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Abstract

Introduction: DNA methylation is a well-studied biomarker in invasive breast cancer, but its role in ductal
carcinoma in situ (DCIS) is less well characterized. The aims of this study are to assess the methylation profile in
DCIS for a panel of well-characterized genes that are frequently methylated in breast cancer, to investigate the
relationship of methylation with pathological features, and to perform a proof-of-principle study to evaluate the
practicality of methylation as a biomarker in diagnostic DCIS material.

Methods: Promoter CpG island methylation for a panel of 11 breast cancer-related genes was performed by
methylation-sensitive high resolution melting (MS-HRM). Formalin-fixed, paraffin-embedded (FFPE) biopsies from
72 samples of pure DCIS (DCIS occurring in the absence of synchronous invasive carcinoma), 10 samples of mixed
DCIS (DCIS adjacent to invasive carcinoma), and 18 samples of normal breast epithelium adjacent to a DCIS lesion
were micro-dissected prior to DNA extraction.

Results: Methylation was seen for all the tested genes except BRCA1. RASSF1A was the most frequently methylated
gene (90% of DCIS samples) and its methylation was associated with comedo necrosis (p = 0.018). Cluster analysis
based on the methylation profile revealed four groups, the highly methylated cluster being significantly associated
with high nuclear grade, HER2 amplification, negative estrogen receptor (ER) α status, and negative progesterone
receptor (PgR) status, (p = 0.038, p = 0.018, p <0.001, p = 0.001, respectively). Methylation of APC (p = 0.017), CDH13
(p = 0.017), and RARβ (p <0.001) was associated with negative ERα status. Methylation of CDH13 (p <0.001), and
RARβ (p = 0.001) was associated with negative PgR status. Methylation of APC (p = 0.013) and CDH13 (p = 0.026)
was associated with high nuclear grade. Methylation of CDH13 (p = 0.009), and RARβ (p = 0.042) was associated
with HER2-amplification.

Conclusions: DNA methylation can be assessed in FFPE-derived samples using suitable methodologies. Methylation
of a panel of genes that are known to be methylated in invasive breast cancer was able to classify DCIS into distinct
groups and was differentially associated with phenotypic features in DCIS.
Introduction
Ductal carcinoma in situ (DCIS), a non-invasive form of
breast cancer and a non-obligate precursor of invasive
carcinoma of the breast, has both morphological and
biological heterogeneity. Current markers of poor progno-
sis to help select the use of adjuvant therapies are largely
based on clinical and histopathological parameters, and
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include young age, large tumour size, high nuclear grade,
presence of comedo necrosis, negative hormone receptor
status, and HER2 amplification [1,2]. However, these clini-
copathological features are insufficient in predicting which
patients will experience recurrence of DCIS or progress to
invasive carcinoma [1-3]. Therefore, more informative and
robust prognostic markers are required, which also need
to be compatible with small amounts of often degraded,
formalin-fixed, paraffin-embedded (FFPE)-derived DNA,
as typically only a sparse amount of material is available
for analysis from DCIS lesions.
DNA methylation is an epigenetic modification where

a methyl group is added to the 5-carbon position of
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cytosine and is a mechanism of modulating gene expres-
sion. Alterations in methylation patterns in cancer are
characterized by global hypomethylation and gene-specific
promoter hypermethylation. Promoter hypermethylation
may result in gene silencing, and in cancer this can
be a mechanism of tumour suppressor gene inactivation.
Promoter methylation frequently follows a tumour-specific
pattern and has been reported to be a useful biomarker in
several types of cancer, including invasive breast cancer [4].
Several studies have linked methylation of specific genes to
DCIS phenotypes, including APC [5], CDH1 [6], FOXC1
[7,8], GSTP1 [7-9], RARβ [5], and RASSF1A [7,8]. However,
most of these studies have examined methylation in a small
number of pure DCIS cases [5,7-10], or combined invasive
breast cancer cases together with DCIS cases to establish
the relationship between methylation and phenotype [7,8].
Therefore, the true frequency and utility of DNA methyla-
tion biomarkers in DCIS has yet to be established [11].
The aims of this study were to document the frequency

and level of methylation of a panel of eleven breast
cancer-related genes to determine whether these methyl-
ated genes are associated with histopathological parame-
ters. These genes were chosen because methylation of the
genes have previously been identified as important in
invasive breast cancer by The Cancer Genome Atlas
Network (TCGA) [12] and/or associated with prognosis
in DCIS (APC [5], CDH1 [6], FOXC1 [7], GSTP1 [9],
RARβ [5], RASSF1A [7]) or invasive carcinoma (BRCA1
[13,14], CDH13 [15], MAL [16], TWIST1 [17], WIF1 [18]).
The goal of the study was to improve our understanding
of methylation in in situ breast cancer, to understand
its relation to important histopathological variables
and conduct a proof-of-principle study to assess the
potential of methylation status as a biomarker in patients
with DCIS.

Materials and methods
Patients and samples
FFPE blocks were obtained from primary DCIS cases
from Peter MacCallum Cancer Centre and Royal Prince
Alfred Hospital. Approval for the project was obtained
from the ethics committees of Peter MacCallum Cancer
Centre (project number 02/26 and 10/16) and Royal
Prince Alfred Hospital (project HREC/11/RPAH/126),
including a waiver of consent for the use of archival ma-
terial for research. A total of 72 pure DCIS samples
(DCIS occurring in the absence of synchronous invasive
carcinoma), 10 mixed DCIS samples (DCIS adjacent to
invasive carcinoma) and 18 samples of normal breast
epithelium (including 16 normal samples matched to
DCIS from the same paraffin block) were obtained from
79 patients (69 patients with pure DCIS and 10 patients
with mixed DCIS). Patient flow in the study is shown in
Additional file 1.
Patient and sample characteristics are summarized in
Table 1. All patients were female. The median age of the
cohort was 54 years (range 29 to 82 years), and median
tumour size was 32.8 mm (range 5.0 to 145.0 mm).
H&E-stained sections of the FFPE blocks used for DNA

extraction were reviewed by a pathologist. The nuclear
grade of DCIS was determined according to the guidelines
described in the WHO Classification of Tumours of
the Breast, 4th edition [19]. Immunohistochemical (IHC)
staining for estrogen receptor (ER)α, progesterone re-
ceptor (PgR), and cytokeratin 5 (CK5) and HER2 silver in
situ hybridization (SISH) were performed as previously
described [20,21]. Tumours were considered to be ERα-
positive and PgR-positive if at least 10% of tumour cells
showed nuclear staining, and were considered HER-2
amplified if there were at least six dots or large clusters of
dots in the tumour nuclei [22].
Tumours were classified into intrinsic subtypes by

IHC staining of tissue microarrays (TMA), based on cri-
teria for invasive carcinomas of Nielsen et al. [23] and
Cheang et al. [24], and similar to those previously used
in DCIS [25-27]. Tumours exhibiting ERα or PgR posi-
tivity in the absence of HER2 amplification were consid-
ered of luminal subtype, human epidermal growth factor
receptor-2 (HER2) subtype consisted of tumours with
HER2 amplification, regardless of ERα and PgR status,
basal-like subtype consisted of triple negative (ERα nega-
tive, PgR negative, HER2 non-amplified) tumours with any
degree of CK5 membranous staining, and negative sub-
type tumours consisted of triple-negative tumours without
CK5 staining.

DNA preparation and bisulfite modification
Areas of DCIS and adjacent normal breast epithelium were
needle micro-dissected with the aid of a dissecting micro-
scope from up to 72 methyl green-stained 7 μm-thick par-
allel sections. No invasive carcinoma was present in the
available paraffin block of the ten cases of mixed DCIS.
Genomic DNA was extracted from the micro-dissected
tissues using the QIAamp DNA Blood Mini Kit (Qiagen,
Hilden, Germany) as previously described [28]. Five hun-
dred nanograms of genomic DNA were bisulfite-modified
using the MethylEasy Xceed Rapid DNA Bisulphite
Modification Kit (Human Genetic Signatures, Sydney,
Australia) according to the manufacturer’s instructions.
The bisulfite-modified DNA was eluted to achieve a final
concentration of 10 ng/μL. Universal Methylated
DNA (CpGenome Universal Methylated DNA, Millipore,
Billerica, MA, USA) and whole genome amplified
(WGA) peripheral blood mononuclear DNA (Ready-To-
Go GenomiPhi V3 DNA Amplification Kit, GE Healthcare,
Buckinghamshire, UK) were bisulfite-modified as above
and used as fully methylated (100%) and unmethylated
(0%) controls, respectively. Methylation standards (50%,



Table 1 Characteristics of the cohort

Feature Pure ductal carcinoma in situ
(n = 72)

Mixed ductal carcinoma in situ
(n = 10)

All ductal carcinoma in situ
(n = 82)

Age Median, years 54.0 53.0 54.0

Range, years 29 to 82 42 to 67 29 to 82

No data 14/69 1/10 15/79

Lesion size Median, mm 32.0 40.0 32.8

Range, mm 5 to 145 11 to 103 5 to 145

Nuclear grade High 35/72 (48.6%) 4/10 (40%) 39/82 (47.6%)

Intermediate 31/72 (43.1%) 6/10 (60%) 37/82 (45.1%)

Low 6/72 (8.3%) 0/10 (0%) 6/82 (7.3%)

Predominant architectural
pattern

Solid 37/72 (51.4%) 10/10 (100%) 47/82 (57.3%)

Cribriform 17/72 (23.6%) 0/10 (0%) 17/82 (20.7%)

Micropapillary 11/72 (15.3%) 0/10 (0%) 11/82 (13.4%)

Clinging 4/72 (5.6%) 0/10 (0%) 4/82 (4.9%)

Cancerisation of
lobules

2/72 (2.8%) 0/10 (0%) 2/82 (2.4%)

Papillary 1/72 (1.4%) 0/10 (0%) 1/82 (1.2%)

Comedo necrosis Present 29/72 (40.3%) 6/10 (60%) 35/82 (42.7%)

Absent 43/72 (59.7%) 4/10 (40%) 47/82 (57.3%)

Estrogen receptor status Positive 48/67 (71.6%) 7/8 (87.5%) 55/75 (73.3%)

Negative 19/67 (28.4%) 1/8 (12.5%) 20/75 (26.7%)

No data 5/72 2/10 7/82

Progesterone receptor
status

Positive 40/67 (59.7%) 3/8 (37.5%) 43/75 (57.3%)

Negative 27/67 (40.3%) 5/8 (62.5%) 32/75 (42.7%)

No data 5/72 2/10 7/82

HER2 amplification Amplified 20/67 (29.9%) 2/8 (25%) 22/75 (29.3%)

Non-amplified 47/67 (70.1%) 6/8 (75%) 53/75 (70.7%)

No data 5/72 2/10 7/82

Intrinsic subtype Luminal 38/67 (56.7%) 6/8 (75%) 44/75 (58.7%)

HER2 20/67 (29.9%) 2/8 (25%) 22/75 (29.3%)

Basal 2/67 (3.0%) 0/8 (0%) 2/75 (2.6%)

Negative 7/67 (10.4%) 0/8 (0%) 7/75 (9.3%)

No data 5/72 2/10 7/82
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25%, and 10% methylated) were prepared by diluting fully
methylated DNA into unmethylated DNA.

Methylation-sensitive high resolution melting (MS-HRM)
Methylation analysis was performed using MS-HRM,
a robust, real-time PCR-based methodology which allows
semiquantitative assessment of homogeneous methylation
and identification of heterogeneous methylation [29,30].
This method distinguishes between methylated and un-
methylated templates based on melting profiles conferred
by sequence alterations as a result of bisulfite modifi-
cation. Methylated templates contain more cytosines
compared with unmethylated templates after bisulfite
conversion and therefore melt at a higher temperature.
Heterogenous methylated templates are identified from
complex melting patterns that arise as a consequence of
heteroduplex formation [31]. Examples are shown in
Additional file 2.
MS-HRM primers were designed according to guidelines

previously described [32]. Primer sequences are listed in
Additional file 3. The PCR reaction mixture consisted of
1 × PCR buffer (Qiagen, Hilden, Germany), 1.5 to 3.0 mM
MgCl2 (Qiagen), 200 μM dNTP mix (Fisher Biotech, Perth,
Australia), 200 to 400 nmol/L forward and reverse primers,
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1 × SYTO9 intercalating dye (Life Technologies, Carlsbad,
CA, USA), 0.5U HotstarTaq polymerase (Qiagen), and
10 to 20 ng of bisulfite modified DNA, in a total reaction
volume of 20 μL. PCR amplification and high-resolution
melting were performed using the Rotor-Gene Q (Qiagen).
PCR and high resolution melting conditions are listed in
Additional file 4. All assays were performed in duplicate
with fully methylated, 50%, 25%, 10%, and fully unmethy-
lated DNA standards and non-template and non-bisulfite-
modified genomic DNA controls.
Homogeneous methylation was scored as low (<10%),

moderate (10% to <50%), and high (≥50%) level methyla-
tion. Heterogeneous methylation was scored as low-level
or high-level heterogeneous methylation depending on
the sample profile extension into the fully methylated
profile (examples in Additional file 2). To compensate
for non-specific background methylation, only samples
with moderate- and high-level homogeneous methylation
or high-level heterogeneous methylation were considered
methylated. The average methylation index (AMI) for
each sample was also calculated, which is similar to the
cumulative methylation index described by Fackler et al.
[33], but normalized for the number of genes assessed.
Methylation levels at or close to 0%, 10%, 25%, 50%, and
100% were scored as such. Low heterogeneous methy-
lation and <10% homogeneous methylation were scored
as 0%, and 10% to 25%, 25% to 50%, and 50% to 100%
methylation were scored as 18%, 38%, and 75%, methyla-
tion respectively. High-level heterogeneous methylation,
which is not possible to quantify, was assigned an arbitrary
score of 25% methylation.

Statistical analysis
Comparisons of continuous data between two groups,
and more than two groups were evaluated by the Mann-
Whitney U-test and the Kruskal-Wallis test, respectively.
Fisher’s exact probability test was used to assess 2 × 2
contingency tables and the χ2 test for independence was
used for variables with three or more categories. For
each comparison, a two-tailed P-value of 0.05 or less was
considered to be statistically significant. All statistical
analyses were performed using IBM SPSS version 22.0
(IBM Corporation, Armonk, NY, USA). Unsupervised
hierarchical cluster analysis with average linkage was
performed giving equal weighting to all genes and sam-
ples, with the exception of BRCA1 which was universally
unmethylated and therefore removed from the analysis.
The samples were filtered to include only those with
methylation data for at least nine of the eleven genes.
The cluster analysis was performed and heat map gen-
erated using Gene Cluster 3.0 and TreeView 1.60, re-
spectively (Michael Eisen, University of California, USA).
Histograms were generated using GraphPad Prism 6
(La Jolla, CA, USA).
Results
Histopathological features of DCIS
There were 47.6%, 45.1%, and 7.3% of DCIS samples of
high, intermediate and low nuclear grade, respectively.
The most frequent architectural pattern was solid type
(47/82, 57.3%), followed by cribriform (17/82, 20.7%), and
micropapillary (11/82, 13.4%) patterns. The remainder of
the samples showed clinging DCIS (4/82, 4.9%), canceri-
sation of lobules (2/82, 2.4%) and papillary DCIS (1/82,
1.2%). Comedo-type necrosis was present in 42.7% (35/82)
of DCIS samples. Fifty-five DCIS samples (55/75, 73.3%)
were ERα-positive, and 43 samples (43/55, 57.3%) were
PgR-positive. HER2 amplification was present in 22 sam-
ples (22/75, 29.3%). Luminal subtype accounted for 58.7%
of samples (44/75), HER2 subtype 29.3% (22/75), negative
subtype 9.3% (7/75), and basal-like subtype 2.7% (2/75).

Methylation status in normal, pure DCIS, and mixed DCIS
samples
DCIS samples had a significantly greater number of genes
methylated (a median of 4 genes methylated, range 0 to 8
genes) compared with adjacent normal breast epithelium
samples (median 0 genes methylated, range 0 to 2 genes)
(P <0.001). There was no significant difference in the num-
ber of genes methylated per sample between pure DCIS
(median 4.5 genes, range 0 to 8 genes) and mixed DCIS
samples (median 3 genes, range 2 to 8 genes) (P = 0.87).
Among all DCIS, RASSF1A methylation was present in
90% (72/80) of samples, CDH13 in 53.8% (43/80), MAL
in 49.4% (39/79), APC in 48.8% (39/80), WIF1 in 48.8%
(39/80), GSTP1 in 47.5% (38/80),TWIST1 in 40.7% (33/81),
RARβ in 37% (30/81), and FOXC1 methylation in 11.3%
(9/80) of samples. CDH1 methylation was rare (2.5%, 2/79)
(Table 2, Figure 1).
There was no difference in methylation in samples

from patients younger than 50 years compared with
older patients (P >0.05, data not shown). In addition, there
was no difference in methylation between small DCIS
tumours (<20 mm [1]) and larger tumours (P >0.05, data
not shown). No BRCA1 methylation was present in any of
the DCIS samples (Table 2).
In the normal breast epithelium samples, only WIF1

methylation (27.8%, 5/18), CDH13 (5.6%, 1/18), and
TWIST1 (5.9%, 1/17) methylation were identified (Table 2,
Figure 1). For all methylated normal samples, the cor-
responding DCIS tumour also was methylated for the
same gene, apart from one case (sample S25) where
the normal tissue showed heterogeneous methylation
for WIF1 while the DCIS was unmethylated (Additional
file 5).

Association of methylation with DCIS phenotype
Methylation of APC and CDH13 was significantly asso-
ciated with high nuclear grade (P = 0.013 and P = 0.026



Table 2 Frequency and level of methylation of genes by sample type

Negative for methylation Positive for methylation

Frequencies (%)

Gene Sample type No
methylation

Low
heterogenous
methylation

Low
homogenous
methylation

High
heterogenous
methylation

Moderate
homogenous
methylation

High
homogenous
methylation

Total
positive for
methylation

No
data

APC Normal 15/15 (100) 0/15 (0) 0/15 (0) 0/15 (0) 0/15 (0) 0/15 (0) 0/15 (0) 3

Pure ductal carcinoma
in situ (DCIS)

29/70 (41.4) 0/70 (0) 4/70 (5.7) 4/70 (5.7) 27/70 (38.6) 6/70 (8.6) 37/70 (52.9) 2

Mixed DCIS 7/10 (70) 1/10 (10) 0/10 (0) 0/10 (0) 1/10 (10) 1/10 (10) 2/10 (20) 0

BRCA1 Normal 17/17 (100) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 1

Pure DCIS 70/70 (100) 0/70 (0) 0/70 (0) 0/70 (0) 0/70 (0) 0/70 (0) 0/70 (0) 2

Mixed DCIS 10/10 (100) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 0

CDH1 Normal 16/17 (94.1) 0/17 (0) 1/17 (5.9) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 1

Pure DCIS 62/69 (89.9) 0/69 (0) 5/69 (7.2) 2/69 (2.9) 0/69 (0) 0/69 (0) 2/69 (2.9) 3

Mixed DCIS 9/10 (90) 0/10 (0) 1/10 (10) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 0

CDH13 Normal 16/18 (88.9) 0/18 (0) 1/18 (5.6) 0/18 (0) 1/18 (5.6) 0/18 (0) 1/18 (5.6) 0

Pure DCIS 30/70 (42.9) 0/70 (0) 0/70 (0) 32/70 (45.7) 6/70 (8.6) 2/70 (2.9) 40/70 (57.1) 2

Mixed DCIS 6/10 (60) 1/10 (10) 0/10 (0) 2/10 (20) 0/10 (0) 1/10 (10) 3/10 (30) 0

FOXC1 Normal 16/17 (94.1) 0/17 (0) 1/17 (5.9) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 1

Pure DCIS 59/70 (84.3) 1/70 (1.4) 3/70 (4.3) 6/70 (8.6) 1/70 (1.4) 0/70 (0) 7/70 (10) 2

Mixed DCIS 7/10 (70) 1/10 (10) 0/10 (0) 1/10 (10) 1/10 (10) 0/10 (0) 2/10 (20) 0

GSTP1 Normal 15/16 (93.8) 0/16 (0) 1/16 (6.3) 0/16 (0) 0/16 (0) 0/16 (0) 0/16 (0) 2

Pure DCIS 30/70 (42.9) 4/70 (5.7) 1/70 (1.4) 10/70 (14.3) 7/70 (10) 18/70 (25.7) 35/70 (50) 2

Mixed DCIS 7/10 (70) 0/10 (0) 0/10 (0) 1/10 (10) 1/10 (10) 1/10 (10) 3/10 (30) 0

MAL Normal 14/15 (93.3) 0/15 (0) 1/15 (6.7) 0/15 (0) 0/15 (0) 0/15 (0) 0/15 (0) 3

Pure DCIS 31/69 (44.9) 5/69 (7.2) 1/69 (1.4) 32/69 (46.3) 0/69 (0) 0/69 (0) 32/69 (46.3) 3

Mixed DCIS 3/10 (30) 0/10 (0) 0/10 (0) 7/10 (70) 0/10 (0) 0/10 (0) 7/10 (70) 0

RARβ Normal 17/17 (100) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 0/17 (0) 1

Pure DCIS 43/71 (60.6) 0/71 (0) 1/71 (1.4) 1/71 (1.4) 16/71 (22.5) 10/71 (14.1) 27/71 (38.0) 1

Mixed DCIS 7/10 (70) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 3/10 (30) 3/10 (30) 0

RASSF1A Normal 15/18 (83.3) 1/18 (5.6) 2/18 (11.1) 0/18 (0) 0/18 (0) 0/18 (0) 0/18 (0) 0

Pure DCIS 6/70 (8.6) 0/70 (0) 2/70 (2.9) 0/70 (0) 32/70 (45.7) 30/70 (42.9) 62/70 (88.6) 2

Mixed DCIS 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 4/10 (40) 6/10 (60) 10/10 (100) 0

TWIST1 Normal 16/17 (94.1) 0/17 (0) 0/17 (0) 1/17 (5.9) 0/17 (0) 0/17 (0) 1/17 (5.9) 1

Pure DCIS 34/71 (47.9) 4/71 (5.6) 4/71 (5.6) 26/71 (36.6) 3/71 (4.2) 0/71 (0) 29/71 (41.4) 1

Mixed DCIS 6/10 (60) 0/10 (0) 0/10 (0) 3/10 (30) 0/10 (0) 1/10 (10) 4/10 (40) 0

WIF1 Normal 13/18 (72.2) 0/18 (0) 0/18 (0) 5/18 (27.8) 0/18 (0) 0/18 (0) 5/18 (27.8) 0

Pure DCIS 31/70 (44.3) 0/70 (0) 5/70 (7.1) 31/70 (44.3) 3/70 (4.3) 0/70 (0) 34/70 (48.6) 2

Mixed DCIS 4/10 (40) 0/10 (0) 1/10 (10) 3/10 (30) 2/10 (20) 0/10 (0) 5/10 (50) 0
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respectively). RASSF1A methylation was significantly
correlated with comedo-type necrosis (P = 0.018). None
of the other genes assessed showed an association
with nuclear grade or presence of comedo-type necrosis
(P >0.05). No association was found between methylation
of the genes in the panel and DCIS architectural pattern
(P >0.05) (Table 3).
APC, CDH13 and RARβ methylation was significantly
associated with ERα-negative DCIS (P = 0.017, P = 0.017
and P <0.001 respectively) and CDH13 and RARβ me-
thylation were also significantly associated with PgR-nega-
tive DCIS (P <0.001 and P = 0.001). HER2 amplification
in DCIS tumours was associated with methylation of
CDH13 (P = 0.009), and RARβ (P = 0.042). CDH13 and



Figure 1 Frequency of methylation of each gene by sample type. DCIS, ductal carcinoma in situ.
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RARβ methylation were also significantly associated with
intrinsic subtype of DCIS (P = 0.006 and P = 0.003 re-
spectively). None of the other genes assessed showed a sig-
nificant relationship with hormone receptor status, HER2
amplification, or intrinsic subtype (P >0.05) (Table 3).
Unsupervised hierarchical cluster analysis based on

methylation profile of this panel of genes demonstrated
four main groups (Figure 2). Cluster 1 samples had min-
imal methylation, cluster 2 samples were characterized
by RASSF1A methylation, cluster 3 showed APC, CDH13,
and GSTP1 methylation in addition to RASSF1A, and
cluster 4 samples were extensively methylated with the
addition of RARβ and WIF1 methylation. As expected, the
increasing methylation is reflected in the median AMI of
the clusters, the median AMI of clusters 1, 2, 3, and 4, be-
ing 0, 7.4, 14.5, and 17.2 respectively (P <0.001). Cluster-4
samples were significantly associated with high nuclear
grade, HER2 amplification, negative ERα status, negative
PR status, and non-luminal intrinsic subtype (P = 0.038,
P = 0.018, P <0.001, P = 0.001, and P <0.001, respect-
ively) compared with DCIS samples in the other clusters
(Additional file 6). Nuclear grade remained a distin-
guishing feature of the other clusters, with cluster 3
containing significantly more high nuclear grade sam-
ples compared with clusters 1 and 2 (P = 0.004), and
cluster 1 containing significantly more low-grade DCIS
samples compared with cluster 2 (P = 0.013) (Additional
file 6).

Discussion
In this study, we assessed methylation of a panel of
breast cancer-associated genes in a large cohort of DCIS
cases, and assessed the relationship of methylation with
clinicopathological features. As expected, methylation
was rarely present in adjacent morphologically normal
breast epithelium. Interestingly, CDH13, TWIST1, and
WIF1 were methylated in a small number of normal epi-
thelium samples. These were also methylated in the ad-
jacent DCIS in all but one case (WIF1 in sample S25).
Several of the normal samples had more than one meth-
ylated gene. This is consistent with the possibility that
methylation of these genes is an early change, and/or
possibly reflects a methylation field effect in DCIS,
which has been previously reported [34]. It would there-
fore be of interest to further compare methylation of
CDH13, TWIST1, and WIF1 in DCIS, normal epithelium
adjacent to DCIS, and normal epithelium from healthy
breast (such as the contralateral breast) in an independ-
ent cohort to determine whether methylation of these
genes observed in normal samples is a disease-related
event.
No significant difference was present between pure

DCIS and mixed DCIS samples. Although the absence
of a difference in methylation between pure and mixed
DCIS may reflect the small number of mixed DCIS sam-
ples in this cohort, it is likely that aberrant DNA methy-
lation is an early event in breast cancer progression,
with gradual accumulation of methylation changes from
epithelium of normal appearance to non-malignant epi-
thelial lesions to DCIS, while the transition from DCIS
to invasive carcinoma is less likely to rely on methyla-
tion, at least not for the genes studied here [5,7,9,35,36].
Of particular interest was the total absence of BRCA1

methylation in this cohort. Given a frequency of ap-
proximately 20% BRCA1 methylation in invasive carcin-
oma [37], this suggests that tumours driven by BRCA1



Table 3 Relationship between methylation and phenotypic features of digital carcinoma in situ

Methylated gene

APC BRCA1 CDH1 CDH13 FOXC1 GSTP1 MAL RARB RASSF1A TWIST1 WIF1

High nuclear grade 64.9% HG, 34.9%
non-HG P = 0.013

P = 1.000 P = 1.000 67.6% HG, 41.9%
non-HG P = 0.026

P = 0.073 P = 0.178 P = 1.000 P = 0.106 P = 0.275 P = 1.000 P = 0.116

Architectural pattern P = 0.620 P = 1.000 P = 0.907 P = 0.256 P = 0.596 P = 0.519 P = 0.399 P = 0.365 P = 0.254 P = 0.311 P = 0.402

Comedo necrosis P = 0.175 P = 1.000 P = 0.503 P = 0.500 P = 0.159 P = 0.498 P = 0.652 P = 1.000 100% CN, 82.6%
non-CN P = 0.018

P = 0.253 P = 0.824

ERα 41.5% ERα+, 75% ERα-
P = 0.017

P = 1.000 P = 0.481 47.2% ERα+, 80%
ERα- P = 0.017

P = 0.246 P = 0.794 P = 0.111 27.8% ERα+, 75%
ERα-P <0.001

P = 0.336 P = 0.604 P = 0.794

PgR P = 0.236 P = 1.000 P = 1.000 37.2% PgR+, 83.3%
PgR- P <0.001

P = 0.473 P = 1.000 P = 0.230 23.3% PgR+, 64.5%
PgR- P = 0.001

P = 1.000 P = 1.000 P = 0.346

HER2 P = 0.607 P = 1.000 P = 1.000 81.0% HER2, 46.2%
non-HER2 P = 0.009

P = 0.711 P = 0.302 P = 0.305 59.1% HER2, 32.7%
non-HER2 P = 0.042

P = 0.173 P = 0.446 P = 0.607

Intrinsic subtype P = 0.184 P = 1.000 P = 0.252 Basal 50%, HER2 81.0%,
Luminal 39.5%, Negative
85.7% P = 0.006

P = 0.136 P = 0.08 P = 0.368 Basal 100%, HER2 59.1%,
Luminal 23.3%, Negative
71.4% P = 0.003

P = 0.113 P = 0.597 P = 0.111

HG, high nuclear grade, CN, comedo necrosis. Detailed results of all analyses are tabulated in Additional file 6.
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Figure 2 Heat map generated from unsupervised hierarchical cluster analysis. The ductal carcinoma in situ samples can be separated into a
minimal methylation group (group 1) which also contains normal samples, a low methylation group (group 2), an intermediate group (group 3)
and a high methylation group (group 4). The average methylation (AMI) index of each sample is indicated in the histogram, the red line shows
the median AMI for each cluster.
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methylation either rarely pass through a DCIS phase or
have an exceedingly rapid transit through one, a notion
supported by observation that DCIS is rare in carriers
with BRCA1 germline mutations [38,39].
Cluster analysis based on methylation profile divided

our DCIS cohort into four groups, which were phenotyp-
ically distinguished by nuclear grade, and in particular, the
high-methylation cluster (cluster 4), being associated with
additional aggressive phenotypic features including nega-
tive hormone receptor status, HER2 amplification, and
non-luminal intrinsic subtype. Our results suggest that
methylation has a stronger role in the biology of certain
DCIS cases than others and perhaps differences in methy-
lation patterns could be used to classify DCIS cases in a
clinically significant way. Indeed, in invasive breast can-
cers, a breast CpG island methylator phenotype (B-CIMP)
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has been described and associated with clinical outcome
[40] and methylation profile has been shown to be related
to intrinsic subtype [41-43].
Methylation of APC, CDH13, RARβ and RASSF1A was

variably significantly associated with conventional ag-
gressive characteristics including high nuclear grade,
comedo necrosis, negative ERα status, negative PgR
status, HER2 amplification, and intrinsic subtype. The
association between methylation of these genes and
adverse phenotypic features in DCIS is in keeping with
the role of these genes as tumour suppressor genes.
APC is a component of the Wnt signaling pathway,
where it forms part of a protein complex leading to the
phosphorylation and degradation of β-catenin in the
absence of Wnt binding [44]. CDH13 negatively con-
trols tumour growth and invasiveness and promotes
tumour neovascularization [45], while RARβ is required
for the tumour suppressive effects of retinoids [46] and
RASSF1A, a key player in the Hippo tumour suppressor
pathway, has roles in cell cycle regulation, apoptosis and
microtubule stability [47]. Indeed, in invasive breast can-
cer, the presence of RARβ methylation in both tumour
and serum has been associated with poor disease-free and
overall survival [48,49], while the presence of RASSF1A
and APC methylation in pre-operative serum samples pre-
dicts for poorer overall survival [50,51], and APC methyla-
tion in breast cancer tissue is associated with reduced
time to recurrence [17]. Similarly, a recent meta-analysis
demonstrated a relationship between RASSF1A methyla-
tion and higher risk of relapse and poorer survival [52].
While CDH13 methylation has not yet been directly asso-
ciated with prognosis in breast cancer, CDH13 meth-
ylation has been associated with HER2 amplification [52]
and negative PgR status [15] in invasive breast carcinoma,
although the latter relationship was not confirmed in a
subsequent study by the same group [53].
Unfortunately, no long-term follow-up data are available

for the DCIS cases in our current study to determine
whether methylation is associated with outcome in patients
with DCIS. It would thus be of great interest to validate
the methylation status of these genes in a large independ-
ent series with long-term follow up, annotated for known
prognostic factors such as nuclear grade, margin status,
and adjuvant therapy, to investigate the relationship of
methylation with patient outcome.
When comparing our results with the data in the litera-

ture, we were unable to confirm the previously published
associations of RARβ [5,6], and CDH1 [6] methylation
with nuclear grade, higher FOXC1 [7,8], GSTP1 [7,8], and
RASSF1A [7,8] methylation levels with positive ERα status,
higher GSTP1 methylation levels with positive PgR status
[7], and higher RASSF1A methylation levels with HER2
amplification [8], although trends toward an association of
RARβ with nuclear grade, and RASSF1A with positive ERα
status and HER2 amplification were also seen in our
cohort (Additional file 6). These differences are likely to
be due to the use of different methodologies and study
populations. We have used a robust and reproducible
semiquantitative method of methylation analysis, whereas
the other studies have either used methylation-specific
assays [5,6] or fully quantitative methodologies, which
have been performed in an exceedingly small cohorts that
are likely to give rise to significant bias [7,8]. Furthermore,
our cohort consists of predominantly pure DCIS samples
whereas other studies generally have examined mixed
DCIS and invasive cancers [7,8].
Conclusions
In this study we have demonstrated a significant associ-
ation between methylated genes and known prognostic
features in DCIS with a candidate-gene panel approach. In
particular, this is the only study focused on pure DCIS that
has correlated methylation with intrinsic phenotype. We
report for the first time an association of CDH13 methyla-
tion with nuclear grade and hormone receptor status in
DCIS. We have also established a new classification me-
thod based on methylation load using multiple markers.
We have further shown that DNA methylation can be
assessed even with small quantities of degraded FFPE
DNA, enabling its use as a robust biomarker in DCIS. The
next step will therefore be to investigate the role of methy-
lation as a prognostic biomarker in a large independent co-
hort of pure DCIS cases with long-term follow up. It is
also likely that as with invasive carcinoma some methylated
genes may be of use as predictive biomarkers of hormonal
therapy [54], a further avenue of investigation that warrants
research effort.
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