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Abstract

Background: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology
settings. However, these studies are based on relatively short inter-scan periods of 1–3 days while, in contrast, response
assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2–3 weeks during the
first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate
baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained
by random variability. Our method takes into account the statistical nature of natural fluctuations in SUV as well as
potential bias effects.

Methods: To assess variability in SUV over clinically relevant scan intervals for clinical trials, we analyzed baseline and
follow-up FDG-PET scans with a median scan interval of 21 days from 53 advanced stage cancer patients enrolled in a
Phase 1 trial. The 53 patients received a sub-pharmacologic drug dose and the trial data is treated as a ’test-retest’ data
set. A simulation-based tool is presented which takes as input baseline lesion SUVmax values, the variance of spurious
changes in SUVmax between scans, the desired Type I error rate, and outputs lesion and patient based cut-off values.
Bias corrections are included to account for variations in tracer uptake time.

Results: In the training data, changes in SUVmax follow an approximately zero-mean Gaussian distribution with
constant variance across levels of the baseline measurements. Because of constant variance, the coefficient of
variation is a decreasing function of the magnitude of baseline SUVmax. This finding is consistent with published
results, but our data shows greater variability. Application of our method to NSCLC patients treated with erlotinib
produces results distinct from those based on the EORTC criteria. Based on data presented here as well as previous
repeatability studies, the proposed method has greater statistical power to detect a significant %-decrease on SUVmax
compared to published criteria relying on symmetric thresholds.

Conclusions: Defining patient-specific, baseline dependent cut-off values based on the (null) distribution of naturally
occurring fluctuations in glucose uptake enable identification of statistically significant changes in SUVmax. For lower
baseline values, the produced cutoff values are notably asymmetric with relatively large changes (e.g. >50 %) required
for statistical significance. For use with prospectively defined endpoints, the developed method enables the use of
one-armed trials to detect pharmacodynamic drug effects based on FDG-PET. The clinical importance of changes in
SUVmax is likely to remain dependent on both tumor biology and the type of treatment.
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Background
FDG-PET is becoming increasingly important as a tool
for assessing early treatment effects in clinical trials of
novel oncology drugs [1]. To quantify FDG uptake in
tumors, clinical trials often employ pre-defined visual
scoring systems such as the Deauville criteria in lymph-
oma [2], Cheson, 2014 #79 or semi-quantitatively using
standardized uptake values (SUVs) [3]. SUVs derived
from static FDG-PET scans are used as a practical way
to estimate regional glucose metabolism, and imaging
protocol guidelines have been proposed to standardize
how such scans are performed (e.g. [4]). A key outcome
metric is the change in SUV during the treatment course
and, for a given patient, this change is typically defined
by the relative change from baseline in SUVmax aver-
aged across a set of target lesions. Metabolic response
assessments are commonly based on the widely used
EORTC criteria [5], which define a partial metabolic
response (or metabolic progression) as a decrease
(increase) in target lesion SUV of >25 % compared to
pretreatment baseline, but newer assessment methods
have also been proposed [6, 7]. In the present work, we
propose a novel, statistically assigned, metabolic response
criteria (termed STARCIST) for use with serial FDG-PET.
Our method is based on the detailed noise distribution
derived from of test-retest data and accounts for multiple
target lesions in a rigorous statistical manner.
Typically, phase-1 clinical trials of novel cancer thera-

peutics must establish the safety and maximum tolerated
dose of the new drug. However it is increasingly desir-
able to demonstrate that the drug is at least engaging its
target at this early phase of development and for this
purpose FDG-PET is often used as a pharmacodynamic
readout of drug activity. In this context, the aim is to
detect a significant change in tumor FDG uptake (early
in the treatment course) that can be ascribed to drug
effects on glycolytic metabolism. We note that such effects
are of interest during early drug development even though
they may not ultimately result in cell death or subsequent
tumor shrinkage (e.g. due to suboptimal dose, schedule, or
target population). The EORTC criteria, or newer criteria
such as PERCIST [6], are convenient to use but do not take
into account the detailed noise characteristics of individual
lesion SUV measurements and hence do not directly quan-
tify the magnitude of naturally occurring changes in tumor
FDG uptake. Therefore it is not clear whether EORTC or
PERCIST can be appropriately applied when using FDG-
PET as a pharmacodynamic readout of drug activity.
The need to define what constitutes a statistically

significant effect on FDG-PET motivated an in-depth
examination of the test-retest characteristics of serial
tumor SUV measurements. Based on this examination,
an algorithm is presented that generates baseline-specific
confidence limits on the mean, relative change in tumor

SUVmax under the assumption of no functional change
over the measurement interval, i.e. under the (null) hy-
pothesis of no actual drug effect or tumor progression.
Our method requires knowledge of the nature of noise in
clinical FDG-PET studies in oncology. Fortunately, as
recently reviewed by de Langen et al. [7], several studies
have established good test-retest reliability of FDG-PET in
various oncology settings [8–12]. While these studies have
generally shown that good reproducibility can be achieved
over a short 1–3 day test-retest period, PET measure-
ments in early phase trials are usually made over an inter-
val of 2–3 weeks during the first cycle of therapy. In
addition to PET instrumentation and procedural ‘noise’,
this longer time interval of 2–3 weeks exposes the PET
measurements to more biological variability (e.g. due to
natural fluctuations in tumor metabolism and FDG
plasma kinetics). Therefore, in constructing our algorithm,
in addition to literature data on reproducibility, we have
used a training FDG-PET dataset with a longer inter-scan
interval of about 3 weeks, which is more clinically relevant
in the context of early drug development.

Methods
Our approach to derive confidence limits for the
%-change in SUVmax from baseline involved several
steps. Based on an available training data set (described
in Sec 2.1), we estimated a distributional model (Sec 2.2)
for the natural variability (i.e. noise) in relative change
from baseline in SUVmax values for individual tumors.
Once estimated, we used the model to create an algo-
rithm (Sec 2.3) which produces 95 % confidence limits
for spurious %-changes in SUVmax from baseline. The
algorithm simulatenously accounts for all target lesions
and can correct for certain biases (e.g. change in uptake
time). We then discuss (Sec 2.4) factors that may affect
the performance of the algorithm, including dependence
on the noise standard deviation, and detail how the pro-
posed method can be used to calculate p-values applic-
able to single lesions, single patients, and for an entire
cohort. The Human Research Ethical Committees or the
Institutional Review Boards of the institutions involved
independently approved all clinical trials.

The training data
In order to inform the noise parameters to be used in
the STARCIST algorithm, we analyzed a ‘test-retest’
training dataset. This dataset consisted of serial PET/CT
scans aquired across four study sites of 53 advanced-
stage cancer patients with multiple, solid malignancies
on the dose escalation stage of a phase 1 clinical trial of
a novel drug. Based on other PD biomarkers and a lack
of observed radiological responses, the dose levels in the
training data were considered sub-pharmacologic and
the drug was ultimately discontinued from development.
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Further, as shown (Sec 2.2), FDG-uptake was not altered
(on the average) during treatment. We therefore
consider these training data as a’test-retest’ data set,
reflecting what might be expected in a phase I clinical
trials of a drug that shows no net effect on glucose
metabolism.
An imaging core laboratory prospectively qualified the

scanners and all scans were acquired according to a
pre-defined imaging charter. Although different scanner
models were used across the 4 study sites, serial
scanning was always performed on the same scanner for
each patient. Audited imaging compliance parameters
included FDG uptake time, administered activity, scan-
ning direction and arm position, and pre-scan fasting
blood glucose levels. Baseline scans were to be obtained
within 14 days prior to treatment initiation, with follow-up
scans targeted for day 14 after treatment. The mean separ-
ation of the two scans was 19.8 days (sd = 4.7). The target
uptake time was 75 ± 10 mins; the observed mean
difference in actual uptake times between the two scans
was 0.2 mins (sd = 13.5). Scans were collected and centrally
analyzed at the Peter MacCallum Cancer Centre with le-
sions confirmed by a single cancer imaging specialist
(RJH) and with volume-of-interest measurements per-
formed by a single reviewer (DSB) using an automated
software package developed at the Peter MacCallum
Cancer Centre (MARVn). This software has been vali-
dated against a number of proprietary software packages
available (manuscript in preparation).
SUVmax (corrected for weight) was measured in up to

6 lesions per patient (mean 3.8) for a total of 206 lesions
located in the lung (n = 58), liver (n = 51), lymph nodes
(n = 45), bone (n = 20), and other (n = 32). A linear
mixed effects analysis showed that none of the imaging
covariates (incl. monitored compliance parameters) were
significant predictors of SUVmax at baseline or at
follow-up (for details, see Appendix 1).

Characterizing spurious changes in SUVmax
In the training data set, as shown in the scatter plot in
Fig. 1a, there was a strong correlation (r = .86) between
SUVmax values at screening and follow-up, with most
lesion values falling close to the line of identity (solid
line). The estimated regression line in this plot (dotted)
had a slope of 1.05 (SE = .038) and was not significantly
different from unity (p = .24). A linear mixed effects ana-
lysis showed that the mean change in SUVmax did not
vary signifcantly varied across trial sites (or scanners),
tumor location, or with uptake time (t2-t1). (The details
of these analyses are presented in Appendix 1.) Plotting
the raw differences in SUVmax between the two time
points for all lesions yields the histogram shown in
Fig. 1b. As seen, although the data are slightly more
peaked than the Gaussian distribution, the differences in

SUVmax values are symmetrically distributed and are
reasonably well approximated by a normal distribution
with parameters set to the sample mean (−0.23, p < .16)
and standard deviation (1.91) (solid curve). With parame-
ters obtained by maximum likelihood (ML), this plot also
shows a t-density with 5° of freedom and a scale parameter
of 1.49 (dashed curve).
The histogram plot in Fig. 1b obscures the fact that

there is a wide range of baseline SUVmax values among

a

b

Fig. 1 a) The scatterplot of SUVmax values highlights the strong
correlation between baseline and follow-up values across lesions in
our training dataset. The dashed regression line has a slope that is
not significantly different from one. b) A histogram of the differences in
lesion SUVmax between baseline and follow-up, which is approximated
by a normal distribution of mean 0 and standard deviation 1.9
(solid curve). The dashed curve shows a t-distribution with 5° of
freedom and scale parameter 1.49
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the measured lesions. A Bland-Altman plot, Fig. 2a,
shows the same data on SUVmax changes as a function
of the mean SUV value for the two timepoints. The main
insight from Fig. 2a is that differences in SUVmax between
the two measurements are essentially independent of
mean SUVmax. Based on the preceeding analyses and
plots, we note that the squared differences in SUVmax
approximately follow a scaled chi-squared distribution.

This distributional information enables us to evaluate the
dependence of the variance of the SUVmax differences
(i.e. 2σ2) on a set of covariates using a mixed effects
Gamma regression. This regression showed no depend-
ence of the variance of the change in SUVmax on trial
site, baseline SUVmax, lesion location, diffrence in uptake
time, or time between scans (cf., Appendix 1).
The preceeding analyses imply a simple, additive

measurement model for SUVmax in which the observed
value equals the ‘true’ SUV value plus a random zero-
mean noise term with constant variance. That is, with
X(t) representing the ‘true’ value of the SUVmax process
at time t and ε(t) a zero-mean noise term with variance
σ2, we observe SUVmax(t) = X(t) + ε(t). Then, under the
(null) hypothesis of no change in the X -process from
baseline (t1) to follow-up (t2), so that X(t2) = X(t1), the
difference (SUVmax(t2) − SUVmax(t1) is mean zero with
variance 2σ2.Fort our training data, the estimate of the
per SUVmax observation noise standard deviation σ is
therefore given by σ ¼ 1:91=

ffiffiffi
2

p ¼ 1:36:$$\sigma =1.91/
\sqrt{2}=1.36.$$
In terms of response assessment, we are typically inter-

ested in relative changes in lesion SUVmax compared to
baseline, as depicted in Fig. 2b. In this plot, the reciprocal
operation implicit in the calculation of a relative change
transforms the homoscedastic distribution of differences
(Fig. 2a) in SUVmax into the asymetric and’funnel shaped’
pattern seen in the plot of the per lesion percent change.
A key insight from Fig. 2b is that using fixed cut-off values
at e.g. ±25 % severely underestimates the (true) test-retest
variability in SUVmax for low SUV lesions, but overesti-
mates this variation for lesions with high baseline values.
Further, the 95 % confidence limits on natural variability
in %-change in SUVmax when modeled by a normal dis-
tribution (blue curve, Fig. 2b) are markedly asymmetric
about the origin, especially for low-avidity baseline lesions.
This asymmetry derives from the reciprocal operation,
and implies e.g. that a large %-increase in SUVmax is
more likely to be spurious than a comparable %-decrease.

The STARCIST algorithm
For a given patient, under the assumption of no system-
atic changes in the underlying SUV values across lesions,
our algorithm produces percentiles for the distribution
of spurious (noise-driven) relative changes in SUV be-
tween scans. By choosing appropriate lower- and upper
percentile values from this null-distribution, we can cre-
ate confidence limits for relative changes that are com-
mensurate with the natural variability in measured SUV
(e.g. choosing the 2.5 and 97.5 percentiles yields 95 % in-
tervals.) Thus, if one observes a %-change in SUV that
falls outside of this interval, the change is likely due to
true increase in glucose metabolism or its reduction in

a

b

Fig. 2 a) Change in lesion SUVmax in the training dataset plotted
vs. the mean of the two measurements. The blue regression line
has a slope that is not significantly different from zero. The
dashed blue lines are 95 % confidence intervals on the regression
line. Appr. 95 % of the changes in SUVmax are within +/− 4
units. b) Relative changes in SUVmax plotted vs. baseline SUVmax
for each lesion. The black dashed lines show the ±25 % EORTC
cut-off values, while the blue and red dashed lines show the
confidence limits based on the Gaussian and t-distributions (5df),
respectively
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response to therapy (depending on its sign), and the
null-hypothesis of ‘no change’ would be rejected.
To calculate cut-offs (percentiles) for a given patient

we proceed as follows. For each of K lesions, we simulate
synthetic SUV observations at baseline and at follow-up
and calculate the average %-change across lesions. This
step is iterated a large number of times and the desired
prediction interval is then based on the empirical per-
centiles of the simulated %-change across all iterations.
Specifically, let SUV1, SUV2,…, SUVK denote the values
of K baseline SUV lesion measurements for a given
patient, and, as suggested by the previously described
additive measurement model for observed SUV-values,
calculate for j = 1, …, K,.

SUV ðbaselineÞj ¼ SUV j þ ε1;j

SUV ðf ollowupÞj ¼ SUV j þ ε2;j

In the above, the noise terms ε1,j; ε2,j(j = 1,…,K) are sam-
pled randomly from a zero-mean Gaussian distribution
with standard deviation σ. Then, the average, (simulated)
relative change in SUV is computed as

�r ¼ K−1
XK
j¼1

SUV follow upð Þj
SUV baselineð Þj

−1:

For a given patient this metric is repeatedly iterated a
large number of times (at least 10,000), each time using
different random samples from the noise distribution.
Empirical percentiles are then calculated from the result-
ing sampling distribution of �r . In the case of a single target
lesion, i.e. for K = 1, the thresholds can be analytically
calculated (see Appendix 3), but a closed form solution is
not readily available when K > 1. As seen, in generating
the null-distribution for �r , the STARCIST algorithm uses
the observed baseline SUV values in place of the true
(but unobserved) lesion SUV values. It can be shown that,
for our setting, this replacement induces only a negli-
gible (and ignorable) amount of bias in the estimated
percentiles (e.g., the 2.5 and 97.5 percentiles).
However, care must be taken to ensure that the simu-

lated values SUV(baseline) and SUV (follow up) are greater
than the background noise in the images. This is easily
achieved by discarding sample draws ε1,j, ε2,j which lead to
a violation of the threshold rule, and results in draws from
a truncated Gaussian distribution. In practice, this is also
facilitated by avoiding inclusion of lesions with SUVmax
values less than some predefined threshold, e.g. as defined
by the PERCIST criteria [6].
Correlations between the sampled noise terms at each

time point can be introduced to obtain simulated lesion
values that parallel observed within-patient SUV associa-
tions, properly accounting for the effect of multiple
lesions. For our training data, based on the preceeding

mixed model analyses, the within-patient lesion SUV-
max correlation is approxmately .3 to .5. The method
also works for log-normal data, in which case the SUV
values must be log-transformed before simulating
thresholds (although for this case an analytic solution is
readily available based on the properties of the Gaussian
distribution).

Extensions to STARCIST
A number of extenstions to the STARCIST algorithm
can be applied to increase its accuracy and utility. The
details for each are provided in Appendix 2.

Accounting for uncertainty in σ
The cut-offs produced by the STARCIST algorithm are
clearly dependent on the functional form of the noise dis-
tribution and its standard deviation σ. In our training data
we found σ = 1.36. Previously reported values are consid-
erably smaller, but typically show considerable variability
across studies: e.g., for SUVavg, Minn et al. [9] and Weber
et al. [12] reports values of σ=.64 and σ=.32, respectively,
while for SUVmax, Nahmias & Wahl (10) reports σ=.81.
To account for some uncertainty in the estimate of σ,
the exact value used in each iteration of the simulation
procedure can be drawn from a distribution of reason-
able values for σ (including estimates from other stud-
ies) rather than using a fixed value. This approach is
exemplified in the Results (Sec. 3.1).

Correction for bias due to changes in uptake time
We include the method of Beaulieu et al. [13] into our
algorithm to correct for changes in uptake time between
scans. The correction works by producing a shift in
SUVmax that is (linearly) proportional to the change in
uptake time and to the magnitude of the observed SUV-
max value. In practice, the correction is applied within
STARCIST by shifting the 95 % confidence limits (rather
than modifying the observed SUVmax values).

Assigning p-values for changes in SUVmax at the single-
arm trial level
Since STARCIST indicates whether the observed mean
%-change for a given patient is statistically significant or
not (e.g., with a Type I error rate of 0.05), and because
patients are independent from each other, the total num-
ber of patients with significant changes in a study follows
the binomial distribution. This fact allows us to estimate
the overall probability at the trial level that a therapy has
caused a significant change in SUVmax.

Results
Our test data set consisted of 57 2nd/3rd line non-small
cell lung cancer (NSCLC) patients receiving erlotinib.
This cohort was the control arm of a global phase II
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study evaluating the novel drug MetMAb (study
OAM4558g, [14]). FDG-PET data was acquired from 24
global sites at screening and at days 10–14 after starting
treatment (median separation was 3 weeks, range 13–
42 days). Good technical compliance was observed with
the standardized image acquisition charter [15]. Images
were collected and analyzed centrally by a commercial
imaging contract research organization. All scans were
measured by a single reviewer who recorded SUVmax
values (corrected by weight) for up to 5 target lesions
per patient with an overall focus on lesions that best
represented a patient’s burden of disease. Target lesions
were defined as most FDG avid with a size requirement
of at least 15 mm in longest dimension and a measured
SUVmax of at least two. A total of 157 lesions were
recorded, primarily located in lung (n = 53), lymph
nodes (n = 48), and liver (n = 30). Since correcting for
differences in uptake time between the baseline and
follow-up scans did not signifcantly alter the conclu-
sions, we show only the analyses based on uptake time
corrected SUVmax values.

Waterfall plots of SUV based on STARCIST
For the 57 patients in the test dataset, as depicted in the
waterfall plot in Fig. 3a, the primary PET review provided
measurements for the mean %-change in SUVmax. Based
on the +/−25 % EORCTC cut-off values, we obtain the
distribution of metabolic responses shown in the top row
of Table 1. Also shown in Fig. 3a, as produced by STAR-
CIST with σ = 1.36, are baseline-specific 95 % intervals for
spurious changes in SUVmax (overlaid on waterfall plot).
Under the proposed criteria, if an observed %-change in
SUV falls outside of its corresponding interval, we con-
sider the null hypothesis of no significant change to be
disproved and the patient to have demonstrated meta-
bolic response or progression.
Waterfall plots rank patients in order of the size of ob-

served change. An alternative approach is to order the
plot according to the statistical significance (p-value) of
the observed changes in SUVmax across patients, as
shown in Fig. 3b. In this plot, the p-value for an individ-
ual patient is computed by considering the rank of the
observed, mean %-change in SUVmax relative to the
ranks of the corresponding, simulated %-changes pro-
duced by STARCIST. The plot is arranged so that the
most significant decreases are ordered starting from the
left while the most significant increases are ordered from
the right. Figure 3b highlights that the most significant
%-changes in SUVmax are often (but not always) also
the largest %-changes.
Based on STARCIST, as shown in Table 1, 22.8 %

(=13/57) patients differ in their response classification
compared to those produced by the EORTC criteria.
(These per-patient changes in response designation

relative to EORTC are easiest to spot in Fig. 3b.) Because
large, spurious %-increases in SUVmax is somewhat
common, especially for patients with one or more faint
baseline lesions, no patients in this analysis (with σ =
1.36) exhibit a statistically significant increase in SUV-
max. In particular, the two patients with the largest
mean, %-increases in SUVmax both have at least one
baseline lesion with SUVmax value below 4. As seen
(Table 1), a smaller noise standard deviation σ=.81 pro-
duces more metabolic responders and progressors com-
pared to σ = 1.36. In this case, approximately 14 % (=8/57)

a

b

Fig. 3 a) Waterfall plot of observed mean %-change in SUVmax for
60 NSCLC patients receiving erlotinib in the test dataset. The 95 %
limits for spurious %-change in mean SUVmax based on our noise
model are depicted by the vertical red lines. The fixed +/− 25 %
EORTC cut-offs are given by the horizontal blue lines. Uptake time
corrected changes in SUVmax are given by horizontal tick marks
(black). b) Waterfall of same data as in a), but reordered according t
o the patient specific significance level (p-value) of the mean
%-change in SUVmax. The smallest p-value for decreases in SUVmax
is ordered from the left, with SUVmax increases similarly ordered
from the right
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of patients differ in their response classification based on
STARCIST relative to those based on EORTC criteria.
Accounting for unertainty in σ As mentioned (Sec 2.4),

to account for the fact that the noise standard deviation is
only approximately known, one can jointly sample values of
σ2 and the error terms εi,j (i = 1, 2, j = 1, …, K) at each
interation in STARCIST (for a given patient). To illustrate
this idea, we sample σ2 from the inverse Gamma distribu-
tion with shape and scale parameters both set to 15. This
distribution for σ2 was chosen to represent a compromise
between σ=.81 (as reported by Nahmias & Wahl (10)) and
σ = 1.36 (as in our training data). The resulting draws of
σ2 are centered at 1, and are such that the 2.5 and 97.5
%-quantiles for σ (i.e., the noise standard deviation) are

approximately located at .80 and 1.36, respectively. By
allowing for a set of plausible values of the noise standard
deviation, the metabolic response classifications based on
this approach (presented in last row of Table 1), represent a
sort of average of the previously considered values of σ.
Table 1 also gives the p-values associated with the total

number of patients whose mean, %-change in SUVmax
fell outside of the 95 % confidence limits and, for σ = 1.36,
the signifcance level is approxmately .002. For σ=.81, the
corresponding p-value is approximately 10− 10, a level of
signifcance which may indicate that the error standard
deviation σ is set too low. If one similarly treats the
EORTC +/−25 % cut-offs as 95 % intervals the trial signifi-
cance level is of the order 10− 12.

Case examples
To illustrate cases where the response designation is driven
by high- or low-intensity lesions, Fig. 4 shows PET/CT
images from two patients falling into these categories. In the
first case, a well defined and clearly FDG avid liver metasta-
sis (the most avid lesion in this patient) visually decreased in
intensity after 2 weeks of treatment and demonstrated a
20 % decrease in SUVmax. This patient was classified SMD
by the EORTC criteria but PMR by our new criteria because
the liver lesion had a baseline SUVmax of 19, resulting in
narrow confidence limits for spurious change (−11.5 to
28.7 %). The second case example had a single lesion in the

Table 1 Patient Level Metabolic Response Classification

Response classification σ PMR SMD PMD p-value

EORTC 25 % NA 15 37 5 < 2 × 10− 12

STARCIST 1.36 9 48 0 < 0.002

0.81 15 39 3 < 2 × 10− 10

1.00 13 44 0 < 4 × 10− 6

Patient level response classifications for the test dataset were based on the
standard ±25% EORTC cut-off values and on the 95% confidence limits
produced by STARCIST with σ set to 1.36 , 0.81 and 1.0. The p-values are
based on binomial distribution (n=57) based the total number of patients
outside of the 95%-confidence limits. The p-value in the first row is derived
by treating the EORTC criteria as 95% confidence limits

Fig. 4 Example fused axial PET/CT images for patients with metastatic NSCLC whose response classification was changed using our new criteria
(compared to the EORTC criteria). Case 1 had a single liver lesion that showed a 20 % decrease in SUVmax after 2 weeks of treatment and was
classified as SMD by EORTC criteria. This patient was reclassified by our scheme as PMR because the baseline lesion SUVmax was 19, resulting in a
narrow confidence interval for spurious changes. Case 2 has a single upper lung lesion demonstrating a 33 % decrease in SUVmax that was
classified as PMR using the EORTC criteria. This patient was reclassified to SMD using our criteria, as a result of a low screening SUV value of 3.3.
(These cases are represented in Fig. 3b as patients #4 and #22)
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upper right lung that visually decreased in intensity after
2 weeks of therapy, and was classified by EORTC criteria as
PMR with a 33 % decrease in SUVmax. However, the base-
line SUXmax for this lesion was only 3.3, resulting in wide
confidence limits for spurious change (−54 to 119 %), which
encompass the observed % change and leads to reclassifica-
tion as SMD. These two cases can also be seen in Fig. 3b as
patients #4 and #22 (counting from the left), respectively.

Discussion
Our observation of baseline-dependent fluctuations in
SUVmax in the training dataset is consistent with a re-
cent retrospective analysis of several previous test-retest
datasets by de Langen et al. [7]. Their analysis also dem-
onstrated the decreasing size of the test-retest %-change
in SUV metrics with increasing baseline tumor SUV, a
point also discussed by Weber et al. [12] (cf. their Figs 2
and 3). Similarly to our training data, Weber et al. [12]
also substantiated the normal distribution for spurious
changes in SUV.
Although our conclusions regarding the distribution of

SUVmax test-retest data are similar to those of de Langen
et al. [7], our method to define statistically significant
changes in SUVmax differs from their approach in the way
that thresholds (critical values) are defined, i.e., in the way
the Type I error rate is controlled. To address the noisy
nature of dim lesions (at baseline), de Langen et al. [7]
propose cut-off regions that depend both on minimum ab-
solute %-change in SUVmax and a concomitant minimum
absolute change in SUVmax (cf., their Table 2). We note
here that is not mathematically (or statistically) necessary
to simultaneously consider both percent- and absolute
changes, as claimed by de Langen et al. [7] (cf. their
Results). In contrast, thresholds produced by STARCIST
define cut-offs for spurious %-changes in SUVmax that
vary continuously with baseline SUV, but do not require
simultaneous consideration of absolute changes.
Our approach accounts for the fact that the spurious

variation in %-change in SUVmax is highly asymmetric
about zero. Such asymmetry requires that, e.g., a 40 %
increase in SUVmax be treated differently than a 40 %
decrease; i.e., on the %-scale, increases and decreases

should have different cut-offs. In contrast, thresholds
that include an absolute %-scale have to guard against
large, spurious %-increases, and will consequently
yield less power in detecting a drug effect that sup-
presses glycolytic metabolism, a fact that is illustrated
in Appendix 3. This is especially true for low SUV lesions,
which are likely to produce larger spurious increases than
decreases (Fig. 2b). Additionally, by seamlessly accounting
for differing numbers of target lesions, STARCIST pro-
duces a well-defined patient level response metric. Finally,
our approach also allows for control of various sources of
systematic bias. As an example, we have included a correc-
tion for variations in tracer uptake time. Although not
currently included, correction for changing blood glucose
levels [16, 17] and variations in plasma FDG kinetics [18]
are easily incorporated.
We demonstrated our approach using SUVmax, yet

STARCIST is equally applicable to SUVpeak, SUVaverage
(normalized by weight or lean body mass), total lesion
glycolysis, or any other metric for which appropriate
test-retest (i.e. training) data is available. For instance,
thresholds for the PERCIST criteria [6] can easily be
computed using the presented simulation algorithm by
calculating the %-change in SUVpeak from hottest
baseline- to hottest follow-up lesion, although some
added complexity is needed to account for the uptake
in newly detected lesions. Unfortunately, since our test
clinical trial dataset did not include SUVpeak measure-
ments we were unable to directly compare STARCIST
with PERCIST. Similarly, with the approach of de Langen
et al. [7], it is not straightforward to process multiple
target lesions per patient (personal communication, de
Langen, 2014); indeed the issue of whether to focus on
multiple target lesions or a single (hottest) lesion re-
mains a matter of debate. Nevertheless, we have shown
that we do obtain different results (altered metabolic
responses in ~25 % of patients) compared to the sim-
pler but still widely used EORTC criteria. The reader
may reasonably ask which of the above referenced
methods produces the ‘best’ results, but further work
will be required to fully establish the performance of
STARCIST relative to other approaches. Here, with
focus on relative changes from baseline, we claim only
that our method produces thresholds with the correct
Type I error rate.
Regardless of the SUV metric employed, when using

STARCIST the assumption is made that the noise func-
tion and variance (σ2) is relevant for the dataset being
processed. Of course, an analogous assumption must be
made when applying the PERCIST or EORTC criteria
prospectively: namely, that the 25 % cut-off in SUVmax
is valid for the scan conditions and tumor type (etc.) of
the new study. At least, in the case of STARCIST, as
noted, thresholds to determine metabolic response

Table 2 Lesion Level Metabolic response Classification

de Langen et al. (2012)

Thresholds by STARCIST PMR SMD PMD

PMR 27 13 0

SMD 0 98 8

PMD 0 6 5

Lesion level metabolic response classifications for the test dataset based
on STARCIST and the thresholds for SUVmax provided by de Langen et al.
(cf. Table 2.1 in (7))
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distribution are consistent with the noise distribution in
SUVmax observations. We have also demonstrated that
STARCIST can encorporate uncertainty in the estimate
of the noise variance by drawing from a distribution of
values of σ when simulating thresholds, instead of as-
suming a fixed value.
In considering the presented training dataset (Sec 2.1)

as test-retest measurments, we assume no treatment ef-
fect and limited tumor growth over the 3 week scan
interval scans. Of course, we cannot exclude the possi-
bility that some patients may actually have a degree of
tumor progression balanced by a weak drug effect,
resulting in zero net change in FDG uptake. However,
the lack of change in other PD biomarkers in this study
and lack of clinical benefit suggests that this scenario
does not dominate our data. Our estimate of σ (1.36) is
larger than some earlier works, but this value is based
on serial SUVmax measurements separated by a clinic-
ally relevant interval of approximately 3 weeks. In com-
parison, test-retest measurements made over a 2–3 day
interval would certainly capture variability from tech-
nical sources, such as scanner hardware, reconstruction
related biases and partial volume effects [19], as well as
‘procedural’ factors such as changes in FDG uptake time,
injected dose, and blood glucose. However, over a longer
time interval of ~3 weeks, additional biological sources
of variability are likely to affect the measurements, e.g.
variation in tumor (and indeed whole body) FDG metab-
olism and plasma FDG kinetics, increasing spurious
changes between observations.
We believe that STARCIST will be a useful analytical

tool for the pharmaceutical industry and researchers in-
volved in drug development seeking to use FDG-PET as a
PD biomarker of biological response. Based on our best
estimate of the noise distribution in SUVmax measure-
ments, the proposed methodology is rigorously rooted in
classical statistical testing theory (e.g. see Chapter 5 of
[20]) and produces baseline-dependent thresholds on
the %-scale for an arbitrarily chosen significance level.
We note, however, that metabolic response on the
primary lesions will not necessarily translate into sub-
sequent morphological response or, more importantly,
clinical benefit. Indeed, for patients with substantial
heterogeneity of response across lesions (including
newly detected lesions), the worst performing lesion
may drive the clinical outcome. Nonetheless, it is very
likely that patients with and without statistically sig-
nificant changes in SUVmax will have differing prob-
abilities of clinical response.
Our method is relatively complex and is best imple-

mented by means of a web interface so that a user can
upload a table of SUV values, define a set of assumptions
such as noise variance, and receive back a set of meta-
bolic response designations for each patient. At the time

of this printing, the STARCIST algorithm can be used at
www.starcist.org.

Conclusions
Test-retest data with a 3-week interscan interval dem-
onstrated greater noise variance than published data
with a short (1–3 days) time between measurements.
Using our knowledge of the noise distribution in SUV-
max, we propose a data driven approach to defining
patient-specific cut-off values to determine statistically
significant changes in tumor FDG uptake. Our approach
takes into account multiple lesions per-patient and al-
lows for systematic biases such as variation in tracer
uptake time. Importantly, baseline tumor SUV strongly
determines the variability in %-change in SUV over
time: less intense lesions at baseline show greater spuri-
ous %-change. Additionally, the statistical framework
also allows testing for significance at the level of
the whole trial, even for a single-arm study. The tech-
nique is applicable to other lesion SUV measurements
(such as SUVpeak) but suitable test-retest FDG-PET
data, ideally with a 2–3 week interscan interval, is
needed for the metric and preferably also disease of
interest. We have shown that our methodology can
change the metabolic response classification in more
than a quarter of subjects in a phase 2 clinical trial of
NSCLC patients.

Appendix 1: Evaluating the effects of covariates
on SUVmax in the training dataset

Methods
The linear mixed effects model and the generalized

linear model were used to evaluate any dependence of
mean SUVmax, and the dependence of mean and
variance changes in SUVmax, on a set of covariates (e.g.
uptake time and lesion location). All regression analyses
were performed at the lesions level and treated study
sites and patients (nested within sites) as mixed effects,
and were done in the statistical package R [21] using
the lmer, glm, and glmer functions. All reported
p-values are two-sided and are based on model output.
Mean SUVmax
A linear mixed effects analysis showed that neither

lesion location (baseline: p = .18; follow-up: p = .08)
nor uptake time (baseline: p = .39; follow-up: p = .84)
were significant predictors of SUVmax. At baseline,
the variance components estimates obtained from this
analysis were 0 for study sites, 3.3 for patients (nested
within sites), and 9.0 for residuals. At follow-up, the
same figures were 0, 4.8, and 8.5, respectively. Since
all patients were scanned on the same scanner within
sites, there was no effect on SUVmax due to scanners
employed.
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Mean change in SUVmax
A linear mixed effects analysis was used to assess if the

mean change in SUVmax varied across trial sites, tumor
location, or with uptake time (t2-t1). The estimated vari-
ance components for trial sites, patients, and residuals were
0, 1.60, and 2.05, respectively, indicating that study site did
not play a significant role for changes in SUVmax. Further,
there were no significant effects on change in SUVmax due
to tumor location (p = 0.11) or uptake time (p = 0.29).

Variance of change in SUVmax
A mixed effects Gamma regression showed no depend-

ence of the variance of changes in SUVmax (i.e. 2σ2)
on baseline SUVmax (p = .54), difference in uptake time
(p = .84), number of days between scans (p = .40), or lesion
location (p = .10). Further, in this analysis, the variance
components for trial sites and patients were both esti-
mated to be zero, indicating a lack of dependence on the
variance of changes in SUVmax on these factors.

Appendix 2: Extensions to STARCIST

Accounting for uncertainty in σ
Simulations under different distributional models for
noise in SUVmax show that it is the reciprocal operation
involved in calculating the relative change, rather than
the exact form of the distribution, that drives the magni-
tude of the estimated percentiles. Thus, for practical
purposes, we believe that the Gaussian (or t-) distribu-
tion suffices to provide informative results. More im-
portantly, a reasonable estimate for σ is required, and in
our training data we find σ = 1.36. Previously reported
estimates of this parameter vary across test-retest stud-
ies. To account for the uncertainty in the noise standard
deviation, one can generate samples from the joint dis-
tribution of ε1,j, ε2,j(j = 1, …, K) and σ at each interation
in the algorithm using draws from the commonly
employed Normal-Inverse Gamma distribution e.g. [22].
Specifically, to augment STARCIST, one first draws σ2

from the Inverse-Gamma distribution, and (conditionally
on σ2) one draws noise terms ε1,j, ε2,j(j = 1, …, K) with
variance equal to the sampled value of σ2. The parameters
relating to the Inverse-Gamma part of the joint density
can be informed by previously reported estimates, or
simply chosen so that a reasonable range of σ –values
are represented by the algorithm.

Correction for bias due to changes in uptake time.
We include the method of Beaulieu et al. [13] into our

algorithm to correct for changes in uptake time between
scans. With this approach, we approximate what the SUV
value at follow-up would have been had it been measured
at the baseline uptake time. Specifically, with β(SUV(t2)) > 0
a correction factor derived from Beaulieu et al. (13), SUV

(t2) is extrapolated linearly from the follow-up uptake time
(t2) to the baseline uptake time (t1) using the correction
SUVcorr = SUV(t2) + β(SUV(t2))(t1 − t2). For a given patient,
the uptake time correction can be included in the STAR-
CIST algorithm when SUV-values are sampled at follow-up
by simulating SUV(follow up) = SUVj + δj + ε2,j, where δj is
the bias correction on the j:th lesion at t2. The estimation
of confidence limits and systematic bias into a single algo-
rithm is implemented in the R. The inputs to the algorithm
are the baseline and follow-up SUVmax values for all
lesions measured in a patient, the uptake times t1 and t2,
and the standard deviation σ of the noise distribution.

Assigning p-values for changes in SUVmax at the
single-arm trial level
The construction of cut-offs based on the null distribution

of relative changes in SUVmax enables the use of single arm
clinical trials to detect a pharmacodynamic drug effect on
FDG uptake. Specifically, under the assumption of no under-
lying change in apparent lesion uptake between scans, with a
specified type 1 error rate of α and a sample size of N, we ex-
pect about N× α of the treated patients to have mean
%-changes in SUVmax which fall outside of their respective
100 × (1− α) % prediction limits. Moreover, since patients are
independent, the total number of mean %-changes outside
of their respective confidence limits, here denoted S, follows
the binomial distribution with parameters N and α. A p-
value associated with a particular trial outcome is then given
by �F S−1;N ; αð Þ , the survival function for the binomial
distribution evaluated at S− 1 ‘successes’. To focus this
metric on metabolic responders only, we simply divide the
type 1 error rate in half and calculate the p-value as �F
SPMR−1;N ; α 2= Þð , where SPMR denotes the total number of
patients that fall below the lower prediction limits. We note
that the p-values discussed here pertain to the outcome of
the (entire) trial, i.e. to the clinical endpoint S or SPMR.

Appendix 3: Lesion-by-lesion response
classification
For the 57 patients in test data (Sec. 3), Table 2 presents
a lesion-by-lesion comparison of metabolic response clas-
sifications based on STARCIST with the classifications
based on Table 2.1 of de Langen (7). As seen, there is
large degree of agreement between the two methods; in
particular, 130 lesions (out of 157) are designated as hav-
ing the same metabolic response classification. However,
STARCIST classifies 13 more lesions as PMR (40 vs. 27).
We outline below the theoretical reasons why our method
produces a greater number of PMR classified lesions.
When the spurious differences in SUV between serial

scans follow a symmetric distribution as, e.g., seen in
our training data, and as reported by Weber el al. [12],
then the thresholds of %-decreases vs. and %-increases
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can be highly asymmetric. That is, for the data and
model considered in Sec. 2, under the null hypothesis of
no true change between scans so that μ1 = μ2 = μ, the
probability of getting a spurious change in the ratio
below some threshold k is given by

p Y2
Y1 < k
� � ¼ p Y2−k � Y1 < 0ð Þ ¼ p Z < − 1−kð Þμ

σε 1þk2ð Þ
� �

;

where Z is drawn from the standard normal distribution.
Equating the term − (1 − k)μ/σε(1 + k2) to (say) the
2.5 %-quantile of the standard normal distribution, i.e.
to Z.025 = − 1.96, and solving the resulting quadratic in
k yields the lower (and upper) thresholds for relative
changes with a Type I error rate of 5 %. Specifically,

with CV ¼ σε=μ; the threshold k.025 =
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1−Z2

:025�CV 2ð Þ2
q

1−Z2
:025�CV 2ð Þ

is such that p Y2
Y1 < k :025
� � ¼ :025: By symmetry, the

upper threshold k.975 is given by the second root of the
preceding quadratic. Simple algebra can then be used to
verify the asymmetry in the (null) distribution of the
sample ratio Y2/Y1, as reflected by the resulting in-
equality |1 − k.025| < |k.975 − 1|. With obvious changes to
the sample quantiles, the preceding arguments hold for
other Type I error rates (e.g., 0.1, or 0.01), and also to
other symmetric distributions (e.g. the t-distribution.) We
note: (1) the dependence of the thresholds on the mean
(μ) and standard deviation (σε) through the coefficient of
variation (CV); and, (2) that defining thresholds based
on absolute relative changes results in thresholds which
require larger %-decreases for statistical significance (but
smaller %-increases.) Hence, relative to previously pub-
lished methods, we expect our method to have higher
power to detect (statistically significant) decreases in
SUVmax, but also less power to detect increases.
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