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p53-upregulated-modulator-
of-apoptosis (PUMA) deficiency 
affects food intake but does not 
impact on body weight or glucose 
homeostasis in diet-induced 
obesity.
Sara A. Litwak1, Kim Loh1, William J. Stanley1,2, Evan G. Pappas1,2, Jibran A. Wali1,2, 
Claudia Selck1, Andreas Strasser3,4, Helen E. Thomas1,2 & Esteban N. Gurzov1,2

BCL-2 proteins have been implicated in the control of glucose homeostasis and metabolism in different 
cell types. Thus, the aim of this study was to determine the role of the pro-apoptotic BH3-only protein, 
p53-upregulated-modulator-of-apoptosis (PUMA), in metabolic changes mediated by diet-induced 
obesity, using PUMA deficient mice. At 10 weeks of age, knockout and wild type mice either continued 
consuming a low fat chow diet (6% fat), or were fed with a high fat diet (23% fat) for 14–17 weeks. 
We measured body composition, glucose and insulin tolerance, insulin response in peripheral tissues, 
energy expenditure, oxygen consumption, and respiratory exchange ratio in vivo. All these parameters 
were indistinguishable between wild type and knockout mice on chow diet and were modified equally 
by diet-induced obesity. Interestingly, we observed decreased food intake and ambulatory capacity 
of PUMA knockout mice on high fat diet. This was associated with increased adipocyte size and fasted 
leptin concentration in the blood. Our findings suggest that although PUMA is dispensable for glucose 
homeostasis in lean and obese mice, it can affect leptin levels and food intake during obesity.

The prevalence of obesity is increasing at an alarming rate worldwide1. It is a major cause of morbidity and mor-
tality and is estimated to account for ~10% of healthcare costs in developed nations2. According to the world 
health organization (http://www.who.int), there are ~1.9 billion overweight adults [Body mass index (BMI) 
> 25 kg/m2] worldwide of whom more than 600 million are obese (BMI> 30 kg/m2). Obesity is a major risk factor 
for the development of insulin resistance that can lead to type 2 diabetes and severe complications such as cardi-
ovascular disease, blindness and renal failure. It is clear that a diet rich in saturated fats and a sedentary lifestyle 
result in obesity3,4. However, the molecular pathways affected and proteins involved in the different tissues during 
fat accumulation and body weight gain are not well characterised2.

The BCL-2 family of proteins are regulators of the intrinsic apoptotic pathway5. There are three groups of pro-
teins in the BCL-2 family: the pro-survival proteins (BCL-2, BCL-XL, MCL-1, BCL-W, A1/BFL1), the multi-BH 
domain pro-apoptotic proteins (BAX, BAK, BOK) and the pro-apoptotic BCL-2 homology 3 (BH3)-only pro-
teins (BID, BIM, BAD, BMF, NOXA, DP5, BLK, and p53-upregulated-modulator-of-apoptosis (PUMA))6. 
The BH3-only proteins trigger apoptosis either by directly activating BAX/BAK or indirectly by binding to the 
pro-survival BCL-2 proteins thereby preventing their restraint of pro-apoptotic BAX/BAK.

We have previously demonstrated that the BH3-only protein PUMA is activated in pancreatic β -cells after 
exposure to saturated free fatty acids, high glucose concentrations, certain cytokines or chemical endoplasmic 
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reticulum (ER) stressors, leading to the activation of BAX and β -cell death in vitro7–10. Deficiency of PUMA 
prevents BAX activation, mitochondrial cytochrome c release and caspase-3 cleavage in these settings, protecting 
β -cells from apoptosis. In addition, PUMA contributes to β -cell apoptosis in high fat fed Pdx1-deficient mice11. 
In hepatocytes, saturated free fatty acids induce cell death through BIM and PUMA upregulation12. Moreover, 
hepatosteatosis and hepatocellular carcinoma in liver-specific STAT5 knockout mice is associated with down-
regulation of BIM and PUMA13. Finally, BCL-2 proteins have been reported to regulate cell death in adipocytes 
during the development of obesity14,15.

Recent evidence suggests that BCL-2 proteins not only control apoptosis induction, but can also play an 
important role in glucose homeostasis and metabolism. For example, Bcl-XL overexpression decreases pancreatic 
β -cell insulin secretion16. This may be due to the fact that BCL-XL causes survival of aged β -cells with lesser secre-
tory capacity. In addition, phosphorylation of the BH3-only protein BAD might activate glucokinase to control 
insulin release and hepatic gluconeogenesis in mice17,18. Moreover, BCL-2 proteins have been reported to regulate 
glucose metabolism through the pentose phosphate pathway19, mitochondrial activity20 or Ca2+ trafficking21.

While it is well accepted that in vitro PUMA has a role in apoptosis induction in cell types involved in metab-
olism, including β -cells and hepatocytes, its role in metabolism in vivo is unclear. It is also unknown whether, 
through its role as an apoptosis initiator, PUMA may affect the control of glucose homeostasis and metabolism in 
the development of obesity and insulin resistance. In the present work, we provide evidence that loss of PUMA 
influences circulating leptin levels and food intake but has no impact on glucose homeostasis in diet-induced 
obesity.

Materials and Methods
Mice.  Mice were maintained at St. Vincent’s Institute animal care facility on a 12 h light-dark cycle in a tem-
perature-controlled room and obtained food and water ad libitum. PUMA knockout mice were generated on 
a C57BL/6 background as previously described22. Male mice were kept on regular chow (20% protein, 6% fat 
and 3.2% crude fibre) or placed at 10 weeks of age on a high fat diet (SF04-027 Speciality Feeds, Perth, Western 
Australia) for 14–17 weeks. The nutritional composition of the high fat diet was 18.4% protein, 23.5% fat and 4.7% 
crude fibre. In this diet, 46% of total energy is from lipids, 20% of total energy from protein and the remainder 
from carbohydrates.

At the conclusion of the experiment, mice were euthanized by cervical dislocation and organs were obtained 
and their weight recorded. Tissues were snap frozen for Western Blot and real time RT-PCR analysis or formalin 
fixed for histological analysis. To examine insulin signalling, a subset of fasting animals were injected intraperito-
neally (i.p.) with human insulin (0.65 mU/g, Actrapid, Novo Nordisk, Denmank) 10 min before organ retrieval.

All animal studies were conducted at St Vincent’s Institute (Melbourne, Australia) following the guidelines 
of the Institutional Animal Ethics Committee. Animal ethics was approved by the St Vincent’s Hospital Animal 
Ethics Committee and the experiments were carried out in accordance with the approved guidelines.

Culture and in vitro treatment of mouse islets.  Mouse islets were isolated using Collagenase P (Roche, 
Basel, Switzerland) and Histopaque-1077 density gradients (Sigma, St Louis, MO, USA) as previously described10. 
Islets were washed, hand-picked and cultured overnight at 37 °C in 5% CO2 in CMRL medium-1066 (Invitrogen) 
supplemented with 100 U/ml penicillin, 100 μg/mL streptomycin, 2 mmol/L glutamine and 10% FCS (JRH 
Biosciences, Lenexa, KS, USA).

Histology analysis.  Liver and adipose tissue (gonadal fat pads) were isolated from PUMA knockout or wild 
type male mice after 17 weeks of high fat feeding. The same region of the liver and fat pad was used for all animals 
to minimize variation. The samples were fixed in formalin, embedded in paraffin, cut into 5 μm sections, and 
stained with haematoxylin and eosin.

After 16 weeks of high fat feeding, PUMA knockout and wild type animals received a single injection of 
recombinant murine leptin (0.2 μg/g; Peprotech, Rocky Hill, NJ, USA) and after 30 min they were anesthetized 
and their brains perfused with saline and then 4% paraformaldehyde. Brains were postfixed in 4% PFA, then 
placed in 30% sucrose overnight and cut at 30 μm on a cryostat. Subsequently, immunohistochemistry was per-
formed using antibodies against p-STAT3 (Cell Signaling, Danvers, MA). The numbers of p-STAT3-positive neu-
rons in the arcuate nucleus within a constant and defined frame were counted using ImageJ software (National 
Institutes of Health).

Real-time RT- PCR.  RNA was extracted from liver and gonadal fat pads and prepared using the NucleoSpin 
RNA XS kit (Macherey Nagel, Düren, Germany). First-strand cDNA was prepared from 600 ng RNA using the 
High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). cDNA was diluted 
(1:20) and real-time PCR was performed using the Roche LightCycler®  480 Instrument II (Corbett Research; 
Qiagen, Hilden, Germany) and the TaqMan PCR Master Mix (AmpliTaq Gold with GeneAmp kit; Applied 
Biosystems) in 20 μL reaction volumes. Data analyses were performed with the ddCT method using β -actin or 
18S rRNA as an internal control. Results are represented as fold induction compared to control. TaqMan gene 
expression probes for mouse gluconeogenic, lipogenic and inflammatory genes (Applied Biosystems) are pro-
vided in Supp. Table 1.

Western blot.  Muscle, liver and white adipose tissue (gonadal) were lysed using RIPA buffer and total pro-
teins were extracted and resolved by SDS-PAGE, transferred onto a nitrocellulose membrane and immunoblotted 
with anti-p-AKT, anti-AKT, anti-BCL2 and anti-BIM (Cell Signaling) antibodies23. The intensity values for the 
protein bands were corrected by the values of the housekeeping protein β -actin (Santa Cruz Biotechnology, CA) 
or α -tubulin (Sigma, St Louis, MO, USA) used as loading controls.
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Glucose, insulin and leptin tolerance test.  Intraperitoneal glucose tolerance tests (ipGTT) were 
performed after a 6 h fast (2 g/kg dextrose) after 16 weeks on the chow and high fat fed groups as previously 
described23. Tail-knick blood samples were taken and glucose concentration measured with a standard glucome-
ter (Accu-Check Performa, Roche) at 0, 30, 90 and 120 min after injection.

At week 17 on high fat or chow diet, insulin tolerance test was performed after a 4 h fast by administering 
human recombinant insulin (0.65 mU/g) and blood samples obtained and measured as above. Area under the 
curve was calculated using Graph Prism.

After 14 weeks on high fat diet, PUMA knockout and wild type mice received two injections (9 am and 5 pm)  
of recombinant murine leptin (2 μg/g body weight; Peprotech) and body weights and daily food intake were meas-
ured during 24 h after the injection.

Indirect calorimetry measurements.  Energy expenditure (EE), respiratory exchange ratio (RER), activ-
ity and food intake were assessed using a Comprehensive Lab Animal Monitoring System (CLAMS, Columbus 
Instruments, USA) after 14–15 weeks on the diet. Body weights were recorded before and after the testing. Mice 
were acclimatized for 24 h and then monitored for 48 h. The CLAMS is fitted with indirect open circuit calorim-
etry, activity monitors and scales for food measurements. EE and RER (VCO2/VO2) were calculated from the gas 
exchange data. Data was averaged for 2 dark and light cycles.

Insulin and Leptin measurements.  Blood samples of overnight fasted or fed mice were taken, serum pre-
pared and frozen at − 80 °C until use. Serum leptin concentrations were determined using a commercial ELISA 
kit (EZML-82K, Millipore) following manufacturer’s instructions. The glucose-stimulated-insulin-secretion assay 
was performed as previously described24.

Statistical analysis.  Comparisons between groups were made by Student’s t test or by ANOVA followed by 
Bonferroni correction. A p value < 0.05 was considered statistically significant.

Results & Discussion
PUMA deficiency does not affect body weight gain in high fat diet fed mice.  To investigate the 
impact of PUMA deficiency on body weight changes under obesogenic conditions, we high fat fed PUMA knock-
out and wild type control animals for 14 weeks. On a regular chow diet, the weight change of PUMA knockout 
animals was similar to the controls. Male mice on a high fat diet gained on average significantly more body 
weight that the chow diet as previously reported23. However, total body mass gain did not differ between groups 
(Fig. 1A), in agreement with a previous study11.

Next, we compared metabolic tissue weights after chow or high fat feeding. There were no differences in the 
mass values of adipose tissue, liver, gastrocnemius muscle and pancreas tissue between the PUMA knockout and 
wild type mice (Fig. 1B; Supp. Fig. 1A). The lack of any effect of PUMA deficiency on total body weight gain under 
regular or high fat feeding suggests a limited impact of this pro-apoptotic molecule in body weight regulation.

Blood glucose levels, glucose and insulin tolerance tests and insulin signalling were not 
affected by PUMA deficiency.  PUMA is implicated in apoptosis of β -cells and hepatocytes in conditions 
of stress that may be experienced in obesity and diabetes, such as high concentrations of circulating fatty acids 
and/or glucose, and therefore its deficiency may be expected to result in improved metabolism after high fat feed-
ing. In addition, certain BCL-2 family members have been reported to regulate glucose homeostasis. We meas-
ured blood glucose levels in 6 h fasted wild type and PUMA knockout mice after 13 weeks on a high fat diet. There 
was no change in basal blood glucose levels in mice lacking PUMA compared to those observed in control mice 
(Supp. Fig. 1B). In addition, glucose-stimulated insulin secretion was not affected in isolated PUMA-deficient 
pancreatic islets (Supp. Fig. 1C).

To assess glucose clearance rates, we performed an i.p. glucose tolerance test. In contrast to mice on a regular 
chow diet, mice that were on a high fat diet presented a delayed glucose absorbance curve suggesting glucose 
intolerance. PUMA-deficient mice responded similarly to control mice to the glucose challenge on a chow and 
high fat diet (Fig. 1C). These results are reflected in the analysis of the area under the curve (AUC) that shows 
significantly increased values in high fat diet fed mice compared to chow diet fed animals but no differences 
were detected between the PUMA knockout and wild type animals. Our results reveal that loss of PUMA has no 
impact on insulin secretion and blood glucose clearance.

To assess the impact of PUMA deficiency on the insulin response, we performed an insulin tolerance test. No 
significant differences between PUMA knockout and wild type mice were found in glucose level reduction after 
an i.p. injection of insulin (Fig. 1D).

Next, we studied histology sections and performed gene expression analysis in liver samples from PUMA 
knockout and wild type mice. As expected, diet-induced obesity triggered fat accumulation in the liver (steatosis) 
(Supp. Fig. 2A). However, obesity-induced hepatic steatosis was similar between PUMA deficient and wild type 
mice as assessed by histology (Supp. Fig. 2A). Moreover, no significant differences were observed in gluconeo-
genic ( g6p, pepck), lipogenic (scd1, ppar-γ, aac1) and inflammatory (mcp-1, il-6) gene expression levels in the liver 
samples (Supp. Fig. 2B).

To extend our finding that loss of PUMA does not affect whole body glucose homeostasis, we examined 
insulin receptor signalling in relevant tissues. We measured phosphorylation of AKT in different tissues obtained 
from high fat fed wild type and PUMA knockout mice exposed to a bolus of insulin. We found a significant 
increase in the levels of p-AKT in comparison to tissues derived from vehicle-administered animals. However, 
the level of the response to insulin in liver, muscle and gonadal white adipose tissue of mice lacking PUMA was 
comparable to that observed in the tissues from wild type controls (Fig. 2A–C). These results reveal that loss of 
PUMA has no impact on the molecular response to insulin in the liver, white adipose tissue and muscle.
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PUMA deficiency decreases food intake and ambulatory capacity in diet-induced obese 
mice.  To evaluate if the absence of PUMA exerts any effect in the whole body metabolic capacity, we meas-
ured oxygen consumption, respiratory exchange rate and energy expenditure in chow and high fat fed mice. All 
these metabolic parameters measured were no different between the PUMA knockout and wild type groups 
(Fig. 3A–J). Interestingly, we observed that in spite of an equal weight gain between wild type and PUMA knock-
out mice, the chow fed PUMA deficient animals had decreased ambulatory capacity (Fig. 3E) and a trend towards 
reduced food intake compared to controls (Fig. 3D). These effects were exacerbated under high fat diet conditions 

Figure 1.  PUMA deficiency does not affect body weight, glucose or insulin tolerance in mice. (A) 10 week-
old PUMA knockout and wild type male mice were high fat fed for 14 weeks or maintained on a chow diet and 
body weights determined at the times indicated. (B) Body composition (gonadal white adipose tissue (WAT), 
liver, gastrocnemius muscle and pancreas relative weights) was determined 17 weeks after high fat feeding.  
(C) Glucose tolerance tests (2 mg glucose/g body weight; i.p.) were conducted after 16 weeks of high fat or chow 
feeding and the areas under the curve (AUC) calculated. (D) PUMA deficient and wild type mice after 17 weeks 
of high fat or chow feeding were subjected to insulin tolerance tests (0.5 mU/g insulin; A.U.C. determined). 
*p <  0.05, **p <  0.01, ***p <  0.001.
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(Fig. 3I,J). The reduced food intake by PUMA knockout mice was probably compensatory to the decreased ambu-
latory capacity to maintain normal energy expenditure.

PUMA deficiency increases adipocyte size and fasted leptin levels in high fat fed mice but leptin 
signalling remains unaffected.  Food intake is under control of the hormone leptin, which is a synthesized 
by adipocytes and acts on the hypothalamus to induce satiety25. To directly examine leptin sensitivity, we admin-
istered recombinant leptin in the mornings and evenings to a cohort of mice fed a high fat diet for 14 weeks and 
measured body weights and food intake daily before and after the leptin challenge. We observed reduced food 

Figure 2.  No differences in liver, muscle and adipose tissue insulin sensitivity between high fat fed 
PUMA knockout and wild type mice. 10 week-old PUMA knockout and wild type male mice were chow-
fed or high fat fed for 16 weeks, fasted for 6 h and then injected with PBS or insulin (0.65 mU insulin/g body 
weight, 10 min). Livers (A), muscle (B) and abdominal white adipose tissue (C) extracted and processed for 
immunoblotting with the indicated antibodies. The gels have been run under the same experimental conditions 
and cropped to show protein bands corresponding to p-AKT, AKT, actin or tubulin as indicated. *p <  0.05, 
**p <  0.01, ***p <  0.001.
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intake in PUMA deficient mice compared to the control animals (Fig. 4A). As expected, leptin administration 
decreased food intake and body weight in wild type mice. We observed a trend to a reduced impact of leptin on 
body weight and food intake in the PUMA deficient mice, but this difference was not significant (Fig. 4A).

In the arcuate nucleus of the hypothalamus, leptin acts on anorexigenic, pro-opiomelanocortin (POMC) 
and orexigenic neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-expressing neurons to decrease food 
intake25. Leptin signals by binding to the leptin receptor (LepRb) to activate the JAK-STAT signalling pathway. 
We therefore measured STAT3 phosphorylation and activation in neuronal cells after leptin treatment in fasted 

Figure 3.  PUMA deficiency decreases food intake and ambulatory capacity in high fat fed mice. Ten-week-
old male wild type and PUMA knockout mice were fed a chow (A–E) or high fat diet (F–J) for 14–15 weeks. 
Oxygen consumption (VO2; A,F), respiratory exchange ratios (RER =  VO2/VCO2; B,G), energy expenditure 
(C,H), daily food intake (D,I) and ambulatory activity (E,J) were assessed during the light and dark cycles for 2 
consecutive days. *p <  0.05, **p <  0.01, ***p <  0.001.
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Figure 4.  Leptin sensitivity, adipocyte size and leptin levels in high fat fed PUMA knockout and wild type 
mice. (A) 10 week old PUMA knockout and wild type male mice were high fat fed for 14 weeks. Leptin was 
administered i.p. in the morning and evening and body weight and food intake monitored before and after the 
treatment. (B) 16 week high fat fed mice were fasted for 18 h and injected with saline or leptin and hypothalami 
extracted and processed for immunohistochemistry with anti-p-STAT3 antibodies. Nuclei positively stained 
for phosphorylated (i.e. activated) STAT3 in the arcuate nucleus (ArcN) region were counted in serial sections. 
**p <  0.01. (C) Representative haematoxylin and eosin staining of abdominal adipose tissue from 14-week 
high fat fed PUMA knockout and wild type male mice. Adipocyte area was measured in equal tissue sites from 
PUMA knockout or wild type mice and averaged values are shown. **p <  0.01. Scale bar is 100 μm. (D) Fed and 
fasted leptin concentration in serum from high fat fed PUMA deficient and wild type mice. *p <  0.05. (E) Leptin 
mRNA expression in white adipose tissue from fasted high fat fed PUMA deficient and wild type mice. The 
housekeeping gene 18S rRNA was used as normalization control. ***p <  0.001.
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mice. The high fat fed PUMA knockout and wild type mice showed similar levels of STAT3 activation in the arcu-
ate nucleus, indicating that loss of PUMA has no impact on neuronal leptin signaling (Fig. 4B).

Leptin is mainly produced by adipocytes. We therefore investigated whether decreased food intake in PUMA 
deficient mice is associated with adipocyte dysfunction. Histologic examination of gonadal white adipose tissue 
demonstrated that PUMA deficiency increased adipocyte size (Fig. 4C), indicating hypertrophy. This observa-
tion was confirmed by quantitative determination of adipocyte diameter by an image analysis system showing an 
increase in average adipocyte area in high fat fed PUMA knockout mice compared to their wild type counterparts 
(Fig. 4C). It is well known that leptin secretion is directly correlated with adipocyte size26,27. Accordingly, we 
observed increased serum leptin levels in fasted PUMA-deficient mice compared with controls (Fig. 4D). This 
result was confirmed by measuring the leptin mRNA expression levels in white adipose tissue (Fig. 4E). Increased 
leptin in the PUMA knockout mice is consistent with the decrease food intake observed in these animals.

To determine if PUMA deletion affects the protein expression of the BH3-only protein BIM, we performed a 
Western blot analysis in white adipose tissue from high fat fed mice. As shown in Supp. Fig. 3A, PUMA deletion 
did not change BCL2 or BIM protein expression. Deletion of BH3-only proteins can impact on the immune 
cells28. Thus, we measured IL-1β , IL-6, MCP-1 and IFN-γ  expression by qPCR and found decreased levels of 
IL-1β , IL-6 and MCP-1 in white adipose tissue from PUMA knockout mice (Supp. Fig. 3B), suggesting reduced 
inflammation.

Obesity induces an enlargement of adipose tissue to store excess energy intake29. Adipocyte hypertrophy 
(increase in cell size) and hyperplasia (increase in cell number) are the mechanisms of fat growth29. Hypertrophy 
occurs prior to hyperplasia to meet the need for additional fat storage capacity in the progression of obesity29. 
Apoptosis of adipocytes is an early event and was reported to affect the development of obesity14,30. It has been 
shown that BCL-2 family members, including PUMA, are involved in this process14,15. Indeed, the expression of 
the pro-survival protein BCL-2 in adipocytes negatively correlates with BMI15. It is conceivable that defects in 
apoptosis, such as loss of PUMA, allow an abnormal increase in adipocyte size. However, the mechanisms that 
regulate adipocyte death and expansion are still poorly understood. Thus, further experiments are required to 
assess the specific roles of the different BCL-2 family members in adipocyte survival and apoptosis and how this 
may impact on their size and the regulation of leptin secretion. It is notable that adipocyte hypertrophy in high fat 
fed PUMA deficient mice was not associated with changes in body weight or fat pad mass. This can be explained 
by previous studies showing that adipocyte size and BMI cannot be adjusted by a linear regression31,32.

The PUMA knockout mice showed decreased food intake compared to the wild type control mice. It is reason-
able to think that a pair-fed wild type group would show reduced body weights, resulting in differences in glucose 
and insulin responsiveness. Indeed, there is a trend toward higher AUC in the ITT assay and lower p-AKT activ-
ity in the high fat fed PUMA knockout mice. Pair feeding will lead to reduced calorie intake and the wild type 
animals will be calorie restricted (CR). CR is an unsustainable and unviable therapeutic intervention for the vast 
majority of humans with free access to a wide range of foods33.

There are some caveats to our study. We have analysed the impact of PUMA loss on metabolism in mice lack-
ing this pro-apoptotic protein globally. It is therefore not yet established whether PUMA loss has a direct effect in 
adipocytes and on leptin secretion, or on the immune system affecting fat cells28. Thus, tissue specific knockout 
mouse models will be required34 to specifically address the contribution of loss of PUMA to adipoyte hypertro-
phy and leptin secretion. It is also posible that compensatory effects mediated by a lack of PUMA expression 
(involving the activity of BCL-2 proteins other than BCL-2 and BIM in white adipose tissue) may impact on the 
phenotype we observed35. Another limitation of our study is that the high fat diet protocol was for 14–17 weeks 
and may not have been sufficient to highlight long-term changes between the groups. However, this diet increased 
body weight and induced glucose intolerance as well as insulin resistance. Thus, we are confident that our study 
appropriately addresses the effects of PUMA deficiency on diet-induced obesity.

Collectively, our data indicate that PUMA loss does not have a marked impact on glucose homeostasis in chow 
and diet-induced obesity in mice. Interestingly, we observed increased adipocitye size and fasting leptin levels in 
high fat fed PUMA knockout mice. This correlates with decreased food intake, despite normal neuronal leptin 
signaling. The decrease in the ambulatory capacity is probably a compensatory effect to maintain normal levels of 
energy expenditure and body weight. Overall, our study suggests that global inhibition of PUMA does not appear 
to be a promising approach for the treatment of obesity.
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