
RESEARCH ARTICLE

Cooperation of the BTB-Zinc finger protein, Abrupt, with
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ABSTRACT
The deregulation of cell polarity or cytoskeletal regulators is a
common occurrence in human epithelial cancers. Moreover, there is
accumulating evidence in human epithelial cancer that BTB-ZF
genes, such as Bcl6 and ZBTB7A, are oncogenic. From our
previous studies in the vinegar fly, Drosophila melanogaster, we
have identified a cooperative interaction between a mutation in
the apico-basal cell polarity regulator Scribble (Scrib) and
overexpression of the BTB-ZF protein Abrupt (Ab). Herein, we
show that co-expression of ab with actin cytoskeletal regulators,
RhoGEF2 or Src64B, in the developing eye-antennal epithelial
tissue results in the formation of overgrown amorphous tumours,
whereas ab andDRac1 co-expression leads to non-cell autonomous
overgrowth. Together with ab, these genes affect the expression of
differentiation genes, resulting in tumours locked in a progenitor cell
fate. Finally, we show that the expression of two mammalian genes
related to ab,Bcl6 andZBTB7A, which are oncogenes inmammalian
epithelial cancers, significantly correlate with the upregulation of
cytoskeletal genes or downregulation of apico-basal cell polarity
neoplastic tumour suppressor genes in colorectal, lung and other
human epithelial cancers. Altogether, this analysis has revealed that
upregulation of cytoskeletal regulators cooperate with Abrupt in
Drosophila epithelial tumorigenesis, and that high expression of
human BTB-ZF genes, Bcl6 and ZBTB7A, shows significant
correlations with cytoskeletal and cell polarity gene expression in
specific epithelial tumour types. This highlights the need for further
investigation of the cooperation between these genes in mammalian
systems.
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INTRODUCTION
Cancer is a cooperative process involving many mutations that
lead to the deregulation of the normal controls that regulate cell
proliferation, survival, differentiation and migration, amongst
other processes (Hanahan and Weinberg, 2011). Understanding
the molecular events that occur during cooperative
tumorigenesis is critical in order to develop therapeutics to
combat cancer. The model organism, Drosophila melanogaster
(vinegar fly), has proven to be an excellent model for the
discovery of new tumorigenic genes and the dissection of their
roles in tumour progression, and has proven relevance to human
cancer (Brumby and Richardson, 2005; Cheng et al., 2013;
Gonzalez, 2013; Rudrapatna et al., 2012; Stefanatos and Vidal,
2011).

Recently, the disruption of apical-basal cell polarity, which affects
cell adhesion and signalling pathways and leads to an epithelial to
mesenchymal transition (EMT), has been realized as a newhallmarkof
cancer (Elsum et al., 2012; Hanahan and Weinberg, 2011; Humbert
et al., 2008). Central to cell polarity regulation are the Scribblemodule
(Scribble (Scrib),Dlg andLgl), theCrumbsmodule (Crumbs, Pals and
Patj) and the Par module (Par6, Par3 and aPKC), which undergo
positive or negative interactions in the establishment andmaintenance
of the apical and basolateral domains of an epithelial cell. Whole
organism or tissue-specific depletion of genes in the Scribble module
lead to a loss of cell polarity and aberrant signalling, leading to the
formation of neoplastic tumour inDrosophila epithelial tissues (Elsum
et al., 2012; Humbert et al., 2008). However, when scrib, dlg or lgl are
mutated in patches of cells within the developing eye-antennal tissue,
despite deregulation of signalling pathways and cell proliferation,
tissue overgrowth does not ensue due to cell differentiation and Jun
N-terminal Kinase (JNK)-mediated apoptosis (Brumby and
Richardson, 2003; Doggett et al., 2011; Grzeschik et al., 2007, 2010;
Igaki et al., 2006;Uhlirova andBohmann, 2006; Uhlirova et al., 2005).
In investigating cooperation between polarity loss and oncogenic
pathways in epithelial tumorigenesis, we discovered that activation of
the small GTPase, Ras (Ras85DV12, referred to as RasACT herein) or
activated Notch (NotchICD, referred to as NotchACT herein) cooperated
with scrib loss-of-function to formmassive invasive tumours (Brumby
and Richardson, 2003). Subsequent analysis showed that cooperation
depended upon activation of the JNKanddownregulation of theHippo
negative tissue growth control pathways, thereby promoting tumour
growth, inhibitingdifferentiation andpromoting an invasive phenotype
(Doggett et al., 2011; Igaki et al., 2006; Leong et al., 2009; Uhlirova
and Bohmann, 2006; Uhlirova et al., 2005). This mechanism is
conserved in mammalian cells and mouse models, where depletion or
knockout of scrib leads to hyperplasia, and additional expression of the
Ras oncogene (Ha-RasV12) cooperates with scrib loss-of-function
to promote tumorigenesis (Dow et al., 2008; Elsum et al., 2013;
Godde et al., 2014; Pearson et al., 2011). Moreover, similar to that
observed inDrosophila, theexpressionof JNKis able to cooperatewithReceived 26 May 2015; Accepted 5 June 2015
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Ha-RasV12 to promote invasive growth in 3D matrigel cultures
(Brumby et al., 2011).
To further investigate cooperative tumorigenesis, we carried out a

screen for genes that when over-expressed in eye-antennal disc
clones act similarly to RasACT or NotchACT in cooperation with scrib
loss-of-function (Turkel et al., 2013). In this screen, we identified
abrupt (ab), which in cooperation with scrib loss-of-function
promotes the retention of a progenitor-like cell state by blocking
expression of differentiation genes, as well as promoting tumour
growth and invasion. Abrupt encodes a Broad-Complex, Tramtrack,
Bric-a-brac domain (BTB)-zinc-finger (ZF) transcription factor with
roles in neuromuscular junction and dendrite morphogenesis,
ovarian border cell migration and imaginal disc epithelial
development (Grieder et al., 2007; Hattori et al., 2013; Hu et al.,
1995; Jang et al., 2009). BTB-ZF transcription factors are a large
family of proteins, with 47 human members, many of which have
been shown to be associated with cancer (Costoya, 2007; Kelly and
Daniel, 2006). The most well known of the BTB-ZF mammalian
family members are Bcl6 and ZBTB7 (LRF/Pokemon), which
function as proto-oncogenes in lymphomas, leukaemias and solid
cancers (Hatzi and Melnick, 2014; Maeda et al., 2005). In solid
cancers, Bcl6 is upregulated in breast, colorectal and squamous head
and neck epithelial cancers, and contributes to their growth and
progression (Sena et al., 2014; Walker et al., 2014; Worsham et al.,
2012; Wu et al., 2014). ZBTB7A is upregulated in colorectal,
bladder, breast, prostate, non-small cell lung cancer and liver cancers
and reducing its expression blocks tumour development (Aggarwal
et al., 2010, 2011; Guo et al., 2014; Jeon et al., 2008; Liu et al., 2012;
Qu et al., 2010; Zhang et al., 2013; Zhao et al., 2013, 2008).
In a Drosophila genetic screen for Ras-cooperating genes (using

ey>RasACT, where expression of RasACT is driven via the eyeless
promoter throughout the developing eye), we identified the actin
cytoskeletal regulatory genes, RhoGEF2 andDRac1 (Brumby et al.,
2011). These genes enhanced the ey>RasACT hyperplastic adult eye
phenotype and also resulted in morphological and differentiation
defects (Brumby et al., 2011). Furthermore, RhoGEF2 and DRac1
showed neoplastic growth in cooperation with RasACT in a clonal
context in the eye-antennal disc (Brumby et al., 2011). DRac1
(Drosophila Rac1) is a member of Rho/Rac/Cdc42 small-GTPase
superfamily, key regulators of the actin cytoskeleton (Jaffe and Hall,
2005; Szczepanowska, 2009), and is involved in morphological cell
shape changes during Drosophila development (Harden et al.,
1995; Settleman, 1999; Van Aelst and D’Souza-Schorey, 1997).
Indeed, constitutive activation of Rac1 during tube morphogenesis
of the Drosophila salivary gland causes changes in epithelial cell
morphology, resembling an epithelial to mesenchymal transition
(EMT) by mislocalization or loss of expression of the apical polarity
regulators, Crumbs and aPKC, and the adherens junction proteins
E-cadherin and β-catenin (Pirraglia et al., 2006; Pirraglia and
Myat, 2010). It is therefore likely that these downstream effects of
Rac1 also contribute to its cooperative effects with RasACT in
tumorigenesis in the eye-antennal disc (Brumby et al., 2011).
RhoGEF2 is a guanine nucleotide exchange factor (GEF)

(Schmidt and Hall, 2002) that acts via activating the small
GTPase, Rho1, in morphological cell shape changes during
Drosophila development (Barrett et al., 1997; Häcker and
Perrimon, 1998; Mulinari et al., 2008; Nikolaidou and Barrett,
2004; Padash Barmchi et al., 2005; Rogers et al., 2004). Consistent
with RhoGEF2 functioning via Rho1, we also found that an
activated allele of Rho1 (Rho1V14) was also a RasACT cooperating
oncogene in epithelial tumorigenesis (Brumby et al., 2011).
RhoGEF2 cooperates with RasACT in tumorigenesis by activating

the Rho1-Rok-MyoII-JNK pathway (Khoo et al., 2013).
Interestingly, MyoII activity (pMRLC) is increased in scrib−

RasACT eye-antennal disc clones and contributes to scrib RasACT

tumorigenesis (Kulshammer and Uhlirova, 2013), as does JNK
activation (Igaki et al., 2006; Leong et al., 2009; Uhlirova and
Bohmann, 2006).

Furthermore, in this genetic screen, we identified another
cytoskeletal regulator, Src42A, a Drosophila homolog of the Src
tyrosine kinase (Thomas and Brugge, 1997), but were unable to
confirm its cooperative interaction with RasACTwith an independent
transgene (Brumby et al., 2011). However, we found that
overexpression of the second Drosophila Src family member,
Src64B, using a transgenic line (Dodson et al., 1998), showed strong
cooperation with RasACTwhen expressed globally in the developing
eye or in eye-antennal disc MARCM clones (C.P., A.B., H.R.,
unpublished data). Src64B also functions in regulation of the actin
cytoskeleton and cell shape changes during development in
Drosophila (Dodson et al., 1998; Guarnieri et al., 1998; Kelso
et al., 2002; O’Reilly et al., 2006; Roulier et al., 1998; Strong and
Thomas, 2011; Takahashi et al., 1996). Depending on the context,
upregulation of Src64B or Src42A activity (via overexpression of the
Src genes or Csk downregulation) can lead to either increased
proliferation, or apoptosis and invasion (Pedraza et al., 2004; Read
et al., 2004; Vidal et al., 2006, 2007). Recent studies have also
shown that overexpression of Src42A or Src64B inDrosophila adult
intestinal progenitor cells results in progenitor cell over-proliferation
(Cordero et al., 2014; Kohlmaier et al., 2014). Furthermore, in the
developing wing epithelium blocking apoptosis in tissues
expressing Src64B results in overgrowth (Fernández et al., 2014),
and in the eye-antennal epithelium Src64B or Src42A upregulation
(or downregulation of the Src negative regulator, Csk) cooperates
with RasACT to result in neoplastic tumour formation (Enomoto and
Igaki, 2013; Vidal et al., 2010, 2007).

Since RhoGEF2, DRac1 or Src are cooperating oncogenes with
RasACT, and ab overexpression phenocopies RasACT or NotchACT in
cooperative tumorigenesis with scrib loss-of-function (Turkel et al.,
2013), we sought to determinewhether ab could also cooperate with
RhoGEF2, DRac1 or Src64B in tumorigenesis. Herein, we describe
the effect of co-expression of ab with RhoGEF2, DRac1 or Src64B
in the developing eye-antennal epithelium. We show that co-
expression of ab with RhoGEF2 or Src64B results in neoplastic
tumour formation, whereas ab and DRac1 co-expression leads to
non-cell autonomous overgrowth. We show that together with ab
these genes affect the expression of differentiation genes. Finally,
we investigate whether the expression of two mammalian genes
related to ab, Bcl-6 and ZBTB7A, which are oncogenic in
mammalian cancer, are correlated with the upregulation of
cytoskeletal genes or downregulation of apico-basal cell polarity
neoplastic tumour suppressor genes in human epithelial cancers.

RESULTS
Cooperation of abrupt with RhoGEF2
To determine if ab cooperates with Ras-cooperative oncogene,
RhoGEF2, to drive tumorigenesis, we generated clones expressing
ab and RhoGEF2 using the MARCM system (Lee and Luo, 1999),
and compared tumour development to scrib− ab-expressing clones
in the Drosophila developing eye-antennal epithelium (Fig. 1). Our
previous studies have shown that the overexpression of ab in
otherwise wild-type eye disc clones promoted antennal disc
overgrowth, but did not block photoreceptor differentiation.
Mutation of scrib alone in clones results in cell morphology
changes and disorganisation, but does not dramatically affect
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differentiation as revealed by Elav staining or lead to tissue
overgrowth and larvae enter pupariation normally at day 5/6 after
egg deposition (AED) (Brumby and Richardson, 2003; Turkel et al.,
2013). However, scrib− ab-expressing clones (marked by GFP)
overgrow at the expense of the surrounding normal tissue (GFP
negative) over an extended larval period and form massive tumours
(Fig. 1A,B), which fuse with the surrounding tissue and invade
into the brain (Turkel et al., 2013), similar to that observed for
scrib− RasACT tumours (Brumby and Richardson, 2003). scrib−

ab-expressing clones showed cell morphology defects, as revealed

by F-actin staining (Fig. 1A2,B2), and an inhibition of
photoreceptor cell differentiation in the eye epithelium, as
revealed by Elav staining (arrowheads, Fig. 1A1-A4).

RhoGEF2 expression in mosaic disc produced small clones with
increased F-actin levels, and cell morphology and differentiation
defects (arrowheads, Fig. 1C1,C3,C4) (Brumby et al., 2011; Khoo
et al., 2013). At day 5/6 AED ab RhoGEF2 co-expressing clones
were smaller than the surrounding wild-type clones (Fig. 1D1,D4)
and accumulated F-actin (Fig. 1D2). ab RhoGEF2mosaic discs also
showed non-cell autonomous effects, as the surrounding wild-type

Fig. 1. RhoGEF2 cooperates with ab to form large tumours. Confocal planar images of mosaic larval eye-antennal discs stained for F-actin (with Phalloidin,
grey or red in merge) and Elav (grey or blue in merge); mutant clones are GFP+ and wild-type tissue is GFP− (grey or green in merge). Eye-antennal discs are
orientated with posterior to the left in this and all other figures. (A) ab scrib1 mosaic eye-antennal disc at day 5 AED. (B) ab scrib1 mosaic eye-antennal disc
at day 8 AED. (C) RhoGEF2 mosaic eye-antennal disc at day 5 AED. (D) ab RhoGEF2 mosaic eye-antennal disc at day 5 AED. (E) ab RhoGEF2 mosaic
eye-antennal disc at day 8 AED. Arrowheads point to patches of mutant tissue showing differentiation defects. Genotypes: (A,B) ey-FLP, UAS-GFP;; UAS-ab55,
FRT82B, scrib1/tubGAL4; FRT82B, tubGAL80. (C) ey-FLP, UAS-GFP; UAS-RhoGEF2; FRT82B/tubGAL4; FRT82B, tubGAL80. (D,E) ey-FLP, UAS-GFP;
UAS-RhoGEF2; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. Scale bars=50 μM.
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tissue exhibited folding and distortion around the clonal tissue at
day 5 (Fig. 1D2). At day 8/9 AED, ab RhoGEF2 eye disc clones
were overgrown relative to wild-type tissue (Fig. 1E), although
folded wild-type tissue was present around clonal tissue. However,
antennal disc clones did not overgrow and remained a similar size as
day 5 clones. Differentiation as marked by Elav was reduced in eye
disc clones throughout larval development (arrowheads, Fig. 1D1-
D4,E1-E4). The effect of ab RhoGEF2 cooperation led to a failure
in pupation and the formation of giant larvae (not shown), similar to
RhoGEF2 RasACT cooperation (Khoo et al., 2013). However, in
comparison to scrib− ab tumours, which exhibit fusion of the two
eye-antennal discs that is associated with an invasive phenotype
(Turkel et al., 2013), ab RhoGEF2 did not show strong invasive
properties, since the two eye-antennal discs did not fuse together
(data not shown). Indeed, the cooperative tumorigenic effect of ab
RhoGEF2 was most similar to RasACT RhoGEF2 cooperation, with
the exception of the effect on the antennal disc (Brumby et al., 2011;
Khoo et al., 2013). Taken together, these data show that RhoGEF2
is capable of cooperating with ab to produce overgrown,
undifferentiated and amorphous tumours.

Cooperation of abrupt with Src64B
Since Src64B can cooperate with RasACT (see introduction),
we wished to determine if ab also cooperates with Src64B.
When expressed alone, Src64B resulted in large clones in the
antennal and the anterior portion of the eye disc, which showed
high levels of F-actin accumulation (Fig. 2A2). Clones in the
posterior differentiated region of the eye disc proper were very
small and did not noticeably affect differentiation, although

larger clones were observed in the overlying peripodial layer
leading to the displacement of the underlying differentiated tissue
(Fig. 2A1,A3,A4). Src64B-expressing mosaic larvae pupated
normally, but were delayed in development and eclosed 1–2 days
after their control counterparts (not shown). Co-expression of
Src64B and ab resulted in large clones in the antenna and the eye
discs, including the posterior region of the eye disc at day 5/6 AED
(Fig. 2B1), however these were not significantly overgrown relative
to thewild-type tissue. However at day 8/9 AED, Src64B ab eye disc
clones were clearly overgrown relative to wild-type tissue. Src64B
ab co-expressing clones had rounded-edges with high levels of F-
actin at day 5/6 and day 8 AED (Fig. 2B2,C2). Differentiation, as
revealed by Elav staining, was abolished in clones in the posterior
region of the eye disc (arrowheads, Fig. 2B1-B4,C1-C4). The
overall size of Day 8/9 Src64B ab mosaic eye-antennal discs were
overgrown relative to wild-type mosaic eye-antennal discs, however
there was slightly more wild-type tissue remaining at day 8/9 AED
compared to scrib− abmosaic discs (compare Fig. 2Cwith Fig. 1B).
Src64B ab cooperation led to the formation of giant larvae and a
failure of pupation (not shown), however they did not result in the
fusion of the two eye-antennal discs (not shown), as occurs with
scrib− ab tumours. Altogether, these data indicates that ab
cooperates with Src64B to promote overgrown, undifferentiated
and amorphous tumours.

Cooperation of abrupt with DRac1
Since DRac1 and RasACT cooperate to form invasive tumours in
the eye-antennal epithelium (Brumby et al., 2011), we sought
to investigate if ab and DRac1 also cooperate in tumorigenesis.

Fig. 2. Src64B cooperates with ab to form large tumours.Confocal planar images of mosaic larval eye-antennal discs stained for F-actin (with Phalloidin, grey
or red in merge) and Elav (grey or blue in merge); mutant clones are GFP+ and wild-type tissue is GFP− (grey or green in merge). (A)Src64Bmosaic eye-antennal
disc at day 5 AED. (B) ab Src64B mosaic eye-antennal disc at day 5 AED. (C) ab Src64B mosaic eye-antennal disc at day 8 AED. Arrowheads point to patches
of mutant tissue showing differentiation defects. Genotypes: (A) ey-FLP, UAS-GFP; UAS-Src64B; FRT82B/tubGAL4; FRT82B, tubGAL80. (B,C) ey-FLP,
UAS-GFP; UAS-Src64B; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. Scale bars=50 μM.
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In mosaic eye-antennal discs at day 5 AED, DRac1 over-expression
produced small clones with cell morphology defects (although
F-actin levels were only slightly increased, Fig. 3A2) and disrupted
Elav expression (yellow arrowheads, Fig. 3A1-A4). Over-
expression of ab with DRac1 resulted in large clones mostly in
the anterior region of the eye disc (Fig. 3B), although overall there
was less mutant clonal tissue in the eye-antennal disc compared with
the wild-type mosaic eye-antennal disc. At later times (day 8/9
AED), DRac1 ab co-expression resulted in strong non-cell
autonomous effects, as indicated by the highly folded wild-type
tissue surrounding the clonal tissue and greater representation of
GFP− tissue (Fig. 3C). DRac1 ab co-expression resulted in rounded
clones with elevated F-actin levels at day 5 AED (white arrowheads,
Fig. 3B1,B2,B4) although at day 8/9 AED F-actin appeared
elevated throughout the tissue (Fig. 3C2). In the posterior region of
the eye disc, DRac1 ab expressing clones showed reduced Elav
expression (yellow arrowheads, Fig. 3B1-B4,C1-C4). DRac1 ab
larvae were delayed in development and pupated 1–2 days after the
wild-type controls (data not shown). Most died at the pupal stage,

however the occasional adult emerged (∼1/50 of expected numbers)
with overgrown distorted eyes (Fig. 3D1) compared with the
wild-type controls (Fig. 3D2). In summary, although ab cooperated
with DRac1, this overgrowth was non-cell autonomous and the
cooperation was not sufficient to form neoplastic tumours as
observed with DRac1 RasACT (Brumby et al., 2011).

Comparison of cooperative interactions relative to scrib− ab
tumours
The comparative overgrowth at day 5/6 AED and day 8/9 AED for
expression of the actin cytoskeletal genes with ab relative to scrib−

ab is summarized in Fig. 4. To determine the relative overgrowth of
the mutant tissue to wild-type tissue we quantified the volume of
GFP+ tissue to total eye-antennal disc volume for all genotypes at
day 5/6 and day 8/9 (Fig. 4A,B). At day 5/6 AED the GFP+ tumour
volume relative to the total disc volume for RhoGEF2 ab, Src64B ab
and DRac1 ab was similar to the FRT control, but scrib− ab clonal
tissue was slightly reduced relative to wild-type tissue (Fig. 4A).
However, at day 8/9 AED, scrib− ab GFP+ tumours represented the

Fig. 3. Co-expression of DRac1with ab results in non-cell autonomous overgrowth.Confocal planar images of mosaic larval eye-antennal discs stained for
F-actin (with Phalloidin, grey or red in merge) and Elav (grey or blue in merge); mutant clones are GFP+ and wild-type tissue is GFP− (grey or green in merge).
(A)DRac1mosaic eye-antennal disc at day 5 AED. (B) ab DRac1mosaic eye-antennal disc at day 5 AED. (C) ab DRac1mosaic eye-antennal disc at day 8 AED.
(D1) ab DRac1 escaper adult fly heads, side and dorsal views. (D2) wild-type (control) adult fly heads, side and dorsal views. Yellow arrowheads point to
patches of mutant tissue showing differentiation defects. Note that in panel C differentiation was observed in the wild-type tissue in the posterior region of the eye
disc, but the highly folded nature of the wild-type tissue makes this difficult to image in a single Z section. White arrowheads point to an example of elevated
F-actin. Genotypes: (A) ey-FLP, UAS-GFP; UAS-DRac1; FRT82B/tubGAL4; FRT82B, tubGAL80. (B,C,D1) ey-FLP, UAS-GFP; UAS-DRac1; UAS-ab55,
FRT82B/tubGAL4; FRT82B, tubGAL80. (D2) ey-GAL4. Scale bars=50 μM.
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majority of the overgrown discs (Fig. 4B). Src64B abGFP+ tumours
were also more greatly represented relative to the wild-type tissue,
however although the whole tissue was overgrown RhoGEF2 ab
GFP+ tumours did not overgrow relative to the wild-type tissue
(Fig. 4B). By contrast, DRac1 ab clones were underrepresented in
the overgrown discs, suggesting that non-cell autonomous
overgrowth had occurred (Fig. 4B). All cooperative interactions
affected differentiation of photoreceptor development as judged by
ELAV staining (Fig. 4C). Relative to scrib− ab cooperative
tumorigenesis, co-expression of the cytoskeletal genes with ab
resulted in less potent cooperative overgrowth at day 8/9 AED
(Fig. 4A-C), which was correlated with non-cell autonomous tissue
growth effects. Except for DRac1 ab, all cytoskeletal genes showed
similar properties in cooperation with ab as with RasV12 (Fig. 4C).

Cooperation of abrupt with RhoGEF2, Src64B or DRac1
affects tissue growth via effects on cell proliferation and cell
death
In order to assess how ab was cooperating with RhoGEF2, Src64B
or DRac1 relative to scrib− to affect tissue growth, we performed
EdU labelling to reveal proliferating cells and TUNEL labelling to
detect dying cells in mosaic eye-antennal discs from all genotypes
at day 5/6 and day 8/9 (Figs 5 and 6). The EdU labelling
experiment revealed that relative to the FRT control where cell
proliferation ceases in the posterior region of the eye disc
(Fig. 5A), scrib− ab, RhoGEF2 ab, and Src64B ab GFP+ clones
showed increased numbers of EdU+ cells in the posterior region as
well as throughout the eye-antennal discs at day 5 and day 8 AED
(Fig. 5B,C,F-J), however DRac1 ab GFP+ clones showed a
reduction in EdU incorporation relative to the surrounding wild-type
tissue (Fig. 5D,E,J). The analysis of cell death, revealed that there
were more dying cells in the wild-type tissue (GFP−) in scrib− ab,

RhoGEF2 ab, and Src64B ab mosaic discs at day 5 and day 8 AED
(Fig. 6B,C,F-J) versus the FRT control that showed only low levels
of TUNEL+ cells (Fig. 6A). Conversely, DRac1 ab GFP+ clones
showed more dying cells relative to the wild-type tissue at day 8
AED (Fig. 6E,J), although similarly low numbers of TUNEL+ cells
were present in the mutant tissue (GFP+) versus wild-type tissue
(GFP−) at day 5 AED (Fig. 6D,J). Altogether, these results show
that increased cell proliferation of the mutant tissue and increased
cell death of the wild-type tissue occurs in scrib− ab, RhoGEF2 ab,
and Src64B ab mosaic discs, whilst the opposite occurs in DRac1
ab mosaic discs. The EdU and TUNEL patterns are generally
consistent with the tissue overgrowth data at day 8 (Fig. 4B), with
the exception of RhoGEF2 ab, where the tumour did not overgrow
relative to the wild-type tissue. Since EdU measures S phase cells,
it is possible there might be delays in G2/M phase in the mutant
tissue in this genotype to account for this effect. At day 5, the
tumour volume was similar to wild-type for all samples, except for
scrib− ab where mutant tissue was less represented (Fig. 4A),
therefore the EdU and TUNEL data at day 5 does not reflect
tumour volume at this stage, but predicts what occurs later in
tumour development (i.e. day 8).

Cooperation of abrupt with RhoGEF2, Src64B or DRac1
affects expression of critical eye and antennal
differentiation genes
We have previously shown, by ChIP sequencing of Ab targets and
expression array analysis, that Ab regulates the expression of eye-
antennal cell fate genes and that this effect is enhanced or altered
in ab scrib− tumours (Turkel et al., 2013). Since co-expression of
ab with RhoGEF2, Src64B or DRac1 also affects expression of
the eye differentiation factor, Elav, we sought to determine
whether other cell fate genes in eye and antennal development

Fig. 4. Quantification of clonal overgrowth and
summary of tumorigenic properties of ab with
scrib−, RhoGEF2, Src64B or DRac1.
(A) Quantification of Day 5/6 larval eye-antennal
disc GFP+ clonal volume relative to total disc
volume normalized to the Day 5 FRP control.
(B) Quantification of Day 8/9 larval eye-antennal
disc GFP+ clonal volume relative to total disc
volume, normalized to the Day 5 FRT control. The
volume of GFP+ clonal tissue relative to total disc
volume was measured from confocal sections
covering the whole eye-antennal disc of at least 3
samples per genotype. The data is presented as a
percentage of GFP+ tissue versus total tissue
volume. The data was compared using unpaired
t-test (two-tailed with 99% confidence level);
error bars represent standard error of the mean
(s.e.m.). *P<0.05, **P<0.007, and ****P<0.0001.
(C) Summary of the tumorigenic phenotypes in
comparison with RasV12-driven tumours.
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were also affected in these tumours. In eye development,
Dachshund (Dac) is one of the earliest transcriptional regulators
that drives cell fate determination in the developing eye (Chen
et al., 1997; Shen and Mardon, 1997), and expression of Dac is
blocked in ab scrib− tumours (Turkel et al., 2013). We therefore
wished to determine if this was also the case in ab cytoskeletal
gene cooperative tumours.
In wild-type eye-antennal discs, Dac is expressed in a broad band

in the middle of the eye disc and also in a crescent in the antennal
disc (Fig. 7A). scrib1 ab clones do not express Dac in the eye disc
(arrowheads, Fig. 7B1-B4) or in the antennal disc. Dac expression is
only slightly reduced in scrib1 clones and unaffected in ab
overexpressing clones in the eye disc (Turkel et al., 2013). In
RhoGEF2 ab clones in the eye disc, Dac expression was blocked
(arrowheads, Fig. 7C1-C4). Similarly, Dac expression was blocked
in Src64B ab clones (arrowheads, Fig. 7D1-D4) and in DRac1 ab
clones (arrowheads, Fig. 5E1-E4). Dac expression was also blocked

in the antennal disc in ab RhoGEF2, ab Src64B or ab DRac1 co-
expressing clones (Fig. 7C-E; data not shown). Thus, similarly to ab
scrib− tumours, ab cytoskeletal gene tumours appear to be blocked
in differentiation prior to Dac expression.

In antennal disc differentiation, initial expression domains of the
transcription factors Homothorax (Hth), Cut (Ct) and Distal-less
(Dll) during 2nd instar larval development establish the early
proximo-distal axis of the antenna (Dominguez and Casares, 2005).
Wehave previously shown that scrib− ab clones retain the expression
of Dll within the growing tumour, but downstream regulated genes,
such asDac, are not retained (Turkel et al., 2013).We therefore tested
if Dll was still expressed in ab cytoskeletal gene tumours.

In wild-type antennal discs, Dll is expressed in more distally
destined cells in the antennae (Fig. 8A), and scrib− ab clones retain
this expression (arrowheads, Fig. 8B1-B4). Co-expression of
RhoGEF2 with ab did not block Dll expression, and instead an
enlarged Dll-expression domain was observed (arrowheads,

Fig. 5. Comparison of cell proliferation levels in ab with scrib1, DRac1, RhoGEF2 or Src64B. Confocal planar images of mosaic larval eye-antennal discs
labelled with EdU for S-phases (grey or red in merge) and DAPI (blue in merge); mutant clones are GFP+ and wild-type tissue is GFP− (green in merge).
Arrowheads point to patches of tissue showing alterations in cell proliferation. (A) wild-type control clones. (B) ab scrib1 mosaic eye-antennal disc at day 5.
(C) ab scrib1 mosaic eye-antennal disc at day 8. (D) DRac1 ab mosaic eye-antennal disc at day 5. (E) DRac1 ab mosaic eye-antennal disc at day 8.
(F) RhoGEF2 ab mosaic eye-antennal disc at day 5. (G) RhoGEF2 ab mosaic eye-antennal disc at day 8. (H) Src64B ab mosaic eye-antennal disc at day 5.
(I) Src64B ab mosaic eye-antennal disc at day 8. (J) Quantification showing the percentage of EdU positive tissue in wild-type versus mutant clones of the
listed genotypes. Error bars represent s.e.m. Genotypes: (A) ey-FLP, UAS-GFP; FRT82B/tubGAL4; FRT82B, tubGAL80. (B-C) ey-FLP, UAS-GFP;; UAS-ab55,
FRT82B, scrib1/tubGAL4; FRT82B, tubGAL80. (D-E) ey-FLP, UAS-GFP; UAS-DRac1; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. (F-G) ey-FLP,
UAS-GFP; UAS-RhoGEF2; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. (H-I) ey-FLP, UAS-GFP; UAS-Src64B; UAS-ab55, FRT82B/tubGAL4;
FRT82B, tubGAL80. Scale bars=50 μM.
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Fig. 8C1-C4), probably due to a partial duplication of the antennae,
which is sometimes observed in ab-expressing clones (Turkel et al.,
2013). Surprisingly, Src64B ab clones showed reduced expression
of Dll (arrowheads, Fig. 8D1-D4) and distortion of the antennal
structures due to cell morphology changes (Fig. 8D2). In DRac1 ab
clones, normal expression of Dll was also observed (arrowheads,
Fig. 8E1-E4). Altogether, these results show that RhoGEF2 ab and
DRac1 ab are similar to scrib− ab in cell fate status, however Src64B
ab tumours are blocked at an earlier progenitor cell state than scrib−

ab tumours (summarized in Fig. 9).

Correlation in expression of oncogenic BTB-Zinc finger
genes, Bcl6 and ZBTB7A, with apico-basal cell polarity and
cytoskeletal genes in human epithelial cancer
Since we have shown here that ab cooperates with the cytoskeletal
regulators, RhoGEF2 and Src64B, to result in cooperative
tumorigenesis, we wished to determine whether the expression of

human homologs of these genes showed cooperation with BTB-Zn
finger genes in human cancers. Since our previous studies had also
shown that the cell polarity tumour suppressor, scrib, showed
cooperative tumorigenesis with ab (Turkel et al., 2013), we also
sought to determinewhether human homologs of the Scribblemodule
were downregulated in human tumours, showing high expression of
BTB-Zn finger genes. Furthermore, since we have shown that the
JNK signalling pathway was important in the invasive properties of
these tumours and sufficient to cooperate with RasACT inDrosophila
and mammalian invasive tumour growth (Brumby et al., 2011), we
wished to examine the correlation of expression of the human JNKK
and JNK homologs with BTB-Zn finger genes in human cancer. Of
the human BTB-Zn finger genes, there is greatest evidence for Bcl6
and ZBTB7A as oncogenes in human epithelial cancer (see
Introduction), so we focused our analysis on these genes. Using
Oncomine, we analysed collections of human epithelial cancers for
expression correlation with Bcl6 or ZBTB7A and human RhoGEF2

Fig. 6. Comparison of cell death levels in ab with scrib1, DRac1, RhoGEF2 or Src64B. Confocal planar images of mosaic larval eye-antennal discs
labelled with TUNEL as an apoptotic marker (grey or red in merge) and DAPI (blue in merge); mutant clones are GFP+ and wild-type tissue is GFP− (green in
merge). Arrowheads point to patches of tissue showing alterations in cell death. (A) wild-type control clones. (B) ab scrib1 mosaic eye-antennal disc at day
5. (C) ab scrib1 mosaic eye-antennal disc at day 8. (D) DRac1 ab mosaic eye-antennal disc at day 5. (E) DRac1 ab mosaic eye-antennal disc at day 8.
(F) RhoGEF2 ab mosaic eye-antennal disc at day 5. (G) RhoGEF2 ab mosaic eye-antennal disc at day 8. (H) Src64B ab mosaic eye-antennal disc at day 5.
(I) Src64B ab mosaic eye-antennal disc at day 8. (J) Quantification showing the number of TUNEL positive cells in wild-type versus mutant clones of the listed
genotypes. Error bars represent s.e.m. Genotypes: (A) ey-FLP, UAS-GFP; FRT82B/tubGAL4; FRT82B, tubGAL80. (B-C) ey-FLP, UAS-GFP;; UAS-ab55,
FRT82B, scrib1/tubGAL4; FRT82B, tubGAL80. (D-E) ey-FLP, UAS-GFP; UAS-DRac1; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. (F-G) ey-FLP,
UAS-GFP; UAS-RhoGEF2; UAS-ab55, FRT82B/tubGAL4; FRT82B, tubGAL80. (H-I) ey-FLP, UAS-GFP; UAS-Src64B; UAS-ab55, FRT82B/tubGAL4;
FRT82B, tubGAL80. Scale bars=50 μM.
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homologs (ARHGEF1, ARHGEF11, ARHGEF12), Src homologs
(Src, Yes, Fyn), Scribblemodule genes (hscrib, llgl1, llgl2, dlg1, dlg2,
dlg3, dlg4), JNKK homologs (MAP2K4, MAP2K7) and JNK
homologs (MAPK8, MAPK9, MAPK10). In this analysis, the cancer
samples were compared with normal tissues where available. The
correlation of expression of each of these polarity and cytoskeletal
genes in each dataset revealed that there were significant correlations
(P<0.05) for several cytoskeletal or polarity regulatory genes with
Bcl6 or ZBTB7A in several cancer types (Table 1; supplementary
material Table S1 and supplementary data). Most interestingly, in the
Gaspar Colon colorectal adenoma dataset (Gaspar et al., 2008) Bcl6
expression was significantly positively correlated with MAPK9,
MAP2K4 and Yes1, and negatively with Dlg2, relative to normal
intestinal mucosa (Fig. 10A, Table 1). The heatmap of individual
samples, revealed a trend of high Bcl6, lowDlg2 and highMAPK9 in
many colorectal carcinoma samples relative to the normal intestinal
mucosa (Fig. 10A). Furthermore, in the Rohrbeck Lung (all-Lung,

cancer only) dataset (Rohrbeck et al., 2008) Bcl6 expression was
positively correlated with MAP2K4, Yes1 and negatively correlated
withDlg2 andLgl1 (Fig. 10B, Table 1). Stratification of the Rohrbeck
Lung cancers dataset into different stages showed that there were
several samples of lung adenocarcinoma or lung squamous cell
carcinomahavinghighBcl6 expression and highMAP2K4 expression
relative to normal lung (No value), whereas high Bcl6 expression
correlated with low Dlg2 or Llgl1 in some samples from all forms of
lung cancers relative to normal lung (Fig. 10B). Also significantly
positively correlated with a stronger trend compared with normal
tissuewereBcl6 andMAP2K7 in the Boersma breast epithelial cancer
dataset (Boersma et al., 2008) and ZBTB7A andMAP2K7 in the Zhai
cervical squamous carcinoma dataset (Zhai et al., 2007) (Table 1).
Also significant was that in the Toruner Head-Neck all oral squamous
carcinoma (cancer only) dataset (Toruner et al., 2004) positive
correlations were seen between Bcl6 and MAPK10 and between
ZBTB7A and ArhGef12, and in the Tomlins prostate carcinoma

Fig. 7. Co-expression of ab with
scrib−, RhoGEF2, Src64B or
DRac1 prevents the expression of
the eye cell fate gene, Dac.
Confocal planar images of mosaic
larval eye-antennal discs stained for
F-actin (with Phalloidin, grey or red in
merge) and Dac (grey or blue in
merge); mutant clones are GFP+ and
wild-type tissue is GFP− (grey or
green in merge). (A) wild-type control
clones. (B) ab scrib1 mosaic eye-
antennal disc at day 5 AED.
(C) RhoGEF2 ab mosaic eye-
antennal disc at day 5 AED.
(D) Src64B ab mosaic eye-antennal
disc at day 5 AED. (E) DRac1 ab
mosaic eye-antennal disc at day 5
AED. Arrowheads point to patches of
mutant tissue showing lack of Dac
expression. Genotypes: (A) ey-FLP,
UAS-GFP; FRT82B/tubGAL4;
FRT82B, tubGAL80. (B) ey-FLP,
UAS-GFP;; UAS-ab55, FRT82B,
scrib1/tubGAL4; FRT82B,
tubGAL80. (C) ey-FLP, UAS-GFP;
UAS-RhoGEF2;UAS-ab55, FRT82B/
tubGAL4; FRT82B, tubGAL80.
(D) ey-FLP, UAS-GFP; UAS-Src64B;
UAS-ab55, FRT82B/tubGAL4;
FRT82B, tubGAL80. (E) ey-FLP,
UAS-GFP; UAS-DRac1; UAS-ab55,
FRT82B/tubGAL4; FRT82B,
tubGAL80. Scale bars=50 μM.
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dataset (Tomlins et al., 2007) Bcl6 expression was positively
correlated with ArhGef11 and MAPK8 (Table 1). Significant
positive correlations were also observed in the Collisson Pancreatic
adenocarcinoma (cancer only) dataset (Collisson et al., 2011)
between ZBTB7A and Src (Table 1). Furthermore, in the Grutzmann
pancreatic ductal adenocarcinoma dataset (Grützmann et al., 2004),
although of borderline significance, a positive correlation was
observed between ZBTB7A and MAP2K7 that showed a stronger
trend compared with normal tissue (Table 1). Thus, taken together,
these data show that in certain epithelial cancers the upregulation of
Bcl6 or ZBTB7A expression is significantly correlated with reduced
expression of Dlg2 or Llgl1 cell polarity genes or high expression of
ArhGef11, ArhGef12, MAP2K4, MAP2K7, MAPK8, MAPK9,
MAPK10, Src or Yes1 cytoskeletal genes. Based on our functional
data in Drosophila and mammalian cells (this study; Brumby et al.,
2011; Khoo et al., 2013; Turkel et al., 2013; C.P., A.B., H.R.,
unpublished data), we would expect the concordant expression of

Bcl6 or ZBTB7A with these genes should result in tumour growth,
morphology changes, differentiation blockage and invasive
properties.

DISCUSSION
In this study, we have shown that over-expression of the Ab BTB-
ZF protein cooperates with upregulation of RhoGEF2 or Src64B in
tumorigenesis, whereas Ab and DRac1 do not cooperate.
Furthermore, we show that expression of Ab with each of these
cytoskeletal regulators results in disruption to differentiation, in that
the photoreceptor cell marker, Elav, and the early cell fate gene,
Dac, are not expressed, although the antennal cell fate gene, Dll, is
retained in all except ab Src64B co-expressing clones. Finally, we
have found significant correlations in human epithelial cancer
datasets between the high expression of BTB-ZF oncogenes, Bcl6
and ZBTB7A, and low expression of Dlg2 or Llgl1 cell polarity
genes or high expression of ArhGef11, ArhGef12, MAP2K4,

Fig. 8. Co-expression of ab with
Src64B reduces expression of the
antennal cell fate gene, Dll, but
expression is retained in ab scrib−,
abRhoGEF2 and abDRac1 clones.
Confocal planar images of mosaic
larval antennal discs stained for
F-actin (with Phalloidin, grey or red
in merge) and Dll (grey or blue in
merge); mutant clones are GFP+ and
wild-type tissue is GFP− (grey or
green in merge). (A) wild-type control
clones in the antennal disc at day 5
AED. (B) ab scrib1 mosaic antennal
disc at day 5 AED. (C) RhoGEF2 ab
mosaic antennal disc at day 5 AED.
(D) Src64B ab mosaic antennal disc
at day 5 AED. (E) DRac1 ab mosaic
antennal disc at day 5 AED.
Arrowheads point to Dll expression.
Genotypes: (A) ey-FLP, UAS-GFP;
FRT82B/tubGAL4; FRT82B,
tubGAL80. (B) eyFLP, UAS-GFP;;
UAS-ab55, FRT82B, scrib1/tubGAL4;
FRT82B, tubGAL80. (C) eyFLP,
UAS-GFP; UAS-RhoGEF2; UAS-
ab55, FRT82B/tubGAL4; FRT82B,
tubGAL80. (D) eyFLP, UAS-GFP;
UAS-Src64B; UAS-ab55, FRT82B/
tubGAL4; FRT82B, tubGAL80.
(E) eyFLP, UAS-GFP; UAS-DRac1;
UAS-ab55, FRT82B/tubGAL4;
FRT82B, tubGAL80. Scale
bars=50 μM.
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MAP2K7, MAPK8, MAPK9, MAPK10, Src or Yes1 cytoskeletal
genes. This data suggests that cooperation between these genes may
occur in some human epithelial cancers.

Comparison of tumorigenic properties
RhoGEF2 ab or Src64B ab tumours showed overgrowth during an
extended larval period resulting in giant larvae and loss of

differentiation (Fig. 4C). However, unlike scrib− ab tumours there
was also non-cell autonomous proliferation and the tumours did not
appear to be as invasive as scrib− ab tumours, although a more
detailed analysis of this is required. By contrast, co-expression of
DRac1 and ab did not result in cooperative tumorigenesis, but rather
non-cell autonomous proliferation. Relative to the cooperation of
these cytoskeletal genes with RasV12 (Brumby et al., 2011; Khoo

Fig. 9. Summary of the effects of ab scrib−, ab Src64B,
ab RhoGEF2 and ab DRac1 on Dac and Dll expression.
A schematic of an eye-antennal disc showing the normal
expression of Dac and Dll, and the effect of ab scrib−, ab Src64B,
ab RhoGEF2 and ab DRac1 on their expression patterns.

Table 1 . Significant correlations in gene expression

Gene expression datasets BTB-Zn gene Polarity or cytoskeletal gene P value Pearson R Notes

Positive Correlations
Tomlins Prostate all Bcl6 ARHGEF11 5,60×10-3 0.45 A
Tomlins Prostate Carcinoma Bcl6 ARHGEF11 1,40×10-2 0.57 *, #
Toruner Head-Neck all oral squamous carcinoma (cancer only) ZBTB7A ARHGEF12 1,70×10-2 0.59 *
Toruner Head-Neck all oral squamous carcinoma (cancer only) Bcl6 MAPK10 1,10×10-2 0.62 *
Tomlins Prostate all Bcl6 MAPK8 2,00×10-2 0.46 A
Tomlins Prostate Carcinoma Bcl6 MAPK8 2,20×10-2 0.57 *
Gasper colon all Bcl6 MAPK9 3,20×10-13 0.71 A
Gaspar colorectal adenoma Bcl6 MAPK9 4,40×10-9 0.69 *, #
Gaspar colon normal Bcl6 MAPK9 3,10×10-6 0.82 N
Gaspar colorectal adenoma Bcl6 MAP2K4 6,80×10-3 0.36 *, #
Rohrbeck all-Lung (cancer only) Bcl6 MAP2K4 2,50×10-3 0.45 *
Boersma Breast epithelial cancer Bcl6 MAP2K7 2,30×10-3 0.43 *, #
Grutzmann Pancreatic ductal adenocarcinoma ZBTB7A MAP2K7 5,10×10-2 0.6 *, #, §
Grutzmann Pancreas all (no met) ZBTB7A MAP2K7 1,20×10-2 0.52 A
Zhai Cervix Cervical squamous ZBTB7A MAP2K7 1,30×10-2 0.46 *, #
Zhai Cervix all ZBTB7A SCRIB 3,40×10-2 0.34 A
Collisson Pancreas all-adenocarcinoma ZBTB7A SRC 3,10×10-2 0.42 *
Gasper colon all Bcl6 YES1 1,60×10-5 0.47 A
Gaspar colorectal adenoma Bcl6 YES1 1,40×10-4 0.49 *, #
Gaspar colon normal Bcl6 YES1 3,40×10-2 0.45 N
Rohrbeck all-Lung (cancer only) Bcl6 YES1 9,60×10-3 0.4 *

Negative correlations
Gasper colon all Bcl6 DLG2 2,20×10-15 −0.75 A
Gaspar colorectal adenoma Bcl6 DLG2 7,40×10-13 −0.79 *, #
Gaspar colon normal Bcl6 DLG2 8,40×10-4 −0.66 N
Rohrbeck all-Lung (cancer only) Bcl6 DLG2 2,00×10-2 −0.36 *
Rohrbeck all-Lung (cancer only) Bcl6 LLGL1 3,80×10-3 −0.44 *

A, all (normal and cancer); N, normal; * Bcl6/ZBTB7 high and correlated as expected with the test gene; # trend is stronger in cancer comparedwith normal tissue;
§ borderline significance with positive correlation.
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et al., 2013; C.P., A.B., H.R., unpublished data), RhoGEF2 or
Src64B cooperation with ab showed similar properties (Fig. 4C). By
contrast, DRac1 RasV12 tumours showed strong cell-autonomous
overgrowth and invasive properties, whereas DRac1 ab expressing
cells did not overgrow relative to wild-type tissue, but instead the
surrounding wild-type tissue was induced to overgrow (Fig. 4C).
The phenomenon of non-cell autonomous overgrowth observed in

DRac1 ab mosaic eye-antennal discs (and to some extent in ab
RhoGEF2 and ab Src64B mosaic discs) is similar to the effect that
“undead” cells (cells where apoptosis is initiated by activation of
initiator caspases, but effector caspase activation is blocked – and thus
cell death – by expression of the inhibitor, p35) have upon their
surrounding wild-type neighbours (Martin et al., 2009; Morata et al.,
2011; Perez-Garijo et al., 2009; Ryoo and Bergmann, 2012). This
occurs by the release of Wingless (Wg) and Decapentaplegic (Dpp)
and perhaps other morphogens from the undead cells, which promote
compensatory proliferation in the surrounding wild-type cells. The
similarity of these phenotypes suggests that DRac1 ab expressing
cells might be in an “undead” state, and release Dpp andWg, thereby
inducing proliferative overgrowth of the surrounding wild-type cells.
Alternatively, these cells might be deficient in mitochondrial
function, which together with expression of a cell-survival factor,
such as RasV12, results in non-cell autonomous overgrowth without
evidence of caspase activation (Ohsawa et al., 2012). In this scenario,
the mitochondrial dysfunction results in increased reactive oxygen
species (ROS) that activate JNK signalling, which subsequently
inactivates Hippo pathway signalling, leading to increased expression
of the target genes Wingless and Unpaired (Upd) that activate Wg
signalling and Jak/Stat signalling, respectively, in the neighbouring
wild-type cells.However, sincewe observedTUNEL-positive cells in
DRac1 ab, RhoGEF2 ab and Src64B ab expressing clones, it is more

likely that the first of thesemechanisms is responsible for the non-cell
autonomous overgrowth, however this requires further investigation.
Interestingly, in undead cells JNK activation is required for Dpp and
Wg production and non-cell autonomous overgrowth (Morata et al.,
2011; Perez-Garijo et al., 2009). Furthermore, strong activation of
JNK signalling together with RasV12 results in non-cell autonomous
overgrowth (Uhlirova et al., 2005), although at presumably lower
levels of JNK activation, cell autonomous overgrowth occurs
(Brumby et al., 2011; Igaki et al., 2006; Uhlirova and Bohmann,
2006). Therefore it is possible that the different effects on non-cell
autonomous versus autonomous cell overgrowth inDRac1 ab versus
RhoGEF2aborSrc64Bab-expressing cellsmight dependon the level
of JNK activation. Nonetheless, at early stages, ab-driven RhoGEF2,
Src64B or DRac1 tumours were similar in inducing non-cell
autonomous effects, but at later times the RhoGEF2 ab and Src64B
ab-expressing cells showed more predominant autonomous cell
overgrowth, whilst theDRac1 ab expressing cells did not, suggesting
that there are likely to be molecular differences between DRac1 and
RhoGEF2 or Src64B in their cooperative interactions with ab that
impact on cell proliferation or survival of the tumour cells.

Our profiling ofAb targets and deregulated genes revealed that dac,
dan, eya and ct eye-antennal differentiation genes were repressed,
along with changes in expression of cell growth/proliferation and
survival genes thatwould be expected to promote tumorigenic growth
in cooperationwith scrib loss-of-function (Turkel et al., 2013). scrib−

ab tumours showed downregulation of Dac, but the antennal cell fate
expression domain of Dll was not affected (Turkel et al., 2013).
Similarly, ab expression with either of the cytoskeletal genes resulted
in repression of Dac, however Src64B ab tumours additionally
repressed Dll, in contrast to DRac1 ab, RhoGEF2 ab and scrib− ab
tumours where Dll was unaffected. This data suggests that Src64B

Fig. 10. Heatmaps of expression of Bcl6 relative to polarity or cytoskeletal regulatory genes in the Gaspar colon and Rohrbeck Lung datasets.
(A) Gaspar Colon data set. (B) Rohrbeck Lung data set. Samples are stratified into normal tissue (intestinal mucosa for Gaspar Colon or no value for Rohrbeck
Lung) and cancer grades for Rohrbeck Lung. Relative expression levels of the indicated gene probesets are indicated. The Gaspar Colon dataset has 3 probes to
Bcl6 and Yes1, and 2 probes toDlg2 andMAPK9. Red is high expression and blue is low expression. The outlined samples indicate those whereBcl6 is high and
Dlg2 or Llgl1 are low or MAP2K4, MAPK9 or Yes1 are high.
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expression exerts an additional effect on ab-expressing cells to inhibit
Dll gene expression and differentiation. Src upregulation activates the
JNK and Stat signalling pathways, affects adherens junction function
and repressesHippo signalling (Enomoto and Igaki, 2013; Kohlmaier
et al., 2014; Ma et al., 2013; Read et al., 2004; Sotillos et al., 2013;
Vidal et al., 2006). Furthermore, recent studies have shown that
overexpression of Src64B in the Drosophila intestinal stem cells can
alter differentiation and result in amplification of progenitor cell pools
(Cordero et al., 2014; Kohlmaier et al., 2014). scribmutant cells also
upregulate JNK, downregulate the E-cadherin/β-catenin adhesion
complex and repress Hippo signalling (Brumby and Richardson,
2003; Doggett et al., 2011; Igaki et al., 2006; Leong et al., 2009;
Uhlirova and Bohmann, 2006). Furthermore, the Jak/Stat ligand,
Upd3, is also upregulated in the scrib− cells, where it drives tumour
overgrowth, and is also required to activate Jak/Stat signalling in the
wild-type neighbouring cells in cell competition (Bunker et al., 2015;
Chen et al., 2012; Schroeder et al., 2013). RhoGEF2 and DRac1 also
upregulate JNK signalling (Brumby et al., 2011; Khoo et al., 2013),
and might also repress Hippo signalling to promote tissue growth,
since regulators of actin cytoskeletal tension, such as activated Rok
and Myosin II regulatory light chain, induce Yki target gene
expression (Fernandez et al., 2011; Halder et al., 2012; Rauskolb
et al., 2014; Sansores-Garcia et al., 2011). However, inDrosophila it
is unknown if RhoGEF2 or DRac1 affect Jak/Stat signalling. Since
scrib loss-of-function and Src activation deregulate similar pathways,
the precise mechanism by which Src64B cooperates with ab to block
expression of Dll in the developing eye-antennal disc remains to be
determined.

Cooperation of BTB-ZF transcription factors with
deregulated cytoskeletal or polarity genes in human cancer
Our finding that therewas a significant correlation between increased
expression of human BTB-ZF oncogenic genes, Bcl6 or ZBTB7A,
and downregulation of the cell polarity genes, Dlg2 and Llgl1, or
homologs of JNKK (MAPK2K4, MAPK2K7), JNK (MAPK8,
MAPK9, MAPK10), RhoGEF2 (ArhGEF11, ArhGEF12) or Src
(Yes1, Src) cytoskeletal genes in various epithelial cancers, suggests
that the concordant expression of these genes might be contributing
to human epithelial cancer initiation and progression. Whilst this
study only focused on two of the 47 BTB-ZF genes in the human
genome, it raises the question of whether other BTB-ZF genes might
also show correlations with the expression of cytoskeletal or cell
polarity genes in human epithelial cancers. However, tissue and
cancer-grade specific effects might be observed, as a recently
published study revealed that ZBTB7Awas commonly deleted in late
stage oesophageal, bladder, colorectal, lung, ovarian and uterine
cancers (Liu et al., 2014). Moreover, they found that low ZBTB7A
expression correlates with poor prognosis in colon cancer patients,
suggesting that ZBTB7A plays a tumour suppressor function in these
cancers. Interestingly, this study also found that in colon cancer
xenografts, ZBTB7A represses the expression of genes in the
glycolytic pathway, a metabolic pathway that is required for
aggressive tumour growth, and that inhibition of this pathway
reduces tumour growth. Pertinent to this finding, we found that
blocking glycolytic pathways in Drosophila polarity-impaired
tumours, impedes tumour growth without substantially affecting
normal tissues (Willoughby et al., 2013), suggesting that
downregulation of the Scribble polarity module might upregulate
glycolytic metabolic pathways and be dependent on them for tumour
growth and survival. It is therefore possible that the cooperation
between ab and scrib− or cytoskeletal genes inDrosophilamay also
reflect a need for upregulation of the glycolytic pathway. In human

epithelial cancers, the correlations observed between elevated
ZBTB7A expression and reduced expression of the Scribble
polarity module gene (or high expression of cytoskeletal genes)
might also indicate a requirement for glycolytic pathway activation
for tumorigenesis. Further studies are clearly required to examine the
cooperative effects of Bcl6 or ZBTB7Awith deregulated cytoskeletal
or cell polarity genes in human epithelial cell lines andmousemodels
in order to discern whether our findings in Drosophila are indeed
conserved in mammalian systems.

Identifying cooperative interactions in cancer is likely to provide
novel therapeutic approaches in combating the tumour. Indeed,
recently a small molecule inhibitor targeting Bcl6 has been
developed, and combining this with a Stat3 inhibitor resulted in
enhanced cell killing in triple negative breast cancer cell lines
(Walker et al., 2014). Since in Drosophila and human cells, Src
upregulates Stat activity (Cordero et al., 2014; Frame, 2004;
Kohlmaier et al., 2014; Read et al., 2004; Sotillos et al., 2013),
tumours showing high Bcl6 and Src or Yes1 expression would be
predicted to be sensitive to this combined therapeutic regime.
Interestingly, a predominance of the significant correlations that
were observed in the human epithelial cancer datasets with either
Bcl6 or ZBTB7A involved upregulation of JNKK and JNK family
genes. Since JNK signalling is central to many cooperative
interactions examined by us and others (Brumby et al., 2011;
Brumby and Richardson, 2003; Enomoto and Igaki, 2013; Igaki
et al., 2006; Leong et al., 2009; Turkel et al., 2013; Uhlirova and
Bohmann, 2006), inhibiting the JNK pathway in addition to Bcl6 in
Bcl6-driven cancers might also be a promising therapeutic approach
to combat these cancers. In summary, our functional studies in
Drosophila and bioinformatics analysis of human cancers has
shown that cooperative tumorigenic interactions occur between
BTB-ZF genes and cell polarity or cytoskeletal genes, and warrants
further investigation to determine whether restoring normal
expression of these genes or downstream pathways in human
cancer cells can reduce tumorigenesis.

MATERIALS AND METHODS
Drosophila stocks
The following Drosophila stocks were used: ey-FLP1, UAS-mCD8-GFP;;
Tub-GAL4, FRT82B, Tub-GAL80 (Lee and Treisman, 2001);UAS-ab55 (III)
(Cook et al., 2004); UAS-RhoGEF2 (II) (Padash Barmchi et al., 2005);
UAS-Src64B (II) (R. Cagan, Mount Sinai School of Medicine, New York,
USA); UAS-DRac1 (II) (Luo et al., 1994); scrib1 (Bilder and Perrimon,
2000) and ey-GAL4 (Bloomington Stock Centre). FRT82B recombinant
stocks were generated for all transgenic lines for mosaic analysis.

Mosaic analysis
Clonal analysis utilised MARCM (mosaic analysis with repressible cell
marker) (Lee and Luo, 1999) with FRT82B and ey-FLP1 to induce clones
and mCD8-GFP expression to mark mutant tissue. All fly crosses were
carried out at 25°C and grown on standard fly media.

Immunostaining
Third-instar larval eye-antennal discs were dissected in phosphate-buffered
saline (PBS), fixed in 4% paraformaldehyde for 30 min, and washed in PBS
+0.1% Triton X-100 (PBT). Samples were blocked in 2% NGS in PBTwith
1.5% saponin for 1 h in room temperature and then incubated in primary
antibodies over night at 4°C in 2% NGS in PBT. Samples were then washed
two times in PBT for 30 min before addition of the secondary antibody. EdU
and TUNEL labelling were performed as previously described (Turkel et al.,
2013).

Antibodies used were: mouse anti-Elav (DSHB, 1/20), mouse anti-Dll
(Duncan et al., 1998, 1/500) and mouse anti-Dac (DSHB, 1/10). Secondary
antibodies were: anti-mouse Alexa 568 or 633 (Invitrogen) at 1/400 dilution.
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F-actin was detected with phalloidin–tetramethylrhodamine isothioblueate
(TRITC; Sigma, 0.3 µM, 1/1000) and DNA was detected using DAPI
staining. Samples were mounted in 80% (v/v) glycerol/PBS.

Imaging
Images of fixed and mounted samples onto the glass slides were captured
using BioRad, Olympus Fluoview FV100 and Leica TCS SP5 confocal
laser microscopes. Single optical sections were selected in FluoView
software before being processed in Adobe Photoshop CS6 and assembled
into figures in Adobe Illustrator CS6.

Adult flies were frozen at −20°C before imaging in order to facilitate
positioning them under the microscope. Images were captured on Lumenera
Infinity 1 camera attached to Olympus SZX7 dissection microscope and
processed using Adobe Photoshop CS3.

Quantification of clone volume
Volumetric clone analysis was performed using Volocity 3D Image
Analysis Software (Perkin-Elmer). To determine the ratio of clonal tissue
volume to total volume of the eye-antennal disc for each genotype and time
point, GFP+ clonal tissue relative to total disc area (as marked by Phallodin
to visualize the cells) was measured from confocal Z sections encompassing
the entire eye-antennal disc. The data for each genotypewas compared using
GraphPad Prism 6 using unpaired t-tests. Error bars represent s.e.m. and the
significance was set at P<0.05.

Quantification of EdU and TUNEL staining
For TUNEL and EdU labelling, 6 to 10 discs for each genotype were
analysed. TUNEL was quantified using Photoshop 5.1 Extended. EDU was
quantified using a program designed by David Tapiador, available at https://
github.com/nogates/counting-semaphore.

Analysis of published datasets
Using Oncomine (Research Premium Edition), we identified 18 published
gene expression data sets that contain epithelial cancer samples. Data
was filtered down to the genes of interest and was downloaded for
further analysis. Eleven of the 18 data sets that have at least 30 samples and
contain at least three quarters of our query genes were analysed for
correlation of expression levels between BCL6/ZBTB7A and each of the
genes in our gene panel. These data sets were: Boersma Breast (Boersma
et al., 2008), Collisson Pancreas all-adenocarcinoma (Collisson et al., 2011),
Gaspar Colon (Gaspar et al., 2008), Grützmann Pancreas (Grützmann et al.,
2004), Ma Breast 2 (Ma et al., 2004), Ma Breast 4 (Ma et al., 2009),
Rohrbeck Lung (Rohrbeck et al., 2008), Skrzypczak Colorectal 2
(Skrzypczak et al., 2010), Tomlins Prostate (Tomlins et al., 2007),
Toruner Head-Neck all-oral squamous carcinoma (Toruner et al., 2004)
and Zhai Cervix (Zhai et al., 2007). Where data is available, samples are
stratified into normal (no cancer) and cancer for separate analysis to identify
cancer-specific gene expression correlations. All analyses were done using
the R software package.
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