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Introduction

Esophageal adenocarcinoma is distinguished by having both 
a high case-fatality rate, with five year survival rates typically 
15–20% in the community,1-3 and by having the fastest rising 
incidence of all cancers in many countries, with a more than 
6-fold increase in incidence in the US in the past several decades.4 
Although recent data suggest that the incidence rise may have 
slowed,5,6 the increase in the number of patients with adenocarci-
noma of the esophagus or gastroesophageal junction has stimu-
lated a corresponding increase in research into the biology of this 
cancer. Here we use the initialism EAC to denote both esopha-
geal and gastroesophageal junction adenocarcinomas although it 
is recognized that some tumors classified as junctional may be 
gastric cancers that have extended proximally.

EAC is often studied in conjunction with Barrett esophagus 
(BE), the condition in which the normal squamous epithelium 
in the distal esophagus is replaced by a metaplastic columnar 
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mucosa, often containing goblet cells (intestinal metaplasia, IM) 
in response to chronic severe gastroesophageal reflux disease 
(GERD). BE is the main predisposing factor for EAC, through 
a generally accepted multistep process in which IM in a very 
small proportion of individuals (probably less than 0.5%/year)7,8 
progresses through low grade dysplasia and high grade dysplasia 
stages to invasive EAC. This review includes findings for both BE 
and EAC although the focus is on cancer.

Molecular Pathogenesis of EAC

Mechanisms underlying molecular abnormalities in the patho-
genesis of EAC. In the development of cancer, both genetic and 
epigenetic mechanisms contribute to the activation or inacti-
vation of key signaling pathways and acquisition of the cancer 
phenotype “hallmarks”.9 It is generally accepted that Barrett 
multistep carcinogenesis is characterized by genomic instabil-
ity,10 which facilitates accumulation of lesions that target proto-
oncogenes, tumor suppressor genes, mismatch repair genes, and 
mitotic checkpoint genes, thereby aiding tumorigenic progres-
sion.11 In addition, reflux components have been shown to induce 
DNA damage in esophageal cells.12-14 Although there are no data 
showing that reflux causes more permanent genetic (e.g., muta-
tions) or epigenetic alterations, recent Next Generation sequenc-
ing data15 show a high overall mutation rate in EAC that is only 
exceeded by lung cancer and melanoma, both of which are 
known to be largely driven by mutagens (smoking and UV light, 
respectively). Epigenetic studies focused on CpG island promoter 
hypermethylation suggest that there may be “high” and “low” 
methylation epigenotypes,16 while genome-wide profiling not 
restricted to CpG sites indicates that the predominant epigenetic 
mechanism is widespread hypomethylation, which occurs before 
progression to HGD/EAC and acts in concert with gene amplifi-
cation to upregulate expression of various genes.17

Confirming which of the many molecular alterations are 
essential to driving progression to EAC has so far largely eluded 
researchers. This may be partly due to an emphasis on non-
mechanistic studies to identify clinically relevant biomarkers 
of progression to EAC in patients with BE. Another factor may 
be differences in tumors arising in the tubular esophagus, the 
gastroesophageal junction, and the proximal stomach including 
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EGFR may play a role in Barrett carcinogenesis to stimulate 
growth. Protein expression of EGF and TGFα is increased to 
similar levels in BE and EAC,35,36 suggesting that EGFR acti-
vation through these ligands via an autocrine signaling mecha-
nism may be an early event in the BE metaplasia-dysplasia-EAC 
sequence. In BE, expression of TGFα was found to correlate 
with proliferation and TGFα immunoreactivity was found in the 
same areas as proliferating cells in BE glands showing high-grade 
dysplasia (HGD).37 Altered EGF expression in some cases may 
be due to the presence of the EGF A61G polymorphism, which is 
associated with an increased risk of EAC.38,39

Increased signaling through the EGFR pathway could also 
be a consequence of changes in expression or function of EGFR 
family members (e.g., EGFR and c-erbB-2/Her2). EGFR protein 
expression is reportedly increased in up to two thirds of EAC and 
has been associated with tumor (T) stage, lymph node metasta-
sis, and a trend toward worse disease-free and overall survival.40-44 
The gene for EGFR is also amplified in HGD and around one 
third of EAC,45,46 and activating mutations in exons 18 and 21 
of the EGFR gene have been identified in approximately 15% of 
BE and EAC.47 Both EGFR overexpression and mutant p53 con-
tribute to the enrichment of a subpopulation of human esopha-
geal epithelial cells which, after negating the oncogene-induced 
senescence induced by EGFR overexpression, undergo epithelial 
to mesenchymal transition (EMT) on TGF-β stimulation.48

The erbB-2/Her2 receptor is also amplified in approximately 
10–50% of EAC with concomitant increased mRNA or protein 
expression.49-55 Amplification and overexpression of erbB-2 have 
been reported in HGD but not normal esophagus or BE with or 
without low grade dysplasia (LGD), suggesting that this lesion is 
a late stage event in BE carcinogenesis.50,52 Co-amplification of 
erb-B2 and EGFR occurs in approximately 15% of EAC in addi-
tion to increased immunoreactivity for erb-B2 in BE and EAC,46 
which suggests the possibility of ligand independent activation of 
this signaling pathway via receptor hetero-oligomerization and 
subsequent enhanced tumor cell survival.

Despite the evidence above, the results of clinical trials tar-
geting EGFR in the treatment of EAC (reviewed by Mukherjee 
et al.56) have not been very promising. This may be related to the 
presence of K-ras mutations, which are known to predict resis-
tance to EGFR inhibition. These mutations are reported in up to 
a third of patients with HGD or EAC, but not in patients with 
non-dysplastic BE.57 In contrast, targeting erbB-2 in patients 
with HER2+ metastatic esophago-gastric junctional adenocarci-
noma has been more successful,58 and is being tested further in 
a clinical trial with earlier stage disease (RTOG-1010, National 
Cancer Institute, USA).

Vascular endothelial growth factor family. Vascular endothe-
lial growth factors (VEGFs) are crucial to the formation of new 
blood vessels (angiogenesis, particularly VEGF-A) and lymph 
vessels (lymphangiogenesis, particularly VEGF-C) through 
binding to their cognate VEGF receptors (VEGFR-1, -2, and -3). 
Angiogenesis is important for the continued growth of a tumor 
as it outgrows the existing blood supply, and lymphangiogenesis 
is thought to be important for the metastatic spread of tumors. 
Evidence suggests that activation of signaling through these 

cardia,18-20 as well as a large degree of heterogeneity found within 
both individual cancers and segments of Barrett esophagus.21-24

This gap in knowledge has contributed to our persisting 
inability to identify which patients with BE are most at risk of 
progression.25 Baseline alterations including p16 and p53 loss 
combined with aneuploidy are strongly associated with the like-
lihood of progression to HGD/EAC in longitudinal studies 
(reviewed in refs. 20 and 25), but these findings require valida-
tion at other centers and are not currently suitable for routine use 
in clinical pathology laboratories. The lack of functional studies 
identifying drivers of disease has also hindered progress in the 
development of targeted therapies, including therapies aimed at 
preventing BE progression. While it is unlikely that all EAC will 
be treatable via inactivation of a single oncogene (as in the onco-
gene addiction model),26 an effective approach may involve the 
collective targeting of a small number of molecules, possibly via 
a pathway approach.

Mechanistic studies on the molecular pathogenesis of EAC. 
There are relatively few studies examining the effect that abnor-
malities present in BE and EAC tissues have on the acquisition 
of tumorigenic phenotypes in experimental models. Genetically 
manipulable animal models have only recently been described,27 
and there is a paucity of appropriate cell lines.28 Due to a lack 
of cell lines representing early stages of this disease, many stud-
ies have used adenocarcinoma cell lines to model events that 
are likely to have occurred earlier in the neoplastic sequence. 
Furthermore, the majority of in vitro studies to date, rather than 
modeling the effect of genetic alterations discovered in vivo, have 
focused on the ability of reflux components such as acid and bile 
to induce the expression of specific proteins and/or activate rel-
evant pathways. While these effects may play a role in tumorigen-
esis in BE, it is likely that more permanent genetic or epigenetic 
changes are required in the evolution of EAC. More promisingly, 
the step-wise neoplastic transformation of a hTERT immor-
talised, non-dysplastic Barrett cell line using the defined genetic 
manipulations of p53 knockdown and expression of oncogenic 
H-Ras (G12V) has been reported.29 These cells could prove use-
ful to study the role of some of the molecular pathways (discussed 
below) in Barrett carcinogenesis and in the testing of novel thera-
peutic compounds targeting these pathways, particularly if com-
bined with relevant in vitro 3-dimensional organotypic30,31 and 
organoid models32 and in vivo tissue reconstitution33 or xenograft 
models.34

In this review we highlight some of the signaling pathways 
for which there is evidence of a role in the development of EAC. 
Activation or inactivation of signaling pathways can occur at 
multiple levels from the growth factor/ligand that activates a 
pathway, to cell-surface receptors (often containing intracellular 
tyrosine kinase domains) and then to downstream kinases and 
intracellular effectors including transcription factors.

Growth factor and other cytokine-mediated signaling. 
Epidermal growth factor family. Epidermal growth factor (EGF) 
and the related family member transforming growth factor-α 
(TGFα) are two key ligands that have a stimulatory effect on 
epithelial cell proliferation via activation of the epidermal growth 
factor receptor (EGFR). There is evidence that signaling through 
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higher waist-to-hip ratio but not BMI compared with colonos-
copy controls, suggesting that central adiposity might be an 
important factor.83 A longitudinal study of patients with BE also 
found no association with baseline serum IGF-1 and IGFBP-3 
levels and risk of progression to EAC.84

Activation of this pathway may also occur through modula-
tion of the receptor, IGF-1R. Overactivation of IGF-1R has been 
implicated in several cancers in which it is thought to promote 
cell growth, survival, and angiogenesis, possibly via heterodimer-
ization with EGFR. Protein expression of IGF-1R is increased in 
the sequence from BE to dysplasia and EAC, with around 80% of 
EAC showing positive expression.85,86 Increased expression may 
be a result of posttranscriptional regulation since there is no dif-
ference in IGF-1R mRNA expression between EAC and matched 
normal tissue, with the exception of individuals carrying a 
G1013A polymorphism in the igf-1r gene, suggesting that this 
polymorphism may enhance transcription or stabilize the tran-
script.87 This same polymorphism increases the risk of developing 
BE and EAC in obese individuals by 3- and 5-fold respectively.88 
There is thus some evidence for a role of this complex signaling 
axis in EAC although the importance of tissue vs. serum bioavail-
ability remains to be determined.

Other receptor tyrosine kinases. C-Met is the tyrosine kinase 
receptor for hepatocyte growth factor (HGF) and is normally 
expressed by epithelial cells, where it is essential for morphogen-
esis and wound healing in adults. In cancer its abnormal activa-
tion has been associated with tumor growth, angiogenesis, and 
invasion. C-Met is overexpressed in dysplastic BE and EAC,89-91  
although probably only in lesions where c-Met is amplified.92 
Stimulation of OE33 EAC cells with HGF results in reduced 
E-cadherin expression and stimulated β-catenin transcriptional 
activity leading to enhanced anchorage independent growth,89 
suggesting a role for c-Met signaling in the acquisition of an inva-
sive phenotype in EAC.

The Axl receptor tyrosine kinase (RTK) was recently identi-
fied as being significantly upregulated in the progression of BE 
to EAC.93 The Axl receptor has been implicated in mediating 
progression, metastasis and drug resistance in several other tumor 
types. Overexpression of Axl in EAC is inversely associated with 
survival and RNAi knockdown in 2 EAC cell lines reduced in 
vitro invasion, migration, and anchorage-independent growth 
and completely abrogated in vivo engraftment in immunocom-
promised mice.93 This novel finding is intriguing given the recent 
development of small molecule inhibitors of Axl that have shown 
promising results in a mouse model of breast cancer.94 Treatment 
of OE33 EAC cells with Axl inhibitors reduced anchorage-inde-
pendent growth, invasion, and migration and blocked phosphor-
ylation of ErbB-2, suggesting potential transactivation by Axl.93

Overall, RTK signaling pathways are likely to play an impor-
tant role in EAC and serve as attractive therapeutic targets due to 
the plethora of available approved and “in development” inhibi-
tors. In particular, EGFR family members, cMET, fibroblast 
growth factor receptor (FGRF) family members, insulin recep-
tor and IGF1R, collectively, were recently shown to be frequently 
hyper-activated in EAC and EAC cell lines,95 although the 
mechanisms underlying RTK activation were not investigated in 

pathways may be important early in the neoplastic progression 
of BE to EAC. A number of studies have reported an increase 
in the expression of VEGF-A across the sequence from non-
dysplastic BE to dysplasia and EAC.59-62 However, correlation 
between VEGF-A expression, angiogenesis (in particular neo-
vascularisation) and clinical outcome are unclear. Mobius et al.59 
showed that EAC with a high level of neovascularisation did not 
have significantly increased VEGF-A expression, although low 
tumor neovascularisation correlates with better survival.63 In 
contrast, two other studies show a positive correlation between 
VEGF-A expression and high overall tumor vascularization,60 
which also correlated with lymph node metastasis in one study.64 
Co-expression of VEGF-C and VEGFR-3 on lymphatic vessels 
in EAC also suggests enhanced lymphangiogenesis and a poten-
tial facilitation of metastatic spread of this disease,65 although 
VEGF-C expression does not correlate with survival.66

There are a number of possible mechanisms for increased 
VEGF-A expression in Barrett carcinogenesis including induc-
tion by human chorionic gonadotropin,67 which is increased in 
EAC,68 by prostaglandins69-73 or by bile acid.74 In addition, poly-
morphisms in the VEGF-A gene, which are linked with increased 
VEGF expression, are associated with an increased risk of EAC, 
particularly in smokers.75

These studies suggest that angiogenic properties are acquired 
early in disease progression, perhaps at the dysplasia stage. 
Inhibition of VEGF-A signaling as a therapeutic option in the 
treatment of this disease warrants further investigation, particu-
larly since current clinical trials using a VEGF inhibitor, beva-
cizumab, are mainly aimed at junctional and gastric AC rather 
than EAC.56

Insulin-like growth factor family. Obesity is associated with an 
increased risk of developing a number of cancers including EAC 
and may also contribute to development of BE.76,77 In Barrett 
carcinogenesis, obesity, particularly central adiposity, is thought 
to contribute through both GERD-related (e.g., mechanical pro-
motion of GERD) and GERD-independent mechanisms.78,79 
In addition, a large proportion of BE patients have metabolic 
syndrome, and approximately a quarter of these have hyperinsu-
linemia.80 There is emerging evidence that GERD-independent 
mechanisms may include insulin-mediated production of insu-
lin-like growth factor 1 (IGF-1) and decreased production of IGF 
binding proteins 1 and 3 (IGFBP-1 and -3).81 As a consequence, 
increased bioavailability of IGF can potentially stimulate prolif-
eration and cell survival by binding to the IGF receptor (IGFR) 
and subsequent activation of intracellular signal transduction 
pathways.

However, interpretation of IGF-1 bioavailability is compli-
cated by differences reported in tissue vs. serum expression of 
the relevant molecules. Expression of IGFBP mRNA is increased 
in BE and EAC tissue compared with normal tissue and is also 
increased in BE tissue of EAC patients compared with BE tissue 
from tumor-free patients.82 In contrast, Greer and colleagues83 
found that serum insulin and IGF-1 levels are associated with an 
increased risk and serum IGFBP-1 and -3 with a decreased risk of 
BE compared with screening colonoscopy controls, but not when 
compared with GERD controls. The BE cases had a significantly 
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cycle arrest and many epithelial tumors are refractory to this 
response. In contrast, TGFβ is implicated in an epithelial to 
mesenchymal transition (EMT) in tumor cells, particularly at 
the invasive edges, where this change in phenotype is thought to 
aid invasion and metastasis. Both of these mechanisms have been 
implicated in the progression of BE to EAC. Expression of TGFβ 
is upregulated in EAC compared with normal esophagus and BE 
and is associated with advanced stage.109,110 In addition, increased 
expression of TGFβ at the invasive margins of EAC correlates 
with markers of EMT.111

TGFβ signaling can be impaired through modulation of the 
downstream transcriptional mediators, particularly SMAD2 
and 4. Loss of heterozygosity (LOH) at chromosome 18q, loca-
tion of SMAD2 and 4 genes, occurs in BE carcinogenesis112 and 
SMAD4 is mutated in approximately 8% of EAC.15 In addition, 
expression of SMAD2 and SMAD4 is decreased in BE and EAC, 
possibly via promoter methylation in the case of SMAD4,113 sug-
gesting that response to anti-proliferative signaling by TGFβ 
is impaired. This was confirmed in ex vivo organ culture of 
normal, BE, and EAC biopsy tissue via measuring p21/WAF1 
and MCM2 (a proliferation marker) expression in response to 
TGFβ.113 Interestingly, expression of Ski and SnoN, negative 
regulators of SMAD transcriptional function, is also increased in 
BE, but is then decreased or lost in dysplasia and EAC,114 suggest-
ing a further level of regulation of this pathway in the progression 
from BE to EAC.

Ligand/death-receptor mediated apoptotic pathways. Apoptosis 
induced through the tumor necrosis factor receptor (TNFR) 
superfamily by ligands such as FasL/CD95L and TNF-related 
apoptosis inducing ligand (TRAIL) is important in the regula-
tion of the immune system. Signaling via these pathways is also 
often downregulated in cancer. In addition, some cancers upreg-
ulate expression of ligands, which is thought to have an effect 
against immune surveillance. The evidence that modulation of 
pro-apoptotic ligand/receptor signaling complexes plays a role in 
Barrett carcinogenesis is unclear. In fact, both increased prolif-
eration index and apoptosis rate are linked with progression to 
EAC, suggesting that suppression of apoptosis may be less critical 
in Barrett carcinogenesis compared with other cancers.115

FasL expression may be increased in BE and further increased 
in dysplasia and EAC116,117 and correlates with depletion of CD45+ 

tumor infiltrating lymphocytes,118 suggesting that BE progression 
is associated with FasL-mediated avoidance of immune surveil-
lance. In contrast, FasL is not expressed on the cell surface or 
secreted into the medium by EAC cell lines,119 which is incon-
sistent with a role in establishing immune privilege. In contrast 
to FasL, TRAIL is expressed in BE but is rarely and weakly 
expressed in dysplasia and EAC.120

Similarly, the evidence for receptor modulation is unclear. 
Fas expression may be either increased117,121 or decreased122 in 
dysplasia and EAC. In vitro data show that bile salts preferen-
tially upregulate Fas expression in the normal squamous derived 
Het1A cell line but not in BE-derived BAR-T or EAC-derived 
FLO-1 cell lines, which may suggest that bile reflux could play a 
role in the selection of cells that have developed apoptosis resis-
tance via dysregulation of Fas-mediated immune surveillance.123 

this study. In vitro studies indicated that using an individualized 
approach to target activated RTKs could be an effective tactic in 
the treatment of EAC, although many cell lines showed complex 
RTK profiles and combinations of inhibitors were required to 
induce cytotoxicity.95

Leptin and adiponectin. In addition to IGF bioavailability, 
cytokines produced by adipocytes (adipokines) such as leptin 
and adiponectin may also contribute to obesity-mediated effects 
in Barrett carcinogenesis. Leptin is found at increased levels in 
the serum of obese people, while adiponectin is decreased. Leptin 
has been shown to have mitogenic effects on some tumor cell 
lines in vitro, including colon cancer.96 In contrast, adiponectin 
is thought to induce apoptosis97 and low plasma levels have been 
associated with an increased risk for a number of cancers includ-
ing gastric98 and colon cancer.99 Therefore, it has been hypoth-
esized that altered adiponectin and leptin levels may contribute 
to the association between obesity and some cancers, including 
EAC.

While a role for leptin in the progression to EAC is undefined, 
there is evidence to suggest it may contribute to development of 
BE. Gastric leptin levels are increased in BE and are associated 
with increased risk of BE.100 In contrast, the association between 
serum leptin and BE is unclear with studies showing either an 
association with BE in men but not women that is independent 
of both GERD and obesity,101 or an association in women but 
not men.102 Similarly, there are conflicting reports on the associa-
tion between serum adiponectin levels and BE, which may also 
be gender dependent.101-103 Serum adiponectin levels are lower 
in patients with EAC compared with controls,104 which may 
contribute to increased tumor cell survival. As with IGF-1 and 
IGFBPs, expression of leptin and adiponectin in BE and EAC 
patients deserves further investigation.

There are limited data on alterations in the receptors for leptin 
and adiponection in the development of EAC. Receptors for 
leptin are highly expressed in normal and inflamed esophagus 
and BE,100 but expression in EAC has not been reported. In keep-
ing with adiponectin playing a protective role in carcinogenesis, 
expression of adiponectin receptors is decreased in BE at mRNA 
level.105

While the studies described above may not provide a compel-
ling case for the involvement of adipokines in Barrett carcino-
genesis, there is additional support from in vitro studies. Leptin 
induces proliferation and inhibits apoptosis via activation of 
COX-2, leading to prostaglandin E2-mediated transactivation of 
EGFR and JNK activation in OE33 EAC cells.106,107 Increased 
proliferation may also be partly due to leptin-induced HB-EGF 
and TGFα expression and secretion leading to subsequent EGFR 
transactivation.106 In contrast, adiponectin attenuates leptin 
induced proliferation in EAC cell lines, at least partly by inhibit-
ing AKT activation,108 and may induce apoptosis via modulating 
expression of pro- and anti-apoptotic Bcl-2 family members.105

Transforming growth factor β. Transforming growth factor β 
(TGF β) is central to epithelial homeostasis by regulating both 
proliferation and differentiation. Dysregulated response to TGFβ 
has been associated with a range of epithelial cancers. In normal 
cells, one of the functions of TGFβ is to induce a reversible cell 
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sufficient,29 highlighting the need for multiple steps in the devel-
opment of EAC.

PIK3CA, the gene that encodes for the p110α catalytic sub-
unit of PI3K is mutated in approximately 6% of EAC but no 
activating mutations have been reported in BE.136 PIK3CA is also 
amplified in a small proportion of EAC,137 suggesting that acqui-
sition of PIK3CA lesions may be involved in the progression to 
EAC in a small subset of patients. Phospho-Akt, an indicator of 
active Akt signaling, is increased along the progression from nor-
mal esophagus to BE, dysplasia, and EAC and is associated with 
tumor progression.138,139 However, this is likely due to increased 
upstream signaling since activating mutations in Akt have not 
been reported in this disease.

Perhaps not surprisingly, Ras/ERK/MAPK and PI3K/Akt 
activation also appear to be central to signaling pathways acti-
vated by a number of factors relevant to BE, including acid, bile, 
leptin, and gastrin, resulting in enhanced proliferation, inhibi-
tion of apoptosis, and upregulation of MUC1, 4 and 5AC and 
COX-2.106,138,140-146 Thus, there is a putative role for these central 
molecules in mediating signaling by multiple effectors relevant to 
Barrett carcinogenesis.

COX-2. Cycloxygenase-2 (COX-2) is a key enzyme in the 
arachidonic acid pathway that acts to produce prostaglandin 
as part of the inflammatory response. Chronic inflammation is 
believed to potentiate neoplastic development at least partially 
due to mediators such as prostaglandins. It is in this context 
that COX-2 is thought to contribute to Barrett carcinogenesis. 
Increased COX-2 expression is detected in the progression from 
BE to EAC,69,72,147,148 and is associated with proliferation and 
reduced survival.149 However, COX-2 expression appears to be 
independent of the degree of inflammation, although it is highest 
in the distal part compared with proximal BE,150 which is also the 
most frequent location of EAC.

COX-2 expression may also be increased as a direct effect of 
reflux components. Acid and bile are well established to induce 
COX-2 expression and prostaglandin production in vitro in EAC 
cell lines, in ex vivo organ cultures of BE tissue and in animal 
models, via a mechanism that involves reactive oxygen species-
mediated PI3K/AKT and ERK/MAPK activation.72,142,146,151,152 
COX-2 may also be upregulated by p53 via a NFκB-dependent 
mechanism.153

There is controversy surrounding the presence of two poly-
morphisms in the promoter of the COX-2 gene, which have been 
linked with increased expression and activity of COX-2 as well as 
the risk of developing EAC. Two separate studies each found dif-
ferent haplotypes of the same polymorphisms as being more com-
mon in EAC than controls.154,155 An intragenic polymorphism has 
also been associated with an increased risk of EAC.156

There are functional data indicating a causative role for COX-2 
mediated inflammation in Barrett carcinogenesis. Selective 
COX-2 inhibition in primary cultures of BE cells and ex vivo 
organ cultures of BE reduces COX-2 activity, prostaglandin pro-
duction and proliferation and in primary cultures this could be 
reversed by addition of prostaglandin E2.157,158 Similar effects are 
seen in EAC cell lines,159-161 suggesting a dependence of EAC on 
COX-2-mediated prostaglandin production. A xenograft model 

In contrast the TRAIL receptor, DR5, is upregulated in up to 
90% of EAC compared with matched normal tissue,124 which 
would be expected to sensitize tumors to TRAIL-induced apop-
tosis. Thus, there is little evidence that regulation of apoptosis at 
the level of ligands or TNFR family members is a major mecha-
nism driving Barrett carcinogenesis.

Apoptosis signaling downstream of both extrinsic (e.g., death 
receptor ligands) and intrinsic (e.g., mitochondrial centric) stim-
uli is regulated by a number of proteins including caspases and 
the pro- and anti-apoptotic members of the Bcl-2 family of pro-
teins. Polymorphisms in the genes for caspase-7 and caspase-9 
are significantly associated with an increased risk of EAC,125 and 
polymorphisms in caspase-7 and Bcl-2 modify the risk of EAC in 
smokers.126 Data regarding expression of Bcl-2 family members 
is controversial, with studies suggesting that anti-apoptotic Bcl-2 
is either not expressed in BE, dysplasia or EAC,127 or that it is 
increased in BE and LGD but decreases in HGD and EAC.128-130 
This suggests that increased Bcl-2 may have a role early in the 
development of BE but not in progression to EAC. Indeed, loss of 
Bcl-2 in dysplastic BE and EAC has been associated with tumor 
progression and poor survival.131 In contrast, increased anti-apop-
totic Bcl-XL and decreased pro-apoptotic Bax expression have 
been described in the progression of BE to EAC, possibly indica-
tive of a switch to a more anti-apoptotic state.85,132 Together, these 
data suggest that the balance of pro- and anti-apoptotic signaling 
may impact on the effect of environmental factors in the develop-
ment of EAC. For example, a more anti-apoptotic intracellular 
environment may result in the survival of potential neoplastic 
cells in the DNA damaging and potential mutagenic environ-
ments provided by GERD and smoking.

Kinases, transcription factors, and other effectors. RAS/
RAF/MAPK and PI3-kinase/AKT pathways. RAS/RAF/MAPK 
and PI3-kinase (PI3K)/AKT are central downstream mediators 
of a number of signaling pathways, particularly tyrosine kinase 
receptors. Together, they control a myriad of cellular processes 
including cell growth, proliferation, differentiation and motility, 
all of which are involved in tumorigenesis. In particular, MAPK 
pathway components were found to be upregulated in around 
40% of EAC,95 suggesting that using MEK inhibitors to target 
MAPK activation could be an effective treatment, possibly in 
combination with RTK inhibitors. Aside from the modulation of 
ligand/RTK activation as described above, there is evidence that 
alterations to these downstream mediators may also contribute to 
the progression of BE to EAC.

Expression of mutant oncogenic ras (K-ras or H-ras) is rarely 
found in non-dysplastic BE but is detected in up to 40% of dys-
plasia and EAC samples,57,133-135 suggesting that acquisition of 
this mutation is important in progression. Mutation of BRAF, 
downstream of Ras, is also found at low frequency (5–10%) in 
dysplasia and EAC, although never in combination with Ras 
mutation,135 and thus represents an alternative mechanism for 
activating downstream signaling. Introduction of H-ras together 
with RNAi knockdown of p53 in p16-deficient non-dysplastic 
BAR-T Barrett cells leads to tumorigenic transformation,29 
demonstrating a mechanistic role for Ras activation in BE car-
cinogenesis. However, H-Ras or p53 knockdown alone were not 
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Rb protein expression is common in EAC121,184-186 and is thought 
to represent a target for inactivation in the latter stages of EAC 
development.187 In contrast, inactivation of p16, which indirectly 
negatively regulates the function of Rb, occurs frequently in non-
dysplastic BE188-190 or at the non-dysplasia to LGD interface,191 
and seems to represent one of the key early molecular events driv-
ing BE carcinogenesis. p27 expression is downregulated in the 
majority of EAC.192 In a mouse surgically induced reflux model, 
development of both BE and EAC are increased in p27 knockout 
mice compared with wild-type,193 demonstrating that loss of p27 
can enhance Barrett carcinogenesis, possibly at an early stage. In 
contrast, p21 is increased in dysplastic BE and EAC but not non-
dysplastic BE.194

p53. P53 is a well-known tumor suppressor that is frequently 
inactivated in most cancers. The function of p53 is central to 
controlling both cell cycle progression and initiation of apopto-
sis in response to extrinsic and intrinsic signals. p53 LOH and 
p53 gene mutations, occur in the majority of EAC cases195-198 and 
these lesions are associated with poor outcome.199-202 Mutations 
often result in stabilized p53 protein and increased staining for 
p53 has been detected in non-dysplastic BE and more frequently 
in dysplasia and EAC.196,203-206 However, mutations do not appear 
to account for the majority of p53 protein accumulation in BE 
carcinogenesis.207,208 Increased p53 expression is correlated with 
increased proliferation in the progression of BE to EAC in 
some studies,209,210 and may be a valuable biomarker predicting 
increased risk of disease progression in patients with BE.211

Wnt, Notch, and Shh. The Wnt, Notch, and sonic hedgehog 
(Shh) signaling pathways are important for regulating cellular 
differentiation and proliferation during embryogenesis and nor-
mal tissue homeostasis in adults. These signaling pathways have 
also been implicated in tumorigenesis including development of 
BE and EAC.

Central to the Wnt pathway is stabilization of β-catenin and 
nuclear relocalization to form the β-catenin/TCF transcription 
complex. Nuclear accumulation of β-catenin has been commonly 
described in Barrett carcinogenesis and is independent of acti-
vating mutations in exon 3.212-214 Nuclear accumulation may be 
a consequence of APC LOH, which is a frequent late event in 
EAC,215,216 via APC promoter methylation217-219 or via upregulation 
of Wnt ligands and epigenetic silencing of Wnt inhibitory factor 
(WIF1).220,221 Significantly, increased Wnt signaling in organo-
typic cultures of squamous esophageal cells promoted expression 
of intestinal-type proteins that are also expressed in BE.30

β-catenin can also be found in complex with cadherins, such 
as E-cadherin and downregulation of E-cadherin can lead to 
increased signaling through β-catenin. Reduced membranous 
E-cadherin is common in BE and EAC,222,223 possibly due to 
promoter methylation.224 Stimulation of OE33 EAC cells with 
HGF induces nuclear β-catenin, possibly as a consequence 
of E-cadherin downregulation.89 Similar findings have been 
described following stimulation with TNFα, which is upreg-
ulated in the progression from BE to EAC and also results in 
β-catenin mediated c-myc transcription.225 Loss of E-cadherin 
in EAC may also be a consequence of overexpression of the tran-
scriptional repressor, Slug.226

study suggests that targeting COX-2 may also be a viable thera-
peutic option in the treatment of established EAC.162

Use of aspirin and NSAIDs is associated with reduced esoph-
ageal cancer risk in population-based studies. Taken together, 
these data highlight the possibility of COX-2 inhibition as a 
chemopreventive strategy. Unfortunately, a small (100 patients) 
celecoxib COX-2 inhibition trial failed to show a benefit in pre-
venting progression of dysplasia to EAC163 and the large AspECT 
chemoprevention trial also seems to have found no clear benefit 
from daily aspirin to prevent esophageal cancer.164

NFkB. NFκB controls the transcription of a large number 
of genes in response to a range of stimuli including intracellular 
stresses and cytokine mediated activation of receptor signaling 
pathways. NFκB is intimately linked with regulation of the host 
inflammatory and immune response by regulating the expres-
sion of a number of key cytokines including TNFα, IL-1β, IL-6 
and IL-8, which themselves can activate NFκB. Overactivation 
of NFκB has been linked to neoplasia, including EAC, through 
promoting cell survival, particularly in the context of chronic 
inflammation.

NFκB is located on chromosome 4, which is frequently ampli-
fied in Barrett carcinogenesis,165 and is frequently expressed in 
the progression from BE to EAC.166,167 NFκB is activated by acid 
and bile in EAC cell lines, possibly via production of reactive 
oxygen species,166,168,169 and thereby provides evidence for over-
activation of NFκB in the progression to EAC as a consequence 
of GERD. This is supported by recent data showing that bile 
induced activation of NFκB in non-dysplastic BE cells leads 
to apoptosis resistance in the face of concomitant bile-induced 
DNA damage.170,171 Upregulation of COX-2 by acid and bile is 
also thought to be mediated by NFκB,153,172,173 which may further 
enhance esophageal tumorigenesis via upregulation of additional 
inflammatory mediators.

Cell cycle regulators. Control of progression through the cell 
cycle is pivotal to regulating cellular proliferation. Much of that 
control is exerted through the action of cyclins and cyclin depen-
dent kinases (CDKs) that act at different stages of the cycle. 
Dysregulation of cell cycle mediators appears to be central to devel-
opment of EAC. Cyclin D is expressed in response to extracellu-
lar signals that promote cell proliferation, such as growth factors 
and forms a complex with CDK4 to phosphorylate and inactivate 
Rb. Nuclear cyclin D1 expression is increased in BE and is even 
more frequent in dysplasia and EAC.174-176 This may be at least 
partly due to the G870A polymorphism in the gene, which results 
in protein stabilization and a longer half-life. However, there are 
conflicting results regarding the presence of this polymorphism in 
EAC. Studies have demonstrated an association between this poly-
morphism and the risk of reflux disease, BE, and EAC,177 as well 
as earlier age of onset of EAC, poorer survival and distant metas-
tasis.178,179 However, these associations have not been observed in 
other studies.180,181 Cyclin E expression is also increased in a pro-
portion of dysplastic BE and EAC and correlates with amplifica-
tion of 19q12, the location of the gene for cyclin E.182,183

Rb, p27 and p21/WAF1 are tumor suppressor genes that block 
progression through the cell cycle by inhibiting cyclin-CDK com-
plexes. Loss of heterozygosity (LOH) of the Rb locus and loss of 
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Barrett carcinogenesis. Interestingly, c-myc, cooperating with 
caudal-type homeobox 1 (cdx1), has been implicated in the 
development of metaplasia,249 suggesting it may also act early in 
Barrett carcinogenesis.

Summary

The signaling pathways reviewed above are shown schemati-
cally in Figure 1, with the RTK pathways in Figure 1A and 
non-RTK pathways in Figure 1B. Much of the data for these 
pathways is descriptive, there has been a deficit of suitable cell 
lines and animal models and human studies have tended to 
compare separate cohorts of individuals rather than the same 
cohorts followed longitudinally. Partly for these reasons, the 
critical driver aberrations involved in BE/EAC pathogenesis 
have not been confirmed. However, activation of Notch and 
Hedgehog pathways, through mechanisms that include aber-
rant TGFβ signaling, cdx2 activation by the bile components of 
the refluxate and interactions with the TNFα/mTOR pathway, 
seem increasingly important. Obesity, especially central obesity 
due to visceral adipose tissue, is a highly important risk factor 
for EAC250 and BE.251 With one of the strongest associations 
with obesity of all human cancers, EAC provides a valuable 
opportunity to investigate the causal relationship of adiposity 
with cancer. Many of the pathways reviewed here are also acti-
vated in obesity but the results for obesity-related areas such 
as the IGF family and adipokines have so far been mixed or 
conflicting.

In conclusion, this review demonstrates that considerable 
recent progress has been made to unravel the pathways involved 
in EAC pathogenesis. As for other cancers, EAC research is enter-
ing an exciting era of discovery searching for associations between 
variations in massive scale data and disease, as exemplified by sev-
eral completed15 and ongoing next generation sequencing (NGS) 
studies and the BE genome-wide association study (GWAS).252 
Ultimately, the functional importance of these variations will 
need to be assessed. It has been shown that computational algo-
rithms and metaanalysis can identify perturbed signaling path-
ways in disease, but laboratory-based pathway studies such as 
those reviewed here remain essential.
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In the intestine, the Notch pathway controls intestinal cell fate 
determination through promoting expression of the Hes1 tran-
scription factor. Hes1 negatively regulates expression of Hath1/
Atoh1, which in the absence of Hes1 promotes differentiation of 
intestinal progenitor cells into secretory cell lineages, including 
goblet cells.227,228 Notch signaling appears to play a similar role 
in the development of BE. Intestinal-type BE with goblet cells 
show lower expression of Hes1 and upregulation of Hath1/Atoh1 
and MUC2 compared with the non-goblet cell, proliferative BE 
crypts.229,230 Interestingly, the bile acid DCA suppresses Hes1 
in EAC cell lines, possibly via upregulation of Cdx2, leading to 
increased Hath1/Atoh1 expression and expression of Muc2.230,231 
In contrast, progression of BE to EAC is associated with acti-
vation of Notch signaling and expression of Hath1 in patient 
tissue,232 cell lines229,231 and a mouse model of BE/EAC.27 This 
activation of Notch signaling, with increased SOX9 expression, 
is associated with dysfunctional TGFβ signaling through loss of 
TGFβ adaptor β2SP.233

Shh signaling is important in the embryonic development of 
the gastrointestinal epithelium, including the esophageal epithe-
lium and in intestinal epithelial homeostasis, but is not active 
in the normal adult esophagus.234,235 Abnormal activation of 
Shh signaling by acid and bile reflux has been implicated in the 
pathogenesis of BE,236,237 possibly through activation of the bone 
morphogenic protein-4 (BMP-4) signaling pathway238,239 and the 
downstream transcription factor SOX9.240 Hedgehog signaling 
and upregulation of the downstream GLI1 transcription fac-
tor may also contribute to EAC tumorigenesis,241,242 including 
through interaction with the mammalian target of rapamycin 
(mTOR) pathway,243 which is itself activated by chronic inflam-
mation in the esophagus.244 Therefore, targeting this pathway 
could be an effective approach to treat BE and/or EAC, especially 
in combination with mTOR inhibitors.243

C-myc. The c-myc transcription factor is a proto-oncogene 
important for regulating the expression of several genes with 
roles in cell proliferation and thus over-activation of c-myc has 
been implicated in tumorigenesis, including development of 
EAC. Upregulated c-myc expression increases in the progression 
of BE to EAC,245,246 possibly as a result of c-myc gene amplifica-
tion, although this is not found in non-dysplastic BE.45,187,247,248 
Acidified bile, but not bile or acid alone, can induce c-myc expres-
sion in OE33 EAC cells,168,246 demonstrating that non-genetic 
mechanisms may also activate c-myc-mediated transcription in 
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