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Interplay between geometric and dynamic phases in a single-spin system
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We use a combination of microwave fields and free precession to drive the spin of a nitrogen-vacancy (NV)
center in diamond on different trajectories on the Bloch sphere and investigate the physical significance of
the frame-dependent decomposition of the total phase into geometric and dynamic parts. The experiments are
performed on a two-level subspace of the spin-1 ground state of the NV, where the Aharonov-Anandan geometric
phase manifests itself as a global phase, and we use the third level of the NV ground-state triplet to detect it. We
show that while the geometric Aharonov-Anandan phase retains its connection to the solid angle swept out by
the evolving spin, it is generally accompanied by a dynamic phase that suppresses the geometric dependence of
the system dynamics. These results offer insights into the physical significance of frame-dependent geometric

phases.
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I. INTRODUCTION

When a quantum system evolves in a manner that can be
represented geometrically—such as a spin-1/2 qubit on the
Bloch sphere—a phase that depends on the geometry of the
evolution arises in addition to the “dynamic” phase accumu-
lated as a result of time evolution. Such “geometric” phases
form a unified framework for interpreting the evolution of a
quantum system [1]. First identified by Pancharatnam [2] and
later studied by Berry [3] for adiabatically varying periodic
Hamiltonians, it was realized by Aharonov and Anandan [4]
that cyclic state evolution itself also results in a geometric
phase. Aharonov and Anandan’s phase is the gauge-invariant
generalization of Berry’s phase in the adiabatic limit, while
further work generalized the idea of geometric phase to nona-
diabatic, noncyclic evolution [5]. A key aspect of Aharonov
and Anandan’s work was the explicit identification of the
dynamic and geometric components of the overall phase
acquired for a cyclically evolving quantum state. This decom-
position expresses the unique nature of the geometric phase,
while at the same time underlining the difficulty in detecting
it independently of the dynamic phase.

The advent of solid-state, single-quantum spin systems has
triggered renewed interest in geometric phase, with notable
measurements using superconducting qubits [6,7] and spin
qubits in diamond [8,9]. Nitrogen-vacancy (NV) centers in
diamond [10-12] offer a particularly attractive system to study
and utilize geometric phases, featuring a ground-state spin
triplet with millisecond coherence times [13] at room temper-
ature, quantum states amenable to microwave geometric gates
[14], optical fields [15,16], and even physical rotation [17,18].
A key factor in this renewed interest is the potential to exploit
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features of the geometric phase that distinguish it from the
dynamic phase, such as resilience to certain kinds of noise,
which has application in quantum computation [19]. Although
geometric phases are a ubiquitous feature of quantum systems,
whether or not geometry in a given setting confers unique
properties to the system, or simply offers an alternative for-
mulation of the dynamics, is often not clear.

In this work, we experimentally investigate the Aharonov-
Anandan nonadiabatic geometric phase using distinct two-
level subspaces of a single NV ground-state manifold. Single
NV spins with long coherence times provide an ideal testbed
for examining geometric phases under a variety of driven and
free evolutions. We can individually address subspaces due to
the significant frequency difference between the mg = 0 —
+1 and mg =0 — —1 transitions in the NV ground-state
triplet when an external magnetic field is applied [Figs. 1(a)
and 1(b)]. The Aharonov-Anandan (AA) phase is defined for
cyclic evolutions in projective Hilbert space and therefore
manifests itself as a global phase in the two-level subspace.
When considering the additional third level of the ground-
state triplet this global phase can nevertheless be detected
as described in the following section. We drive the NV spin
along cyclic trajectories by applying sequences of detuned
microwave pulses and free precession dynamics. We show
that the interplay between dynamic and geometric phase in
this system results in the experimentally measured phase shift
being invariant to geometric manipulations. These results re-
veal the subtle nature of the Aharonov-Anandan phase and the
significance of dynamic phases in a quantum spin system.

This paper is structured as follows. In Sec. II, we re-
view the Aharonov-Anandan formulation of geometric and
dynamic phases and consider specifically the theory perti-
nent for examining these in the context of the NV center in
diamond. Section III presents an overview of our experimen-
tal scheme and methods and explores the significance of a
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FIG. 1. (a) The NV center in diamond, formed from a substitu-
tional nitrogen adjacent to a lattice vacancy in the diamond matrix.
(b) Optical transitions and ground-state structure of the NV, depict-
ing Zeeman-separated mg energy levels and transition frequencies.
(c) A variable-detuning spin-echo sequence nested inside a resonant
Ramsey sequence, showing microwaves applied to each two-level
subspace and laser preparation and readout pulses. The time between
spin-echo pulses 7sg is varied and time delays either side of the spin
echo sequence are added to ensure the total time between the Ramsey
pulses 7z remains fixed. The resonant microwave Rabi frequency for
each transition is about 500 kHz. (d) Ramsey fringes for different
spin-echo times tsg from the {0, —1} interferometer while only the
detuning A of the mg = 0 — mg = —1 microwaves are changed.
The frequency of the Ramsey fringes is consistent with Atgg/4,
albeit slightly offset due to the low Rabi frequency effectively ampli-
tude modulating the interference fringes. This shows that spin-echo
results in a global phase in the {0, 41} subspace that can be read out
using interferometry on the mg = 0 — mg = —1 transition.

global phase accumulated by a standard spin-echo interfer-
ometry sequence. In Sec. IV we demonstrate and characterize
microwave pulses that drive the NV spin on closed trajecto-
ries in Hilbert space. In Sec. V we combine circuit-driving
microwave pulses with free evolution in the rotating frame
to understand the significance of frame-dependent geometric
phases. Section VI discusses these results and offers an out-
look on our results as well as further avenues of research.

II. GEOMETRIC PHASES IN QUANTUM SPIN SYSTEMS

Confirmation and demonstration of geometric phase in
numerous systems and settings [20] were the focus of experi-
mental work immediately following Berry’s initial realization
[3]. As Berry’s phase depends only on the geometry of a
given evolution, this renders it insensitive to certain forms of
noise, sparking interest as a potentially fault-tolerant quantum
gate operation [21,22]. However, as Berry’s phase demands
adiabatic evolution, which translates to slow quantum gate
operations, environmental decoherence becomes a serious
problem given the short coherence time of many solid-state

quantum systems [23]. Attention then turned to nonadiabatic
geometric phases, where the requirement for slow evolution is
relaxed, but the presence of dynamic phases that accompany
the spin manipulations used to drive geometric gates reintro-
duces a conduit for noise to enter the system. Several schemes
have been investigated to remove the dynamic phase, which
typically cannot be eliminated in a time-reversal measure-
ment such as spin-echo without also removing the geometric
phase [24-26].

The often unavoidable interplay between dynamic and
geometric phase underpins the difficulty in realizing the
purported advantages of geometric phase manipulations on
spin qubits. The distinction between dynamic and geomet-
ric phase provoked work that suggested the geometric phase
can be formally removed and absorbed into the dynamic
phase, yet still retain its “geometric character” [27]. Other
work concerned the invariance of geometric phases to unitary
transformations [28,29].

The geometric phase in two level systems is related to the
solid angle ® enclosed by the traversed path of the state in the
associated space, namely

Qg =mO, ey

with m the spin quantum number. This space can always be
represented by a sphere: For the adiabatic Berry phase this
is the space of parameters describing the Hamiltonian, and
the Poincare sphere that parametrizes light polarizations is
the relevant space for Pancharatnam’s geometric phase. For a
beam of light directed through different spatial directions, the
relevant parameter space is simply the unit sphere [30,31]. The
Bloch sphere, being the standard representation of a two-level
quantum system, is also a common parameter space whereby
a geometric phase is defined. The Bloch sphere is an example
of a projective Hilbert space: Quantum states with different
overall (global) phases are mapped to the same point on the
Bloch sphere.

A. The Aharonov-Anandan phase

The notion of a quantum system evolving in projective
Hilbert space is at the core of Aharanov and Anandan’s
1987 work [4]. For a Hamiltonian H, a state vector |y (¢)) =
exp(—iHt)|¥(0)) (h = 1) undergoes evolution for a time T
such that it returns to its initial configuration at r = 7" with
a global phase difference, | (7)) = exp(i¢r)|¥(0)). Ahara-
nov and Anandan showed that when mapped to a projective
Hilbert space, i.e., |¥) = e 7 Oy), f(T)— f(0) = ¢, and
thus |1/7(T)) = |1/7(O)), the total phase ¢ can be expressed as

T T
o(T) = —/ (VIH|Y)dt +_/ i<w|di|w> dr, (2
0 0 !
where the first term is identified as the dynamic phase ¢gyn
and the second term as the geometric or AA phase, gaa.
Since the AA phase concerns cyclic evolutions of a quan-
tum state, the initial and final states on the Bloch sphere
are the same, differing only by an overall phase. This poses
a challenge to experimentally detecting the AA phase. The
first experimental demonstration of Aharonov and Anandan’s
geometric phase was by Suter et al. in 1987 [32]. A spin-1
system of coupled protons served as a spin-1 system that could
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be decomposed into two independently addressable spin-1/2
systems due to dipolar coupling rendering the frequency of
each transition different. The spin in one two-level subspace
which was driven about closed circuits on the Bloch sphere,
accumulating a global geometric phase, and the third state
served as a reference interferometer to detect the phase picked
up by the first system. An in-depth theoretical analysis of this
experiment was the topic of Ref. [33]. We will make extensive
use of the idea that in the NV system, geometric phases in a
spin-1/2 subspace of a fundamentally spin-1 quantum system
can be detected using reference interferometry.

B. Application to the NV spin: Global phases

The room-temperature level structure of the NV center
triplet ground state, depicted in Figs. 1(a) and 1(b) derives
from strong spin-spin coupling between two electrons [34]
and a Zeeman shift in the presence of a magnetic field com-
ponent B parallel to the N-V axis:

H = L)zfsSZ2 + )/BSZ, (3)

with D, /2w = 2.870 GHz NV zero-field splitting, S, the
spin-1 z Pauli matrix, and y /27 = 2.8 MHzG™'. For low
magnetic field strengths (B < 1000 G), the zero-field split-
ting is the dominant interaction. We consider now the
application of two microwave fields w.(¢), tuned near res-
onance of the mg = %1 transitions, with respective resonant
Rabi frequencies €21 and angular frequencies wy and phases
¢+, with the subscripts + denoting the respective mg = %1
basis, see Fig. 1(b). The Hamiltonian for the driven NV center
in the composite frame rotating at each microwave frequency
is given by [35]

Qe 0+
igy —i¢p_
Hy= |2 0 2, “)
2 2
ip_
0 L AL

2
with AL, = wy — Dy + yB and A_ = w_ — D, — vy B the
detuning from resonance of each driving field. We assume
also that Ay > Q4, which facilitates dropping 2 terms
that appear in the mg = 1 subspaces. We introduce ef-
fective spin-1/2 Hamiltonians that conveniently describe
the coupling between the NV spin and a microwave field
for the {mg=0,mg=+1}=1{0,+1} and {mg=0,mg =
—1} = {0, —1} subspaces,

emitt Q_e -
—A, & 0

H+=( e )H_=( o ) ©
Qe+ ’ Q et
LG et AL

2

A demonstrative example of a global phase measurement
using the three levels of the NV spin is that of a spin-echo
sequence addressing one particular subspace, for instance, the
2-level 0, +1 subspace:

WI(T)) = U+,7r/2UfreeU+,7rUfreeU+,n/2|1/f0), (6)

with U, ;> and Uy ; the 7 /2-pulse and 7-pulse operators
(with Q_ = 0) and the free-evolution operator Ue.(T) =
exp(—iHt)|q, 0. For the spin-echo sequence Eq. (6) with
©2_ = 0 and the NV initialized into the mg = +1 state, |y) =
| 4+ 1), we find

[ (1)) = —e™ 72 |y). (7)

The spin-echo sequence does not cancel the dc detuning A,
it maps it to a global phase on the {0, +1} subspace. We can
modify the initial state so that the global phase manifests as
a relative phase between states by first applying a resonant
0, —1 7 /2 pulse to an initially pure mg = O state and a final
0, —1 /2 pulse on the ms = —1 basis to close an enveloping
Ramsey interferometry sequence,

spin-echo

|¢(T)> = U—,ﬂ/2 U+,71/2UfreeUnUfreeU+$n/2 U—,ﬂ/2 |1/f0) (8)

Ramsey

We find |¢¥ (7)) = —-(1+ e'AT+r)/2|O) +i(l — e'AT+r)/2| +1),
the NV mg =0 bright-state population then varies as
cos’> (A, t/4). We can compare this result to a standard
two-level system representing only one NV subspace with
Hamiltonian Hy s = —A/20, 4+ Q/20, (¢ =0), oy, the
standard spin-1/2 Pauli matrices. For an initial spin state in
the spin-1/2 basis of Hyi s, [¥215)(0)) = |1), application of a
spin-echo sequence yields

[YaLs)(T)) = — 1) 9

for all A, and the global phase is now apparently independent
of 7, in contrast to the spin-1 result. However, using the two-
level Hamiltonians defined in Eq. (5) yields the correct global
phase for a spin-echo sequence, and we therefore will also use
Eq. (5) for calculating the dynamic and Aharonov-Anandan
phases within the pseudospin-1/2 subspaces. A consequence
of this choice of Hamiltonian are geometric and dynamic
phases that no longer obey the conventional spin-1/2 relations
[24] defining the contribution of each phase to the overall
phase. As we shall see, this has no bearing on the mea-
sured outcome of each experiment but is an important topic
of discussion when interpreting the results of a given pulse
sequence, reserved for Sec. VI.

Spin-echo represents an archetypal case of cyclic evolution
of a state vector leading to a global phase. However, the
relative contributions of geometric and dynamic phase are
not obvious—an intuitive picture would lead one to conclude
that the path the state vector traces out during the spin-echo
sequence subtends a solid angle and that in turn defines the
geometric phase. If this were the case, then one would also
expect a rather more complicated global phase than simply
¢ = A,1/2 given the application of a a 7 pulse halfway into
the free evolution time, that subtends a r-dependent spherical
cap. As we shall see, the total global phase is not purely ge-
ometric: The decomposition of geometric and dynamic phase
is more involved when evolution occurs over several different
Hamiltonians. We now proceed to describe the experimental
realization of reference interferometry with NV centers in
diamond and measurements of global phases.

III. EXPERIMENT

Our experimental setup is designed to rotate diamonds
containing single NV centers [36,37] and consists of a '>C-
enriched CVD diamond mounted on its (100) face. The
motor that ordinarily rotates the diamond is held constant
at a static rotation angle and not altered during any ex-
periments. A purpose-built confocal microscope is used to
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optically address and read single NV centers with typical
coherence time 7," =50 us, 7> =1 ms. A 15-G magnetic
bias field oriented along the surface normal of the diamond
(60 = 54.7° to the NV axis) is used to break the degeneracy
of the mg = £1 states [38] and a 20-um-diameter copper
wire 100 um above the diamond surface is used to apply
linearly polarized microwave fields tuned to the |0) — |£1)
transitions. We operate with microwave fields tuned to the
|mg = £1, m; = 0) hyperfine transition (nuclear spin quan-
tum number is conserved) and ensure low microwave Rabi
frequencies (2 < 500 kHz) so that off-resonant dressing of
the proximal m; = £1 hyperfine states is minimized [39].
Microwaves are generated from three independently tunable
sources, gated using fast switches and combined before be-
ing amplified and applied to the NV center. The microwave
pulses operating on each two-level subspace are never applied
simultaneously.

A. Nested spin-echo

We first confirm that a static microwave detuning yields
a global phase on the final state of a spin-echo sequence
targeting a pseudospin-1/2 subspace of the NV, as discussed
in the previous section. The pulse sequence we use is depicted
in Fig. 1(c) and consists of a resonant Ramsey sequence
applied to the {0, —1} subspace while a spin-echo sequence
with pulse detuning A is applied to the {0, +1} subspace
[40]. The complete sequence begins and ends with a 3-us
laser pulse that prepares and reads the NV spin. Considered
within each subspace individually, the signal resulting from
the spin-echo sequence and the Ramsey sequence are un-
affected by varying the spin-echo pulse detuning. However,
from Fig. 1(b), we see that spin-echo actually yields a mea-
surable phase that is read out using the Ramsey sequence. We
will return to a discussion of spin-echo in the context of the
results of Sec. V, which explore the significance of geometric
phases under cyclic evolutions driven by multiple Hamilto-
nians. We will now move to studying microwave pulses that
drive cyclic evolutions on the Bloch sphere that result in
geometric phases.

IV. MEASUREMENT OF GEOMETRIC
AND DYNAMIC PHASES

In this section, we drive the NV spin using detuned mi-
crowave (mw) pulses timed to execute a cyclic evolution of
the spin, which in turn induces a geometric phase. For a state
initially parallel to to the +z axis, application of the mw
field for one Rabi period t5,, (A) = 27 /+/ Q2 + A2 returns the
quantum state to its initial state, executing a cone trajectory on
the Bloch sphere, Fig. 2(a). We therefore call this a C pulse,
and henceforth drop the £ subscripts for each microwave
field, since we only ever vary the detuning in a single specified
subspace. We define the solid angle swept by the spin vector
during the evolution as

('~ e
O=27(1-—— (10)
IS 1182

with S = (0}), i € {x,y, z} the Bloch vector of the spin state
given in Eq. (13) and 2 satisfies dS/dt = S x  for a given
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FIG. 2. Pulse sequences applied to the NV spin to drive cyclic
trajectories and measured spin populations for multiple circuits.
(a) Sequence 1: A resonant Ramsey sequence applied to the {0, —1}
subspace reads out the phase accumulated by the C pulse applied
to the {0, +1} system. The path traversed by the spin in the Bloch
sphere consists of a closed circle subtending a cone with solid angle
®. (b) Sequence 2, both the resonant interferometry sequence and
C pulse act on the {0, —1} system. The path the spin takes in the
resonant frame is noncyclic, with initial and final azimuthal spins
separated by a relative phase A¢. Transformation to the detuned
frame of reference yields a cyclic evolution, though the geometric
and dynamic phases both depend on the absolute phase of the C
pulse, which is uncontrolled. [(c) and (d)] Experimental results for
varying the C pulse detuning and cumulative rotation number N
for Sequences 1 and 2, respectively. Error bars derive from photon
counting statistics and lines are fits of the form cos?(N ¢y ) with fixed
Rabi frequency.

S; in the {0, 41} subspace 2 = (—9, 0, A) [41]. As a simple
example, consider a C pulse applied to the initially spin-
down state, |0) in the {0, 4+1} subspace. Then ® =27 (1 +
A/~ AT + QOZ), for ¢ = 0, and the AA phase for this path is
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then

A
¢AA:”<”¢ﬁ)‘ an

We note for this path, |1/ (t2)) = €7 |0), with ¢7 = 7 (1 +
A/~ A% + Q%) = ¢aa, which implies zero dynamic phase.

Multiple cyclic evolutions are obtained by applying the
driving field for an integer multiple N of t,,, in which case
the AA phase is given by N¢aa, and the NV mg = 0 popula-
tion varies as cos>(N¢aa ). We study several pulse sequences
applied to drive the NV spin along the “cone” trajectory which
differ by the initial configuration of spin states and which two-
level subsystem is driven by the C pulse, as shown in Fig. 2.
A C pulse is applied to either the {0, +1} (Sequence 1) or
{0, —1} subspace (Sequence 2) after an initially pure |0) state
is put into a superposition with the | — 1) state by a resonant
/2 pulse. We vary the cone solid angle by changing the
detuning of the C pulse, and the resulting phase accumulation
is read out by a final resonant 7 /2 pulse, closing the Ramsey
interferometry sequence operating on the {0, —1} subspace.
The results for experiments using Sequences 1 and 2 is shown
in Figs. 2(c) and 2(d) for increasing values of N. We compared
our experimental results to numerical simulations of the NV
spin system subjected to driving fields in the presence of
experimental systematics such as nearby hyperfine levels and
finite pulse durations (data not shown) and found satisfactory
agreement.

Sequence 1 corresponds to the archetypal cone trajectory
considered by Ref. [32] where the AA phase manifests as a
global phase on the (|0) — |+1)) system. Sequence 2 is simi-
lar, except that both the interferometry pulse sequence (7 /2
pulses) and C pulses act on the same two-level subsystem,
and measurement of a relative phase A¢ by the interferometry
sequence immediately suggests the path the C pulse executes
is not cyclic in its subspace, since this relative phase maps to
an azimuthal separation between initial and final states on the
Bloch sphere [Fig. 2(b)].

The phase of the driving field also plays an important role
for Sequence 2. The initial spin vector acted on by the C pulse
is an azimuthal vector on the Bloch sphere with a well-defined
angle with respect to the x-y axes, namely the phase of the mi-
crowave driving field that executed the first 77 /2 pulse. In our
experiments, different microwave sources are used to drive
the resonant 7 /2 pulses and off-resonant C pulses, meaning
there is no phase relationship between the two driving fields,
even when driving spins within the same subspace. Therefore,
the angle between the microwave driving field used to drive
the C pulse and the azimuthal spin is effectively random on
a shot-to-shot basis: The corresponding solid angle, and thus
@an, is also random. Since Sequence 1 applies a C pulse to an
initially longitudinal spin state, the relative phase dependence
is suppressed, the detuning of the microwave field being the
only parameter determining the solid angle.

While the trajectory in Sequence 2 executed by the state
vector during the C pulse is not cyclic in the frame rotating at
the resonant frequency (the frame in which the interferometry
sequence is performed), it is cyclic in the frame rotating at
the frequency of the C pulse. In this frame, the gauge trans-

formation |) = e O |yr) with f(t) = t/2(A + VA2 + Q2

X
Detuned frame

Resonant frame

FIG. 3. Calculated paths taken by the Bloch vector of the NV
spin under the application of Sequence 2, observed in the resonant
frame (left), rotating at the two-level splitting (equivalently, the reso-
nant microwave frequency) and (right) in the detuned frame, rotating
at w = A, where A is the detuning of the C pulse. Different colors
represent different phases of the microwave field sampled when the
C pulse is applied. In the resonant frame, where the NV spin Bloch
vector is stationary, the C pulse drives noncyclic trajectories, so that
the initial and final spins are separated azimuthally by A¢. In the
detuned frame, the same trajectories are closed, subtending solid
angles proportional to the Aharonov-Anandan phase.

yields | (t2)) = exp(—i¢7)|¥(0)), with ¢r = ¢ayn + Paa-
The spin vector is rotated a full cycle about the microwave
field 2, even though the relative azimuthal angle between the
spin vector and the microwave field is still an effectively ran-
dom quantity. Figure 3 shows exemplar paths taken by the spin
vector in the resonant frame and detuned frames, with several
noncyclic trajectories in the resonant frame all returning to the
same point in the detuned frame and subtending solid angles
proportional to the Aharonov-Anandan phase.
In the detuned frame, application of Eq. (2) yields

Gayn = [A —  sin(po)]/vV A* + Q2 (12a)
dan = [l + Q2 sin(¢o)/v A? + Q2] (12b)

and the total phase is also ¢7 = (1 + A/ A2 + Q2) = A¢,
the phase difference measured by the Ramsey interferometry
sequence performed on the system. The microwave-phase-
dependent terms of the dynamic and geometric terms cancel,
and since the relative phase between the states of the two-level
system is equal and opposite, the accumulated phase is twice
that of Sequence 1.

As a demonstrative example of Aharonov and Anandan’s
formulation of nonadiabatic geometric phases, the results of
Sequences 1 and 2 highlight some important features of the
AA phase in a spin-1 system measured in a rotating reference
frame. We first examine the nonadiabaticity: In the resonant
frame, where the spin vector is stationary, the microwave field
of the C pulse rotates at a rate given by A, and since A ~ Qg
the spin cannot adiabatically follow the microwave field [42].
Also, in both sequences, the spin does not start in an eigenstate
of the microwave field operator [43]. For Sequence 1, ¢gyn =
0 as a result of the Hamiltonians defined in Eq. (5), though the
dynamic phase reappears when the initial state is swapped so
that the NV spin begins in the | + 1) state (parallel to the +z
axis rather than antiparallel for |0)).
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Isolating the geometric and dynamic phases in the general
setting is of interest, since this is the key to exploiting the
purported benefits of geometric and topological phases. In the
experimental cases we focus on, this is a nontrivial procedure.
This can be contrasted to the example of a Berry phase, which
could be accumulated by adiabatically rotating (A < €2¢) the
microwave field about the z axis, for instance. Here reversing
the cyclic variation of the Hamiltonian, in the form of the
rotation direction of the microwave field inverts the sign of the
geometric phase but leaves unchanged the dynamic phase. A
spin-echo pulse sequence [44] can then be employed to mea-
sure only the geometric phase [6,14,21,39]. In the trajectories
considered here, reverse evolution on the cone circuit can be
achieved only by a second pulse with inverted detuning, which
from Egs. (12b) also inverts the dynamic phase.

Many of the peculiarities encountered with the decompo-
sition into geometric and dynamic phases stems from our
description of state manipulations in a rotating frame. For
instance, in the case of a pure spin-1/2 system initialized
into a state orthogonal to the driving field and then subjected
to a C pulse, the dynamic phase vanishes because the spin
state evolves on a geodesic of the Bloch sphere, leading to
¢aa = m = ¢r. Due to the energy level structure of the NV
triplet Hamiltonians, [Eq. (5)], such a relation concerning zero
dynamic phase no longer hold true: We calculate zero dy-
namic phase for Sequence 1 instead. The physical significance
of zero dynamic phase will become apparent when we con-
sider multiple sequential evolutions applied to the state vector,
as only for the case ¢gyn = 0 can we use simple geometric
arguments to predict the system dynamics.

V. COMPOSITE TRAJECTORIES

We now consider the case of multiple sequential trajecto-
ries, under different Hamiltonians. We consider first the case
of Sequence 3, depicted in Fig. 4(a). A resonant Ramsey
sequence interrogates the {0, —1} subspace while a second
sequence consisting of two half-duration C pulses (C/2 pulses)
is applied to the {0, +1} subspace. The C/2 pulses, with de-
tuning A, are separated by a free evolution period of T = 1/A.
Exactly like conventional Ramsey interferometry, the state
vector precesses at A in the frame where the microwave
field of the C/2 pulses appears stationary. We experimentally
verify that the C/2 pulses initiate free precession by applying
them in analogy to a simple Ramsey experiment to a pure
|0) state without any reference interferometer and varying
the free evolution time and measuring the period of resulting
fringes [Fig. 4(c)]. For C/2 pulses close to resonance (where
T — 00), we cap the free precession time at 10 us.

As depicted in Fig. 4, there are three geometric manipula-
tions applied to the spin vector, which begins longitudinally
aligned to the —z axis. C; and C, constitute the half-cones
subtended by the two C/2 pulses, while C; denotes the path
traversed during free evolution. The geometric component of
the total phase accumulated over path C., identified by the
solid angle swept by the state vector in the free-evolution
stage (where the spin precesses at A in the resonant frame)
is dependent on the detuning of the C/2 pulse applied to the
longitudinal spin. The free precession observed in Fig. 4(c)
confirms that the spin vector precesses in the frame where the
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FIG. 4. Composite cyclic evolution pulse sequence, Bloch sphere
trajectories, free-evolution fringes and results. (a) Sequence 3 con-
sists of two C/2 pulses acting on the {0,+1} subsystem with
detuning A, separated in time by v = 1/A. A resonant Ramsey
sequence applied to the {0, —1} subspace reads out the total phase
accumulated over the three geometric stages C, C;, and C, traced by
the spin vector on the Bloch sphere (note inverted z axis) (b). (c) We
first verify that the spin vector precesses at a rate A by measuring
interference fringes resulting from application of only the {0, +1}
pulses of Sequence 3 and varying the time between pulses. Gray
points depict the fitted period, dashed lines denote 1/A. (d) Applying
Sequence 3 to the NV spin yields data consistent with application
of a single C pulse, indicating the the geometric nature of the free
precession stage C. is suppressed by an accompanying dynamic
phase. Error bars derive from standard error from three repeated
measurements, solid lines denote fits.

microwave field is stationary. However, the results shown in
Fig. 4(d) are consistent with that of a single C pulse being
applied to the {0, +1} subspace [e.g., Fig. 2(c)]. The effects
of the geometric phase accumulated during the free evolution
C., which depends on the detuning A of the initiating C pulse,
but not on the free precession rate, is not observed.

As a further demonstration, we consider Sequence 4, de-
picted in Fig. 5(a), where a complete C pulse is inserted at a
time t; after the first C/2 pulse, executing a complete rotation
of the spin vector over a path denoted Cj,, the geometry of
which is determined by 7. A further free evolution time 1,
follows with 7; + 7, = 1/A before the spin returns to the lon-
gitudinal spin state. We therefore have a composite path where
the geometric phase accumulated in one stage depends on the
preceding stage, i.e., 7| determines the solid angle swept dur-
ing C,. The results of this sequence, for various ratios 7;/1,
are plotted in Fig. 5. In a similar vein to Sequence 3, the results
are the same regardless of t; and 7, and are equivalent to that
of two C pulses applied consecutively. The configuration of
the spin vector when the C pulse is applied, and hence the free
evolution stage, appears to have no bearing on the resulting
phase accumulation. Such an observation would be expected
if no free evolution occurred, though this would infer that the
time between the C/2 pulses is immaterial, at odds with the
data in Fig. 4(c).

The resolution of this supposed paradox lies in care-
ful application of Eq. (11) to decompose the total phase
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(a) Sequence 4 ¢ ¢ C., G (c)
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FIG. 5. (a) Sequence 4 is identical to Sequence 3 but with a
full C pulse applied after a time 7, = (1 — )7, followed by further
free evolution 7, = nt such that 7; 4+ 7, = 1/A, with n a parameter
that determines where in the free evolution the C pulse is applied.
(b) Paths taken by the spin vector under each geometric manipulation
step depicted on the Bloch sphere, with the frame rotation rate set
by the microwave field driving C pulses, note the inverted z axis.
C; denotes evolution under the microwave fields and F; denotes
free-evolution steps. (c) Experimental results for various values of
1, which determines where in the free-evolution step the complete C
pulse is applied. The output of the complete interferometry sequence
is identical to two C pulses applied consecutively.

accumulated over each segment of the trajectory into dynamic
and geometric parts for both Sequences 3 and 4. Beginning
with Sequence 3, we consider the application of Eq. (11)
to the free-precession trajectory C; for the state immediately
following the C/2 pulse,

W) = Uepplpr(t =0))

. 0 0
- —e’¢7/2<cos 5' + 1) +sin §|O)>, (13)

with Ug,, a unitary operator that executes a C/2 pulse,
cos§ =Q/VAT+Q2, sin§ =A/VAT+Q?, and ¢r =
(1 + A/+/A? + Q). Here 0 is the angle the Bloch vector
makes to the z axis. Computing the dynamic and geometric
phases accumulated during the free evolution step, we find

¢ayn = (1 +cosb), (14a)
dan = —7(1 +cos0)
= _(;bdyn» (14b)

with the resulting total phase ¢ayn + daa = 0. While the ge-
ometric and dynamic phases depend on the detuning of the
preceding C/2 pulse, the total phase accumulated during the
free evolution step is zero, and thus the results of Sequence
3 are consistent with the application of a single C pulse.
Calculating the solid angle ® swept out by the spin vec-
tor at the center of the Bloch sphere using Eq. (10) yields
® =27 (1 —cosf),i.e., 2¢aa + 27. The solid angle spanned
by the state vector on the Bloch sphere retains its relation-
ship to the Aharonov-Anandan phase. However, an “unseen”
accompanying dynamic phase is present that, in this case,

exactly cancels the AA phase. Unlike simple, archetypal tra-
jectories commonly invoked to demonstrate geometric phases
(like Sequence 1 and numerous other examples [45]), simple
geometric arguments are no longer indicative of the actual
measured dynamics of the system.

Analysis of Sequence 4 yields an analogous result, with the
initial state vector immediately after t; given by

[Vtree) = Utree(T1)Uc 2| (2 = 0))
. . 6 0
= —¢¥1/2 (e’Afl cos E' + 1) + sin §|o>>, (15)

with Ugee(71) the free evolution operator for time t;. We now
consider the trajectory executed when the C pulse is applied.
The transformation |1/ (¢)) = e /Oy (r)) yields |/ (t2r)) =
19 (0)) for f(t) = 1/2(A + VA2 + Q2), f(t2e) — f(0) = ¢r.
Evaluating the dynamic and geometric phases, we find

A Acosf — Qcos(Arl)sinH}

= 7T +
P |:«/A2 r 2 VAT @

(16a)
_ ! Acosf — Q2cos(Aty)sinf 16b
fan=m|1— m . ( )

The resulting total phase is ¢7r = (1 + A/ A2+ Q2),
independent of the preceding free-evolution time, and when
combined with the results of Sequence 3 we see that the total
phase shift imparted by Sequence 4 is simply 2¢7: two C/2
pulses and one C pulse, consistent with the data depicted in
Fig. 5. We can confirm the relationship between the solid
angle swept out by the spin vector and the geometric phase,
using Eq. (10), yielding ® = 2¢aa. The results discussed in
this section show that despite retaining the geometric interpre-
tation of solid angles enclosed by paths on the Bloch sphere,
the presence of an inseparable dynamic phase renders purely
geometric inference of the system behavior insufficient. The
elimination of the dynamic phase for Sequence 3 and 4 is non-
trivial, as time-reversal operations like spin-echo (backward
evolution along the geometric paths) will also change the sign
of the dynamic phase, which will then add rather than cancel.

VI. DISCUSSION

The presence of a dynamic phase that accompanies the
geometric phase accumulation precludes a purely geomet-
ric consideration of the system dynamics. Additionally, the
NV Hamiltonian yields an energy spectrum that makes the
geometric phase accumulated in a pseudospin-1/2 subspace
different to that observed in a pure spin-1/2 system. We will
now discuss these findings in detail.

While the application of Eq. (2) to Sequence 1 points
to a zero dynamic phase for that particular state manipula-
tion, this is purely a result of the expression used for the
Hamiltonian, Eq. (5). Changing the initial state to mg = +1
rather than mg = 0 would yield a nonzero dynamic phase
from Eq. (2), despite the two cases being basically identical
geometric operations. A natural question to consider is the
significance of a purely geometric phase in the context of the
Aharonov-Anandan phase. In the adiabatic limit, experiments
have provided some evidence that geometric phase is more
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resilient to certain forms of noise than dynamic phase [46]. A
comparably exhaustive analysis of the noise resilience prop-
erties or otherwise of the nonadiabatic Aharonov-Anandan
phase is beyond the scope of this work, though we note
that adiabaticity plays an important role in reported improved
noise characteristics of the Berry phase [22].

This work depicts slowly evolving (~1/2) spin vectors
on the Bloch sphere, which ignores the fact that the spin is
accumulating dynamic (Larmor) phase at a much faster rate in
a nonrotating frame. Geometric phases expressed in a trans-
formed frame of reference, such as the microwave rotating
frame in this work, are often called “frame-dependent phases”
[29,33]. The concept of a frame-dependent geometric phase
offers some more perspective on the significance of “purely”
geometric phases in our work. An analogy with an optical
experiment probably best illustrates the point. In Refs. [30,47]
the system under consideration is a nonplanar Mach-Zehnder
interferometer (MZI), designed such that the propagation di-
rection of the light (wave vector) executes a closed circuit in
three-dimensional space. In this case, the dynamic phase is
identified with the overall path length of each interferometer
arm and the geometric phase with the solid angle swept out by
opposite-direction geometric circuits on each arm. Canceling
the dynamic phase amounts to ensuring each interferometer
arm has the same path length, so the relative phase measured
at the output port contains only the geometric phase.

In our case, a similar identification applies, in that each
interferometer arm is analogous to one of the two spin-1/2
subspaces of the NV ground state. The natural extension to
make subsequently is that the dynamic phase is therefore
related to the Larmor phase, i.e., precession at ~2.870 GHz +
y By. However, the entirety of this “Larmor” dynamic phase is
accounted for by working in a frame rotating at the microwave
frequency tuned to each transition, and thus only phase accu-
mulation relative to the angular frequency of each microwave
field is detected in experiments. Carrying the analogy of sep-
arate interferometer arms further, the equivalent case for the
nonplanar MZI are zero-length arms for resonant radiation
dressing each transition, and when a detuning is applied in
order to execute a C pulse, for instance, this must therefore
be accompanied by a nonzero path length in which the spin
manipulation takes place—which in our case is entirely by
altering the detuning.

The notion of a frame-dependent geometric phase can be
put on a more formal footing by noting there is a distinction
between the energy operator, which yields the system’s energy
eigenvalues, and the Hamiltonian [28,29,48], which are differ-
ent under a unitary transform. Under a unitary transform U,
the energy operator is E = UHU ~', whereas the Hamiltonian
is H = E —iUU~". The transformed energy operator deter-
mines the transformed dynamic phase, whereas the second
term, —iUU !, renders the geometric phase invariant to the
unitary transform. These unitary transforms are the rotating-
frame transformations we make to simplify the interaction
Hamiltonian. In our experiments, the detuning A is used to
alter the geometric phases in sequences using a C pulse;
this same detuning term appears in the transformed dynamic
phase, making separation nontrivial.

The key finding of this work is that the nonadiabatic
Aharonov-Anandan phase is accompanied by an inseparable

dynamic phase in a microwave-frequency rotating frame that
precludes direct measurement of the geometric component of
the total phase, even when the geometric paths are widely
varied. In the case of pulse sequences that are tailored so
that the dynamic phase is always zero, the dynamics of the
full system can in principle be predicted based on geomet-
ric arguments on the Bloch sphere. However, in our cases
these “purely geometric” trajectories are essentially trivial.
Examining Sequence 4, and Eqgs. (16b), we can see that the
dynamic phase vanishes for t; = 27 /A, which corresponds
to the case where the spin executes a 27 rotation about the z
axis and returns to where it was initialized by the C/2 pulse.
As we saw from Sequence 3, this free evolution step imparts
no measurable effect on the spin vector, since the geometric
and dynamic phases always cancel. We thus find ourselves at
Sequence 1, being the exemplar case when the dynamic phase
vanishes.

An intriguing direction of further investigation is exploit-
ing the quantum Zeno effect [49], where repeated projective
measurements on one state of the two-level system during
a cyclic state manipulation yields a phase that cancels the
¢dayn accumulated during a C pulse. Recently demonstrated for
a two-level spin system formed from a 3’Rb Bose-Einstein
condensate [50], the quantum Zeno scheme yields a measured
phase consistent with the purely geometric AA phase. Our
work presents an ideal opportunity to further evaluate the
Zeno scheme and reveal purely geometric quantum-state evo-
lution. We note with some interest the very similar functional
forms of geometric and dynamic phase we have studied in
this work and leave open the question as to whether the Zeno
scheme can isolate a purely geometric phase in examples such
as Sequences 3 and 4.

VII. CONCLUSIONS

In this work, we have studied spin manipulation sequences
applied to a pseudospin-1/2 subspace of the spin-1 NV
ground state. The simple case of a spin-echo sequence served
as an interesting initial starting point, and with the results of
Sequence 4 in mind, we immediately see parallels between the
two. Changing the duration of the spin-echo sequence neces-
sarily varies the geometric path executed by the spin on the
Bloch sphere, while the overall trajectory remains cyclic. The
overall measured result will not change, and interpretation
of the spin echo sequence using the theory of Aharonov and
Anandan is unnecessary in the case of an isolated pseudospin-
1/2 subspace. Double-quantum pulse sequences [35,51] that
use the full spin-1 ground state of the NV are increasingly
being used in the effort to render NV magnetometry insen-
sitive to the deleterious effects of temperature and crystal
strain sensitivity. As we have seen in this work, a more
nuanced approach to familiar spin manipulations in these cir-
cumstances is necessary to understand the system dynamics
in detail.

Geometric phase in both the adiabatic and nonadiabatic
regime has been recently studied as an alternative to tra-
ditional Ramsey magnetometry [39], which exhibits a 27
ambiguity in measured phase. It would be interesting to exam-
ine this scheme in the context of our work on the AA phase
and determine if adiabaticity or geometry is more important
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for noise resilience or decoherence. Additional avenues of
future investigation could focus on the effects of physical
rotation on spin manipulations, recently reported in Ref. [37].
In that particular case, physical rotation of the NV qubit leads
to nonlinear accumulation of a relative phase between the
NV and microwave field, which is detected in a spin-echo
experiment. The scheme described here could be implemented
to detect the Aharonov-Anandan phase accumulating from
rotation of the NV, akin to proposals to detect Berry phase
from physical rotation [17].
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