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Genotypic Prediction of Co-receptor 
Tropism of HIV-1 Subtypes A and C
Mona Riemenschneider1, Kieran Y. Cashin2, Bettina Budeus3, Saleta Sierra4, Elham Shirvani-
Dastgerdi5, Saeed Bayanolhagh6, Rolf Kaiser4, Paul R. Gorry2,7 & Dominik Heider1,8

Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-
antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are 
mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. 
However, HIV-1 infections caused by subtype B only account for approximately 11% of infections 
worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage 
prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and 
subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to 
explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-
of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. 
Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 
loop region could be associated with co-receptor tropism, which might indicate a unique pattern that 
determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our 
study demonstrates that there is a need for the development of novel algorithms facilitating tropism 
prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients.

Human immunodeficiency virus type 1 (HIV-1) requires multiple steps to gain entry into CD4-expressing cells. 
The initial step comprises the binding of the gp120 subunit of the envelope protein complex (env) to the cell 
surface receptor CD4 of host cell membranes. For viral entry, the viral gp120 also needs to bind to one of the two 
secondary cell-surface co-receptors, namely CXCR4 or CCR5, to activate fusion of the virus and the host cell1. 
Depending on the usage of CXCR4 or CCR5 the isolates (viral samples) are called X4 or R5, respectively. Viruses 
with tropism for both co-receptors are called ‘dual-tropic’ or R5X4. The third hypervariable region (V3 loop) in 
the gp120 protein has been recognised as the major determinant for co-receptor tropism of the isolates2. However, 
further regions of HIV-1 gp120 outside of the V3 loop have also been linked to co-receptor tropism3,4.

The development of the entry inhibitor Maraviroc has made it feasible to prevent viral entry through specific 
binding to the CCR5 co-receptors on the host cells and therefore inhibiting further CCR5-virus interactions5. 
However, this drug is only effective in suppressing viral replication in patients harbouring R5 populations and is 
contraindicated in patients with circulating X4 and R5X4 viruses. Unfortunately, HIV-1 strains are able to switch 
their co-receptor usage: while patients at early infection stages harbour only R5 viruses as predominant isolates, 
in advanced stages of the disease X4 and R5X4 viruses emerge in approximately 50% of patients infected with 
subtype B viruses6,7. Thus, it is crucial to precisely predict co-receptor usage in patients before administering 
CCR5-blocking drugs8 to achieve an effective antiretroviral treatment. So far, two types of methodologies have 
been developed for assessing viral tropism: (i) in vitro phenotypic tests, which are cell-based, such as Trofile® 
(Monogram Biosciences), and (ii) in silico methods that are based on viral genotypic information. Although phe-
notypic tests of co-receptor tropism have a high sensitivity, they require specialised laboratories, are expensive 
and have a long turn-around time (2–3 weeks)9. Due to computational advances, in silico prediction methods 
have become relatively low-cost and more rapid alternatives.
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Most of the genotypic prediction models are based on sequence information of the viral V3 loop derived from 
plasma samples of the patients. One of the first tropism prediction approaches was the 11/25 rule, which asserts a 
virus as X4-tropic if amino acids at either positions 11 and 25 of the V3 loop, which is around 35 amino acids in 
length, are positively charged10. In recent years, more sophisticated models have been developed that outperform 
the 11/25 rule, e.g. support vector machines11, artificial neural networks12, structural models13 and position spe-
cific scoring matrices (PSSM)14. The most commonly used tools today are geno2pheno15 and WebPSSM14, which 
deliver high levels of sensitivity16. Nevertheless, the performance of computational models in tropism prediction 
of HIV-1 strongly depends on the database that has been used for algorithm development. Most of the models 
have been trained on V3 sequences derived from subtype B strains, thus it is questionable whether these models 
are reliable for predictions of non-B strains.

HIV can be separated into two species, namely HIV-1 and HIV-2. Both species are independently transferred 
from different primates to humans, whereas HIV-1 infections constitute around 90% of all infections worldwide17. 
In contrast to HIV-1, HIV-2 is less infective and less virulent. HIV-1 strains can further be separated into three 
major subgroups: M (main), O (Outlier, consisting of a small number of viruses from Cameroon) and N (non-M, 
non-O)17. The HIV-1 subtypes are defined based on their genetic diversity and on specific mutation patterns and 
recombinations18. The highest diversity can be found in the envelope protein, in particular within the glycopro-
tein 120 (gp120). The env gene encodes for the surface glycoprotein 120 and the transmembrane glycoprotein 41 
(gp41), which are involved in viral entering of host cells and in co-receptor usage19,20.

Overall, M is the major subgroup of HIV-1 comprising around 97% of HIV-1 infections, and further divided 
into subtypes: A, B, C, D, F, G, H, J, K and circulating recombinant forms (CRFs). CRFs represent recombination 
of distinct subtypes, for instance CRF02_AG describes a recombination between subtype A and G. The world’s 
most prevalent subtype is subtype C, accounting for around 48% of all HIV-1 infections, and is predominantly 
distributed in Sub-Saharan Africa and Central Asia. Subtype A and its CRFs constitute the second most prev-
alent group of around 25% and predominate in countries such as Tanzania, Kenya, Angola, Chad, Madagascar, 
Kazakhstan, Iran and Russia. Only around 11% of HIV-1 infections are caused by subtype B, which mainly 
spreads in developed regions such as Europe and North America.

In the current study, we evaluated the performances of state-of-the-art methods for tropism prediction of 
sequences derived from subtype A and C strains, namely T-CUP 2.021, geno2pheno[coreceptor]

15, PhenoSeq22, 
WebPSSM14 using all matrices, i.e. x4r5, sinsi and sinsi c, and the genotypic rules of Raymond et al.9 and 
Esbjörnsson et al.23, respectively. An overview of the applied algorithms is provided in Table 1. Furthermore, 
we analysed differences of sequence profiles of gp120 sequences from subtype A, B and C to discover functional 
relationships to entry phenotypes. This might offer new targets capable of inferring improved co-receptor usage 
prediction especially for subtype A.

Results and Discussion
In the current study, we evaluated the performances of V3 loop-based algorithms on non-B strains, i.e. subtype 
C and A including CRFs. As we found that current tools are not applicable to predict subtype A tropism, we 
subsequently checked whether different molecular mechanisms contribute to the co-receptor determination in 
subtype A compared to subtype B and C strains. By means of profiling subtype A gp120 sequences, we detected 
significant associations outside the V3 region that could contribute to co-receptor tropism in subtype A strains. 
The V2 region in the subtype A sequence profile shows a statistically higher association to tropism than the V3 
loop in contrast to subtype B and C strains. Furthermore, the development of random forest models solely trained 
on subtype A sequences, which generally work well on subtype B sequences, are not able to separate R5 and X4 
isolates. Thus, there is a strong indication that further mechanisms outside the V3 loop determine co-receptor 
tropism in subtype A strains and CRFs.

Overall, we used a dataset consisting of 56 sequences derived from X4-using viruses and 359 sequences from 
R5-tropic subtype C viruses. For subtype A 209X4 and 190 R5 sequences were used. Co-receptor usage predic-
tion was then conducted using three computational approaches with different design of algorithms: T-CUP 2.0, 
geno2pheno and PhenoSeq. Additionally, we applied the scoring matrices x4r5, sinsi and sinsi for subtype C of 
WebPSSM and the genotypic rules according to Raymond et al. and Esbjörnsson et al.

Comparison of prediction performances.  Table 2 shows performance results of the different algo-
rithms for subtype A and C. For subtype C, all methods achieved a specificity of more than 92%, with the rule of 
Raymond et al. showing the best performance (99.4%). Highest sensitivity was attained by PhenoSeq (91.38%). 
The accuracy of all approaches ranged from 91.17% to 98.09%, whereas the rule of Raymond et al. demonstrated 
the best overall performance.

For subtype A, high specificity values were obtained with all methods ranging from 93.94% (WebPSSM x4r5) 
to 99.49% (Esbjörnsson), except for WebPSSM sinsi C where the specificity was much lower (58.59%). However, 
sensitivity was heavily decreased in all methods compared to subtype C, with an overall performance resulting in 
sensitivity values lower than 20%. The highest sensitivity was achieved by WebPSSM sinsi C with 37.8%, never-
theless the specificity (58.59%) and accuracy (47.81%) were lower compared to the other approaches where the 
specificity and accuracy range from 93.94% to 99.49% and 53.56% to 55.39%, respectively. Notably, the recently 
developed PhenoSeq tool exhibited limited sensitivity (17.7%), specificity (94.74%) and accuracy (54.39%) 
for subtype A predictions, despite comprising a subtype A specific tropism test. As discussed here, and by the 
PhenoSeq authors22, additional sequence information within gp120 and/or gp41 is likely required to improve the 
performance of genotypic tropism tests that are specific for subtype A.

Albeit having accurate prediction performance in determining the tropism of HIV-1 subtype C, tropism 
prediction of co-receptor usage for subtype A sequences resulted in low accuracies by all methods (~54%). 
Remarkably, while R5-tropic subtype A viruses could be detected at a high rate, the detection of X4 or dual-tropic 
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isolates was less accurate. The DOR was found to be lower in subtype A predictions compared to subtype C pre-
dictions for all approaches.

Due to the low prediction accuracy for subtype A sequences, we tested whether the available tools show low 
predictive capacity because of missing training data or inappropriate design for subtype A strains. Therefore, 
we constructed random forest models to predict co-receptor usage of subtype A viruses incorporating 159 R5 
sequences and 36X4 sequences of V3 loop region. This dataset is a subset of the subtype A dataset (see Methods), 
with only one sequence per patient. For data representation, amino acids were encoded using hydrophobicity 
scores according to Kyte and Doolittle24, as this descriptor has been shown to achieve good predictive perfor-
mance in former classification tasks, e.g. as applied in T-CUP 2.0 on subtype B sequences. The resulting model 
achieved an AUC of 0.5765 +/−  0.0084, which is only slightly better than random guessing as assessed via 
permutation tests. Therefore, we tested whether different numerical representations would increase prediction 
performance for subtype A and applied all available descriptors from the AAindex database for encoding of 
sequences. The best working descriptor (Zimm-Brag parameter sigma25) achieved an AUC of 0.6467 + /−  0.0092, 
however the AUC was not significantly higher compared to the one obtained from the hydrophobicity descriptor 
(p =  0.09768). Figure 1 shows the ROC curve for the Zimm-Brag parameter sigma representation. However, the 
overall performance was still not comparable to the performance of the other models on subtype B and subtype C.  
Thus, we used a statistical analysis to identify features in gp120 that might have relevant impact on molecular 
mechanisms accounting for co-receptor tropism within the different subtypes.

Sequence profiling of gp120 sequences of strains A, B and C.  Sequence logos of X4 and R5 subtype 
A sequences were calculated and are shown in supplementary Figures 1 and 2. General differences in amino acid 
composition were observed predominantly at five positions: 5, 13, 15, 20 and 26. Sequence logos for subtype B 

Tool Prediction method Subtype

T-CUP 2.0
Uses structural information of the V3 loop by modelling the 
electrostatic potential and hydrophobicity; combination of 
results by stacking

subtype B (primarily) and C with 1351 
sequences (200X4 and 1151 R5)

Geno2pheno[coreceptor] Support vector machine for binary classification subtype B with 1100 sequences (769 R5, 
210X4, 131 R5X4) from 332 patients

PhenoSeq
Evaluation of HIV-1 V3 amino acid length, net amino acid 
charge, number of N-linked glycosylation sites and the 
frequency of site-specific amino acid alterations

A, A1, A2, B, C, D, CRF_01_AE, 
CRF02_AG

WebPSSM x4r5 Scoring matrices, reflecting the difference in abundance of a 
particular amino acid at a particular site subtype B

WebPSSM sinsi Scoring matrices, reflecting the difference in abundance of a 
particular amino acid at a particular site subtype B

WebPSSM sinsiC Scoring matrices, reflecting the difference in abundance of a 
particular amino acid at a particular site subtype C

Genotypic rule (Raymond et al.) 11/25 rule in combination with a net charge rule subtype C

Genotypic rule (Esbjörnsson 
et al.)

Rules based on Raymond et al. with modified cut-offs of the 
mean net charge and total count of charged amino acids subtype A

Table 1.   Overview of computational tools.

Subtype Method Sens Spec Acc PPV NPV FPR FDR F1 DOR

C

T-CUP 91.07 98.60 97.59 91.07 98.61 1.39 8.93 91.07 513

g2p 87.50 97.77 96.39 85.96 98.04 2.23 14.04 86.73 244

PhenoSeq 91.38 92.48 92.33 75.71 98.56 4.74 24.29 82.81 172

X4R5 75.00 94.49 91.89 67.74 96.08 5.51 32.26 71.19 47

SINSI 71.43 98.90 95.23 90.91 95.73 1.10 9.09 80.00 174

SINSI.C 89.29 91.46 91.17 61.73 98.22 8.54 38.27 72.99 76

Raymond 89.29 99.45 98.09 96.15 98.37 0.55 3.85 92.59 879

A

T-CUP 18.18 96.32 55.39 84.44 51.69 3.68 15.56 29.92 5

g2p 15.79 97.89 54.89 89.19 51.38 2.11 10.81 26.83 7

Phenoseq 17.70 94.74 54.39 78.72 51.14 5.26 21.28 28.91 4

X4R5 15.31 93.94 53.56 72.73 51.24 6.06 27.27 25.30 3

SINSI 11.54 97.98 53.69 85.71 51.32 2.02 14.29 20.34 5

SINSI.C 37.80 58.59 47.91 49.07 47.15 41.41 50.93 42.70 1

Raymond 11.00 98.48 53.56 88.46 51.18 1.52 11.54 19.57 6

Esbjörnsson 13.40 99.49 55.28 96.55 52.12 0.51 3.45 23.53 16

Table 2.   Prediction performance of co-receptor usage models. For subtype C each algorithm achieved a 
sensitivity of around 90%. Prediction performance for subtype A generally resulted in sensitivities lower than 20%.
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and subtype C sequences are shown in supplementary Figures 3–6. Moreover, we analysed which amino acid 
alterations in the sequences of gp120 (consisting of variable regions V1–V5 and constant segments C1–C5) of 
subtype A might have an impact on co-receptor tropism. Indeed, the importance of the V1/V2 region in the 
specificity of co-receptor usage has been documented already26–28. In the current study, we performed a multiple 
sequence alignment of subtype A-derived gp120 sequences to discover associations of amino acids with tropism 
at each alignment position using SeqFeatR. We observed five significantly different regions within gp120. The 
association plot is shown in Fig. 2. The most significant differences in amino acid composition could be observed 
for positions located in the V3 region, confirming V3 as the major tropism determinant. However, three regions 
outside V3 were detected with significant differences in sequence composition between X4- and R5-using strains, 
including the hypervariable region V2 (p <  0.0001), a region located close to V2, and a third region neighbouring 
V4 (see Fig. 3).

In order to compare these findings with subtype B and C, we also calculated multiple sequence alignments for 
gp120 sequences derived from subtype B and C and subsequently used the SeqfeatR package again to discover 
significant associations of amino acid composition. The association plots are shown in Fig. 4. Overall, the highest 
significant association was observed for both subtypes in the region of V3 (positions in the subtype C alignment 
at around 390, subtype B positions at around 440). The statistical significance in subtype B (p <  1.0 ×  10−10) and 
C (p <  1.0 ×  10−9) for the V3 region was much higher compared to subtype A (p <  1.0 ×  10−6). Interestingly, 
significant associations were identified around the V2 region in both subtypes; however, the strongest association 
signal was detected for the V2 region in subtype A. For subtype C a significant association was observed within 
the CD4-binding-loop.

Substitutions in gp120 regions outside the V3 loop and in gp41 have been shown to influence co-receptor 
usage4,29,30. It is known that V2 is a component of the co-receptor-binding site and mutations in this region may 
mediate R5-to-X4 switch in certain cases26. In addition, it has been shown that mutations in V3 are typically 
associated with tropism switch leading to viral lethality or decrease in viral fitness, unless they are compensated 
by mutations in the V1/V2 region28. The mechanism of this compensation is unknown but may be of a structural 
nature as the V1/V2 region of gp120 is thought to be located close to the trimer interface31. V2 loops physically 
interact with the V3 loops in the trimeric form of the Env spike to constitute 3D-conserved motifs. This 3D 
conservation assures the functionality of the Env spike and allows motif recognition by different cross-reacting 
antibodies32. There are no data regarding either the prevalence or the fitness effects of V1/V2 compensatory muta-
tions for any HIV-1 subtype, though this may be an explanation for the different frequency of tropism among 
subtypes, ranging from 30% for subtype C to 70–80% in subtype A23.

Conclusions
In our study, we demonstrated that currently available approaches for co-receptor usage prediction are not capa-
ble of determining co-receptor tropism of subtype A sequences. Admittedly, prediction algorithms work well on 
subtype B, on which they were developed, and also showed high prediction accuracy for subtype C. However, on 
subtype A and CRFs, the currently existing algorithms displayed low prediction performances with sensitivity less 
than 20%. Furthermore, we demonstrated that X4 and R5 viruses of subtype A could not be distinguished reliably 
by means of predictive models trained specifically on subtype A sequences.

Figure 1.  ROC-Curve of the best performing descriptor. The ROC-Curve with confidence intervals of the 
best performing descriptor on subtype A V3 sequences is shown. A random forest model was used to classify 
sequences as X4 vs. R5. The sequences were encoded with the Zimm-Brag parameter sigma.
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By analysing sequence composition of near full-length gp120 of subtype A, we found significant differences 
between X4 and R5 strains inside and outside the V3 region. This is in line with published findings, e.g. by 
Thielen et al.33, indicating the improving role of V2 domain incorporation in the function of tropism prediction 
algorithms and refers to further molecular mechanisms which are involved in co-receptor usage. However, this 
was only shown for subtype B so far. We have not been able to build predictive models for co-receptor tropism 
based on complete gp120 sequences due to the low number of available sequences with tropism information. 
Future approaches should include reliable phenotypic tropism determination and gp120 sequencing to permit 
the elaboration of models to explore the possible benefit of including additional gp120 regions in the tropism 
determination of non-B samples.

Overall, our study showed that there is a need for the development of novel algorithms facilitating tropism 
prediction of HIV-1 subtype A to improve effective antiretroviral treatment for HIV-1 infected patients, especially 
in low and middle income countries where such strains predominate. Further preprocessing of the sequence data, 
e.g. by using feature extraction methods34 could be used to improve prediction performance. Additional informa-
tion, such as sequence-derived information in combination with structural information35,36 of the V3 loop could 
also increase accuracy.

Figure 2.  Association plot of subtype A. On the x-axis alignment positions of gp120 region are shown, the 
y-axis represents the associated p-values based on SeqFeatR. Significant changes in amino acid composition 
between X4 and R5 sequences (p-value <  0.01) are marked with asterisks. The variable regions V1–V5 of gp120 
are drawn. The strongest associations were found in the V3 and V2 regions. Additionally, the region of V4 shows 
statistically significant associations to co-receptor tropism.

Figure 3.  Significant changes in subtype A sequences. Consensus sequences of V2, V3 and V4 are shown 
for subtype A. Significant changes of amino acid compositions that have been detected with SeqFeatR are 
highlighted in grey and marked with asterisks. The loops are shown in bold. The regions around V3 and V2 
show strongest statistical differences in amino acid composition.
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Methods
Data.  V3 loop sequences of HIV-1 with assigned subtypes C, A or CRFs were retrieved from the Los Alamos 
HIV sequence database (http://hiv-web.lanl.gov/) in March 2015. Sequences with ambiguities were removed. 
Additionally, we used nine subtype A and three subtype C V3 sequences that were collected at the Institute of 
Virology at the University of Cologne. Overall, 56X4-using viruses (28X4 and 28 R5X4), and 359 R5 viruses 
were used for subtype C analyses. We included a total of 190 R5 and 209X4-using viruses for subtype A (and 
CRFs) as follows: i) three X4 and 40 R5 sequences classified as subtype A, ii) five X4, five R5X4 and 58 R5 subtype 
A1 samples; iii) 11X4, 185 R5X4 and 88 R5 CRF02_AG samples; iv) one R5 of CRF11_cpx; and v) three R5 of 
CRF22_01A1. All of the CRFs have a V3 region originating from subtype A. Moreover, we collected full length 
gp120 sequences from subtype A (74 CCR5 and 11 CXCR4 sequences), B (254 CCR5 and 34 CXCR4 sequences) 
and C (168 CCR5 and 22 CXCR4 sequences) from the Los Alamos HIV sequence database.

Phylogenetic analysis of the samples.  To confirm the Los Alamos-assigned subtypes of our sequences, 
we performed a phylogenetic analysis. The multiple sequence alignment of V3 sequences was computed with 
MUSCLE37. The trees were calculated with SeaView 438 using Poisson distance and BioNJ, a distance based phy-
logeny tree-building algorithm. Gap sites were ignored and significance was estimated by bootstrapping with 100 
replicates.

Genotypic prediction.  For co-receptor usage prediction we compared the performance of the following 
tools: T-CUP 2.021, geno2pheno[coreceptor]

15, PhenoSeq22 and WebPSSM14. For geno2pheno[coreceptor] we used a false 
positive rate (FPR) cutoff of 5%, whereas T-CUP 2.0 and PhenoSeq were used with standard settings. WebPSSM 
was used with all available matrices: x4r5, sinsi and sinsi for subtype C. We further employed the genotypic rules 
of Raymond et al.9, as well as one rule proposed by Esbjörnsson et al.23 for subtype A with a cut-off of 5 for the 
mean net charge and a cut-off of 8 for the total count of charged amino acids.

Construction of random forest models.  Besides the application of existing approaches, we used the 
randomForest package39 in R to develop new classification models specifically for co-receptor tropism prediction 
of subtype A sequences. For data representation amino acid positions of V3 loop sequences were encoded with 
descriptors of the AAindex database40 and subsequently interpolated to a uniform length of 35 using the Interpol 
package41. Random forests were trained with a leave-one-patient-out cross-validation scheme repeated 10 times. 
Performances were measured by calculating the area under the receiver operating characteristic (ROC) curve 
(AUC).

Performance measures.  For the assessment of prediction performance of all prediction algorithms, we 
used common measures for classification tasks, whereas TP denotes the count of true positives, TN true negatives, 
FP false positives and FN false negatives. The measures are defined as following:

Figure 4.  Association plot of subtype B and subtype C. On the x-axis alignment positions of gp120 region 
are shown for subtype B (left) and C (right), the y-axis represents the associated p-values based on SeqFeatR. 
Significant differences in amino acid composition between X4 and R5 sequences can be observed at V3 region 
in both subtypes with the strongest signals. In addition, regions around V1, V2 and V5 show significant 
differences.

http://hiv-web.lanl.gov/
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=
+

Sensitivity TP
TP FN (1)

=
+

Specificity TN
TN FP (2)

=
+

Positive Predictive Value (PPV) TP
TP FP (3)

=
+

Negative Predictive Value (NPV) TN
TN FN (4)

=
+

False Discovery Rate FP
TP FP( ) (5)

= −False Positive Rate (FPR) Specificity1 (6)

=
+

+ + +
Accuracy (ACC) TP TN

TP TN FP FN (7)

=
+ +

F TP
TP FP FN

1 2
2 (8)

Further, we calculated the diagnostic odds ratio (DOR)42, which is a measure of the effectiveness of a diagnos-
tic test. In our case, the DOR of a model is defined as the ratio of the odds of a positive prediction (i.e. X4) in case 
of a looking at an X4 isolate compared to the odds of a positive prediction in case of a R5 isolate:

= =
−

−
DOR TP/FP

FN/TN
sensitivity specificity

sensitivity specificity
/(1 )

(1 )/ (9)

The DOR ranges from zero to infinity. Higher values indicate better test performances. As the DOR is not 
defined in cases where the denominator is 0, we added 1 to all values, and additionally, rounded the DOR to inte-
gers. Moreover, we performed permutation tests to evaluate the robustness of our models43,44.

Sequence analysis of gp120.  To analyse which amino acid alterations in the sequences of gp120 of subtype 
A may have an impact on co-receptor tropism, we downloaded all available subtype A gp120 sequences with tro-
pism information from the Los Alamos HIV Database (74 CCR5 and 11 CXCR4 sequences), calculated a multiple 
sequence alignment using MUSCLE, and subsequently used the R-package SeqFeatR45 to discover associations of 
amino acids with tropism at each alignment position. SeqFeatR constructs 2 ×  2 contingency tables with counts 
of the occurring combinations of tropism and amino acid for each position, and then executes Fisher’s exact tests 
to discover significant associations. We did the same for gp120 sequences derived from subtype B (254 CCR5 and 
34 CXCR4 sequences) and subtype C (168 CCR5 and 22 CXCR4 sequences). Sequence logos of V3 loop regions 
were created using WebLogo 346.
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