://plot.ly]. These web-applications can also
help during the iterative process of communicating the model to pol-
icymakers and end-users, and improving the model based on their
feedback. Computationally expensive models may not be able to run in
real-time. In such cases, results could be pre-generated and stored as
data which can then be retrieved for a specific scenario. Examples of
some shiny apps based on models, together with their source code can
be found here (Tun et al., 2017; Celhay et al., 2019).

6.5. Communicating model predictions in policymaking

When communicating model-based insights to policymakers, it is
important to present those results in scientific and statistically rigorous
language but also in a clear and transparent way to a non-technical
audience. Ideally, results should be presented in a way that policy-
makers and stakeholders can quickly understand to assist their deci-
sions. Various types of communication such as written briefings, in-
formal meetings, and technical interfaces could be used as necessary.
Uncertainty in the predictions should also be communicated ade-
quately. The key to successful communication in this context however is
to recall that policy development is primarily concerned with decision-
making, rather than scientific discovery per se. With this in mind, sci-
entific findings can be presented in a way that focuses on the decision to
be made, providing the scientific evidence as the (rigorous and trans-
parent) basis on which advice is provided.

7. Conclusions

From the very earliest attempts to represent disease dynamics
mathematically, the relationship between epidemic models and data
has been both of clear importance and a major challenge (Abbey,
1952). Herein we have focused on key challenges with a particular
focus on using modelling to inform public health policy:

(i) Model parameters may not be able to be identified uniquely, either
in general or for the specific data available in an application.
Awareness of this is critical to ensure that robust policy conclu-
sions are drawn from models;

(ii) Prior knowledge can be highly valuable, but it must pertain ap-
propriately to the disease dynamics of current interest.
Specification of prior knowledge on disease process observables
assists in consistent and readily-interpretable specification; and,

(iii) Data must be modelled appropriately accounting for the observa-
tion process. Increasingly we have access, and computational re-
sources, to exploit multiple datasets. However, the dependencies
that arise through the underlying epidemiological system and in
the sampling process in the observation models must be accounted
for to draw robust conclusions.

We have discussed recent progress and new perspectives on each of
these challenges, along with recent computational advances in methods
with a particular focus on inference. Each of these areas remain active
research topics, where advances are critical to improve the robustness,
appropriateness and sophistication of model-based, policy-relevant
outputs.
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