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Abstract

While breast cancer has not been considered a cancer amenable to immunotherapeutic approaches, recent studies
have demonstrated evidence of significant immune cell infiltration via tumor-infiltrating lymphocytes in a subset of
patient tumors. In this review we present the current evidence highlighting the clinical relevance and utility of
tumor-infiltrating lymphocytes in breast cancer. Retrospective and prospective studies have shown that the presence of
tumor-infiltrating lymphocytes is a prognostic marker for higher responses to neoadjuvant chemotherapy and better
survival, particularly in triple negative and HER2-positive early breast cancer. Further work is required to determine the
immune subsets important in this response and to discover ways of encouraging immune infiltrate in tumor-infiltrating
lymphocytes-negative patients.
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Introduction
In cancer, neoplastic transformation alters the structure
of tissues and induces immune responses leading to the
elimination of developing tumors. However, incomplete
elimination of transformed cells results in escape from
immune control. This process is known as cancer immu-
noediting and is supported by a large body of experimental
data and clinical evidence showing that the intact immune
system can prevent and control cancer through the gener-
ation of effective tumor-specific immune responses [1, 2].
Immunoediting describes the process of malignant pro-
gression on the basis of tumor and immune cell inter-
actions in three phases: (1) elimination, where cancerous
cells are eliminated following immunosurveillance; (2)
equilibrium, where transformed cells are held in control
but are not eliminated by the immune system; and (3)
escape, where tumor cell modifications shape disease
progression [1, 2]. In general, a patient will present once
the tumor has ‘evolved’ to escape immunosurveillance
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and, accordingly, a subset of patients with breast cancer
present clear evidence of immune suppression and aggres-
sive disease progression, potentially driven by mechanisms
of tumor tolerance [3, 4]. In the elimination phase, the
innate and adaptive immune system coordinate to detect
and destroy cancer cells before clinical presentation. At
this stage the balance is towards antitumor immunity
stimulated by natural killer (NK) cells, NK-T cells, T cells,
and increased pro-immune factors in the tumor micro-
environment [2]. In equilibrium, there is a balance be-
tween antitumor and tumor-promoting factors, thus
maintaining the tumor in a functionally dormant state
[2]. Well-documented escape mechanisms of breast can-
cer cells include decreased immune recognition through
reduced expression of major histocompatibility complex
class I (MHC I) and/or co-stimulatory molecules and
increased expression of immunosuppressive factors. This
results in reduced clearance (lysis) via CD8+ cytotoxic T
lymphocytes (CTLs) [3, 4]. The mechanisms underlying
these processes have previously been reviewed in detail in
several papers [1, 2, 5–10].
Several studies have indicated that in addition to T

cells, macrophages, NK cells, and dendritic cells (DCs)
also infiltrate tumor tissue in varying capacities [1, 2, 8, 10].
It is known that CD4+ T helper 1 (Th1) cells, CD8+
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cytotoxic T cells, NK cells, M1 macrophages, and DCs
are protective against tumor growth [11]. Conversely,
CD4+ forkhead box P3 (FOXP3+), CD4+ Th2 cells, M2
macrophages, and myeloid-derived suppressor cells
(MDSCs) promote tumor growth [11]. These subsets
interact in numerous ways; some of these mechanisms
of interaction are shown in Fig. 1. Accordingly, tumor
Fig. 1 Interactions between the immune microenvironment and tumor ce
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exhaustion of TILs in the tumor microenvironment. This
process leads to diminishing host antitumor immune re-
sponses [12]. Checkpoint inhibitors such as CTLA-4 and
PD-1 trigger inhibitory pathways which dampen T-cell
activity when bound to their ligands (CD80/CD86 and
PD-L1/PD-L2) [13]. Both PD-1 and CTLA-4 blockade
have proven to be very effective in preclinical animal
models of melanoma and some breast cancer models
[14–17]. Interestingly, an increasing number of studies
are revealing positive outcomes in the clinical setting to
checkpoint blockade of PD-1/PD-L1 and CTLA-4 [18–20].
Other targets that are of great interest in the clinical setting
are the emerging T cell Ig and mucin domain (TIM) super-
family and lymphocyte activation gene 3 (LAG-3), given
that they have both been associated with the inhibition of
lymphocyte activity as well as induction of lymphocyte
anergy [11, 12]. Additionally, several other immuno-
suppressive factors and inhibitory metabolites, such as
adenosine [21–25], FOXP3+ regulatory T cells (Tregs)
[26], indoleamine 2,3-dioxygenase (IDO) [27–30], arginase
[31–33], and MDSCs [34–36], have been implicated in
cancer-mediated immunosuppression, where targeting
of these pathways has been shown to enhance antitumor
immunity in vivo.

Preclinical evidence for the role of the immune system in
cancer and in response to chemotherapy and
radiotherapy
Chemotherapy and radiotherapy are frontline management
options for breast cancer and the underlying immunogenic
component of these agents make them attractive candidates
for neoadjuvant therapy. Preclinical studies of chemother-
apy and radiotherapy have revealed the unexpected ability
of the immune system to contribute to the success of
treatment. There is an abundance of experimental and,
more recently, clinical evidence [37–41] showing that
chemotherapies are more efficient if they successfully
re-activate immune surveillance through the elimination
of immunosuppressive cells or through the promotion of
danger signals released by the death of tumor cells, hence
triggering a long-term immune response against residual
tumor cells [42, 43]. Several findings have delineated a se-
quential series of events driving immunogenic tumor cell
death that results in the activation of innate and adaptive
immune responses [44]. During immunogenic cell death,
dying tumor cells release danger signals such as adenosine
triphosphate (ATP) and high-mobility group protein B1
(HMGB1), which act to prime an antitumor immune
response [45, 46]. In landmark studies by Zitvogel and
colleagues, anthracycline therapy was less effective in
mice deficient in P2X7 receptors, NLRP3, and caspase-1,
while oxaliplatin was dependent on HMGB1-mediated
activation of toll-like receptors (TLRs). The activation
of antigen-presenting cells such as DCs by ATP (P2X7)
or HMGB1 (TLR4) leads to enhanced production of IL-1β,
and consequently activation of both innate and adaptive
immune responses [23]. Interestingly, the observation of
enhanced antitumor immunity following treatment extends
to various chemotherapies, including gemcitabine [47–49],
cyclophosphamide [50, 51], paclitaxel [52], and doxorubicin
[53–55]. Induction of tumor cell death by chemotherapy
(e.g., gemcitabine) also enhances tumor antigen cross-
presentation [56]. Furthermore, certain chemotherapies
have direct effects on immune cells themselves. For ex-
ample, low dose cyclophosphamide selectively reduces the
number of immunosuppressive Treg cells while sparing
immune effector cells [51]. These findings are summarized
in Table 1. Many preclinical studies have described
immune-enhancing activity in response to chemotherapies
[57]. However, it is evident that not all chemotherapies
induce immunogenic cell death. As such, it is apparent
that combinations with specific immune-inducing or
immune-targeted inhibitors are necessary to promote
tumor regression and immunogenic cell death in these
cases. Thus, despite initial theories suggesting that breast
cancer is not an immunogenic disease, recent studies
have confirmed and consolidated understanding of the
underlying immunological component in breast cancer,
thus revealing promising targets and novel therapies for
treatment of this disease.

Observations on the prognostic value of TILs in breast
cancer
The importance of the immune system in breast cancer
is increasingly being recognized, owing to the observation
by several groups that the presence of TILs is a prognostic
indicator for higher rates of pathological complete re-
sponses (pCRs) to neoadjuvant chemotherapy (NAC)
[37, 58–60]. Notably, Denkert and colleagues [41] were
able to first show in a large-scale analysis of 1058 patients’
biopsies that TIL+ tumors achieved a pCR rate of 40–42 %
following NAC, whereas TIL− tumors achieved a pCR of
only 3–7 %. This distinction was based upon comparing
lymphocyte predominant breast cancer (LPBC; defined
as ≥60 % TILs in either the intratumoral or stromal
compartment) to the rest of the population. Interest-
ingly, this analysis revealed that TILs within either the
stromal or intratumoral compartment was of value as a
prognostic indicator. Subsequently, this has also been
shown in another dataset of 580 triple negative breast
cancer (TNBC) and HER2-positive breast cancers (59.9 %
in LPBC vs 33.8 % in non-LPBC) [41] as well as in a meta-
analysis of 996 patients where an immune gene module
indicative of a Th1 response was prognostic of pCR in all
cancer subtypes [61]. The protective role of a Th1 re-
sponse was also reported by an independent group
who found that the infiltration of T-bet+ lymphocytes
correlated with a favorable prognosis [62]. TILs have



Table 1 Effects of chemotherapy on tumor-infiltrating lymphocytes

Drug Target Immunological effects and model used Reference

Gemcitabine Nucleoside analogue, prevents
DNA replication

Reduction in the number of MDSCs [126]

HER2/neu model; breast cancer [127, 128]

Mesothelioma and lung cancer models [48]

Reduction in MDSCs and Tregs when given with cyclophosphamide; CT26 colon
carcinoma

[49]

Reduction of Tregs in patients with pancreatic cancer

Cyclophosphamide DNA alkylation, cross-links DNA Induction of immunogenic cell death, IFN-I mediated activation of dendritic cells;
EG7 thymoma, B16F10 melanoma

[129]

Selective depletion of Tregs in MMTV-neu mice (breast cancer) [88]

Selective depletion of Tregs in colon carcinoma model [42]

Selective depletion of Tregs in melanoma model [130]

Reduction in MDSCs and Tregs when given with gemcitabine; CT26 colon
carcinoma

[48]

Paclitaxel Inhibition of mitosis through
tubulin targeting

Reduction in MDSC frequency and suppressive activity [131]

Reduction in Treg numbers and suppressive activity [52, 132]

Anthracyclines Multiple mechanisms Induction of immunogenic cell death; thymoma model, CT26 colon carcinoma [45]

Differentiation of CD11b+ LY6C+ APCs; MCA205 fibrosarcoma [133]

Elimination of MDSCs; 4 T1 and EMT6 breast tumor cell lines [134]

Oxaliplatin Cross-links DNA Induction of immunogenic cell death resulting in the activation of myeloid cells;
thymoma/colon cancer model

[45, 135]

Cisplatin Cross-links DNA Induce the accumulation of CD11c+ inflammatory dendritic cells; lung/colon
carcinoma models

[136]

Docetaxel Inhibition of mitosis through
tubulin targeting

Reduction in MDSC frequency and suppressive activity; B16 melanoma model [116]

5-aza-2′-
deoxycytidine

DNA methyltransferase inhibition Increased antigen presentation by tumor cells; 4 T1 breast cancer model [137]

Reduction in MDSCs and suppressive function; lung/prostrate carcinoma [138]

APCs antigen-presenting cell, MDSC myeloid-derived suppressor cells, Tregs regulatory T cells
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been reported to predict pCR in a prospective study of
HER2-negative breast cancers in patients treated with
NAC, confirming the prognostic value of TILs in the
response to chemotherapy [63].
From a clinical perspective, the observation suggests

that higher levels of TILs are associated with higher
responses to chemotherapy, seemingly independent of
oestrogen receptor (ER), progesterone receptor (PR),
and HER2. There is in fact no biologically appropriate
TILs cut-point as all studies have shown that the TIL
marker is prognostic on a continuous scale: each 1 % or
decile increment is associated with a further increase in
the rate of pCR. The biological reasons for this observa-
tion of chemosensitivity remain poorly understood. Per-
haps pre-existing immune antitumor responses are better
placed to be able to clear tumor cells after chemotherapy
has depleted local immunosuppression or Treg cells. An
increase in TILs in the breast cancer post-NAC is also as-
sociated with improved outcomes [64]. Notably, however,
although TILs correlate with pCR to NAC in all breast
cancer subtypes, the correlation between TILs at diagnosis
and disease-free or overall survival was only significant in
TNBC and HER2-positive breast cancers, although the
reasons for this are not fully understood [39, 64–66]. The
studies indicating a positive relationship between TILs
and responses to NAC are summarized in Table 2. TILs
are important in the efficacy of trastuzumab [65, 67, 68]
and, moreover, trastuzumab treatment results in the acti-
vation or recruitment of multiple immune cell lineages
and increases the susceptibility of tumor cells to antibody
dependent cytotoxicity (ADCC) [67, 69] (reviewed by
[70]). A study looking at TILs at baseline and correlation
with both pCR and disease-free endpoints highlights that
high levels of TILs at diagnosis bodes for an improved
outcome regardless of attainment of pCR [68]. Those
with low levels of TILs and residual tumor at surgery
post-NAC and anti-HER2 therapy had the worst outcomes
of all, suggesting that it is this group that needs more effect-
ive antitumor and immune-enhancing strategies. The fact
that TILs are highly associated with responses to chemo-
therapy and trastuzumab suggests that the presence of
TILs, both pre-NAC and post-NAC, should be taken
into account for patient treatment decisions—a possible
schema for this is shown in Fig. 2. The potential synergistic



Table 2 A summary of the studies investigating a correlation between the extent of TIL infiltrate and responses to
neoadjuvant/adjuvant chemotherapy in breast cancer

Breast cancer subtype
(Number of patients)

TILs predictive of pCR? TILs predictive of disease-free
or overall survival?

Reference Chemotherapy used

All patients (56) Yes ND [60] Anthracycline/taxane or epirubicin,
cyclophosphamide, and capecitabine

All patients (73) Yes ND [139] Anthracycline/taxane based

ER+/PR+ (659) Yes ND [59] Anthracycline/cyclophosphamide/taxane

ER−PR− (266) Yes ND

All patients (1334) Yes (total or distant stromal
CD8+)

[75] Cyclophosphamide/methotrexate/fluorouracil

ER+ (911) No (intratumoral or adjacent
stroma CD8+)

ER− (485) No (total CD8+)

HER2+ (169) Yes (total CD8+)

HER2− (1106) No (total CD8+)

Yes (total CD8+)

ER− (268) Yes Yes [38] Fluorouracil/epirubicin/cyclophosphamide or
docetaxel and docetaxel plus epirubicin

One cohort of 113,
one of 255

All patients (3403) No [140] Adjuvant systemic therapy

ER− (927) Yes

ER+ (2456) No

HER2+ (216) No

TNBC (535) Yes

All patients (180) Yes ND [37] Anthracycline/cyclophosphamide or
cyclophosphamide/epirubicin/5-fluorouracil

TNBC (82) Yes ND

HER2+ER−PR− (42) No ND

HER2−ER+/PR+ (46) No ND

All patients (845) Yes ND [61] Meta-analysis: anthracycline with or without
taxane-based NAC

ER−HER2− Yes ND

HER2+ (116) Yes ND

ER+Her2− Yes ND

All patients (68) Yes ND [141] Anthracycline and/or taxane-based treatment

All patients (180) Yes ND [71] Paclitaxel then fluorouracil/epirubicin/
cyclophosphamide

HER2− (313) Yes ND [63] Anthracycline/taxane

All patients (2009) ND No [39] Doxorubicin followed by three cycles of
cyclophosphamide/methotrexate/fluorouracil

ER−/HER2− (1079) ND No

HER2+ (297) ND No

TNBC (256) ND Yes

All patients (153) Yes ND [72] Anthracycline and/or taxane-based treatment

TNBC (38) Yes

Non-TNBC (115) Yes (If CD8+ component
analyzed), No if CD4+

analyzed

All patients (175) Yes ND [73] Anthracycline and/or taxane-based treatment or
herceptin+NAC

All patients (12439) ND ND [142] Cyclophosphamide/methotrexate/fluorouracil or
epirubicin plus fluorouracil
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Table 2 A summary of the studies investigating a correlation between the extent of TIL infiltrate and responses to
neoadjuvant/adjuvant chemotherapy in breast cancer (Continued)

ER− (3591) ND Yes

ER+ (8775) ND No

ER+HER2+ (772) ND Yes

All patients (934) ND No [65] Docetaxel or vinorelbine, followed by three cycles
of fluorouracil/epirubicin/cyclophosphamide

ER+HER2− (591) ND No

HER2+ (209) ND No

TNBC (134) ND Yes

TNBC (278) Yes Yes [64] Anthracycline-based neoadjuvant or anthracycline/
taxane

TNBC (47) Yes ND [143] Panitumumab plus anthracycline/taxane-based
chemotherapy

TNBC (481) ND Yes [66] Doxorubicin plus cyclophosphamide and taxol/
docetaxol

All patients (580) Yes ND [41] Anthracycline/taxane with or without carboplatin

TNBC (314) Yes ND

HER2+ (266) Yes

ER estrogen receptor, HER2 human epidermal growth factor receptor 2, NAC neoadjuvant chemotherapy, ND not determined, PR progesterone receptor, TNBC
triple negative breast cancer
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immune effects between chemotherapy and immunother-
apies also suggest that combination approaches in the neo-
adjuvant setting, prior to surgery, may also be beneficial.
Recently, efforts have been made to sub-divide the im-

mune infiltrate into lineage subsets to determine the
prognostic value of each immune cell type. The presence
of CD8+ cells in the tumor infiltrate prior to the onset of
NAC predicted pCR in several studies [41, 71–75]. The
presence of Tregs prior to NAC has also been shown to
be a prognostic indicator of pCR [71–73, 76]. Although
this seems somewhat counterintuitive given the suppres-
sive role of Tregs, it is probably because FOXP3+ infiltrate
is also significantly associated with CD8+ infiltrate. More
informative is the observation that the presence of Tregs
following NAC has a significant negative correlation with
pCR and disease-free or overall survival [77–79]. Indeed,
the ratio of CD8 to Tregs following NAC has been shown
to be a strong predictor of clinical responses [78]. The in-
creased CD8 to Treg ratio likely facilitates the acquisition
of CD8+ T-cell effector functions such as Granzyme B ex-
pression, which is elevated post-NAC [78, 80]. In this
study they found that the proportion of CD8+ lymphocytes
remained stable pre-NAC and post-NAC whereas Tregs
were significantly reduced in the post-NAC samples.
Limited work has been done on the prognostic significance
of other immune cell subtypes although the presence of
CD4+ [72] and CD20+ [74] lymphocytes pre-NAC is
also associated with pCR. Another study found that the
presence of T follicular helper (TFH) cells, which function
to attract and promote the formation of memory B cells,
was associated with improved responses to chemotherapy
in breast cancer. These TFH cells localized to peritumoral
tertiary lymphoid structures, indicating there may be lo-
calized orchestration of antitumor immune responses in
certain breast cancers [81]. The link between TIL infiltrate
and patient outcome has led to heightened interest in util-
izing immune-modulating strategies for patients with
breast cancer. Other immune subsets of interest include
γδ-T cells and Th17 cells. γδ-T cells show positive correla-
tions with CD4+ FOXP3+ T cells, and are associated with
poor outcomes and advanced tumor stage, as well as low
disease-free and overall survival in patients with breast
cancer [82]. However, further work is needed given the
apparent antitumor role of γδ-T cells in some settings
[83, 84]. In a small study of 30 patients, Th17 cells nega-
tively correlated with disease stage [85] but further work
is needed to evaluate their effect on immune responses
to NAC [86]. Accordingly, further work is needed to
determine whether these subsets are potential targets
for immunotherapy.

Combining conventional treatment with immunotherapy
The strong prognostic significance of TILs in breast cancer
opens up important questions for patient management. In
particular, it is likely that patients with high TILs post-NAC
can benefit from strategies designed to enhance the im-
mune response against the tumor. As discussed above,
NAC has the potential to increase the CD8+ to Treg ratio,
which correlates with the likelihood of pCR [87, 78]. Inter-
estingly, certain chemotherapies, including cyclophospha-
mide [42, 51, 88], used to treat patients in the cohort
studied by Ladoire et al., have been shown to specifically
reduce the number of Tregs in preclinical models. Thus, it
is worth considering the immunological consequences of



Fig. 2 Using the TIL infiltrate and response to frontline treatments to guide patient management decisions. The presence of tumor-infiltrating
lymphocytes (TILs) and response to neoadjuvant chemotherapy (NAC) may be used to guide decisions on second line treatments. Patients with
high TILs and exhibiting pathological complete responses to NAC (far left) have an excellent prognosis and may not require further intervention
other than standard of care. Patients with high TILs at diagnosis but no pathological complete response, or patients with low TILs at diagnosis
but high TILs post-NAC, may benefit from immunotherapies, such as checkpoint inhibition (PD-1 blockade), or immune agonists (e.g., 4-1BB).
However, patients with little TIL infiltrate either pre-NAC or post-NAC (far right) require additional or different treatment strategies to induce an
immune response, such as adoptive cellular therapy or vaccination strategies. Targeted inhibitors (e.g., MEK inhibitors) should be considered for
all patient groups where appropriate, but the impact of targeted inhibitors on the immune response should be a therapeutic consideration. This
figure was made exclusively for this manuscript. DC dendritic cells, FACS fluorescence-activated cell sorting, H&E hematoxylin and eosin staining
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any NAC regime. For example, concurrent depletion of
Tregs through the use of immunotherapies such as anti-
CTLA-4 mAb [89] may enhance the efficacy of NAC in
inducing antitumor immune responses. There may also be
clinical benefit in depleting other immunosuppressive
populations such as MDSCs or tumor-associated mac-
rophages [16]. A histopathological examination of breast
cancer tissue pre-NAC and post-NAC by DeNardo et al.
revealed that the presence of CD68+ macrophages in-
versely correlated with CD8+ TIL following NAC. Further-
more, depletion of this subset enhanced chemotherapy in
preclinical models of breast cancer [90]. A recent study
showed that a monocyte/DC metagene analysis held
similar predictive value to NAC as the T cell/NK cell
module [91]. Therefore, further work evaluating this
in humans is warranted although the heterogeneity of
this population makes characterization more complex
than the T-cell infiltrate.
Although NAC is capable of inducing CD8+ infiltrate

within the tumor microenvironment, the efficacy of the
antitumor immune responses is likely limited by the
presence of immunosuppressive networks. For example,
a recent retrospective analysis of 94 post-NAC biopsies
demonstrated that PD-L1 expression correlates with TIL
infiltrate and pCR [40], which is in agreement with
studies from other groups evaluating PD-L1 mRNA
expression [41, 92]. This is likely because PD-L1 is
expressed following IFNγ stimulation and so is a surrogate
marker of an immune response. It should be noted,
however, that other groups have reported that PD-1
and PD-L1 expression are correlated with poor prognosis
in patients with breast cancer [93–95]. Nevertheless, these
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studies consistently observed PD-L1 and PD-1 expression
in a subset of breast tumors; because PD-L1 expression
has previously been shown to be a marker for the efficacy
of anti-PD-1 in other tumor types [96], it is possible that
PD-L1 expression may be a predictive marker for patients
likely to have good responses to a combination of NAC
and anti-PD-1. It was also recently reported that expres-
sion of B7-H4, another member of the B7 family, is a
marker of good prognosis in patients with breast cancer
[97]. Further work is need to evaluate the potential to
modulate B7-H4 because it has been reported to inhibit
T-cell function [98, 99] and yet B7-H4 expression was
reported to limit tumor growth in this study [97]. Im-
mune checkpoint blockade with anti-PD-1 [100] and
anti-CTLA-4 [101] has already been shown to enhance
the efficacy of chemotherapy and radiotherapy [102] in
preclinical models and phase I clinical trials [103], and
so there is clear rationale to further evaluate these
combinations in patients. Further work will investigate
the potential of combining NAC with other immune
modulators in breast cancer given that that these im-
munosuppressive pathways appear upregulated in TIL+

breast cancers [41].
The success of checkpoint inhibitors is highly dependent

on the extent of a pre-existing immune response against
the tumor, and the ability of immune-targeted therapies
to re-stimulate/activate immune subsets. Because conven-
tional therapies such as chemotherapy and radiotherapy re-
sult in the release of tumor-associated antigens (increased
antigenicity) from the apoptotic tumor cells, the increased
immunogenicity provides a promising target for immuno-
therapies [103]. These tumor-associated antigens, released
from tumor cells after chemotherapy, are taken up by
antigen-presenting cells or DCs and used to stimulate
downstream effector T cells capable of recognizing and
lysing tumor cells [103]. Accordingly, it is evident that
subsequent immunotherapy is likely to be a beneficial
endeavor, provided that the initial conventional therapy
used is able to effectively “prime” tumor cells to express
and present foreign tumor antigens. A study conducted
by Twyman-Saint Victor et al. demonstrated that radiation
is able to enhance the diversity of the T-cell receptor
repertoire of intratumoral T cells. This process was found
to underpin the synergy of radiotherapy and anti-PD-1/
anti-CLTA-4 in patients with melanoma [103]. Notably,
high-dose radiotherapy and high-dose chemotherapy can
ablate immune function. Therefore, careful consideration
must be given to the dosage and the timing of these ther-
apies when combined with immunotherapy.

Combining targeted inhibitors with immunotherapy
While immunotherapy is an attractive adjuvant therapy for
patients presenting with high TIL pre-NAC or post-NAC,
an alternative approach is required for the treatment of
patients with poorly immunogenic cancer types and low-
level TILs at diagnosis. Liu et al. recently used preclinical
models of melanoma to investigate the immunogenic
function of the MAPK pathway inhibitors trametinib and
dabrafenib in combination with immunomodulatory anti-
bodies, including PD-L1/PD-1 and CTLA-4. They re-
ported the potential for synergy between these therapies
[104]. The combination of trametinib with anti-PD-1 in-
creased tumor-infiltrating CD8+ T cells in CT26 mouse
colon carcinoma tumors, as well as downregulating im-
munosuppressive factors, upregulating HLA molecules,
and increasing immune responses in the tumors yes [104].
Dabrafenib had no suppressive action on the function
of CD4+ and CD8+ T cells, whereas trametinib had mild
partial or transient inhibitory effects on T-cell proliferation
fine [104]. This phenomenon is supported by findings of
Callahan et al. demonstrating that RAF inhibitors in BRAF
wild-type tumors caused hyperactivation of ERK signaling,
thereby enhancing T-cell activation and signaling [105].
While targeted blockade of checkpoint inhibitors has
proven to be effective, recent evidence suggests that ago-
nists may also be crucial in TIL stimulation. CD8+ T-cell
responses require T-cell receptor activation in addition to
co-stimulation provided through ligation of tumor necro-
sis factor receptor family members 4-1BB (CD137) and
OX40 (CD134). Studies using the OX40 agonist in com-
bination with either anti-4-1BB, anti-PD-L1, anti-CTLA-4,
and immunization in sarcoma, melanoma, hepatoma, and
breast cancer models have shown significant survival
benefit by boosting the T-cell response [106–109]. One
hurdle to the application of immunotherapy in breast can-
cer is the apparent low immunogenicity of breast cancers,
perhaps owing to the low mutation rate of breast cancer
when compared to cancers such as melanoma, which
show a high response rate to immunotherapy [110–112].
One approach is to use targeted inhibitors designed to in-
duce immunogenicity in tumors. For example, Kim et al.
proposed the notion of epigenetic modulation, suggesting
that MHC I-related genes are downregulated through
epigenetic silencing of tumor cells [16]. They investigated
this by combining anti-PD-1 and anti-CTLA-4 antibodies
with 5-azacytidine (a DNA methyltransferase inhibitor)
and entinostat (a class I histone deacetylase inhibitor).
This study revealed complete eradication of tumors in
murine 4 T1 (breast) and CT26 (colorectal) models [16].
Similarly, studies investigating DC vaccination in melanoma
have shown that combination therapy with PI3K inhibitors
has significant pro-inflammatory effects via TLR ligands
that support antitumor immunity [113]. The results of
these studies suggest that combining targeted inhibitors
with immunotherapy may be a promising option for clin-
ical treatment of breast cancer for patients with high-level
TILs. However, alternative therapeutic options are still re-
quired for patients with low-level TILs. Because patients
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with high TILs show increased response rates to NAC,
one approach is to use strategies that enhance T-cell
trafficking to the tumor site. Denkert et al. reported a
correlation between CXCL9/CXCL13 expression and the
number of TILs in patients with breast cancer [59]. There-
fore, treatments that enhance the expression of these che-
mokines may enhance the efficacy of NAC. Alternatively,
adoptive cell therapy (ACT) utilizing TILs or chimeric anti-
gen receptor T cells has emerged as a promising regimen
for the treatment of certain cancers, including melanoma
[114–118], with recent reports of long-term remission in
some patients [119]. In a study conducted by Koya et al.,
combined treatment of vemurafenib plus ACT of lympho-
cytes genetically modified with a T-cell receptor recognizing
ovalbumin resulted in superior antitumor responses [120].
While absolute numbers of T cells infiltrating the tumor
did not increase with vemurafenib treatment, they found
that the combination with ACT increased the functionality
of antigen-specific T lymphocytes [120]. The findings of
these studies suggest that BRAF inhibitors may be effective
in combination with ACT; however, evaluation of ACT in
combination with other inhibitors is also necessary. The
utility of this approach in breast cancer is yet to be deter-
mined. One possibility is the targeting of the HER2 antigen
[121, 122]. Ishikawa et al. [123] investigated the effects of
ACT in addition to anti-CTLA-4, and were able to show
that the combination enhanced antitumor activity. Taken
together, there is a large body of evidence demonstrating
the potential utility of TIL-associated immunotherapies for
breast cancer in the future.

Conclusions
There is now overwhelming data on the prognostic and
predictive association of TILs. Determination of TILs is
potentially universally available to all patients with breast
cancer and efforts are underway to ensure that deter-
mination of TILs is standardized and reproducible [124].
If successful, the scene will be set for TILs to enter clin-
ical practice as a biomarker that has the potential for
clinical utility and prognostic implications [41].
Because TILs are associated with improved survival

endpoints in a continuous fashion, they may be inte-
grated with exiting models of risk prediction that inform
decisions about adjuvant treatment, such as tumor size
and nodal status, and may also serve as a stratification
factor in randomized clinical trials. This may be of particu-
lar use in trial designs using NAC. pCR in the primary
tumor with NAC is a very strong predictor of freedom
from recurrence and long-term survival [125]. Of note,
even patients without a pCR still have a relatively good
outcome if they have high TILs in the primary disease
[64, 124]. A composite of pCR and TILs could foreseeably
be used to select patients who do not need further therapy
because their risk of recurrence is negligible (pCR and
high TILs) or low (pCR but low TILs), or conversely to
select those at high risk of recurrence (no pCR, low TILs)
who would benefit from trials of novel interventions that
may include immunotherapy. Furthermore, using TILs
to identify patients at very low risk of recurrence af-
fords the opportunity for trials looking at de-escalation
of therapy to avoid unnecessary long-term toxicity or
focusing on novel therapeutic combinations for the poor
prognostic group.
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