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Abstract T follicular helper cells (Tfh) are critical for the longevity and quality of antibody-

mediated protection against infection. Yet few signaling pathways have been identified to be

unique solely to Tfh development. ROQUIN is a post-transcriptional repressor of T cells, acting

through its ROQ domain to destabilize mRNA targets important for Th1, Th17, and Tfh biology.

Here, we report that ROQUIN has a paradoxical function on Tfh differentiation mediated by its

RING domain: mice with a T cell-specific deletion of the ROQUIN RING domain have unchanged

Th1, Th2, Th17, and Tregs during a T-dependent response but show a profoundly defective

antigen-specific Tfh compartment. ROQUIN RING signaling directly antagonized the catalytic a1

subunit of adenosine monophosphate-activated protein kinase (AMPK), a central stress-responsive

regulator of cellular metabolism and mTOR signaling, which is known to facilitate T-dependent

humoral immunity. We therefore unexpectedly uncover a ROQUIN–AMPK metabolic signaling

nexus essential for selectively promoting Tfh responses.

DOI:10.7554/eLife.08698.001

Introduction
High-affinity and long-lasting humoral immunity against infection requires controlled cross-talk

between limiting CD4+CXCR5highPD1highBCL6high T follicular helper (Tfh) cells and immunoglobulin-

maturing germinal center (GC) B cells in secondary lymphoid tissues (King et al., 2008; Victora and

Nussenzweig, 2012; Nutt and Tarlinton, 2011; Ramiscal and Vinuesa, 2013). As the GC largely

consists of clonally diverse B cells, Tfh cells especially in narrow numbers are best at maintaining a

selective pressure for B cell competition, favoring the survival of greater affinity antigen-responsive

GC B cell clones (Pratama and Vinuesa, 2014; Victora and Mesin, 2014). Deregulation of Tfh cells

can lead to faulty GC selection that may also seed the production of autoantibodies

(Weinstein et al., 2012; Vinuesa et al., 2005; Kim et al., 2015; Linterman et al., 2009) and GC-

derived malignancies such as follicular lymphoma (Rawal et al., 2013; Klein and Dalla-Favera,
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2008). To date, the signals that exclusively govern Tfh cell differentiation over other T cell effector

subsets remains poorly characterized.

ROQUIN (also called ROQUIN1; encoded by Rc3h1) acts to post-transcriptionally repress Tfh cells

by binding effector T cell transcripts via its winged-helix ROQ domain (Schuetz et al., 2014;

Tan et al., 2014; Schlundt et al., 2014) and recruiting proteins of the RNA decapping and deadeny-

lation machinery (Athanasopoulos et al., 2010; Glasmacher et al., 2010; Leppek et al., 2013;

Pratama et al., 2013; Yu et al., 2007; Vogel et al., 2013) as well as the endoribonuclease REG-

NASE-1 (Jeltsch et al., 2014). Some of its RNA targets include the Tfh-polarising Icos

(Glasmacher et al., 2010) and Il6 mRNA (Jeltsch et al., 2014) as well as Ox40 (Vogel et al., 2013)

and Tnf (Pratama et al., 2013) transcripts. In sanroque mice, an Rc3h1 missense point mutation,

encoding for a Met199 to Arg substitution translates into a minor conformational shift in the RNA-

binding ROQ domain (Srivastava et al., 2015) of ROQUIN and a loss of function in post-transcrip-

tional repression. This leads to excessive Tfh growth and systemic autoimmunity (Linterman et al.,

2009; Vinuesa et al., 2005). Complete ablation of ROQUIN results in unexplained perinatal lethality

in C57BL/6 mice and selective deletion of ROQUIN in T cells does not lead to Tfh cell accumulation

nor autoimmunity (Bertossi et al., 2011). The latter is at least in part explained by the existence of

the closely related family member ROQUIN2 (encoded by Rc3h2), which has overlapping functions

with ROQUIN (Pratama et al., 2013; Vogel et al., 2013). The ROQUINM199R mutant protein has

been proposed to act as a ‘niche-filling’ variant that has lost its RNA-regulating activity

(Pratama et al., 2013) but can still localize to mRNA-regulating cytoplasmic granules to prevent the

compensatory activity of ROQUIN2.

ROQUIN contains a conserved amino terminal RING finger with two conforming zinc-chelating

sites (Srivastava et al., 2015), despite an atypical aspartate as its eighth zinc ligand synonymous to

RBX1 (Kamura et al., 1999). This suggests ROQUIN may function as an E3 ubiquitin ligase

(Deshaies and Joazeiro, 2009) but, to date, no such enzymatic activity of the ROQUIN RING

domain has been demonstrated in mammals. In vivo attempts to delineate the cellular pathways reg-

ulated by ROQUIN are made challenging due to the existence of multiple protein domains in the

protein (Figure 1—figure supplement 1a). The Caenorhabditis elegans ROQUIN ortholog, RLE-1,

eLife digest The immune system protects the body from invading microbes like bacteria and

viruses. Upon recognizing the presence of these microbes, cells in the immune system are activated

to destroy the foreign threat and clear it from the body.

A type of immune cell called T follicular helper cells (or Tfh for short) are formed during an

infection and are essential for coordinating other immune cells to produce high-quality antibody

proteins that attack the microbes. Without Tfh cells, life-long production of these protective

antibodies is severely crippled, which can cause common variable immune deficiency and other

serious immunodeficiency diseases. On the other hand, the body must also avoid generating

excessive numbers of Tfh cells, which can lead to the production of antibodies that attack healthy

cells of the body.

ROQUIN is a protein that inhibits the formation of Tfh cells and other types of active T cells. A

region on the protein called the ROQ domain destabilizes particular molecules of ribonucleic acid

(RNA) that are required for these specialist T cells to form and work properly. ROQUIN belongs to a

large family of enzymes that have a so-called RING domain, which is a feature that enables these

enzymes to attach tags onto specific target proteins to modify their activity or stability. However, it

was not known whether the RING domain of ROQUIN was active.

Ramiscal et al. now address this question in mice. Unexpectedly, the experiments show that the

RING domain is required to promote the formation of Tfh cells, but not other types of active T cells.

This domain allows ROQUIN to repress an enzyme called AMPK, which normally blocks cell growth

by regulating cell metabolism. The findings suggest that the different roles of the ROQ and RING

domains allow ROQUIN to fine-tune the numbers of Tfh cells so that they remain within a safe

range. In the future, these findings may aid the development of vaccines that are more efficient at

generating protective Tfh cells to prevent infectious diseases.

DOI:10.7554/eLife.08698.002
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acts through its RING domain to ubiquitinate DAF-16, a pro-longevity forkhead box O (FOXO) tran-

scription factor homolog (Li et al., 2007). We did not find any evidence for molecular binding

between ROQUIN and the fruitfly or mammalian FOXO orthologs (Drosophila melanogaster FOXO

and Mus musculus FOXO1 or FOXO3a; data not shown) and therefore set out to understand the

role of ROQUIN RING signaling in CD4+ T cell development and function by generating mice that

selectively lack the ROQUIN RING zinc finger.

We previously demonstrated that ROQUIN RING-deleted T cells in mice 6 days after sheep red

blood cell (SRBC) immunization can form normal early Tfh cell responses but fail to promote optimal

GC B cell reactions (Pratama et al., 2013). Here, in mice that have developed robust Tfh-dependent

GC responses toward SRBC or infected with lymphocytic choriomeningitis virus (LCMV), we identify

a novel and unexpected role of the ROQUIN RING domain in selectively promoting mature antigen-

specific Tfh cell responses while leaving unaffected the development of other CD4+ effector T cell

lineages. ROQUIN directly binds to and limits adenosine monophosphate-activated protein kinase

(AMPK), a tumor suppressor and central regulator of T cell glucose uptake and glycolysis

(MacIver et al., 2011). Our data indicate that loss of AMPK repression by deletion of the ROQUIN

Figure 1. ROQUIN RING deletion in T cells preferentially controls Tfh cell formation. (a-f) Flow cytometric examination of mice d10 post-LCMV

infection. (a) Proportion of LY6C+ total Th1 cells from CD4+CD44high T cells. (b) Identification of total Tfh cells pre-gated on CD4+CD44 high T cells. (c)

Proportion of PD1highCXCR5high Tfh cells from CD4+CD44high T cells. (d) PD1highCXCR5highCD44 high Tfh cell numbers from spleen. (e) Proportion and (f)

cell count of GL7 highFAShigh GC B cells in spleen. Data are pooled from three independent experiments (n = 2–3). Statistics were calculated by

Student’s t-test, n.s., not significant; *p<0.05; **p<0.005. Dot symbols, individual mice; columns, median.

DOI: 10.7554/eLife.08698.003

The following figure supplements are available for Figure 1:

Figure supplement 1. Generation of mice with a ROQUIN RING deletion.

DOI: 10.7554/eLife.08698.004

Figure supplement 2. Phenotype of mice with a T cell-specific ROQUIN RING deletion.

DOI: 10.7554/eLife.08698.005

Figure supplement 3. Phenotype of SRBC-immunized mice with a T cell-specific ROQUIN RING deletion.

DOI: 10.7554/eLife.08698.006
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RING domain promotes stress granule persistence. This in turn cripples mTOR activity, otherwise

known to play a critical role in driving CD4+ effector T cell expansion (Delgoffe et al., 2009;

2011) and T-dependent antibody responses (Keating et al., 2013; Zhang et al., 2011;

Gigoux et al., 2014; De Bruyne et al., 2015).

Results

The ROQUIN RING domain selectively controls Tfh cell formation
To examine the function of the ROQUIN RING domain in vivo, we generated two strains of C57BL/6

mice carrying either a germline deletion (designated ringless; ‘rin’ allele) or a T cell conditional dele-

tion (Tringless; ‘Trin’ allele) of exon 2 in the Rc3h1 gene, which encodes the translation START codon

and RING finger domain of the ROQUIN protein (Figure 1—figure supplement 1b, c and

Pratama et al., 2013). In these mice, skipping of exon 2 resulted in splicing of exon 1 to exon 3

yielding an alternative in-frame Kozak translation initiation site at Met133 (Figure 1—figure supple-

ment 1d, e). This predicted ROQUIN133-1130 protein product specifically lacks the RING domain (Fig-

ure 1—figure supplement 1f). Mice homozygous for the rin allele were perinatally lethal

(Figure 1—figure supplement 1g–i), precluding T cell studies in intact animals. In contrast, Tringless

mice were viable and showed no severe variations in thymic development and output of CD4 single

positive T cells (Figure 1—figure supplement 2a–e). There were also no major changes in Th1 cell

differentiation in Tringless mice infected with LCMV (Figure 1a), which predominantly yields

LY6Chigh Th1 and LY6Clow Tfh virus-specific effector cells (Hale et al., 2013; Marshall et al., 2011).

In Tringless animals immunized with SRBCs, the formation of Th1, Th2, Th17, and regulatory T cells

also remained largely unperturbed (Figure 1—figure supplement 2f, g). This was mirrored in vitro

with Tringless CD4+ naive T cells activated under Th1, Th2, Th17, or induced Treg (iTreg) polarizing

conditions (Figure 1—figure supplement 2h) displaying maximal expression of intracellular TBET,

GATA3, RORgT, and FOXP3 comparable to floxed wild-type T cell cultures (Figure 1—figure sup-

plement 2i). Surprisingly in Tringless mice, there was an overall defective Tfh cell primary response

to LCMV infection (Figure 1b–d) and to SBRC immunization (Figure 1—figure supplement 3a).

ROQUIN RING-deficient T cells were also inefficient in supporting GC formation (Figure 1e, f and

Figure 1—figure supplement 3b), which was associated with reduced IL-21 production (Figure 2a),

a Tfh signature cytokine vital in supporting GC reactions (Liu and King, 2013).

By stimulating splenocytes ex vivo with GP61-80 peptide to identify virus-responsive IFNg-produc-

ing Th1 cells (Figure 2b) and by examining splenic LYC6high Th1 cells amongst GP66-77
+ tetramer

stained T cells (Figure 2c), we verified that ROQUIN RING loss did not disrupt protective Th1

responses but caused a severe abrogation of virus-specific Tfh cells during LCMV infection

(Figure 2d–f). Virus-specific T cells also showed significantly reduced expression of BCL6

(Figure 2g), an indispensible nuclear factor for Tfh cell terminal differentiation (Liu et al., 2013). Fur-

thermore, we found an increased frequency of FOXP3+ T follicular regulatory (Tfr) cells within the

total Tfh pool (Figure 2h) despite these Tfr cells not expressing a GP66-77 virus-specific T cell antigen

receptor (TCR; Figure 2i). Nonetheless, as Tfr cells are negative regulators of GC reactions

(Ramiscal and Vinuesa, 2013), their abundance may indicate augmented suppression of Tfh cells

and long-term B cell responses.

ROQUIN undergoes RING-dependent autoubiquitination and directly
limits AMPK activity
We next sought to determine the molecular basis for the ROQUIN RING domain as a determinant in

protective Tfh cell responses. Several lines of evidence implicated an involvement of ROQUIN in the

negative regulation of AMPK signaling: Rc3h1ringless fetuses displayed skeletal muscle atrophy of the

thoracic diaphragm (Figure 1—figure supplement 1j), which is a characteristic phenotype of mice

with overactive AMPK (Sanchez et al., 2012) and pointed to perinatal respiratory failure as the cause

of the lethality. Also, AMPK over-expression in nematode worms has been shown to extend lifespan

(Mair et al., 2011), an observation consistent with the phenotype of worms lacking the ROQUIN

ortholog RLE-1 (Li et al., 2007). Since the AMPKa1 catalytic subunit is expressed in T cells and

responds to TCR activation (Tamas et al., 2006), we tested the possibility of ROQUIN directly bind-

ing to this subunit of AMPK (encoded by Prkaa1). Upon ectopic expression in HEK293T cells,
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ROQUIN colocalized with AMPKa1 diffusely or in fine cytoplasmic speckles in resting cells and within

larger cytoplasmic granules upon induction of oxidative stress (Figure 3a). We also observed coloc-

alization of endogenous AMPKa1 within ROQUIN+ cytoplasmic granules in arsenite-treated primary

C57BL/6 mouse embryonic fibroblasts (MEFs) (Figure 3b) with the use of an AMPKa1-specific anti-

body displaying no cross-reactivity toward the AMPKa2 subunit when ectopically expressed in

HEK293T cells (Figure 3—figure supplement 1a). Unlike the AMPKa1 subunit, ectopically

expressed AMPK b and g regulatory subunits did not associate with ROQUIN+ cytoplasmic granules,

although AMPKg2 and AMPKg3 exhibited generally diffuse cytoplasmic distribution (Figure 3—

Figure 2. Functional competency of ROQUIN RING deleted Tfh cell responses. (a) Flow cytometric analysis of mice 8d after sheep red blood cell

(SRBC) immunization showing the proportion of IL-21+CD44high effectors from total CD4+ T cells in the spleen. Data are representative of two

independent experiments. (b-i) Flow cytometric examination of mice d10 post-lymphocytic choriomeningitis virus (LCMV) infection. (b) Proportion of

IFNg+ Th1 cells gated from total CD4+ T cells after GP61-80 peptide stimulation ex vivo. (c) Proportion of LY6C+ Th1 cells from virus-specific CD4+GP66-

77
+ T cells. (d) Identification of virus-specific Tfh cells pre-gated on CD4+GP66-77

+ T cells. (e) Proportion of PD1highCXCR5high Tfh cells from virus-specific

CD4+GP66-77
+ T cells. (f) Virus-specific CD4+PD1highCXCR5highGP66-77

+ Tfh cell numbers in spleen. (g) Representative histograms of BCL6 expression in

virus-specific CD4+GP66-77
+ T cells. Values included show median MFI for each genotype. (h) Proportion of FOXP3+ Tfr cells within the total

CD4+CD44highPD1highCXCR5high Tfh gate. (i) Proportion of FOXP3+ Tfr cells within the virus-specific CD4+GP66-77
+PD1highCXCR5high Tfh gate. Data are

pooled from three independent experiments (n = 2–3). Statistics were calculated by Student’s t-test, n.s., not significant; *p<0.05; **p<0.005; Dot

symbols, individual mice; columns, median.

DOI: 10.7554/eLife.08698.007

Ramiscal et al. eLife 2015;4:e08698. DOI: 10.7554/eLife.08698 5 of 22

Research article Cell biology Immunology

http://dx.doi.org/10.7554/eLife.08698.007
http://dx.doi.org/10.7554/eLife.08698


Figure 3. ROQUIN preferentially colocalizes and binds with the a1 subunit of AMPK. (a) Colocalization of V5-

ROQUIN and AMPKa1-GFP ectopically expressed in resting (top) and 1 mM arsenite (AS)-treated (bottom)

HEK293T cells. Representative of three independent experiments. (b) Colocalization of endogenous ROQUIN and

AMPKa1 in primary (mouse embryonic fibroblasts) MEFs post-arsenite (AS) treatment. Representative of three

independent experiments. (c) Proximity ligation assays (PLAs) performed on primary C57BL/6 MEFs showing

interactions between endogenously expressed ROQUIN and AMPKa1 in resting cells (ROQUIN:AMPKa1) and in

cells stressed with 1 mM arsenite (+AS, ROQUIN:AMPKa1). Negative control PLAs (GFP:AMPKa1) detecting non-

expressed GFP and endogenous AMPKa1 background are also displayed. Blue, DAPI stained nuclei; Red, ligation

events, Scale bar, 20 mm. Representative of three independent experiments. (d) Quantitative analysis of PLAs

showing mean ligation events per cell (nucleus) for each field of view on a confocal microscope. Individual dots

represent a single field of view; bar per column represents the sample mean. Statistics were calculated by one-way

ANOVA with Bonferroni’s multiple comparisons test after log transformation of ratio values, n.s., not significant;

Figure 3. continued on next page
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figure supplement 1b). We next determined if ROQUIN and AMPKa1 interacted by conducting in

situ proximity ligation assays (PLAs) on primary C57BL/6 MEFs. Compared to control PLAs account-

ing for false interactions between endogenous AMPKa1 and non-expressed green fluorescent pro-

tein (GFP) detected by optimized anti-GFP immunostaining (Figure 3—figure supplement 1c), we

found that endogenously expressed ROQUIN and AMPKa1 proteins localized with very close molec-

ular proximity in both resting and arsenite-stressed cells (Figure 3c, d) at a frequency 15-fold higher

or more than weak PLA interactions previously observed between ROQUIN and AGO2

(Srivastava et al., 2015). Moreover, we were able to coimmunoprecipitate ROQUIN and AMPKa1

when over-expressed in HEK293T cells (Figure 3—figure supplement 1d) or expressed endoge-

nously in the mouse T lymphoblast line EL4 cells (Figure 3e). Together with the PLAs, this indicated

that ROQUIN bound specifically with the a1 subunit of AMPK and that under physiological condi-

tions, the two proteins could form a stable complex.

To determine the functional consequence of a ROQUIN–AMPKa1 interaction, we measured

AMPK activity in Tringless and wild-type T cells. In contrast to wild-type cells, phosphorylation of the

AMPK target, acetyl CoA carboxylase (ACC) in ROQUIN RING-deficient CD4+ T cells was increased,

demonstrating constitutively active AMPK activity in vitro (Figure 4a) and in vivo (Figure 4b). Thus,

ROQUIN acts through its RING domain to directly negatively regulate AMPKa1 activity in T cells.

Given the important role of RING domains in driving protein substrate ubiquitination

(Deshaies and Joazeiro, 2009), we next tested if the regulation of AMPK activity by ROQUIN was a

result of RING-mediated AMPK ubiquitination. Absence of the ROQUIN RING domain did not alter

AMPK ubiquitination (data not shown). However, monoubiquitination of endogenous ROQUIN in

EL4 cells was detected (Figure 4c). To determine if ROQUIN monoubiquitination was dependent on

the 14.7 kDa RING finger deleted in ROQUIN RING deficient mice (Figure 4d), we tested if

ROQUIN could undergo automonoubiquitination in vitro and in a cell-based ubiquitin assay. By Coo-

massie staining PAGE-separated peptides of in vitro ubiquitination reactions, we detected a single

protein band having higher molecular weight relative to ROQUIN peptide that formed in the pres-

ence of wild-type ROQUIN1-484 and ubiquitin (Figure 4e). This slowly migrating band, consistent

with monoubiquitin attachment, formed at severely delayed times in the absence of the RING zinc

finger. A complete absence of this higher molecular weight ROQUIN peptide modification was

observed with in vitro reactions lacking ubiquitin protein. We also performed ubiquitination assays in

transfected HEK293T cells and detected ubiquitin-conjugated ROQUIN by immunoprecipitation

when full-length ROQUIN was over-expressed but not with expression of the ROQUIN133-1130 variant

recapitulating the specific RING deletion borne by Tringless T cells (Figure 4f). Together, our data

show that the ROQUIN RING domain can facilitate automonoubiquitination independent of residues

carboxy terminal to Asp484.

We next investigated the mechanism by which ROQUIN RING activity limits AMPK signaling.

Analogous to RAPTOR inactivation within stress granules (Thedieck et al., 2013; Wippich et al.,

2013), we hypothesized that ROQUIN localization and its ability to bind AMPK within stress granules

was key to AMPK repression. We have previously shown that ROQUIN133-1130 lacking the RING

domain did not coalesce with eIF3+ stress granules (Pratama et al., 2013). To exclude the possibility

that this mislocalization of RING-deficient ROQUIN was a product of over-active AMPK feedback,

we investigated if AMPK hyperactivity prevented ROQUIN localizing to stress granules. Full length

ROQUIN still colocalized with eIF3+ stress granules in the presence of the AMPK agonist, AICAR

(Figure 5a), which alone was ineffective at inducing stress granule formation (data not shown). This

indicates that ROQUIN133-1130 mislocalization is a direct consequence of an intrinsic lack of the RING

domain. To confirm that stress granule exclusion was not a secondary effect of a structurally unstable

ROQUIN1-132 deletion but rather a consequence of the loss of RING-mediated E3 ligase activity, a

Figure 3. Continued

***p<0.0005. (e) Reciprocal coimmunoprecipitation of ROQUIN and AMPKa1 endogenously expressed in EL4

cells. IB, immunoblot; IP, immunoprecipitated.

DOI: 10.7554/eLife.08698.008

The following figure supplements are available for Figure 3:

Figure supplement 1. Association of AMPK subunits with ROQUIN.

DOI: 10.7554/eLife.08698.009
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loss-of-function mutation of the first zinc-coordinating cysteine of the RING domain (Cys14Ala;

Figure 5b) that typically abolishes E3 ligase activity of related RING-containing enzymes

(Fang et al., 2001; 2000) was introduced into HEK293T cells. Although ROQUINC14A ectopic

expression could facilitate de novo stress granule induction in the absence of arsenite treatment

comparable to cells transfected with wild-type ROQUIN (Athanasopoulos et al., 2010), we found

that in response to arsenite exposure, ROQUINC14A localization to eIF3+ stress granules was signifi-

cantly impaired (Figure 5c). A deleted RING domain did not abrogate ROQUIN133-1130-AMPKa1

colocalization; the two proteins were detected in small aggregates most likely outside of stress gran-

ules (Figure 5d). This was consistent with RING deficient ROQUIN133-1130 protein still capable of

directly binding AMPKa1 (Figure 5e). Together these findings indicate that ROQUIN RING signaling

does not play a role in AMPK recruitment to ROQUIN but rather directs negative regulation of

Figure 4. The ROQUIN RING finger is required for autoubiquitination and negative regulation of AMPK. (a) In vitro kinase assay of AMPKa in isolated

CD4+ T cells during an anti-CD3 and -CD28 activation time-course. Data are pooled from two independent experiments and normalized to

unstimulated wild-type (n = 5). Black columns, floxed wild-type; white columns, Tringless. Statistics were calculated by Student’s t-test, *p<0.05. †p

<0.05 for wild-type at 10 min vs. wild-type at 0 and 5 min. columns, mean; error bars, s.e.m. (b) Phospho-blot of endogenous ACC Ser79 in resting CD4+

T cells. Representative of three independent experiments. IB, Immunoblot. (c) Ubiquitin immunobDot of endogenous ROQUIN immunoprecipated from

EL4 cells (d) Immunoblot of V5-tagged ROQUIN1-1130 and ROQUIN133-1130 in transfected HEK293T cells (left), endogenous ROQUIN in ringless primary

MEFs (center), immunoprecipitated ROQUIN in Tringless thymocytes (right). (e) In vitro autoubiquitination assay for ROQUIN wild-type peptide

(residues 1–484) and RING finger deleted peptide (residues 145–484). Five consecutive lanes show the extent of ROQUIN autoubiquitination of the

same in vitro reaction at 0, 1, 2, 4, and 16 h. (f) Cellular ubiquitination assay for full length V5-ROQUIN and RING-deleted V5-ROQUIN133-1130 ectopically

expressed in HEK293T cells with HA-Ub. Data are representative of three independent experiments. IB, immunoblot; IP, immunoprecipitated.

DOI: 10.7554/eLife.08698.010
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AMPKa1 through sequestration into stress granules following ROQUIN–AMPKa1 complex

formation.

ROQUIN RING loss results in stress granule longevity and dampened
mTOR
One possible downstream effector of ROQUIN–AMPK in Tfh cells is the mechanistic Target of Rapa-

mycin (mTOR), a nutrient sensing kinase and modulator of cellular metabolism. AMPK activity

directly suppresses mTORC1 signaling (Gwinn et al., 2008; Inoki et al., 2003), and deletion of

AMPKa1 increases mTORC1 signaling in T cells (MacIver et al., 2011). Although the role of mTOR

in promoting effector CD4+ and CD8+ T cell responses is well documented (Araki et al., 2011;

Chi, 2012), mTOR signaling in Tfh cell formation, and therefore antibody responses, is incompletely

understood. In this respect, we assessed mTOR function in Tringless CD4+ T cells in response to

TCR and CD28 stimulation. In CD4+ T cells, we found a reduction in phosphorylated ribosomal S6 in

the absence of ROQUIN RING, indicating diminished mTORC1 function (Figure 6a). This effect was

Figure 5. ROQUIN RING activity controls its localization to stress granules. (a) Colocalization of over-expressed full length V5-tagged ROQUIN or

ROQUIN133-1130 with endogenous eIF3 in HEK293T cells stressed with 1 mM arsenite (AS) for 1 hr with or without 2 mM AICAR. Scale bar, 50 mm. (b)

Crystal structure of ROQUIN peptide showing amino terminal residues 6 to 75 incorporating the RING domain. Black, zinc cation; green, zinc-

coordinating residue, red, zinc-coordinating Cys14 targeted for mutagenesis; yellow, zinc-chelating interaction. Data are based on structural coordinates

we had previously determined (Srivastava et al., 2015) and deposited in the Protein Data Bank, accession code 4TXA. (c) Colocalization of over-

expressed full length GFP-tagged ROQUIN or ROQUINC14A mutant with endogenous eIF3 in HEK293T cells stressed with 1 mM arsenite for 1 hr. (d)

Colocalization of ROQUIN133-1130 with AMPKa1 when over-expressed in HEK293T cells immediately after 1 mM arsenite exposure for 1 hr. (e) Reciprocal

coimmunoprecipitation of full length ROQUIN or ROQUIN133-1130 and AMPKa1 over-expressed in HEK293T cells. IB, immunoblot; IP,

immunoprecipitated.

DOI: 10.7554/eLife.08698.011
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mild in naive CD44low T cells but accentuated in CD44 high cells. Reflecting a role for ROQUIN RING

activity during early development, abated mTOR activity was also observed in ROQUIN RING

deleted primary MEFs by enhanced phosphorylation of RAPTOR Ser792 (Figure 6b), a target residue

for AMPK-mediated inhibition.

Figure 6. ROQUIN RING signaling regulates stress granule responses to promote mTOR. (a) Flow cytometric analysis of phospho-rS6 Ser235/236 in

CD44low or CD44high anti-CD3 and anti-CD28 stimulated CD4+ T cells (n = 4–6). (b) Phosphoblot of ACC Ser70 and RAPTOR Ser792 in primary mouse

embryonic fibroblasts (MEFs) recovered in complete DMEM for 3 hr after 1 hr of 1 mM arsenite treatment (left). Quantitative ratios of phosphorylated

RAPTOR to b-ACTIN input based in phosphoblot MFI readings (right). IB, immunoblot. (c-e) Analysis of stress granule induction in primary MEFs

analyzed by fluorescence microscopy after 1 hr of 1 mM arsenite stress treatment showing counts of eIF3+ granules per cell (c), and size of individual

eIF3+ granules in freshly arsenite-stressed primary MEFs based on area (d) and maximum feret (e). (f) Proportion of recovering primary MEFs exhibiting

cytoplasmic eIF3+ stress granules (SG) after arsenite-mediated stress (n >30 per time point, with each n replicate representing a single field of view

displaying 1–7 adherent cells). Columns, mean; error bars, s.d. (g) Representative micrographs displaying recovered primary MEFs at 3 hr post-arsenite

stress. Scale bar, 50 mm. Statistics were calculated by Student’s t-test, n.s., not significant; *p<0.05; ***p<0.0005. Data are representative of three

independent double blind experiments. (h) Proportion of primary MEFs with eIF3+ stress granules after 1 hr of 1 mM arsenite treatment comparing

wild-type and sanroque MEFs recovering in complete DMEM media. Data are representative of two independent experiments (n >30 per time point,

with each n replicate representing a single field of view displaying 1–6 adherent cells). Error bars, s.d. Statistics were calculated by Student’s t-test, n.s.,

not significant.

DOI: 10.7554/eLife.08698.012

The following figure supplements are available for Figure 6:

Figure supplement 1. Stress granule sequestration of RAPTOR.

DOI: 10.7554/eLife.08698.013

Figure supplement 2. AMPK controls stress granule formation and maintenance.

DOI: 10.7554/eLife.08698.014
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Stress granules are AMPK-dependent (Hofmann et al., 2012; Mahboubi et al., 2015) cyto-

plasmic compartments that sequester and inactivate mTORC1 during cellular stress (Thedieck et al.,

2013; Wippich et al., 2013). In primary MEFs, owing to their large cytoplasm and prominent stress

granules, we confirmed RAPTOR localization to eIF3+ stress granules in a wild-type and Roquinringless

background (Figure 6—figure supplement 1a, b). We also found that arsenite-induced stress gran-

ule formation was impeded by AMPK inhibition in MEFs treated with Compound C (Figure 6—fig-

ure supplement 2a). Therefore, we sought to determine if diminished mTOR signaling was

associated with augmented stress granule formation or maintenance in ROQUIN RING-deficient

cells. Analysis of arsenite-stressed primary MEFs by fluorescence microscopy revealed that loss of

ROQUIN RING signaling did not alter stress granule induction (Figure 6c–e) but rather prolonged

the rate of stress granule dissolution during stress recovery (Figure 6f, g). A similar delay in stress

granule recovery was mirrored in primary MEFs in which AMPK activity was raised upon treatment

with AICAR (Figure 6—figure supplement 2b). Conversely, in sanroque mutant primary MEFs

expressing a ROQUIN variant incapable of regulating target mRNAs, we found that stress granule

recovery post-arsenite treatment was comparable to wild-type MEFs (Figure 6h). Together, these

data suggest that the selective Tfh cell defect in Tringless mice may be a result of a disrupted

ROQUIN–AMPK signaling axis, otherwise important in relieving stress granule inhibition of mTOR.

Furthermore, ROQUIN RING-mediated stress granule subversion of mTOR activity appears to be

independent of the RNA repressive functions of the ROQUIN ROQ domain.

mTOR is required for optimal Tfh cell formation
To determine if attenuated mTOR is associated with defective Tfh cell responses as observed in

Tringless animals, we examined chino mice harboring a hypomorphic mutation (chi allele) in the

Frap1 gene resulting in an Ile205Ser substitution within the HEAT repeat domain of the mTOR pro-

tein (Figure 7a), the region dedicated to binding RAPTOR (Kim et al., 2002). Unlike the in utero

lethality observed in mice with complete mTOR deficiency (Gangloff et al., 2004; Murakami et al.,

2004), chino is a viable strain that exhibits growth retardation, intact thymocyte development and

output but reduced phosphorylation of ribosomal protein S6 in phorbol-12-myristate-13-acetate

treated peripheral CD4+ T cells (Daley et al., 2013). We confirmed suboptimal phosphorylation of

mTOR targets 4EBP1 and S6K in chino peripheral CD4+ T cells in response to physiological TCR acti-

vation with CD28 costimulation (Figure 7b). This was in contrast to significantly elevated FOXP3

expression. Thus, chino-mutant T cells represent a mild deficiency in mTOR signaling reminiscent of

a partial loss-of-function in mTOR (Zhang et al., 2011) that exclusively affects extrathymic CD4+ T

cell differentiation as seen in conditional T-cell-deleted Frap1 knockout mice (Delgoffe et al., 2009).

We immunized chino mice with SRBC, assessed the GC response 5 days later by flow cytometry and

found that Tfh cells were severely diminished compared to wild-type controls (Figure 7c). This corre-

sponded with a reduction in the GC B cell response (Figure 7d).

To determine if mTOR acts within Tfh cells, we constructed and immunized 50:50 mixed wild-

type:chino bone marrow chimeras with SRBC. At d7 post-immunization, we confirmed that the per-

centages of mTOR mutant PD1 highCXCR5 high Tfh cells were impaired compared to their competing

wild-type counterparts in the same mouse (Figure 7e). This was associated with reduced BCL6

expression intrinsic to mTOR mutant CD4+ T cells (Figure 7f). Our data therefore demonstrates that

Tfh cells depend on intact intracellular mTOR signaling and that the chino Tfh-intrinsic phenotype

closely mimics a defective ROQUIN RING deleted Tfh response. We therefore conclude that not

only does mTOR act in the same polarity as the ROQUIN RING domain during Tfh cell development,

but since mTOR signaling is a bone fide target of AMPK-directed inhibition (Gwinn et al., 2008;

Inoki et al., 2003) in CD4+ T cells (Zheng et al., 2009), it is most likely that mTOR represents a

molecular pathway between the ROQUIN–AMPK axis and the control of Tfh responses (Figure 7—

figure supplement 1).

Discussion
The critical signaling requirements specific to programming Tfh cell differentiation have been under

intense investigation in the past decade (King and Sprent, 2012; Rolf et al., 2010). ROQUIN, acting

through its ROQ and C3H domains, has previously been identified as a potent post-transcriptional

repressor of CD4+ Tfh cells (Glasmacher et al., 2010; Pratama et al., 2013; Vinuesa et al., 2005;
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Figure 7. mTOR signaling is required for optimal Tfh cell formation. (a) chino mutation causes a I205S substitution in the mTOR protein. (b) Flow

cytometric measurements of intracellular phospho-4EBP1 Thr37/46, phospho-S6K Thr389, and FOXP3 in CD4+ T cells stimulated with anti-CD3 and -CD28

for 30 min (n = 4–6). MFI, mean fluorescence intensity; column, group mean, error bars, s.d. (c, d) chino mutants were immunized with sheep red blood

cells (SRBC) and taken down 5 days later to analyze the proportion of PD1highCXCR5high Tfh cells from CD4+ T cells (c), and the proportion of

GL7highFAShigh GC B cells from B220+ B cells (d) in the spleen. Data are representative of three independent experiments. Statistics were calculated by

Student’s t-test, **p<0.005; ***p<0.0005. (e, f) Flow cytometric analysis 50:50 mixed LY5A wild-type:LY5B chino bone marrow chimeras d7 post-SRBC

immunization showing the proportion of PD1highCXCR5high Tfh cells (e), and expression of intracellular BCL6 (f) from the LY5A and LY5B CD4+B220� T

cells. Linked dot symbols, congenic cells from same animal; MFI, mean fluorescence intensity. Data are representative of two independent experiments.

Statistics were calculated by Paired Student’s t-test between congenically marked cells of the same animal, *p<0.05.

DOI: 10.7554/eLife.08698.015

Figure 7. continued on next page
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Vogel et al., 2013; Yu et al., 2007; Lee et al., 2012) but has also been shown to act similarly in lim-

iting Th1, Th17 cells and CD8+ effector T cells (Bertossi et al., 2011; Jeltsch et al., 2014;

Chang et al., 2012; Lee et al., 2012). In the present study, we highlight for the first time the cellular

function of the amino terminal ROQUIN RING finger and unexpectedly its importance as a positive

immunomodulator of peripheral Tfh cells exclusively. In response to SRBC immunization and also to

acute LCMV primary infection, mice lacking the ROQUIN RING domain in T cells failed to optimally

form mature Tfh cells that could support a robust GC response. Interestingly, Th1, Th2, Th17, and

Treg responses were comparable to wild-type controls in vivo and in vitro, depicting a functional

uncoupling between RING signaling and ROQ-C3H activity in ROQUIN. This is consistent with our

previous observations of ROQUIN RING-deficient T cells showing minimally altered expression of

ICOS, a target of post-transcriptional repression (Pratama et al., 2013). We show at the molecular

level, that the RING domain of ROQUIN is required to attenuate AMPK signals. In support of this

finding, adenosine metabolism has previously been linked to T-dependent antibody responses in

mice with observations that antigen-specific Tfh cells displayed constitutively high surface expression

of CD73, an ecto-enzyme that catabolizes extracellular AMP into adenosine (Iyer et al., 2013;

Conter et al., 2014). Taken together, it is possible that Tfh cells utilize a purinergic autocrine signal-

ing pathway similarly suggested in Treg cells (Deaglio et al., 2007; Sitkovsky, 2009), whereby

CD73-generated adenosine external to Tfh cells is imported through nucleoside transporters for

reversion back into cytoplasmic AMP by adenosine kinase, before ROQUIN RING-regulated activa-

tion of AMPK. Furthermore, since AMPK is an inhibitor of glycolysis and cellular growth

(Hardie et al., 2012; Mihaylova and Shaw, 2011), its activity in Tfh cells could facilitate BCL6 func-

tion, especially in transcriptionally dampening CD4+ T cell glycolysis (Oestreich et al., 2014) which

is otherwise important for cell growth (Jones and Thompson, 2007). This would form the basis for

why Tfh cell numbers are so tightly contained throughout a GC response, acting as a critical limiting

factor for controlling the magnitude and clonal diversity of GC reactions (Schwickert et al., 2011;

Victora and Nussenzweig, 2012; Rolf et al., 2010). At first glance, it may seem conflicting that

ROQUIN RING deficiency results in unrestrained AMPK leading to crippled BCL6 expression and Tfh

cell hypocellularity. However, intact ROQUIN RING signaling may be advantageous, if not critical in

Tfh responses, possibly acting to secure an intricate maximal threshold of AMPK activity that is key

to maintaining narrow Tfh numbers for effective GC clonal selection while allowing ample, but not

excessive, Tfh support to GCs.

We could not find any evidence that ROQUIN E3 ligase activity directly targets AMPK for proteo-

somal degradation. Instead, impaired autoubiquitination due to the absence of a functional RING

domain suggests that ROQUIN E3 ligase activity can negatively regulate AMPK independent of the

RNA regulatory functions of ROQUIN. Although AMPK b and g subunits have been shown to localize

to stress granules (Mahboubi et al., 2015), our results demonstrated an inability of the ectopically

expressed regulatory subunits to localize with ROQUIN+ stress granules in cells also overexpressing

ROQUIN, hinting at the requirement of a different cofactor for their recruitment to stress granules.

Given this and the present data demonstrating the ability of ROQUIN and AMPKa1 to bind each

other and colocalize within stress granules together with previous observations of stress granule

exclusion of RING-deficient ROQUIN (Pratama et al., 2013), we propose a model whereby ROQUIN

may be repressing AMPK activity via ubiquitin-dependent sequestration of the AMPKa1 subunit

within stress granules and thereby promoting repression of AMPK kinase activity. This stress gran-

ule-associated regulation of AMPK may not be exclusive to ROQUIN but could involve other binding

partners such as G3BP1, which has been shown to localize with AMPKa2 in stress granules

(Mahboubi et al., 2015). Interestingly, a direct interaction has also been observed between AMPKa

and G3BP1 (Behrends et al., 2010), an integral component of stress granules that associates with

ROQUIN (Glasmacher et al., 2010). Analogous to the T cell anergy-regulating RING-type E3 ubiqui-

tin ligases GRAIL and CBL-B that undergo autoubiquitination (Anandasabapathy et al., 2003;

Figure 7. Continued

The following figure supplements are available for Figure 7:

Figure supplement 1. Schematic representation of ROQUIN signaling in Tfh cell ontogeny Secondary structure of the ROQUIN protein depicting the

molecular function of its distinct domains in Tfh cells.

DOI: 10.7554/eLife.08698.016
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Levkowitz et al., 1999) as well as targeting various T cell signaling molecules for RING-mediated

ubiquitination (Nurieva et al., 2010; Su et al., 2006; 2009; Lineberry et al., 2008; Fang et al.,

2001; Fang and Liu, 2001; Jeon et al., 2004), it is likely that ROQUIN also ubiquitinates additional

proteins to coordinate Tfh cell immunity.

We found that ROQUIN RING deficiency results in intact thymic development and low phosphor-

ylation levels of ribosomal S6 in a subset of peripheral CD4+ T cells, which together resembles

closely chino mutant mice with impaired mTOR function (Daley et al., 2013). Our data points to

overactive AMPK as the link between the loss of ROQUIN RING activity and reduced mTOR signal-

ing. As AMPK activity has been shown to be transiently upregulated within 5–20 min of stress induc-

tion and to decline after the appearance of stress granules (Mahboubi et al., 2015), it is possible

that the subcellular sequestration of AMPK within stress granules may represent a regulatory circuit

breaker to interrupt the positive feed-forward loop that acts to shut down mTOR, mRNA translation

and cell growth in response to cellular stress, AMPK induction and stress granules formation.

Enhanced AMPK-mediated stress granule persistence leading to mTOR repression in the absence of

ROQUIN RING signaling aligns well with a report of dampened TOR activity in eukaryotic cells dur-

ing cellular stress by the transient shuttling of TOR into stress granules (Takahara and Maeda,

2012). In addition, Wippich et al. (2013) also found in HeLa cells having inactivated the stress gran-

ule inhibitory kinase DYRK3, that stress granule longevity was the key to prolonging mTOR

inhibition.

Since Rc3h1 appears to be ubiquitously expressed (Vinuesa et al., 2005), it is intriguing that the

Tringless allele preferentially affects Tfh cells of the GC and no other CD4+ T cell lineage. We found

in ROQUIN RING deleted CD4+ T cells that this may be a result, at least in part, of insufficient IL-21

cytokine production, which is otherwise required for optimal GC reactions and to a lesser degree,

Tfh cell maintenance (Zotos et al., 2010; Vogelzang et al., 2008; Linterman et al., 2010). IL-21

deficiency would also explain why a normal Tfh cell response with diminished GC B cells in Tringless

mice was detected early at d6 post-SRBC immunization (Pratama et al., 2013), but both mature GC

Tfh and B cell populations were crippled at d8 in the current study. Within Tfh cells, ROQUIN RING

activity may also be important for transducing stimuli downstream of a GC-specific receptor such as

PD1, which is uniquely found most highly expressed on the surface of Tfh cells in humans and mice

(Yu and Vinuesa, 2010; Kamphorst and Ahmed, 2013). In CD4+ T cells, ligation of PD1 couples

mTOR signals (Francisco et al., 2009) and also restricts cellular glycolysis (Patsoukis et al., 2015;

Parry et al., 2005) in a similar manner to AMPKa1 activity (MacIver et al., 2011; Michalek et al.,

2011). It remains unclear how ROQUIN RING activity links to Tfh cell environmental stimuli, but

there is evidence of ROQUIN phosphorylation by unknown kinases in human T cells (Mayya et al.,

2009).

Previously, we showed that the Rc3h1 ‘sanroque’ allele encodes a ROQUINM199R mutant protein

with a defective RNA-binding ROQ domain unable to repress ICOS. This, together with excessive

IFNg signaling causes aberrant accumulation of Tfh cells leading to unrestrained and pathogenic GC

growth (Lee et al., 2012; Yu et al., 2007). The accumulation of Tfh cells in sanroque animals

opposes the defective Tfh response of Tringless mice. We postulate that ROQUIN133-1130 represents

a complete loss of the AMPK-regulating functions with minimal disturbance to the RNA-regulating

function. This may explain why the phenotype of mice with a combined deletion of the RING

domains found in both ROQUIN and that of its closely related RC3H family member ROQUIN2

(Pratama et al., 2013) is less severe than the immune deregulation of Roquin/Roquin2 double

knockout mice (Vogel et al., 2013). We have previously shown that ROQUIN2 can compensate for

the RNA-regulating function of ROQUIN, both repressing overlapping mRNA targets

(Pratama et al., 2013). By contrast, the sanroque ROQUINM199R mutated protein that can still local-

ize to stress granules and bind RNA (Athanasopoulos et al., 2010) is likely to represent a recessive

‘niche-filling’ variant that selectively inactivates the normal mRNA-regulating function of ROQUIN

but preserves its assembly into the mRNA decapping complex, preventing compensatory substitu-

tion by ROQUIN2 (Pratama et al., 2013). It is also likely that ROQUINM199R protein found in sanro-

que T cells retains RING finger activity to negatively regulate AMPK and promote Tfh cell

development, which is compounded by the increased stability of T cell mRNAs that exacerbate Tfh

accumulation and trigger autoimmunity. Indeed in mice, T cell AMPK activity has been shown to play

a protective role in autoimmune models of rheumatoid arthritis and multiple sclerosis (Nath et al.,

2009; Son et al., 2014).
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As a downstream target of AMPK metabolic signaling, mTOR is well known to orchestrate T cell

effector differentiation and peripheral tolerance (Chi, 2012; Araki et al., 2011). As such, deregula-

tion of mTOR can facilitate T-dependent autoimmune disorders like systemic lupus erythematosus

(Koga et al., 2014; Fernandez et al., 2006; Kato and Perl, 2014) and multiple sclerosis

(Delgoffe et al., 2011; Esposito et al., 2010). Although active mTOR signaling in Tfh cells has been

documented (Gigoux et al., 2014), the specific role mTOR has in Tfh cell responses remains largely

uncharacterized (Araki et al., 2011). Our data indicate that mTOR can act in concert with and down-

stream of ROQUIN RING signaling to support optimal Tfh cell formation. Susceptible to both

ROQUIN-controlled AMPK repression and stress granule sequestration, mTOR regulation is thus

integral to Tfh cell responses. Multiple studies are also in line with this model. Similar to our findings

of impaired IL-21 synthesis in mTOR-attenuated Tringless CD4+ T cells, a report on Frap1 knockout

T cells cultured in vitro also displayed reduced expression of IL-21 (Delgoffe et al., 2009). More-

over, low expression and secretion of IL-21 was observed in rapamycin-treated human CD4+ T cells

polarised toward the Tfh cell lineage ex vivo (De Bruyne et al., 2015). Also in mice with reduced

mTOR, T-dependent B cell proliferation, isotype switching, GC formation and antigen-specific anti-

body responses were significantly crippled (Zhang et al., 2011; Keating et al., 2013). Additional in

vivo studies, however, are required to dissect the downstream signals transduced by mTOR that

orchestrate Tfh immune responses. Thorough investigation of these and similar metabolic pathways

including AMPK-dependent cellular bioenergetics within Tfh cells and in other GC T cell subsets

(Ramiscal and Vinuesa, 2013) is not only warranted but also may advance current strategies for vac-

cine design or reveal novel therapeutic interventions for antibody-mediated immune disorders.

Materials and methods

Mice
ROQUIN RING deleted mice (Pratama, et al., 2013) were generated by Ozgene, Australia; loxP

sites that flanked or ‘floxed’ Rc3h1 exon 2, encoding the START codon and RING motif (Figure 1—

figure supplement 1), were inserted into C57BL/6 mouse embryonic stem (ES) cells via homologous

recombination . Recombinant ES cell clones were implanted into C57BL/6 foster mothers. Heterozy-

gote progeny were screened for germline transmission before crossing to Rosa26:Flp1 mice to

remove the neo cassette. Mice harboring the floxed Rc3h1 allele (Rc3h1lox/+) were then crossed to

Rosa26:Cre knock-in mice for one generation. Removal of Cre expression was then achieved by a

C57BL/6 backcross yielding a germline deletion of Rc3h1 exon 2. This strain was named ringless (rin

allele). A conditional ROQUIN RING-deficient strain (called Tringless) was also generated by crossing

Rc3h1lox/lox mice to Lck:Cre breeders to remove Rc3h1 exon 2 specifically in T lymphocytes (Trin

allele). Upon Cre-mediated excision of Rc3h1 exon 2, rescue of in-frame protein synthesis at Met133

is expected to produce an E3 ligase defective ROQUIN mutant. Rosa26:Cre and Lck:Cre mice were

maintained on a C57BL/6 background with one copy of the Cre transgene and provided by Ozgene,

Australia. ENU-derived chino mutants were previously characterized (Daley et al., 2013). To gener-

ate mixed bone marrow chimeric mice, recipient Rag1-/- mice were sublethally irradiated and recon-

stituted i.v. with 2 x 106 bone marrow hematopoietic stem cells.

Animal experiments were approved by the Animal Experimentation Ethics Committee of the Aus-

tralian National University (Protocols J. IG.71.08, A2012/05 and A2012/53) and the McGill University

Ethics Committee (Protocol 7259). Mice were maintained in a specific germ-free environment. Where

indicated, 8 to 12 wo mice were immunized i.p. with 2 x 109 SRBC to generate a T-dependent GC

response or i.p. with 2 x 105 PFU of LCMV Armstrong.

Molecular reagents
The following antibodies were used in Western blots, immunoprecipitation assays and fluorescence

microscopy: rabbit anti-phospho-ACC Ser79 (Cat. 3661, Cell Signaling), rabbit phospho-RAPTOR

Ser792 (Cat. 2083, Cell Signaling), rabbit anti- b-ACTIN (13E5, Cell Signaling), rabbit anti-AMPKa

(Cat. ab32047, Abcam, UK), goat anti-eIF3 (N-20, Santa Cruz), mouse anti-GFP (7.1 and 13.1, Roche),

rabbit anti-GFP (Cat. ab290, Abcam), mouse anti-HA (HA-7, Sigma-Aldrich), rabbit anti-HA (H6908,

Sigma-Aldrich), rabbit anti-RAPTOR (24C12, Cell Signaling), rabbit anti-ROQUIN (Cat. A300-514A,

Bethyl Laboratories), mouse anti-UBIQUITIN (P4D1, Cell Signaling), mouse anti-V5 (V5-10, Sigma-
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Aldrich), rabbit anti-V5 (Cat. V8137, Sigma- Aldrich), mouse anti-rabbit IgG light chain (211-032-171,

Jackson ImmunoResearch), and goat anti-mouse IgG light chain (155-035-174, Jackson ImmunoRe-

search). AICAR (Calbiochem) and Compound C (Calbiochem) were used according to manufacturers’

recommendations at indicated concentrations. N-terminal V5 tagged full length ROQUIN and

ROQUIN133-1130 constructs have been previously described (Pratama et al., 2013). C-terminal GFP

fused ROQUIN and ROQUINC14A constructs have previously been described

(Athanasopoulos et al., 2010). GFP tagged constructs of AMPK subunits were obtained from Ori-

gene. HEK293T and EL4 cells were obtained from the ATCC and perpetuated in-house. Primary

MEFs were harvested from E14 fetuses of rin/+ or san/+ pregnant females that were paired with rin/

+ or san/+ males, respectively, as part of a timed mating.

T cell stimulation, flow cytometry, and immunofluorescence
Where indicated in vitro stimulation of T cells was performed using anti-CD3 and anti-CD28 dual

coated Dynabeads (Invitrogen) or for cytokine accumulation, phorbol myristate acetate (Sigma-

Aldrich), and ionomycin (Sigma-Aldrich) was used with GolgiStop (BD Biosciences) in RPMI 1640

medium (Invitrogen) supplemented with 2 mM l-glutamine (Invitrogen), 100 U penicillin-streptomycin

(Invitrogen), 0.1 mM non-essential amino acids (Invitrogen), 100 mM HEPES (Sigma-Aldrich), 0.0055

mM 2-mercaptoethanol, and 10% FCS. 20 ng/mL IL-2 (R&D Systems), 100 ng/mL IL-4 (Miltenyi Bio-

tec), 100 ng/mL IL-6 (Peprotech), 20 ng/mL IL-12 (Miltenyi Biotec), 1 ng/mL TGFb (R&D Systems),

along with 1mg/mL of Biolegend antibodies anti-IL-4, anti-IFNg and/or anti-IL-12 were used for in

vitro polarization of (IL-2) Th0, (IL-2, IL-12, and anti-IL-4) Th1, (IL-2, IL-4, anti-IFNg , and anti-IL-12)

Th2, (IL-2, IL-6, TGFb, anti-IL-4, and anti-IFNg ) Th17, and (IL-2 and TGFb) iTreg cultures. To stain sur-

face markers, cells were washed and stained in ice-cold staining buffer (2% FCS, 0.1% NaN3 in PBS).

eBioscience FOXP3 Staining Buffer Set was used for flow cytometric detection of intracellular pro-

teins. Data were acquired by a LSRII Flow Cytometer using FACSDiva software. MEFs and HEK293T

cells were prepared for fluorescence microscopy as previously described (Athanasopoulos et al.,

2010). Images were collected using an Olympus IX71 microscope with DP Controller software

(Olympus).

AMPK kinase assay in CD4+ T cells
CD4+ T cells were isolated from floxed wild-type or Tringless mice by MACS Microbead separation

(Miltenyi Biotec). AMPK activity was measured from AMPK complexes immunoprecipitated from cell

lysates using anti-AMPKa antibody (Abcam) as previously described (Chen et al., 2003). Detection

of ACC Ser79 phosphorylation levels was also used to measure AMPK allosteric activity.

Immunoprecipitation and Western blotting
Whole-cell lysates were prepared using TNE lysis buffer (1% NP40, 150 mM NaCl, 20 mM Tris-base,

1 mM EDTA and Roche cOmplete EDTA-free protease inhibitory cocktail tablets all dissolved in

water). PhosSTOP (Roche) was added to the TNE mix for the detection of phospho-residues. To

immunoprecipitate proteins, antibody was added to pre-cleared lysates and mixed with Protein G

Sepharose 4 Fast Flow (GE Healthcare) for 12 hr then washed. For western blotting, lysates were

separated by SDS-PAGE, transferred to nitrocellulose membrane, blocked in 5% BSA Tris-buffered

saline containing 0.05% Tween-20, probed with primary antibodies and detected with horseradish

peroxidase-conjugated anti-rabbit or anti-mouse secondary antibodies.

Proximity ligation assays
MEFs were seeded on coverslips and prepared as described previously (Srivastava et al., 2015). To

induce cellular stress, 1 mM arsenite was added to cultures for 1 hr. Stains with primary antibodies

were carried out using optimized conditions overnight at 4˚C in a humid chamber. The primary anti-

bodies were goat anit-AMPKa1, clone C20 (Santa Cruz) at 1:75 ; with either rabbit anti-ROQUIN at

1:75 (Cat. NB100-655, Novus Biologicals) or rabbit anti-GFP 1:1000 (Cat. ab6556, Abcam, UK).

Images were taken on a Leica SP5 confocal microscope with a pin hole of 67.9 mm and an APO CS

1.25 UV x40 oil objective. Higher magnification images presented in Figure 3c were taken on a Leica

SP5 confocal microscope with a pin-hole of 95.5 mm and an HCxPL APO lambda blue x63/1.4 oil

objective.
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In vitro autoubiquitination assays
Mouse UBCH5A (E2) was expressed as a GST-fusion protein and purified using standard protocols.

ROQUIN constructs were also expressed as GST-fusion proteins using standard procedures except

that 0.1 mM Zn-acetate was added to the growth media and all purification buffers. Human E1 (His6
tagged) was purchased from Biomol International. Bovine UBIQUITIN was purchased from Sigma-

Aldrich. Ubiquitination assays were performed in 20 ml in 20 mM Tris-HCl, 50 mM NaCl, 2 mM

MgCl2, 1 mM ATP, 0.1 mM DTT at 25oC. Reactions were stopped by the addition of 2x SDS PAGE

loading buffer and heating at 95oC for 5 min and analyzed by SDS-PAGE and Coomassie Blue stain-

ing. Typically reactions contained 0.1 mM E1, 10 mM E2, 50 mM UBIQUITIN, and 0.5 mg/mL

ROQUIN peptide.

In silico analysis
Statistics were calculated using Prism 5.0a software (GraphPad). Stress granule morphology and

PLAs were assessed by ImageJ 1.46r software (NIH).
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