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Abstract

Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding
complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-
scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to
identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 59 end
of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically
favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only
the 39UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost
altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human
are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are
situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells,
we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We
demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be
scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-
mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions.
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Introduction

miRNAs are endogenous short (,22 nt) RNAs that exert

regulatory control of many cellular processes, negatively regulating

specific mRNAs via complementary base-pairing at a target site.

miRNAs of plants bind the targeted mRNA with high comple-

mentarity and thereby mark it for degradation, whereas animal

miRNAs more typically bind with sub-optimal complementarity

and inhibit or diminish productive translation [1].

Target sites for complementary base-pairing by miRNAs can be

inferred using computational methods based on empirically deter-

mined features of how known miRNAs bind in vivo to validated target

sites. For example, perfect Watson-Crick (WC) matching over a 6- or

7-nt ‘‘seed’’ region at the 59 end of the miRNA [2–4] is very

important for target recognition and can by itself repress translation

[4]. Base-pairing elsewhere in the miRNA, including at a so-called

T1A site extending the seed region [3] and in the 39 region [3,4], has

also been variously proposed to contribute to target binding.

Although not every validated miRNA-mRNA pair exhibits a short

region of perfect WC complementarity [5–9] and computational

methods based entirely on such seeds will fail to find every likely

target, many experimentally validated target sites exhibit perfect WC

matches in the seed region.

Several distinct algorithmic approaches are utilized to predict

miRNA targets. The most widely used approach is a sequence-

based search, in which a local sequence alignment tool is used to

find target sites with near-perfect WC complementarity to the

query miRNA [10–14]. In this approach, the existence of this seed

region is often assumed. Because miRNA target sites are short and

may exhibit only limited complementarity outside the seed region,

additional criteria based on abstractions of in vivo processes are

then employed to improve the efficiency of the extension step;

these include requiring that targets be conserved across homolo-

gous mRNAs from different species, or requiring multiple matches

by one or more miRNAs. Target sites predicted using this

approach may subsequently be ranked according to hybridization

energy score [12,13], but the actual search is alignment-based.

In a second approach, machine learning [15] and pattern

discovery [9] have been applied to capture features of mRNAs that

are known or suspected to bind mRNAs. This approach builds on

numerous other applications in genomics and bioinformatics, but has

two important limitations. As relatively few miRNA target sites have

been functionally validated, such predictors cannot yet be precise,

and discovery must continually be re-run on the entire database as

new miRNAs are discovered and new binding sites validated.

Further, biologically relevant features that contribute to the

predictions may not be captured or, if captured, may remain

unknown to the user.

Both of the above approaches are complicated by regions of

unpaired nucleotides (loops and bulges) known to be present in
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many miRNA-target interactions [16]. To accommodate these

regions of imperfect pairing in duplexes between the 39 end of a

miRNA and its mRNA target site, sophisticated sequence-based

methods may search for near-perfect WC complementarity in the

seed region (miRNA positions 2–7, 2–8 or 1–7) [11,14] then

extend the search e.g. to the 39 end of the miRNA, rather than

attempting to align the entire miRNA in a single operation.

A third approach [16,17] is based on the perspective that it is

the thermodynamic stability of the RNA-RNA duplex, not its

abstraction as a string-match or model, which allows miRNAs to

bind targets in vivo. Potential target sites are identified as those at

which the free energy of hybridization is minimized; complex

structures involving loops and bulges can readily be accommo-

dated in this calculation. We adopt this third approach in the work

reported here. We introduce the FASTH (FAST Hybridization)

program and, as a first stage, use it to predict potential miRNA-

mRNA interaction sites. The name was chosen to be similar to

FASTA [18] because both programs employ similar search

strategies and both allow bulges (gaps) in the local alignment.

With FASTH, however, we follow a purely biophysical path,

searching for binding targets taking into account (a) RNA base-

pair and base-pair-stacking free energies [19] in perfect helices, (b)

the unfavorable contributions from interior loops and bulges, (c)

energy contributions from single-stranded bases and from

mismatched pairs adjacent to a base pair, and (d) the initiation

energy required to bring the two molecules together and initiate

duplex formation. We assume that the population of duplexes

actually formed between a miRNA and its target region on an

individual mRNA is best represented by the duplex with the

minimum free energy possible, even if this implies the presence of

non-WC base pairs, loops, bulges and/or mismatches.

In many cases, RNA-RNA hybridization results in the

formation of a population of duplexes, one (or a few) with

minimum free energy and many others with increasingly

suboptimal energies. miRNA-mRNA duplexes with slightly

suboptimal free energies probably occur in vivo, perhaps more

transiently or at lower frequencies, and might be biologically

relevant. Finding these suboptimal structures is computationally

expensive, and previous work [16,17] employed dynamic

programming to search the target database. FASTH uses a fast

heuristic (i.e. not dynamic programming) for the database search,

with search time scaling sub-linearly with database size; it can

return a user-specified number (hundreds or thousands) of

suboptimal sites, and process multiple databases with rigorous

minimum free-energy calculations, in a single search.

In the second stage of our approach, we then select those

FASTH results that satisfy empirically derived rules unrelated to

energy minimization per se, including perfect WC complementarity

to the target at the 59 end of miRNAs, minimum numbers of WC

base pairs at the 39 end, and/or specified free energy score

thresholds. As we demonstrate, further criteria can be imposed as

well, capturing features e.g. of the specific mRNA region bound

(59UTR, CDS, or 39 UTR), presence of orthologs in other

transcriptomes, and/or levels of sequence conservation. Energy-

based prediction has recently been extended to include a penalty

term that reflects the free-energy cost associated with disruption of

pre-existing secondary structure at potential target sites on the

mRNA [20–22]; such a term could, if desired, be easily

incorporated into our approach.

With few exceptions, miRNA target-prediction methods have

until now been applied to EST data, focusing on only the 39UTR.

Here we apply our approach to the complete human and mouse

transcriptomes as represented in RefSeq. We parameterized the

second-stage requirements within biologically reasonable ranges,

and observe the effects on number of predicted sites and on

statistical significance. We demonstrate that short strings of

matching nucleotides (usually 6 or 7 in length) appear more

frequently in the 59 end than in the 39 end of human miRNAs. We

show that many energetically favourable binding sites with perfect

seed matches, i.e. potential miRNA targets, occur in all mRNA

regions, and that a substantial number of these sites are reassigned

between mRNA regions depending on the specific transcript

isoform. This opens the possibility that, at least in human,

alternative transcripts of many genomic regions may be differen-

tially regulated by miRNAs. Selected results were thereafter taken

forward into laboratory-based validation. Although the results

reported below focus on results with 313 human miRNAs, very

similar results were also obtained for 233 mouse miRNAs and are

presented in the Supplementary Material S1.

Results

Predicted target sites for an individual miRNA
For each miRNA it is always the case that our approach predicts

a set of targets, distributed through a range of free energy scores.

To assess their quality, we compare them statistically against the

targets predicted, under the same criteria, for a set of control

miRNAs (Figure 1A–E). To this end, for each miRNA we employ

two sets of controls (mononucleotide shuffled, or MS, and first-

order Markov, or FOM) derived to reflect different assumptions,

as described in the Supplementary Text S1; each control miRNA

finds a set of targets, likewise distributed over a range of free

energies. The targets predicted for the real miRNA may be

distributed through better, similar, or worse free energies than are

the targets predicted for its controls. For example, targets

predicted for let-7a are shifted toward better free energies than

are those predicted for both sets of controls (Figure 1B), whereas

targets predicted for miR-17-5p and its controls show similar

energy distributions (Figure 1C). In some cases the true miRNA

found more target sites than did, on average, the corresponding

controls (miR-324-3p, Figure 1D), whereas in other cases each

control, on average, found more targets than did the miRNA

(miR-129, Figure 1E).

Over all these miRNAs, the sets of predicted targets also vary by

free energy score. The targets predicted for some miRNAs (and for

the corresponding controls) show high (poor) energies, with miR-1

among the most extreme in this regard (Figure 1A), whereas better

energies are predicted for others. Panels B, C and D of Figure 1

show the increasingly better energy-score ranges for predicted

targets of let-7a, miR-17-5p and miR-324-3p. The diversity of

these examples with respect to the range (kcal/mol) and shape of

the distribution of energy scores, and number of target sites

predicted with real versus control sequences, reflects an estimate of

the diversity of molecular interactions over the transcriptome. We

return below to the distribution of predicted targets over all human

miRNAs.

For binding sites experimentally validated in human [23], the

actual hybridisation energies returned by FASTH are similar to

those calculated by Tafer and Hofacker using RNAduplex and

RNAplex [17], but are quite different from those computed by

Rehmsmeier et al. using RNAhybrid [16].

Predicted target sites over all human miRNAs
As we have seen, the set of predicted targets for an individual

miRNA can show diversity in number (frequency) and free energy

profile. In Figure 2A–D this case-to-case variation is aggregated

over all sites predicted for the 313 human miRNAs considered in

this study; panels A and C show results with minimal second-stage

miRNA Target Prediction: FASTH
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Figure 1. Number of predicted miRNA target sites for selected miRNAs in human RefSeq mRNAs distributed through a range of free
energy scores. Numbers of predicted target sites per miRNA and its control sequences for (A) miR-1 and its controls with WC nt 2–8; if miR-1
hybridized with perfect WC complementarity this would yield 230.8 kcal/mol (see Methods); (B) let-7a and imposing only the requirement of WC
base pairs within nucleotide positions 2–8; let-7a perfect WC complementarity would yield 233.2 kcal/mol; (C) miR-17-5p and its controls with WC nt
2–8; perfect WC complementarity would yield 244.5 kcal/mol; (D) miR-324-3p and its controls with WC nt 2–8; perfect WC complementarity would
yield 252.8 kcal/mol; and (E) miR-129 and its controls with WC nt 2–8; perfect WC complementarity would yield 241.4 kcal/mol. Blue bars show
distributions for native miRNAs, red bars for mononucleotide-shuffled controls (MS), and green bars for first-order Markov controls (FOM) (see
Supplementary Text).
doi:10.1371/journal.pone.0005745.g001

miRNA Target Prediction: FASTH
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filtering (requiring only perfect WC complementarity at nucleotide

positions 2–8), while panels B and D reflect the imposition of an

additional criterion (that there be ,6 mismatches and GU pairs at

positions $15).

In either case, at the lower free energies in aggregate these

miRNAs find more predicted target sites than do control

sequences of the same length and nucleotide composition

(Figure 2A,B). At free energies better than about 215 kcal/mol

the signal-to-noise ratio (S:N, see Methods) remains above 1.5, but

this ratio diminishes rapidly at higher free energies (Figure 2C,D).

At predicted free energies better than about 212 kcal/mol, on

average these miRNAs find more target sites than do the MS

controls. In comparison with the FOM controls, however, the

miRNAs find more target sites only at energies between about

213 and 223 kcal/mol (Figure 2A). The greatest fold difference

reaches 3.33 against the MS controls (albeit for small numbers of

predictions, at 238 kcal/mol) but only 1.51 against the FOM set

(Figure 2C). Similar behaviour is seen for the subset of predictions

that survive more-rigorous second-stage filtering (Figure 2B,D).

Thus at least for miRNA-mRNA binding sites with perfect WC

complementarity in a 7-nt seed region, dinucleotide frequency bias

is a main contributor to stability of the predicted duplex.

The S:N ratio diminishes rapidly at free energies greater (i.e.

worse) than about 215 kcal/mol regardless of whether MS or

FOM controls are used, falling below 1.00 at energies above about

214 and 211 kcal/mol when calculated against the FOM and

MS control sets respectively (Figure 2C). Very similar results are

seen after second-stage filtering (Figure 2D), with S:N falling below

1.00 at energies above about 212 kcal/mol. These results indicate

that an energy-based approach will be increasingly unproductive

as the free energy of duplex formation becomes progressively

weaker beyond a threshold determined, in part, by details of the

second-stage filtering criteria; conversely, ignoring such weak

duplexes should reduce the frequency of false-positive predictions.

Restricting allowable free energies by introduction of a higher

energy threshold improves the overall S:N ratio by around 10–

20% for this set of miRNAs (Supplementary Table S1,

Supplementary Table S2, and Methods).

At energies more-favorable than about 217 kcal/mol, the S:N

ratio either decreases or increases depending on whether the FOM

Figure 2. Number of predicted miRNA target sites and signal-to-noise ratio in human RefSeq mRNAs distributed through a range of
free energy scores. Numbers of predicted target sites (A) imposing only the requirement of WC base pairs within nucleotide positions 2–8; (B)
requiring WC base pairs at positions 2–8, plus ,6 mismatches and GU pairs at position 15 and beyond (see text). For (A) and (B), blue bars show
distributions for native miRNAs, red bars for mononucleotide shuffled (MS) controls, and green bars for first-order Markov (FOM) controls (see
Methods). Signal-to-noise ratio based on MS controls (red bars) and FOM controls (green bars), (C) requiring WC base pairs at nucleotide positions 2–
8 alone, and (D) requiring WC base pairs at positions 2–8, plus ,6 mismatches and GU pairs at position 15 and beyond.
doi:10.1371/journal.pone.0005745.g002

miRNA Target Prediction: FASTH
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or MS control set is used (Figure 2C–D). As argued above, we

suspect that use of FOM underestimates S:N, while use of MS may

overestimate S:N.

Free energies of predicted target duplexes are correlated
with the potential binding energy of each miRNA

Figure 3 shows, over all these 313 human miRNAs, the free

energies of our predicted target duplexes plotted against the

potential binding energy if each miRNA were bound to an ideal

target site with perfect WC complementarity. These miRNAs bind

at their potential target sites within a wide band of energies,

bounded on one side by the energy score at perfect WC base pair

complementarity and on the other by the score associated with the

minimal extent of interaction we consider (e.g. only the seed

regions). The actual predicted free energies are broadly correlated

with the best possible energies but with a wide range of sub-

optimality.

Experimentally validated targets are not restricted to mRNAs

with the energetically most-favorable target sites. For example, five

experimentally validated targets of miR-1 (Figure 1A) have energy

scores between 210.9 and 214.5 kcal/mol (for details see

Table 1). Thus a high (weak) energy score does not by itself

disqualify a predicted site. We are not hypothesizing that true

miRNAs are those that bind most stably, only that stability (unlike

its abstraction as a string) is important in prediction of potential

target sites. Indeed a degree of energetic sub-optimality may be

necessary, where single miRNA has to bind many different target

sites in different mRNAs.

For known miRNAs, occurrence of a 6–7 nucleotide
region of perfect WC base-pairing with mRNAs is biased
toward the 59 end of miRNAs

The minimum sequence complementarity and thermodynamics

of hybridization required for a region of mRNA to serve as a

miRNA target site in vitro are not fully understood. However, many

computational and experimental studies have addressed how

miRNAs recognize and pair with their mRNA target sites

[2,4,10,12–14,24]. One of the most important determinants of

this interaction is the so-called seed region, a stretch of 6 or 7

contiguous nucleotides at or near the 59 end of a miRNA involved

in perfect WC base-pairing with the mRNA [2].

We examined whether our predicted targets possess such a 6–

7 nt region of perfect WC complementarity, and if so, whether it is

preferentially complementary to the 59 end or to the 39 end of the

corresponding miRNA. To compare preferences to the two ends,

we made perfect WC complementarity the second-stage filtering

criterion, and sorted the results into one set of potential targets

with perfect complementarity to the 59 ends of miRNAs, and

another set with perfect complementarity to the 39 ends. As

FASTH identifies targets based only on free energy of hybridiza-

tion, without information about or bias toward any particular

region of the miRNA, our null hypothesis is that all miRNA

regions (including 39 and 59 ends) should show equal numbers of

perfectly complementary target sites. We then did the same using

randomized miRNA sequences as controls (see Methods). We

carried out these experimental and control procedures using four

sets of conditions that represent 6-nt and 7-nt regions of perfect

WC matching, with and without conditions on base-pairing at the

39 end of miRNA and on binding-energy threshold (see legend to

Figure 4 for details).

Figure 4 shows that predicted target sites complementary to the

59 end of the 313 human miRNAs are much more numerous than

those complementary to the 39 end, whereas little or no such

difference is observed with the corresponding MS or FOM

controls. For these miRNAs, the 59 end is favored by a ratio of

1.26–1.52 (depending on second-stage filtering conditions) com-

pared with 0.97–1.03 for the MS and 0.90–1.00 for the FOM

controls (Figure 4A–D).

Figure 5 presents a second perspective on these results. The

number of target sites predicted using known miRNAs, divided by

the number predicted using the randomized controls, can be

considered as a signal-to-noise ratio. In S:N ratio as well as in

number of predicted targets in mRNAs, we observe a clear

preference for perfect WC base pairs involving the 59 end of

miRNAs (Figure 5A–D). The number of high-quality potential

binding sites with a 6–7 nt region of perfect complementarity at

their 59 end (i.e. a seed region) is substantially (1.34–1.87 times)

greater than expected under the null model reflected in the MS

control set, and slightly (1.06–1.33 times) greater than expected

under the null model reflected by FOM. By contrast, the

corresponding ratios for complementarity at the 39 end are

1.04–1.20 and 0.79–0.84 for the MS and FOM control sets

respectively. The ratio of these ratios (1.28–1.55 with MS, 1.26–

1.68 with FOM) describes the selectivity, here favoring the 59 end, at

each filtering condition. Thus motifs with perfect WC comple-

mentarity to a 6–7 nt region at the 59 end of known miRNAs

occur preferentially in mRNAs, relative to motifs complementary

to the 39 end.

For the simplest (although not necessarily biologically mean-

ingful) case considered here, i.e. perfect WC base-pairing of the six

nucleotides constituting positions 2–7 from either the 59 or the 39

end of the (real or randomized) sequences, similar numbers of

target sites are predicted at each end of the MS controls and at the

39 end of real miRNAs (Figure 5A). When positions 2–8 are

considered instead (Figure 5B), only predicted sites at the two ends

of the MS controls remain similar in number; and as second-stage

filtering is made more-stringent by imposing mismatch and free

energy thresholds (Figure 5C–D) the predicted target-site num-

bers, S:N ratios and 59-over-39 selectivity deviate farther. For the

conditions reported in Figure 5A–D, (1) more-stringent filtering

always reduces the number of predicted target sites; (2) except for

39 ends under FOM, more-stringent filtering increases the S:N

ratio; (3) more-stringent filtering tends to increase 59-over-39 end

selectivity; and (4) the FOM controls find more predicted targets

than do the corresponding real miRNAs at 39 ends of mRNA,

resulting in S:N,1.00. We explore some of these parameter

conditions in further detail below.

Exact matching in seed regions does not, of course, tell the

whole story. A high-quality match may not only involve, but also

extend, a seed region. It may also be the case that some sites with

perfect WC complementarity in the seed region show poor overall

free energy scores and consequently are not identified, by our

approach, as potential targets. As demonstrated previously [3],

mismatches (including GU pairs) in the seed region may be

compensated by optimal complementarity elsewhere. In agree-

ment with many previous studies, though, we are able to use the

recognition of a seed region in the 59 end of miRNAs to identity

many energetically favorable candidate mRNA target sites.

Parameters of binding at the 39 end of miRNAs affect the
number and S:N ratios of predicted target sites

We examined the effect of binding parameters at the 39 end of

miRNAs by constraining the total number of mismatches and GU

pairs at nt positions $15 to be ,6 (Figure 6). Except at the

weakest energies this improved the mean S:N ratio, particularly as

calculated against the MS control set (Figure 6C versus D),

although at the cost of a ,50% reduction in number of predicted

miRNA Target Prediction: FASTH
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Figure 3. Calculated free energy of duplex formation at the miRNA target sites predicted by our approach, versus the minimum
possible free energy for that miRNA binding with perfect WC base-pair complementarity to a (theoretical) target site. Free energy
scores of predicted target sites (y-axis) are plotted against the free energy score of each miRNA, where each of 313 human miRNAs binds to a target
site with perfect WC base pair complementary, imposing the requirement(s) of (A) WC base pairs within nucleotide positions 2–8; and (B) WC base
pairs within positions 2–8, plus ,6 mismatches-and-GU pairs at position 15 and beyond (see text for details). The red line is the non-parametric local
fitted line.
doi:10.1371/journal.pone.0005745.g003

miRNA Target Prediction: FASTH
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Table 1. miRNA targets experimentally validated previously in human from TarBase [23], and our predictions.

Num Validated miR Gene Reference Prediction Predicted miR ID of predicted mRNAs FE UTR/CDS

1 miR-189 SLITRK1 37 * ** hsa-miR-189 NM_052910 217.7 39

2 miR-1 GJA1 38 hsa-miR-1 NM_000165 214.3 39

3 miR-206 GJA1 38 ** hsa-miR-206 NM_000165 218.4 39

4 miR-133 PTBP2 39 hsa-miR-133a NM_021190 218.9 39

5 miR-1 HDAC4 40 hsa-miR-1 NM_006037 214.1 39

5 miR-1 HDAC4 40 hsa-miR-1 NM_006037 213.9 39

6 miR-133 SRF 40 not predicted

7 miR-15a BCL2 28 hsa-miR-15a NM_000633 219.0 39

8 miR-16 BCL2 28 hsa-miR-16 NM_000633 218.9 39

9 miR-223 NFIA 41 * hsa-miR-223 NM_005595 218.6 39

10 miR-221 KIT 42 not predicted

11 miR-222 KIT 42 not predicted

12 miR-10a HOXA1 43 * ** hsa-miR-10a NM_005522 213.9 39

13 miR-130 MAFB 43 not predicted

14 let-7 KRAS 44 not predicted

15 let-7 NRAS 44 not predicted

16 miR-192 SIP1 45 not predicted

17 let-7b LIN28 46 * hsa-let-7b NM_024674 222.0 39

18 let-7e SMC1L1 46 * hsa-let-7e NM_006306 221.7 39

19 miR-141 CLOCK 46 * hsa-miR-141 NM_004898 215.8 39

20 miR-15 DMTF1 46 hsa-miR-15a NM_021145 220.9 39

21 miR-16 CGI-38 46 hsa-miR-16 NM_015964 220.8 39

22 miR-199b LAMC2 46 hsa-miR-199b NM_005562 221.4 39

23 miR-24 MARK14 46 hsa-miR-24 NM_139012 227.1 39

24 miR-24 MARK14 46 hsa-miR-24 NM_139014 227.1 39

24 let-7b MTPN 14 ** hsa-let-7b NM_145808 215.6 39

25 miR-124 MAPK14 14 ** hsa-miR-124a NM_001315 215.8 39

26 miR-124 MTPN 14 not predicted

27 miR-375 ADIPOR2 14 not predicted

28 miR-375 C1QBP 14 not predicted

29 miR-375 JAK2 14 not predicted

30 miR-375 USP1 14 not predicted

31 miR-1 BDNF 11 * hsa-miR-1 NM_001709 214.5 39

31 miR-1 BDNF 11 * hsa-miR-1 NM_170732 214.5 39

31 miR-1 BDNF 11 * hsa-miR-1 NM_170735 214.5 39

31 miR-1 BDNF 11 * hsa-miR-1 NM_170734 214.5 39

31 miR-1 BDNF 11 * hsa-miR-1 NM_170733 214.5 39

31 miR-1 BDNF 11 * hsa-miR-1 NM_170731 214.5 39

32 miR-1 G6PD 11 ** hsa-miR-1 NM_000402 210.8 39

33 miR-101 MYCN 11 ** hsa-miR-101 NM_005378 213.9 39

33 miR-101 MYCN 11 ** hsa-miR-101 NM_005378 213.5 39

34 miR-19a PTEN 11 * predicted in CDS hsa-miR-19a NM_000314 215.6 CDS

35 miR-23 POU4F2 11 ** hsa-miR-19a NM_004575 213.3 39

36 miR-23a CXCL12 11 * predicted in CDS hsa-miR-23a NM_000609 212.5 CDS

37 miR-26a SMAD1 11 ** hsa-miR-26a NM_005900 213.6 39

38 miR-34 DLL1 11 hsa-miR-34a NM_005618 223.2 39

39 miR-34 DLL1 11 hsa-miR-34a NM_005618 215.5 39

39 miR-34 NOTCH1 11 * hsa-miR-34a NM_017617 221.8 39

40 miR-155 AGTR1 47 not predicted

41 miR-21 PTEN 48 not predicted

miRNA Target Prediction: FASTH
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targets. However, 13 of 40 of the miRNA target sites identified by

our approach and that were previously validated by others

(Table 1) show .6 (mismatches and GU pairs) beyond nt position

15 (Table 1). Grimson et al. (2007) have likewise reported that

additional WC matching at positions 12–17 (especially 13–16)

enhances miRNA targeting [24].

Other parameters of binding affect the number and
signal:noise ratios of predicted target sites

Identifying the seed as nt positions 2–8 instead of positions 2–7

decreased the number of predicted targets but improved the S:N

ratio of prediction by around 10% (Figure 6A–B). As allowing one

GU pair in the seed region very greatly increased the number of

potential target sites, for each miRNA we ordered our target-site

predictions by free energy score and restricted our examination to

those scoring $40% of the best score observed (Figure 6C). The

results demonstrate that allowing up to one GU pair in the seed

region increases the number of predicted targets (parameter

conditions 1 and 3 above), but decreases the S:N ratio of

prediction; applying more-stringent conditions improves the S:N

ratio; and allowing only a single loop in the middle of the binding

site does not affect the S:N ratio (although many predicted sites

contain such a loop). These results are summarized in Supple-

mentary Table S1.

Energetically favorable binding sites are not restricted to
39UTRs of mRNAs

For short interfering RNAs (siRNAs), whether a target site is

located within a translated region or a non-coding region has only

marginal effects on RNA interference [25]. Plant miRNAs bind

with near-perfect complementarity at sites that are primarily,

though not exclusively, located within the CDS [26]. In animals,

all previously validated miRNA target sites lie in the 39UTR, and

searches are often, although not always [2], restricted to 39UTR

data; modest targeting on CDS has, however, been reported [27].

For this set of known human and mouse miRNAs, however, the

S:N ratios of our predicted binding sites are very similar, regardless

of location in the 59UTR, CDS or 39UTR (Table 2 and Table 3).

Energetically favorable binding sites were more-frequent in the

CDS than in any other region even after normalization by relative

Num Validated miR Gene Reference Prediction Predicted miR ID of predicted mRNAs FE UTR/CDS

42 miR-181 HOXA11 49 hsa-miR-181b NM_005522 218.6 39

42 miR-181 HOXA11 49 hsa-miR-181b NM_153620 218.6 39

42 miR-181 HOXA11 49 hsa-miR-181d NM_005522 217.8 39

42 miR-181 HOXA11 49 hsa-miR-181d NM_153620 217.8 39

43 miR-17-5p E2F1 50 not predicted

44 miR-20 E2F1 50 not predicted

45 miR-375 MTPN 51 not predicted

46 miR-206 FSTL1 52 not predicted

47 miR-206 UTRN 52 not predicted

48 miR-127 BCL6 53 not predicted

49 miR-125a ERBB2 54 * ** hsa-miR-125a NM_001005862 215.5 39

50 miR-125a ERBB3 54 * ** hsa-miR-125a NM_004448 215.5 39

51 miR-27b CYP1B1 55 hsa-miR-27b NM_000104 226.0 39

52 miR-140 HDAC4 56 not predicted

53 miR-106a RB1 57 not predicted

54 miR-20a TGFBR2 57 not predicted

55 miR-26a PLAG1 57 ** hsa-miR-26a NM_002655 214.7 39

56 miR-372 LAST2 58 ** hsa-miR-372 NM_014572 213.1 39

57 miR-373 LAST2 58 ** hsa-miR-373 NM_014572 215.7 39

58 miR-34a E2F3 59 * hsa-miR-34a NM_001949 217.6 39

59 miR-133 ERG 60 predicted in CDS hsa-miR-133a NM_004449 218.8 CDS

59 miR-133 ERG 60 hsa-miR-133a NM_182918 218.8 CDS

60 miR-196 HOXA7 7 not predicted

61 miR-196 HOXC8 7 hsa-miR-196a NM_022658 215.8 39

62 miR-196 HOXD8 7 ** predicted in CDS hsa-miR-196a NM_019558 213.5 CDS

63 miR-1 HAND2 61 * ** hsa-miR-1 NM_021973 210.9 39

64 miR-1 TMSB4X 61 hsa-miR-1 NM_021109 216.9 39

65 miR-21 TPM1 62 not predicted

*not predicted with the second-stage parameter ‘‘under 6 mismatches-and-GU-pairs for nt $15’’.
**not predicted with 40% FE threshold.
doi:10.1371/journal.pone.0005745.t001

Table 1. cont.
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size (nt) of region. Predicted sites were slightly under-represented

in 39UTRs relative to mRNA length, perhaps due to their lower

GC content, but show a higher S:N ratio regardless of

parameterization. Thus energetically favorable candidate target

sites may occur in all mRNA regions. Interestingly, a recent report

shows that in mouse, miRNAs regulate cell development through

target sites in CDS regions [28].

Evidence has been presented that for miRNAs with perfectly

WC-complementary 8-nt seed regions, target sites in the 39UTR

are more efficacious in depressing mRNA levels than are sites in

the 59UTR or CDS [24]. Efficacious sites tend to be flanked

,30 nt both upstream and downstream by AU-enriched regions

[24]. Our data confirm that predicted target sites in higher-GC

regions (59UTR and CDS) have lower (more-favorable) energy

scores than our predicted target sites in lower-GC regions

(39UTRs) (Figure 7). Higher-GC regions are expected to contain

more-stably folded local structure, whereas sites in lower-GC

regions may be, on average, more accessible. As a consequence,

miRNAs targeting lower-GC regions may form duplexes at

relatively weaker energies and still be functional, whereas those

targeting the 59UTR or CDS may require more-favorable energies

to compete with pre-existing structure, and this may require

hybridization that extends well beyond the seed region and near

perfect complementary binding to the target sites. An approach

Figure 4. Number of predicted miRNA target sites with perfect WC base-pair complementarity at the 59 end and at the 39 end of
miRNAs in human RefSeq mRNAs. Numbers of predicted target sites and ratios (the number of predicted target sites with perfect WC base pairs
at 59 end divided by the number of predicted target sites with perfect WC base pairs at 39 end) for known miRNAs, and mononucleotide shuffled (MS)
and first-order Markov (FOM) controls (see Methods), with perfect WC base pair complementary at the 59 end (yellow bars) and 39 end (green bars) of
miRNAs, imposing the requirement(s) of (A) WC base pairs within nucleotide positions 2–7; (B) WC base-pairs within positions 2–8; (C) WC base pairs
within positions 2–7. plus ,6 mismatches-and-GU pairs at position 15 and beyond, and 40% free energy threshold; and (D) WC base pairs within
positions 2–8, plus ,6 mismatches and GU pairs at position 15 and beyond, and 40% free energy threshold (see text for details). ‘WC base pairs at 59
end’ indicates the number of target sites when positions are counted from the 59 end of the miRNAs, and ‘WC base pairs at 39 end’ indicates these
values when positions are counted from the 39 end of the miRNAs (i.e. enforcing perfect WC base pairs at the 39 end of miRNAs).
doi:10.1371/journal.pone.0005745.g004
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based on hybridization energy, such as ours, tends to give

prominence to target sites in higher-GC regions such as 59UTR or

CDS. Optimizing the prediction of target sites in regions of more-

stably folded local structure (i.e. higher-GC regions) may therefore

require more-strict conditions at the secondary filtering stage.

Individual binding sites are predicted in the coding
region or the UTR, or be absent altogether, depending
on mRNA isoform

As described immediately above, many potential energetically

favorable binding sites can be found in 59UTRs and coding

regions, as well as in the 39UTRs. RefSeq (www.ncbi.nlm.nih.gov/

RefSeq) identifies 2943 protein-coding genes as having more than

one transcriptional isoform in human; these 2943 genes are

represented by 7965 RefSeq mRNAs, among which we predict no

miRNA binding site in any transcript of 64 genes. Removing these

64 genes and their 146 transcripts, we are left with 66381

predicted binding sites distributed across 7819 transcript isoforms

of 2879 multi-transcript human genes. For each of these genes in

turn, we next asked whether a predicted binding site was found in

the same mRNA region in every transcript isoform, reassigned to a

different mRNA region in at least one isoform, or lost altogether in

at least one isoform (Table 4).

Using the parameterization that yields the highest S:N ratio

(Figure 6C), in this set we found 2658 genes (92.3% of 2879) with

7023 isoforms (89.8% of 7819) in which at least one predicted

miRNA target site remains in the same mRNA region in every

isoform; 44972 target sites (67.7% of 66381) thus resist

reassignment or loss across known transcript isoforms. We found

777 genes (27.0%) with 2485 isoforms (31.8%) in which at least

one predicted target site is reassigned to a different mRNA region

Figure 5. Number of predicted miRNA target sites with perfect WC base-pair complementarity at the 59 end and at the 39 end of
miRNAs in human RefSeq mRNAs, and their signal-to-noise ratios. Numbers of predicted target sites and signal-to-noise ratios for known
miRNAs (blue bars) and mononucleotide shuffled and first-order Markov controls (red bars), with perfect WC base pair complementarity at the 59 end
(yellow bars) and 39 end (green bars) of miRNAs, imposing the requirement(s) of (A) WC base pairs within nucleotide positions 2–7; (B) WC base pairs
within positions 2–8; (C) WC base pairs within positions 2–7, plus ,6 mismatches-and-GU pairs at position 15 and beyond, and 40% free energy
threshold; and (D) WC base pairs within positions 2–8, plus ,6 mismatches-and-GU pairs at position 15 and beyond, and 40% free energy threshold
(see text for details). ‘WC base pairs at 59 end’ indicates the number of target sites when positions are counted from the 59 end of the miRNAs, and
‘WC base pairs at 39 end’ indicates these values when positions are counted from the 39 end of the miRNAs (i.e. enforcing perfect WC base pairs at the
39 end of miRNAs).
doi:10.1371/journal.pone.0005745.g005
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in at least one isoform, with 6519 (9.8%) of predicted miRNA

targets in this category; most of these cases involve a site found in

the 59UTR of one isoform but in the CDS of a second (e.g. the

energetically most-favorable miR-17-5p target site on TNFSF12

mRNAs: Supplementary Figure S1), or in the CDS of one but in

the 39UTR of a second, although in a small number of isoform sets

a binding site is reassigned among all three regions. Finally, in

2022 genes (70.2%) with 5823 isoforms (74.5%) at least one

predicted target site is lost (or gained) among different isoforms;

14890 target sites (22.4%) are in this category. Clearly, many

genes (thus many sets of transcripts) contain target sites that fall

into more than one of these situations. A proportionally similar

distribution of fates is seen whether the seed region is taken to be

nt 2–7, or nt 2–8 (Table 4).

It is interesting to ask how these frequencies of predicted target-

site reassignment and gain/loss among transcript-isoform sets

compare with the corresponding frequencies for nucleotides

(whether associated with a predicted miRNA target site or not).

Calculation of nucleotide reassignment and gain/loss is straight-

forward for transcript sets with only two isoforms (see Methods),

although more-complicated for larger isoform sets. Of these 2943

genes with multiple isoforms, 1947 have only two isoforms and the

other 996 have three or more (range 3 to 23). Among these 1947,

Figure 6. Effects of other binding parameters. Number of predicted target sites and signal-to-noise ratio of prediction with different seed
lengths: WC base pairs at nucleotide positions 2–7 and 2–8 inclusive, (A) on mononucleotide-shuffled (MS) controls, and (B) on first-order Markov
(FOM) controls. (C) Number of predicted target sites (blue bars) and signal-to-noise ratio (red bars) when different parameters are used, based on MS
controls. Parameter 1: WC base pairs with at most one GU pair within nt 2–7, plus ,6 mismatches and GU pairs at nt $15. Parameter 2: WC base pairs
within nt 2–7, plus ,6 mismatches and GU pairs at nt $15. Parameter 3: WC base pairs with at most one GU pair within nt 2–8, plus ,6 mismatches
and GU pairs at nt $15. Parameter 4: WC base pairs within nt 2–8, plus ,6 mismatches and GU pairs at nt $15. Parameter 5: WC base pairs within nt
2–8, maximum of one loop at nt 9–14, plus ,6 mismatches and GU pairs at nt $15. A 40% free energy threshold was applied in every case.
doi:10.1371/journal.pone.0005745.g006

Table 2. Number of predicted target sites and signal-to-noise
(S:N) ratio in different mRNA regions in human, under four
sets of defining conditions (A–D).

Condition
Total
mRNA 59UTR

Coding
regions 39UTR

A miRNA 397673 23302 250028 124343

5.86% 62.87% 31.27%

S:N (MS) 1.34 1.07 1.33 1.43

S:N (FOM) 1.06 1.05 1.05 1.06

DB size 7.21% 56.68% 36.11%

DB GC 52.95% 51.99% 40.46%

B miRNA 175207 10397 113534 51276

5.93% 64.80% 29.27%

S:N (MS) 1.63 1.27 1.62 1.77

S:N (FOM) 1.23 1.19 1.23 1.24

DB size 7.21% 56.68% 36.11%

DB GC 52.95% 51.99% 40.46%

C miRNA 256092 14541 162466 79085

5.68% 63.44% 30.88%

S:N (MS) 1.48 1.18 1.48 1.57

S:N (FOM) 1.15 1.05 1.14 1.19

DB size 7.21% 56.68% 36.11%

DB GC 52.95% 51.99% 40.46%

D miRNA 111981 6476 73147 32358

5.78% 65.32% 28.90%

S:N (MS) 1.87 1.48 1.89 1.93

S:N (FOM) 1.33 1.23 1.33 1.35

DB size 7.21% 56.68% 36.11%

DB GC 52.95% 51.99% 40.46%

Database (DB) size is the proportion of nucleotides in RefSeq mRNA database
(see text). Conditions: A, WC base pairs at nt 2–7; B, WC base pairs at nt 2–7, ,6
mismatches-and-GU-pairs at nt $15, and 40% FE threshold; C, WC base pairs at
nt 2–8; and D, WC base pairs at nt 2–8, ,6 mismatches-and-GU-pairs at nt $15,
and 40% FE threshold.
doi:10.1371/journal.pone.0005745.t002

Table 3. Number of predicted target sites and signal-to-noise
(S:N) ratio in different mRNA regions in mouse, under the
same four sets of defining conditions (A–D) as for human
(Table 2).

Condition
Total
mRNA 59UTR

Coding
regions 39UTR

A miRNA 287040 15577 183912 87551

5.43% 64.72% 30.50%

S:N (MS) 1.36 1.08 1.35 1.45

S:N (FOM) 1.12 0.96 1.13 1.13

DB size 6.77% 58.10% 35.13%

DB GC 48.25% 51.35% 39.18%

B miRNA 114035 6326 74562 33147

5.55% 65.39% 29.07%

S:N (MS) 1.68 1.63 1.64 1.78

S:N (FOM) 1.27 1.20 1.27 1.28

DB size 6.77% 58.10% 35.13%

DB GC 48.25% 51.35% 39.18%

C miRNA 187673 9950 121003 56720

5.30% 64.48% 30.22%

S:N (MS) 1.56 1.26 1.55 1.66

S:N (FOM) 1.16 1.01 1.17 1.17

DB size 6.77% 58.10% 35.13%

DB GC 48.25% 51.35% 39.18%

D miRNA 74455 4018 48979 21458

5.40% 65.78% 28.82%

S:N (MS) 1.94 1.56 1.94 2.04

S:N (FOM) 1.34 1.23 1.34 1.36

DB size 6.77% 58.10% 35.13%

DB GC 48.25% 51.35% 39.18%

Database (DB) size is the proportion of nucleotides in RefSeq mRNA database
(see text). Conditions: A, WC base pairs at nt 2–7; B, WC base pairs at nt 2–7, ,6
mismatches-and-GU-pairs at nt $15, and 40% FE threshold; C, WC base pairs at
nt 2–8; and D, WC base pairs at nt 2–8, ,6 mismatches-and-GU-pairs at nt $15,
and 40% FE threshold.
doi:10.1371/journal.pone.0005745.t003
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on average 3.4% of nucleotides are reassigned among mRNA

regions, while nucleotide loss averages 9.8% based on the longer

isoform and 18.5% based on the shorter (Supplementary Table

S3). By contrast, for predicted target sites we observe 6.0%

reassignment and 15.2–15.6% gain/loss among transcript sets for

genes with only two isoforms (Table 4). Correction for edge effects

scarcely alters these proportions (Table 4 and Supplementary

Table S3). Thus the observed frequency of target site reassignment

exceeds that expected under a length-proportional model based on

these data, whereas the frequency of gain/loss may not be

significantly different from expectation.

miRNA targets with orthologs in mouse
One motivation for this work has been to predict miRNA target

sites (and thus the mRNAs in which these sites exist) without taking

into account their conservation across different species. However,

most known miRNAs and many validated target sites are

conserved across species, and we can use this information to

improve our prediction accuracy.

Using those 181 pairs of miRNAs orthologous between human

and mouse for which sequence positions 1–8 are identical, we

predicted target sites using two parameterization conditions and

the same sets of randomized human sequences as controls in each

case. Requiring orthology improves the S:N ratio (1.87 compared

to 1.50 for one parameterization, 2.97 compared to 1.81 for the

other against MS controls; 1.81 compared to 1.21 for one

parameterization, 2.61 compared to 1.34 for the other against

FOM) although at the cost of a 72–81% reduction in number of

predicted sites (Table 5).

Under these two conditions, 83–87% of the predicted target

sites present in orthologous mRNAs (human and mouse) occur in

the same mRNA region (e.g. 39UTR); these values are uncorrected

for the few cases in which an mRNA in one species is annotated as

having two or more orthologs in the other. To a first

approximation, miRNA target sites in the same region of

orthologous mRNAs can be considered orthologous sites. Thus

most miRNA target sites present in homologous mRNAs between

human and mouse are themselves orthologous.

miRNA sequences can be highly conserved across different

species, but this does not imply that their target sites are necessarily

similarly conserved in sequence. Under these two parameteriza-

tions, 72–81% of predicted target sites do not have a counterpart

in an orthologous mRNA (Table 5). Many taxon-specific miRNA-

mRNA interactions may be thus available to regulate taxon-

specific developmental processes in human and mouse.

Method evaluation
In our hands, FASTH is about 30-fold faster than RNAhybrid

version 2.1 [16] in finding target sites for a single miRNA among

500 mRNAs (,1.5 Mbp); on a single AMD64 core (1 Gb

Figure 7. Proportion of predicted miRNA target sites (for 313 human miRNAs) as a function of free energy score, in each segment
(59 UTR, CDS and 39 UTR) of human RefSeq mRNAs. Line smoothed for ease of interpretation.
doi:10.1371/journal.pone.0005745.g007
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memory) FASTH completes this in 4 seconds, and RNAhybrid in

125 seconds. RNAplex version 1.0.0 is claimed to be 10–27 times

faster than RNAhybrid [17] but could not process even our 500-

mRNA database, as it cannot deal with large sequences

(.,4100 nt) at least on the above-mentioned hardware. Search

time scales linearly with database size for RNAhybrid and

RNAplex, whereas with FASTH it scales sub-linearly (see

Supplementary Text).

We examined the efficiency of our approach in recovering those

miRNA target sites that have been experimentally validated in

human [23] (Table 1) or mouse [9]. Of 82 miRNA binding sites

experimentally validated in human (all of which are in the

39UTR), 65 occur in RefSeq and were available for discovery (see

Methods). Of these we recovered 40 using the most permissive

search criterion (Table 1), i.e. recall was 62%. However, many of

these 40 have poor free energy scores, and about half failed to

meet one or more of the secondary filtering criteria we used to

improve the S:N ratio.

To provide a broader test, we applied the same computational

approach to the RefSeq mouse mRNA database (see Methods),

asking what proportion of the target sites experimentally validated

by Miranda et al. [9] we recovered. As Miranda et al. set different

criteria for target prediction (e.g. allowing GU pairs and a

mismatch in the seed regions) and selected sites for validation on

that basis, not all of their validated sites could have been

discovered by our approach; we correct for this difference, to

Table 4. Numbers of predicted target sites reassigned to a different mRNA region, or gained or lost, among different isoforms of
the same transcriptional region (gene), for the 2943 human protein-coding genes annotated (RefSeq) as having more than one
transcriptional isoform, under six sets of defining conditions (A–F).

Condition
WC
nt =

Overlap
exclude
at edge
of CDS
(# nt) Number of:

Genes with
$2 isoforms

Genes with
$2 isoforms,
and with
target sites

Target
sites remaining
in same region

Target sites
reassigned
among regions

Target sites
gained/lost in
one isoform

A 2–7 None Unique genes 2943 2879 2658 777 2022

1947 1896 1811 409 1213

996 983 847 368 809

Isoforms 7965 7819 7023 2485 5823

3894 3792 3622 818 2426

4071 4027 3401 1667 3397

Target sites 66381 66381 44972 6519 14890

32422 32422 25540 1946 4936

33959 33959 19432 4573 9954

B 2–8 None Unique genes 2943 2783 2435 574 1720

1947 1828 1669 295 1010

996 955 766 279 710

Isoforms 7965 7579 6386 1885 5044

3894 3656 3338 590 2020

4071 3923 3048 1295 3024

Target sites 42690 42690 28717 4251 9722

20726 20726 16334 1252 3240

21964 21964 12383 2999 6582

C 2–7 5 Unique genes 2943 2877 2658 777 2021

Isoforms 7965 7815 7023 2485 5821

Target sites 66271 66271 44908 6511 14852

D 2–7 10 Unique genes 2943 2877 2658 777 2020

Isoforms 7965 7815 7023 2485 5819

Target sites 66166 66166 44831 6501 14834

E 2–8 5 Unique genes 2943 2782 2435 574 1718

Isoforms 7965 7577 6386 1885 5039

Target sites 42629 42629 28683 4243 9703

F 2–8 10 Unique genes 2943 2782 2435 574 1718

Isoforms 7965 7577 6386 1885 5039

Target sites 42557 42557 28622 4243 9692

All defining conditions include ,6 mismatches-and-GU-pairs at nt $15, and 40% FE threshold, but differ by extent of base-paired region, and by correction (or not) for
edge effects. In blocks A–B, the top number in each cell refers to total; the middle number, to genes with exactly two transcriptional isoforms; and the bottom number,
to genes with $3 transcriptional isoforms. ‘‘Target sites remaining in same region’’ means neither reassigned, nor gained or lost, among different isoforms.
doi:10.1371/journal.pone.0005745.t004
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the extent possible, by removing from consideration those targets

(in [9]) that have GU pairs and/or mismatches in the seed region.

Miranda et al. also give details of their predicted sites that failed

validation (i.e. were false positive predictions); in principle this

makes it possible for us to calculate the sensitivity as well as

specificity of our approach (see Methods). On this basis, our

approach shows high specificity (range 0.50–0.93) but moderate

sensitivity (range 0.33–0.80 depending on miRNA and filtering

criteria) (Table 6). As the number of false positives is small and the

data apply to mouse only, these specificity values should be

interpreted as only indicative for our approach.

Comparison with other methods
We compared our predicted target sites to those identified using

the commonly used methods PicTar [14], TargetScan [11] and

MiRanda [13], restricting our comparison to 39UTR regions of

human mRNAs. Overlap between our predicted target sites and

those of the other methods was 15–19% with PicTar, 13–16%

with TargetScan, and 4–5% with MiRanda depending on the

parameter values used in our second-stage filtering. The overlap

with MiRanda is smaller in part because the number of targets

predicted using MiRanda is smaller (22,896) than with PicTar

(61,820) or TargetScan (44,657) (see Supplementary Table S4).

Pairwise overlaps among the other three methods ranged from 8%

(PicTar vs MiRanda) to 55% (PicTar vs TargetScan) (Supplemen-

tary Table S5). Substantial overlap between predictions of PicTar

and TargetScan has been observed by others [21].

Experimental validation
The Gene Ontology [29] terms most-enriched among our lowest-

energy targets include protein kinase cascade, signalling pathway, negative

regulator of transcription, and anti-apoptosis (Supplementary Table S6).

We selected, for experimental validation, targets to three of

these miRNAs: hsa-miR-17-5p (one target: see below), hsa-miR-

15a (two targets), and hsa-miR-324-3p (three targets). This

selection was made on the basis of functional association with

cancer (hsa-miR-17-5p, hsa-miR-15a) or predicted targets in the

Wnt signalling pathway (hsa-miR-324-3p) as described in

Supplementary Table S7. Sequence corresponding to individual

predicted target sites was cloned into the 39UTR of a luciferase-

expressing vector, and luciferase activity (directly proportional to

translation from the plasmid) was measured in the presence of

either the test miRNA, or a control miRNA-like sequence. For

replication, normalization and statistical analyses see Methods.

For five of the six targets subjected to experimental validation,

expression was inhibited by the corresponding miRNA (Figure 8).

Assessed by p-value, this decrease was significant for the TSPYL2

and WNT9B constructs at 10 and 50 nM, and for the BCL2 and

TNFSF12 constructs at 50 nM. BCL2 mRNA has previously been

validated as a target for has-miR-15a inhibition [30]. The

CREBBP construct showed ,32% mean reduction at 50 nM,

although this reduction is not significant as assessed by p-value.

The sixth mRNA construct, for DVL2, showed . 40% mean

reduction with small variance at 10 nM (p,0.467), but an

increased expression at 50 nM (Figure 8B).

Table 5. Total numbers of predicted targets and signal-to-noise (S:N) ratios among human (RefSeq) mRNAs for the 181 human
miRNAs with an ortholog in mouse, with and without requiring that the orthologous mouse miRNA have a target (under the same
second-stage criterion) in the orthologous mouse mRNA.

Control set Condition
Number of
targets S:N ratio Fold change

MS WC bp (in human) 268375 1.50 (1.00)

WC bp with match in orthologous mouse mRNA 74232 1.87 +0.25

WC bp, no match in orthologous mouse mRNA 194143 1.40 20.07

WC bp and 40% FE threshold (in human) 116117 1.81 (1.00)

WC bp and 40% FE threshold, with match in orthologous mouse mRNA 21574 2.97 +0.64

WC bp and with 40% FE threshold, no match in orthologous mouse mRNA 94543 1.66 20.08

FOM WC bp (in human) 268375 1.21 (1.00)

WC bp with match in orthologous mouse mRNA 74232 1.81 +0.50

WC bp, no match in orthologous mouse mRNA 194143 1.08 20.11

WC bp, ,6 mismatches and GU pairs at nt $15 and 40% FE threshold (in human) 116117 1.34 (1.00)

WC bp, ,6 mismatches and GU pairs at nt $15 and 40% FE threshold, with match
in orthologous mouse mRNA

21574 2.61 +0.95

WC bp, ,6 mismatches and GU pairs at nt $15 and with 40% FE threshold,
no match in orthologous mouse mRNA

94543 1.21 20.10

Lewis WC bp (in human) 112797 1.15 (1.00)

WC bp with match in orthologous mouse mRNA 28456 1.69 +0.47

WC bp, no match in orthologous mouse mRNA 84341 1.04 20.10

WC bp, ,6 mismatches and GU pairs at nt $15 and 40% FE threshold (in human) 46469 1.44 (1.00)

WC bp, ,6 mismatches and GU pairs at nt $15 and 40% FE threshold, with
match in orthologous mouse mRNA

8684 2.66 +0.85

WC bp, ,6 mismatches and GU pairs at nt $15 and with 40% FE threshold,
no match in orthologous mouse mRNA

37785 1.30 20.10

Watson-Crick base pairs (WC bp) are at nucleotide positions 2–7 in every case. MS, mononucleotide shuffle; FOM, first-order Markov process; Lewis, control sequences
from Lewis et al. [2] but based on only 74 miRNAs.
doi:10.1371/journal.pone.0005745.t005
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Five of the target sites (hsa-miR-15a/TSPYL2, hsa-miR-15a/

BCL2, hsa-miR-17-5p/TNFSF12, hsa-miR-324-3p/CREBBP

and hsa-miR-324-3p/WNT9B) exhibit perfect WC complemen-

tarity in the seed regions, while has-miR-324-3p/DVL2 has one

GU pair in the same region (Supplementary Figure S1). Although

the binding site of hsa-miR-324-3p/DVL2 has very low (stable)

free energy, the presence of a GU pair in the seed region means

that binding at the 39 end of the miRNA would have to be optimal

to compensate (if indeed 39-end hybridization can compensate at

all); in this case, however, two unpaired bases and two GU pairs

are predicted in the 39 end, blocking even the possibility of

adequate compensation.

Discussion

Methodological approach
Computational prediction may be motivated by different aims,

e.g. to annotate sequences, to guide experimental validation, or to

describe a potential solution space. Common to these is the goal of

generating a ranked list of candidates that contains most (ideally

all) true interactions and excludes most (ideally all) non-

interactions. Biological relevance may, however, be contingent

on features other than those being maximized or minimized.

Animal miRNAs, for example, often bind to mRNAs with

suboptimal complementarity as assessed by string-matching [1]

Table 6. For three miRNAs, our predictions (condition: perfect Watson-Crick complementarity at nt 2–7) on targets experimentally
validated by Miranda et al. [9].

miRNA Condition Number of targets

miR-134 WC bp at nt 2–7 True positives 43 Sensitivity = 0.551

False negatives 35 Specificity = 0.666

False positives 3

True negatives 6

Total 87

WC bp at nt 2–7, and 40% FE threshold (218.64) True positives 36 Sensitivity = 0.462

False negatives 42 Specificity = 0.666

False positives 3

True negatives 6

Total 87

miR-296 WC bp at nt 2–7 True positives 8 Sensitivity = 0.80

False negatives 2 Specificity = 0.50

False positives 1

True negatives 1

Total 12

WC bp at nt 2–7, and 40% FE threshold (219.44) True positives 7 Sensitivity = 0.70

False negatives 3 Specificity = 0.50

False positives 1

True negatives 1

Total 12

miR-375 WC bp at nt 2–7 True positives 9 Sensitivity = 0.375

False negatives 15 Specificity = 0.929

False positives 1

True negatives 13

Total 38

WC bp at nt 2–7, and 40% FE threshold (216.68) True positives 8 Sensitivity = 0.333

False negatives 16 Specificity = 0.929

False positives 1

True negatives 13

Total 38

Of 158 genes experimentally tested for regulation by miR-134, 85 occur in our database, as do 14 of 24 tested for regulation by miR-296, and 22 of 44 tested for
regulation by miR-375. As Miranda et al. set different criteria for target prediction (e.g. allowing GU pairs and a mismatch in the seed regions) and selected sites for
validation on that basis, not all of their validated sites could have been discovered by our approach. To correct (to the extent possible) for this difference, we excluded a
further 20 target sites with GU pairs and mismatches in the seed region for miR-134, and 8 target sites for miR-296 (all target sites for miR-375 have WC matches in the
seed region), and report the results of 65 target genes examined for miR-134, 6 for miR-296 (for miR-296, all six sites examined were validated), and 22 for miR-375.
Miranda et al. also give details of predicted sites that failed validation (i.e. were false positive predictions); in principle this makes it possible for us to calculate the
specificity of our approach. In some cases, our 40% free energy threshold is more-stringent than that of Miranda et al. (,216.4 kcal/mol), reducing the sensitivity
calculated for our approach. As the number of false positives is small, specificity values should be interpreted as indicative only.
doi:10.1371/journal.pone.0005745.t006
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Figure 8. Experimental validation of predicted target sites. Y-axis: relative luciferase activity (see Methods). (A) has-miR-15a on TSPYL2 and
BCL2; (B) has-miR-324-3p on CREBBP, DBL2 and WNT9B; and (C) has-miR-17-5p on TNFSF12.
doi:10.1371/journal.pone.0005745.g008
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because in vivo, potential binding sites are arrayed dynamically

within double-stranded regions, single-stranded loops, and bulges

that are imperfectly represented as strings but nonetheless

contribute to duplex stability. Other features, e.g. post-translational

editing of miRNAs and spatiotemporal co-location within the cell,

may be even more-difficult to represent, or be unknown.

Here we present a scalable approach and software for predicting

miRNA-mRNA interactions and interaction sites, based on

minimizing the free energy of duplex structure. Our method finds

and can report not only the energetically optimal duplex, but also

arbitrarily many energetically suboptimal structures, in genome-

scale data. In the specific context at hand, for each miRNA we

initially identify a large set of candidate sites, and subsequently

remove those that fail to meet additional criteria that reflect

biologically relevant parameters of known or inferred miRNA-

mRNA interactions. In other contexts, the FASTH software might

better be paired with machine-learning or other technologies, e.g.

to assess the relative contributions of specified parameters.

Short regions perfectly complementary to mRNA targets
are preferentially found in the 59 end of miRNAs

In many validated miRNA-mRNA interactions, regions of 6–7

contiguous nucleotides having (near-)perfect WC complementarity

to the mRNA target occur at the 59 end of the miRNA. Our results

confirm this observation, and extend it to energetically favorable

potential target sites not only for validated interactions but more

broadly. Sequence motifs complementary to the 59 end of

miRNAs are preferentially distributed in mRNAs, compared to

motifs that are complementary to the 39 end.

Energetically favorable binding sites are not restricted to
39UTRs

Miranda et al. predicted that a significant number of targets

occur in 59UTRs and CDS and hypothesized that many are

functional, although they could not estimate a false positive rate of

prediction [9]. We likewise find many high-quality binding sites in

all mRNA regions (59UTR, CDS and 39UTR), with the number of

sites and S:N ratio of prediction stable over the range of filtering

parameters examined. For the human and mouse transcriptomes,

target abundance roughly matches availability (length of mRNA

regions). As false-positive as well as true-positive target sites in

higher-GC regions tend to have lower (more-favorable) energies

(above), additional filtering or weighting may be required to

predict target sites in these regions.

Binding sites are often reassigned or lost in alternative
transcript isoforms

At least in mouse [31] and human [32], most protein-coding

genes are transcribed in different isoforms. Here we report that

among isoform sets of multi-transcript human genes, almost 10%

of predicted miRNA target sites are situated in one mRNA region

in one isoform but in a different region in another isoform, i.e.

reassigned between isoforms, as the result of differential splicing.

Within those transcript isoform sets having exactly two isoforms,

the frequency of such reassignment is some 76% (6.0%/3.4%)

greater than expected under a simple transcript length-propor-

tional model. In almost all such cases, reassignment is observed

between the 59UTR and CDS, or between the CDS and 39UTR.

We also find that more than 20% of our predicted miRNA target

sites are present in some but not all isoforms that arise from the

same transcriptional region. As many more mRNA isoforms exist

than are represented in existing databases, the instances of miRNA

binding site reassignment or gain/loss that we predict here almost

certainly under-represent the true number in human (and, by

extension, other complex animals) that arise as a consequence of

transcriptional complexity.

Implication for transcriptional regulation
Some investigations have tried to capture the intersection of

miRNA and transcriptional regulation. For example, Stark et al.

reported that in Drosophila, miRNAs and genes encoding predicted

miRNA targets are expressed in a largely mutually exclusive

manner, and that many genes for basic cellular processes have short

39UTRs and thereby avoid miRNA regulation [33]. Farh et al.

reported that mRNAs expressed in the same tissue as miRNAs are

selectively depleted in sites that match these miRNAs [34].

Our results show that high-quality potential miRNA binding sites

exist in all regions of mRNAs. Indeed, in a complex transcriptional

program such as that of human or mouse, there is some ambiguity

in assigning a target site to a specific mRNA region; as shown above,

potential target sites are frequently reassigned among mRNA

regions, or indeed lost or gained entirely, in alternative transcript

isoforms, opening the possibility that miRNAs can mediate

transcript-specific regulation, e.g. in different cell types, tissues or

developmental conditions. The observed frequency of site involve-

ment in gain/loss (22.4% of predicted sites) appears somewhat

greater than expected under a simple length-proportional model (a

maximum of 18.5% of nucleotides are similarly gained/lost, based

on the shorter transcript in pairwise comparisons); further analysis is

required to determine whether this difference is real, and if so

whether it might reflect positive selection in these transcriptional

regions or a subset thereof. For one of the experimentally validated

miRNAs in this study, miR-17-5p, we predicted target sites in both

known transcript isoforms of TNFSF12, but in the CDS of one and

the 39UTR of the other.

Most predicted miRNA targets in human and mouse
have no counterpart in the orthologous mRNA of the
other species

Predicted miRNA targets in human mRNAs that have

orthologs in mouse show a higher S:N ratio than do targets in

human mRNAs that lack mouse orthologs. Of these predicted

sites, most (83–87%) occur in the same mRNA region in both

species, i.e. most miRNA targets in orthologous mRNAs are in this

sense themselves orthologous. However, limiting our analysis to

mRNAs with orthologs in the other species diminishes the number

of predicted sites by 72–81%: most potential miRNA target sites

found by searching only human have no counterpart in an

orthologous mouse mRNA (and vice-versa), implying that many

miRNA-mRNA interactions are potentially taxon-specific. Similar

or greater ratios of genome-specific to evolutionarily conserved

potential target sites have been inferred by others [34].

Experimental validation of miRNA-mRNA interaction
We selected, for experimental validation, six miRNA-mRNA

interactions predicted by our method, including one previously

validated interaction [29] and another identified as a possibility

[14]. Using a luciferase assay in HEK293 cells, we showed that

four of these six transcripts are bound by endogenous miRNAs,

with the corresponding mRNA level reduced by an average of

73% (range 59.6%–86.2%) when assayed at 50 nM miRNA.

These four include the previously validated interaction, plus three

of the five (60%) newly predicted interactions for which the

mRNA level was reduced by an average of 77.5% (range 65.4%–

86.2%) when assayed at 50 nM miRNA. A fifth construct showed

a ,32% mean reduction, which could be biologically (function-
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ally) relevant but falls short of statistical significance as assessed by

the p-value criterion.

Regardless of where the predicted target site is located in the

mRNA, in our experimental protocol the (synthetic) site was

inserted into the construct so it could be expressed from the

39UTR of luciferase mRNA. Thus we can validate that a target

site is bound by endogenous miRNA and that the mRNA level is

reduced as a consequence, but we do not specifically validate

interaction with the site in its original location or native folded

environment. Duplex formation is prerequisite to biological

function, but these assays examine only the effect of binding on

mRNA level, not its functional consequences.

Conclusions
It has been an open question whether low (strong) energy of the

miRNA-mRNA duplex can serve as a good indicator of miRNA

targets. We have developed and implemented an energy-based

computational approach to miRNA target prediction, applied it to

a standard set of known human mRNA sequences at whole-

transcriptome scale, and experimentally measured the change in

mRNA level for a small number of selected predictions. We

showed that short (6–7 nt) sequence motifs matching mRNAs with

perfect WC complementarity occur more frequently in the 59 end

of miRNAs than in the 39 end, and that high-quality binding sites

are present in all regions of mRNA (59UTR, CDS and 39UTR) in

both human and mouse. We also present evidence that many

high-quality potential miRNA binding sites become located in

different mRNA regions, or are gained or lost altogether,

depending on transcript isoform. These observations open the

possibility that further complexity of genetic regulation arises at

the interface among miRNAs, expression and alternative splicing

in morphologically complex animals. Future directions include

incorporating predicted mRNA structure at the target site,

miRNA and mRNA expression levels, and correlations with

protein expression and phenotype.

Materials and Methods

Data
313 mature human and 233 mature mouse miRNA sequences

were obtained from miRBase release 7.0 [35] (www.sanger.ac.uk/

software/Rfam) and are available as Supplementary Table S8.

mRNA and gene data were obtained from hgdownload.cse.ucs-

c.edu/downloads.html (file mrnaRefseq.txt) and represent 22947

unique mRNAs and 17751 protein-coding genes in human, and

17510 and 16627 in mouse. mRNAs were mapped to gene

identifiers using the files refFlat and refLink also from UCSC, and

coordinates of miRNA genes and miRNA targets were assigned

based on the NCBI Human (hg17, Build 35) and Mouse (mm6,

Build 34) Genome Sequencing Consortium genome builds.

Relative sizes of mRNA regions (59UTR, CDS and 39UTR) were

calculated using annotations in the files rna.gbff downloaded from

NCBI (ftp.ncbi.nih.gov/refseq).

Computational approach
We implemented a two-stage prediction process. First we used

FASTH to search for potential targets in the mRNAs by duplex free

energy, and to rank the results by energy. Then in a second stage we

remove (filter) results that fail to meet further criteria not expressed in

terms of energy score per se, e.g. the minimum number of contiguous

Watson-Crick base pairs in the so-called seed region, or the

maximum number of unpaired bases, bulges and GU pairs. This

second-stage filtering was implemented outside FASTH via Perl

scripts. Detailed descriptions of our computational approach,

including FASTH, are presented in Supplementary Text. Our

target-site predictions with selected parameters in human and mouse

are available as Supplementary Table S9, Supplementary Table S10,

Supplementary Table S11, and Supplementary Table S12.

Statistical description of results
To estimate the false positive rate of prediction we calculate a

signal-to-noise (S:N) ratio, dividing the number of target sites

predicted using known (empirical) miRNAs by the mean number

predicted using controls. Our motivation for generating these controls

by two different approaches, mononucleotide shuffling (MS) and a

first-order Markov process (FOM), is presented in the Supplementary

Text. For each known miRNA, the MS control set was constructed

by random permutation, without replacement, of its nucleotides,

preserving both length and nucleotide composition (but not

dinucleotide frequencies, except by chance). The FOM control set,

generated using Sean Eddy’s ‘shuffle’ program in the Squid package

(http://selab.janelia.org/software.html), preserves length and dinu-

cleotide frequencies (but not mononucleotide count, except by

chance). For each miRNA we generated 10 MS and 10 FOM control

sequences. In all, 26 3130 control sequences were generated for

human, and 262330 for mouse. These control sequences were then

used to search against the target database under the same second-

stage filtering conditions as for the real miRNA. Results are presented

in Table 5 and Supplementary Table S1.

We additionally used, as a further set of controls, the shuffled

sequences generated by Lewis et al. so as to preserve the expected

frequency of random matching between miRNA seed sequences

and complementary 39UTR sequences [11]. Results are presented

in Table 5 and Supplementary Table S2.

Sensitivity is calculated as true positives/(true positives + false

negatives), and specificity as true negatives/(true negatives + false

positives).

Mapping target locations to regions of mRNAs
Numbers of predicted targets located in the three regions of

mRNAs (59UTR, CDS and 39UTR) were determined by

retrieving sizes (lengths measured by number of nucleotides nt)

of each region in each mRNA from the rna.gbff files for human

and mouse (above), and mapping target sites to these regions using

the coordinates provided.

Modelling the expected frequencies of site reassignment
and gain/loss among isoforms

Genomic coordinates of the first and last nucleotides for each

transcript region (59UTR, CDS, 39UTR, introns if any) in human

were obtained from the refFlat file downloaded from UCSC

(hgdownload.cse.ucsc.edu/downloads.html). The number of nucle-

otides in each mRNA was computed from these coordinates. For

transcriptional regions (genes) with exactly two known isoforms in

this file, comparison is straightforward. For genes with $3 isoforms,

we made all pairwise comparisons, i.e. a gene with four isoforms

requires 4*(421)/2 = 6 pairwise comparisons. To simplify calcula-

tion we set transcript length (including introns) equal to that of the

longest transcript, so the total number of nucleotides shown in the

Intron/Intron cells is slightly exaggerated (because missing

nucleotides in the shorter transcripts are counted as introns);

otherwise the computation proceeded as for binary transcript sets.

In summarising results (Supplementary Table S3), pairwise

comparisons relative to the longer member of each mRNA pair

were grouped, as were comparisons relative to the shorter member

of each pair. Corresponding calculations were also made correcting

for edge effects (disregarding predicted miRNA target sites that
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overlap any nt position within 5 or 10 nt of the edge of a miRNA

region); see Supplementary Table S3 for details.

miRNA target sites with orthologs in mouse
Most of the 233 miRNAs known in mouse have counterparts

extremely similar in sequence (i.e. putative orthologs) among the

313 miRNAs known for human. From among these we extracted

the 181 pairs that have identical sequences at positions 1–8

inclusive (Supplementary Table S13). The sequence of each

human miRNA was randomized, and the S:N ratio calculated, as

described above. Given the computational complexity of the target

search, we used the same sets of random sequences to search both

human and mouse mRNA databases.

Ortholog pairs between the human and mouse mRNA sets were

identified using BioMart (www.biomart.org). A miRNA target site

(e.g. in human) is considered to have an ortholog in the other

species (e.g. mouse) if the miRNAs and targeted mRNAs are

orthologs in the two species. For example, the human miRNA has-

miR-378 is predicted to have a target site in the mRNA

corresponding to human gene BCL7A, while mmu-miR-378, the

mouse ortholog of has-miR-378, has a target site in the mRNA for

Bcl7a (the orthologous gene in mouse). We thus consider the has-

miR-378 target site in BCL7A to have an ortholog in mouse, and

infer that regulation of these genes by this miRNA has been

evolutionarily conserved between human and mouse.

GO terms
GO terms were retrieved and analysed using DAVID [36].

Experimental validation
To determine the effect of each miRNA on its predicted targets,

synthetic oligonucleotides corresponding to 60 nt around the

target sequence were cloned into the SpeI and HindIII sites of

pMIR-REPORT Luciferase (Ambion). All constructs were verified

by sequencing. HEK293 cells were maintained in DMEM

(GibcoBRL) containing 10% (v/v) foetal calf serum in a 5%

CO2 atmosphere at 37uC. Cells were transfected using Effectene

(Qiagen) according to manufacturer’s instructions. In each well,

56104 cells were co-transfected with 100 ng of a pMIR-REPORT

Luciferase construct, 100 ng of pMIR-REPORT b-galactosidase

(Ambion), and either 10 or 50 nM of the appropriate pre-miR

miRNA precursor (Ambion). After transfection, cells were

incubated for 42 hours prior to harvesting.

Luciferase activity was measured in the presence of either the

test miRNA or a control miRNA. p-values were derived using

Student’s t-test on the mean and standard deviations of the

normalized luciferase signal of test miRNAs, and on the negative

control miRNAs for the same reporter construct. Before

averaging, luciferase activity was normalized to the corresponding

signal from the b-galactosidase reporter. Luciferase activity was

assayed using the Luciferase Assay System (Promega) and detected

on a Wallac 1420 luminometer (Perkin Elmer). b-galactosidase

activity was determined using the b-Galactosidase Enzyme Assay

System (Promega) and detected on a PowerWave XS spectropho-

tometer (BioTek). Each assay was repeated at least three times.

Predicted mRNA targets were selected for experimental

validation based on our groups’ ongoing interest in cancer and

in Wnt signalling, as described further in the text.

Availability
The FASTH source code is available by request from MZ

(zukerm@rpi.edu). It is configured to run in a Unix or Linux

environment.
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16. Rehmsmeier M, Steffen P, Höechsmann M, Giegerich R (2004) Fast and
effective prediction of microRNA/target duplexes. RNA 10: 1507–1517.

17. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction
search. Bioinformatics 24: 2657–2663.

18. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence

comparison. Proc Natl Acad Sci U S A 85: 2444–2448.

19. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence

dependence of thermodynamic parameters improves prediction of RNA

secondary structure. J Mol Biol 288: 911–40.

20. Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, et al. (2006)
Thermodynamics of RNA-RNA binding. Bioinformatics 22: 1177–82.

21. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site
accessibility in microRNA target recognition. Nat Genet 39: 1278–84.

22. Long D, Lee R, Williams P, Chan CY, Ambros V, et al. (2007) Potent effect of
target structure on microRNA function. Nat Struct Mol Biol 14: 287–294.

23. Sethupathy P, Corda B, Hatziegeorgiou AG (2006) TarBase: A comprehensive

database of experimentally supported animal microRNA targets. RNA 12:

192–197.

24. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, et al. (2007)

MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
Mol Cell 27: 91–105.

25. Yoshinari K, Miyagishi M, Taira K (2004) Effects on RNAi of the tight

structure, sequence and position of the targeted region. Nucl Acids Res 32:

691–699.

26. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, et al. (2002) Prediction
of plant microRNA targets. Cell 110: 513–520.

27. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of
microRNAs on protein output. Nature 455: 64–71.

28. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to

Namog, Oct4 and Sox2 coding regions modulate embryonic stem cell

differentiation. Nature 455: 1124–1128.

29. The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification

of biology. Nat Genet 25: 25–29.

30. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, et al. (2005) miR-15

and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:

13944–133949.

31. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. (2005) The

transcriptional landscape of the mammalian genome. Science 309: 1559–

1563.

32. Takeda J, Suzuki Y, Nakao M, Barrero RA, Koyanagi KO, et al. (2006) Large-

scale identification and characterization of alternative splicing variants of human

gene transcripts using 56,419 completely sequenced and manually annotated

full-length cDNAs. Nucl Acids Res 34: 3917–3928.

33. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal

microRNAs confer robustness to gene expression and have a significant impact

on 39UTR evolution. Cell 123: 1133–46.

34. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, et al. (2005) The

widespread impact of mammalian MicroRNAs on mRNA repression and

evolution. Science 310: 1817–21.

35. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006)

miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res

34: D140–144.

36. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, et al. (2003) DAVID:

Database for annotation, visualization, and integrated discovery. Genome Biol

4(5): P3.

37. Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, et al. (2005)

Sequence variants in SLITRK1 are associated with Tourette’s syndrome.

Science 310: 317–320.

38. Anderson C, Catoe H, Werner R (2006) MIR-206 regulates connexin43

expression during skeletal muscle development. Nucl Acids Res 34: 5863–5871.

39. Boutz PL, Chawla G, Stoilov P, Black DL (2007) MicroRNAs regulate the

expression of the alternative splicing factor nPTB during muscle development.

Genes Dev 21: 71–84.

40. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, et al. (2006) The role of

microRNA-1 and microRNA-133 in skeletal muscle proliferation and differen-

tiation. Nat Genet 38: 228–233.

41. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, et al. (2005) A

minicircuitry comprised of microRNA-223 and transcription factors NFI-A and

C/EBPalpha regulates human granulopoiesis. Cell 123: 819–831.

42. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, et al. (2005) MicroRNAs 221 and

222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit

receptor down-modulation. Proc Natl Acad Sci U S A 102: 18081–18086.

43. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, et al. (2006)

MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl Acad

Sci U S A 103: 5078–5083.

44. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. (2005) RAS is

regulated by the let-7 microRNA family. Cell 120: 635–674.

45. Kato M, Zhang J, Wang M, Lanting L, Yuan H, et al. (2007) MicroRNA-192 in

diabetic kidney glomeruli and its function in TGF-beta-induced collagen

expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:

3432–3437.

46. Kiriakidou M, Nelson PT, Kouranov A, Fitxziev P, Bouyioukos C, et al. (2004)

A combined computational-experimental approach predicts human microRNA

targets. Genes Dev 18: 1165–1178.

47. Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS (2006)

MicroRNA-155 regulates human angiotensin II type 1 receptor expression in

fibroblasts. J Biol Chem 281: 18277–18284.

48. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, et al. (2006)

Involvement of human micro-RNA in growth and response to chemotherapy in

human cholangiocarcinoma cell lines. Gastroenterology 130: 2113–2129.

miRNA Target Prediction: FASTH

PLoS ONE | www.plosone.org 21 May 2009 | Volume 4 | Issue 5 | e5745



49. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, et al.

(2006) The microRNAs miR-181 targets the homobox protein Hox-A11 during

mammalian myoblast differentiation. Nat Cell Biol 8: 278–284.

50. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-

regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

51. Poy MN, Eliasson L, Kurtzfeldt J, Kuwajima S, Ma X, et al. (2004) A pancreatic

islet-specific microRNAs regulates insulin secretion. Nature 432: 226–230.

52. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ (2006)

MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206.

J Cell Biol 175: 77–85.

53. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, et al. (2006) Specific

activation of microRNA-127 with downregulation of the proto-oncogene BCL6

by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443.

54. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, et al. (2006)

Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-

RNA miR-125a or miR-125b. J Biol Chem 282: 1479–1486.

55. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA

regulates the expression of human cytochrome P450 1B1. Cancer Res 66:

9090–9098.

56. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, et

al. (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in
mouse cells. FEBS Lett 580: 4214–4217.

57. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. (2006) A microRNA

expression signature of human solid tumors defines cancer gene targets. Proc
Natl Acad Sci U S A 103: 2257–2261.

58. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, et al. (2006) A genetic
screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ

cell tumors. Cell 124: 1169–1181.

59. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential
tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:

5017–5022.
60. Xiao J, Yang B, Lin H, Lu Y, Luo X, Wang Z (2007) Novel approaches for

gene-specific interference via manipulating actions of microRNAs: examination
on the pacemaker channel genes HCN2 and HCN4. J Cell Physiol 212:

285–292.

61. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-
specific microRNAs that targets Hand2 during cardiogenesis. Nature 436:

214–220.
62. Zhu S, Si ML, Wu H, Mo YY (2007) MicroRNA-21 targets the tumor

suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282: 14328–14336.

miRNA Target Prediction: FASTH

PLoS ONE | www.plosone.org 22 May 2009 | Volume 4 | Issue 5 | e5745



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Ragan, C; Cloonan, N; Grimmond, SM; Zuker, M; Ragan, MA

 

Title: 

Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH

 

Date: 

2009-05-29

 

Citation: 

Ragan, C., Cloonan, N., Grimmond, S. M., Zuker, M.  &  Ragan, M. A. (2009).

Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH.

PLOS ONE, 4 (5), https://doi.org/10.1371/journal.pone.0005745.

 

Persistent Link: 

http://hdl.handle.net/11343/262087

 

File Description:

Published version

License: 

CC BY


