
either as false negatives of the PCR or as false positives of MFC. We
can thus conclude that the junction region of the IgH rearrange-
ment in MM is stable and can be used as a target for MRD
assessment by ASO RQ-PCR and more, also by deep-sequencing
methods, as it constantly identifies the myeloma cells responsible
for relapse.15

In conclusion, our results show that, in the dominant myeloma
clone, the CDR3 region of IGH remains constant across all the
stages of disease evolution. This major clone signature is not
modified by clinical or biological changes in the disease nor under
different treatment pressures; accordingly, it would thus be
responsible for disease relapses and progression, and could be
used as a MRD target. Assuming that the CDR3 region remains
stable, the recently raised concept of clonal tiding in MM should
not be interpreted as a poly/oligoclonal but subclonal. In
summary, in MM tides can be subclonal, but the ocean remains
monoclonal.
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CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to
induce durable apoptotic responses in aggressive MYC-driven
B-cell lymphoma in vivo
Leukemia (2015) 29, 1437–1441; doi:10.1038/leu.2015.10

MYC dysregulation confers a poor prognosis to diffuse large B-cell
lymphoma (DLBCL), and effective therapeutic strategies are
lacking in relapsed/refractory DLBCL, Burkitt lymphoma and
intermediate forms.1,2 As a master transcriptional regulator, MYC

recruits transcription complexes containing RNA polymerase II
(Pol II) to facilitate effective transcriptional elongation of MYC
gene targets.3 Pol II is fully activated by phosphorylation of a
critical serine residue at position 2 within heptapeptide repeats in
the carboxy-terminal domain (CTD), a function performed by the
positive transcription elongation factor b (P-TEFb; comprising
CDK9 and cyclin T1).4 It has been shown that MYC binds and

Accepted article preview online 12 January 2015; advance online publication, 3 February 2015

Letters to the Editor

1437

© 2015 Macmillan Publishers Limited Leukemia (2015) 1437 – 1444



100

a

e f g

b c

50

0
0 4 816 0 4 816

%
 A

nn
ex

in
 / 

P
I

Dinaciclib [nM]

#4242 #3391
p53 null

0 4 816 0 4 816

Dinaciclib [nM]

100

50

0

%
 A

nn
ex

in
 / 

P
I

BL-41 Ramos

#4242#4242tMcl-1

100

50

0

%
 A

nn
ex

in
 / 

P
I

Dinaciclib [nM]

0 4 8 16 16

**

HSP90 90 kDa

Bcl-2 26 kDa

Bcl-xL 30 kDa

52 kDa

40 kDa

c-Myc 70 kDa

D
M

S
O

D
in

ac
ic

lib
D

M
S

O
D

in
ac

ic
lib

BL-41 Ramos

Tubulin

Mcl-1

52 kDaTubulin

D
M

S
O

D
in

ac
ic

lib

pRpb1Ser2

pRpb1Ser5

pRpb1Ser2/5

HSP90

HSP90

HSP90

HSP90

c-Myc

Mcl-1

Bcl-2

Bcl-xL

90 kDa

90 kDa

90 kDa

90 kDa

250 kDa

250 kDa

250 kDa

70 kDa

40 kDa

30 kDa

26 kDa

#4242

Is
ot

yp
e 

Ig
G

pR
pb

1 
S

er
2

%
 In

pu
t (

M
cl

-1
 lo

cu
s) 50

25

0

D
M

S
O

D
in

ac
ic

lib

D
M

S
O

D
in

ac
ic

lib

Bcl-2 Mcl-1

*NS
1.5

0.5

0R
el

at
iv

e 
m

R
N

A
 le

ve
l

(D
M

S
O

) 1.0

Figure 1. Dinaciclib potently induces apoptosis of murine Eμ-Myc and human IG-cMYC-translocated lymphomas with rapid and selective
suppression of Mcl-1 transcription and protein levels. (a) Wild-type p53 (#4242) and p53-null (#3391) Eμ-Myc lymphomas were cultured in vitro
with dimethylsulfoxide (DMSO) vehicle control or dinaciclib for 24 h and then analyzed using flow cytometric analysis for annexin-V/
propidium iodide (PI) positivity. (b) Human IG-cMYC-translocated BL-41 and Ramos cell lines were cultured in vitro with DMSO or dinaciclib for
48 h before the analysis of annexin-V/PI positivity using flow cytometry. (c) Mcl-1 and Bcl-2 mRNA expression in lymphoma #4242 following
3-h in vitro treatment with DMSO or 20 nM dinaciclib. Transcript levels are represented as fold change compared with DMSO. NS, not
significant; *Po0.0001. (d) Chromatin immunoprecipitation-PCR of Eμ-Myc lymphoma #4242 cells showing binding of phospho-RNA Pol II CTD
serine 2 (pRpb1 Ser2) at the Mcl-1 locus. Error bars denote the s.e.m. from three independent primer sets across the Mcl-1 locus. (e) Eμ-Myc
lymphoma #4242 was cultured in vitro for 3-h untreated or in the presence of DMSO or 20 nM dinaciclib before the preparation of lysates and
immunoblotting for phospho-RNA Pol II CTD (pRpb1Ser2, pRpb1Ser5 and pRpb1Ser2/5), total Mcl-1, Bcl-2, Bcl-xL, c-Myc and HSP90 loading
control. (f) Human IG-cMYC-translocated BL-41 and Ramos cell lines were cultured in vitro for 3 h in the presence of DMSO or 20 nM dinaciclib
before the preparation of lysates and immunoblotting for total Mcl-1, Bcl-2, Bcl-xL, c-Myc, Tubulin and HSP90 loading controls. (g) Eμ-Myc
lymphoma #4242 was transduced with murine stem cell virus expressing empty vector control or Mcl-1 and then cultured in vitro with
dinaciclib for 24 h before flow cytometric analysis for annexin-V/PI positivity. **Po0.01 comparing treatments at 16 nM concentration. All
graphs represent the mean± s.e.m (error bars) for three or more independent experiments.
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recruits P-TEFb to its targets as a means to activate Pol II.3,5,6 More
recently, CDK9-mediated transcriptional elongation was reported
as essential for tumor maintenance in a genetically defined
MYC-driven model of hepatocellular carcinoma.7 Thus, CDK9
dependence may represent a druggable vulnerability in lymphomas
with dysregulated MYC expression.
Dinaciclib (Merck, Boston, MA, USA) is a novel CDK inhibitor that

has reached phase 1b/2 of clinical trials for a range of solid-organ
malignancies, as well as for myeloma and chronic lymphocytic
leukemia.8 We hypothesized that CDK9 inhibition by dinaciclib
would represent a rational pharmacologic approach to target the

transcription of critical MYC-regulated oncogenic effector proteins.
Here we describe durable in vivo responses to dinaciclib in
aggressive MYC-driven lymphoma, mediated by downregulation
of Pol II-mediated Mcl-1 transcription.
Dinaciclib has 50% kinase inhibitory concentrations of 1, 1, 3

and 4 nM for CDK2, CDK5, CDK1 and CDK9, respectively.8 Dinaciclib
potently killed Eμ-Myc and human IG-cMYC-translocated cell lines
independent of p53 function, but not untransformed murine
fibroblast cells, at low nanomolar concentrations approximating
those observed for kinase inhibition (Figures 1a and b,
Supplementary Figure S1).
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As Bcl-2 and Mcl-1 have been implicated as important apoptotic
regulators in Eμ-Myc lymphomas,9,10 we assessed the effects of
dinaciclib on these proteins. We hypothesized that CDK9
inhibition with dinaciclib would target Mcl-1 transcription, as has
been observed with other CDK inhibitors in myeloma and mantle
cell lymphoma.11,12 Eμ-Myc and human IG-cMYC-translocated cell
lines were treated with dinaciclib or dimethylsulfoxide control and
interrogated using the quantitative PCR analysis for the effect on
Mcl-1 and Bcl-2 mRNA. Dinaciclib treatment was associated with a
significant reduction in Mcl-1 mRNA, with no significant effect on
Bcl-2 transcript levels (Figure 1c, Supplementary Figure S2).
Chromatin immunoprecipitation-PCR was used to show the
binding of phosphorylated Pol II, subunit B1 carboxy-terminal
domain (CTD) serine 2 (pRpb1 Ser2) as a marker of CDK9 activity at
the Mcl-1 locus in a representative Eμ-Myc lymphoma cell line
(Figure 1d). These findings support the hypothesis that dinaciclib
transcriptionally downregulates Mcl-1.
We next examined Mcl-1 expression in Eμ-Myc and human IG-

cMYC-translocated lymphoma cell lysates following the treatment
with dinaciclib or vehicle. On-target CDK9 inhibition by dinaciclib
was confirmed through inhibition of pRpb1 Ser2 at concentrations
corresponding to apoptosis induction in Eμ-Myc cells (Figure 1e).
Dinaciclib treatment also rapidly suppressed Mcl-1 protein
expression, with no discernible reduction in Bcl-2 or Bcl-xL protein
observed in murine (Figure 1e) or human (Figure 1f) cells. To
determine the functional importance of Mcl-1 in regulating
dinaciclib-mediated apoptosis, a representative Eμ-Myc lymphoma
was stably transduced to express Mcl-1 off a retroviral promoter.
As shown in Figure 1g, exogenously expressed Mcl-1 significantly
protected Eμ-Myc cells from dinaciclib-induced apoptosis.
The in vivo efficacy of dinaciclib was then assessed by

transplanting the same Eμ-Myc lymphomas into cohorts of
syngeneic C57Bl/6 recipients. Compared with the vehicle control,
dinaciclib treatment was well tolerated and associated with a
highly significant survival advantage of tumor-bearing mice,
including those bearing a p53-null lymphoma and a lymphoma
with a spontaneous p53 mutation encoding a dominant-negative
p53 protein (Figures 2a–c, Supplementary Figure S3). In contrast,
dinaciclib-mediated therapeutic efficacy was severely attenuated
in isogeneic p53-competent Eμ-Myc lymphoma overexpressing
Mcl-1 (Figure 2d). In separate experiments, mice bearing
transplanted Eμ-Myc cells were left untreated for 12 days to
establish bulky nodal disease, at which time they received a single
dose of dinaciclib or vehicle 1 or 4 h before being killed and
before the lymph nodes were harvested. Consistent with the
in vitro data, lymph node protein lysates showed reductions of
pRpb1 and total Mcl-1 protein (Figure 2e), concomitant with the
induction of apoptosis (Supplementary Figure S4). Finally,
dinaciclib treatment of immunocompromised mice xenografted
with the human IG-cMYC-translocated lymphoma was associated
with reduced disease progression and significantly prolonged
overall survival (Figures 2f and g).
In conclusion, our findings indicate that CDK9 inhibition by

dinaciclib is highly effective in aggressive MYC-driven lymphomas,
including ‘poor-risk’ p53-deficient clones, via selective inhibition of
critical MYC targets including Mcl-1 (which is currently undrug-
gable with existing BH3 mimetics).13,14 Our data suggest a linear
and druggable dependency between MYC and Mcl-1 that is
contingent on CDK9 signaling. These findings are of particular
interest in the context of a recent publication by Kelly et al.,15

further highlighting the dependency of MYC-driven B-cell
lymphoma to Mcl-1. Rapid clinical translation of CDK9 inhibitors
to MYC-dysregulated lymphoid malignancy should now be
considered.
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Targeting PD1–PDL1 immune checkpoint in plasmacytoid
dendritic cell interactions with T cells, natural killer cells
and multiple myeloma cells

Leukemia (2015) 29, 1441–1444; doi:10.1038/leu.2015.11

Despite the advent of bortezomib, thalidomide and lenalidomide,
relapse of multiple myeloma (MM) is common, and novel
therapies are needed urgently.1 Interactions of MM cells with
bone marrow (BM) accessory and immune effector cells inhibit
antitumor immunity as well as induce MM growth, survival and
drug resistance.1 For example, we showed that plasmacytoid
dendritic cells (pDCs) are increased in the BM of MM patients
compared with normal BM, and these contribute to immune
dysfunction, as well as promote tumor cell growth and survival.2

Aberrant pDCs’ function in MM is evidenced by their interaction
not only with MM cells but also with immune effector T cells: MM
BM pDCs have decreased ability to trigger T-cell proliferation
compared with normal pDCs.2 Dysfunctional T cells and natural
killer (NK) cells in MM3,4 together with functionally defective
pDCs2 confer immune suppression in MM. To date, the mechan-
ism(s) and the role of immunoregulatory molecules mediating
pDC–T cell and pDC–NK cell interactions in MM remain undefined.
Here we extended our previous studies2,5 to examine the role of
immune checkpoint receptor programmed cell death protein 1
(PD1) and its ligand PDL1 in pDC–T cell and pDC–NK cell
interactions in the MM BM milieu, and to determine whether this
interaction represents a therapeutic target to restore antitumor
immunity and cytotoxicity.
PD1 (CD279), a member of the CD28 family of receptors, is

expressed on the surface of antigen-activated and -exhausted T
cells.4 PD1 has two ligands, PDL1 (B7-H1; CD274) and PDL2 (B7-DC;
CD273). Although PDL1 expression has not been observed in
normal epithelial cells, it is highly expressed on many solid
tumors.6 PDL2 is more broadly expressed on normal healthy
tissues than PDL1. The physiological role of PD1 is to maintain
T-cell homeostasis by restricting T-cell activation and proliferation,
thereby preventing autoimmunity. Importantly, the interaction
of PD1+ T cells with PDL1-expressing cells inhibits T-cell
responses.7–9 In the context of MM, studies have demonstrated
PD1-expressing T cells and NK cells in the MM BM milieu, as well
as PDL1 on MM cells.3,10–13 However, the expression of PDL1–PD1
on MM patient-derived pDCs and its functional significance during
pDC–MM–T–NK cell interactions remain undefined.
We first analyzed freshly isolated MM cells, pDCs and T cells

from MM patient BM samples (n= 11) for PDL1 and PD1
expression using flow cytometry (fluorescence-activated cell sorter
(FACS)). Both MM cells and pDCs expressed high surface levels of

PDL1, whereas T cells showed high PD1 levels (Figures 1a–c). No
significant PDL1 expression was noted on normal BM plasma cells.
Our findings are consistent with previous reports showing that
MM cells, but not normal plasma cells, express PDL1.3,10–13 These
data indicate that the interactions between PDL1-expressing MM
cells and pDCs with PD1-positive T cells may contribute to both
T-cell and pDC immune dysfunction in MM, and MM cells may
escape antitumor immunity by virtue of PDL1 expression.
We next examined whether blockade of PDL1–PD1 restores

anti-MM immune response and/or affects pDC-induced MM cell
growth, using a monoclonal antibody (Ab) specifically directed
against PDL1. A recent study analyzed the expression of PD1 and
PD1-ligands in the tumor immune microenvironment and
demonstrated clinical responses to anti-PD1 Ab therapy in PDL1-
positive tumors.8 PDL1 is expressed in both pDCs and MM cells,
including relapsed or refractory MM,13 and we hypothesize that
blockade of PDL1 will alleviate T-cell immune suppression
conferred by both MM cells and pDCs during pDC–MM–T cell
interactions. Moreover, as PDL1 binds not only to PD1 but also to
CD80, on T cells to induce T-cell inhibition,14 anti-PDL1 Ab may
block both co-inhibitory signals on T cells. Preclinical and clinical
studies have begun to examine the utility of anti-PDL1
monoclonal Ab in MM.10,11,15 Here we targeted PDL1 rather than
PDL2 for the following reasons: (1) PDL1 is more restricted in its
expression on normal tissues than PDL2, and targeting PDL1 may
therefore cause less on-target off-tissue toxicity;9 (2) a recent
report correlated PDL1, but not PDL2, expression with response to
anti-PD1 therapy;8 and (3) we found that both pDCs and MM cells
express variable and low levels of PDL2 versus PDL1.
We first examined whether blockade of PDL1 affects the ability

of pDC to induce MM cell growth. The patient MM cells or MM cell
lines (MM.1S, MM.1R and RPMI-8226) were cultured either alone or
together with MM–pDCs in the presence or absence of anti-PDL1
Ab for 72 h, followed by analysis of growth. pDCs triggered
proliferation of autologous MM cells and MM cell lines, as in our
previous studies.2,5 Importantly, anti-PDL1 Ab did not significantly
inhibit pDC-triggered growth of MM cells (Figure 1d and
Supplementary Figure 1). Our recent study showed that targeting
toll-like receptor-9 blocks pDC-induced MM cell growth,2,5 which
served as a positive control in these studies (Figure 1d and
Supplementary Figure 1). Although blocking PDL1 does not affect
pDC-induced MM cell growth, pDC–MM cell interactions upregu-
late PDL1 expression on both cell types, consistent with earlier
observations that BM stromal cells induce PDL1 expression on MM
cells.13 Such interactive mechanisms enhancing PDL1 expression
in the MM BM milieu further abrogate PD1-expressing T-cell
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