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Abstract

Background: Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many
chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar
disorder, multiple sclerosis, Parkinson’s disease, schizophrenia, depression, autism, and chronic fatigue syndrome.

Discussion: While the majority of patients with multiple sclerosis appear to have widespread mitochondrial
dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson’s disease, autism,
depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the
fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However,
investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study
cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen
species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with
elevated levels of pro-inflammatory cytokines.

Summary: This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species
together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of
mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these
disorders.

Keywords: Autism, Bipolar disorder, Schizophrenia, Chronic fatigue syndrome, Cytokines, Depression, Immune
dysfunction, Inflammatory, Mitochondrial dysfunction, Multiple sclerosis, Nitric oxide, Oxidative stress, Parkinson’s
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Background
Syndromic or non-syndromic mitochondrial diseases,
classified as cytopathies or encephalomyopathies, arise as
a result of mutations in mitochondrial or nuclear DNA
[1]. However, mitochondrial dysfunction and impaired
bioenergetics are implicated in the pathogenesis of many
chronic illnesses, mainly neuroimmune or autoimmune in
nature, despite these not being currently categorized as
primary mitochondrial diseases [1-5]. Mitochondrial dys-
function with concomitant oxidative stress is evidenced
in the brains and periphery of many patients with the
diagnoses of multiple sclerosis (MS) [6], chronic fatigue
syndrome (CFS) [6], Parkinson’s disease (PD) [7], and
autism [8].
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Mitochondrial dysfunction in such individuals may
well result from the presence of oxidative stress, as there
is now ample evidence implicating oxidative stress as
one of the major contributing factors in the develop-
ment of mitochondrial dysfunction and compromised
bioenergetic performance [9-13]. In fact, the causative role
of chronic oxidative stress in the development of mito-
chondrial damage and localized or systemic bioenergetic
failure has now been established beyond reasonable doubt
[4,14-16]. Chronic oxidative stress develops in a cellular
environment whenever production of reactive nitrogen
species (RNS) and reactive oxygen species (ROS) exceeds
the clearance ability of the cell’s antioxidant defenses
such as the glutathione (GSH) and thioredoxin systems
[17-19]. ROS and RNS are natural products of oxidative
phosphorylation [18,20]. These reactive species can also
be generated by activated inflammatory cells, including
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macrophages and microglia [21-24]. Oxidative stress and
chronic inflammation are inextricably interconnected.
Oxidative stress activates a number of transcription fac-

tors, such as NF-kappaB and activated protein 1, leading
to the production of pro-inflammatory cytokines (PICs),
various chemokine species, and activation and prolifera-
tion of lymphocytes. The activation of other immune cells
in turn leads to the production of more ROS and RNS,
principally in the form of superoxide, nitric oxide (NO),
and peroxynitrite [24-27]. The tissue damage characteris-
tic of chronic inflammation is mediated directly by macro-
phages, neutrophils, and eosinophils via the production of
PICs [28]. This intricate bidirectional self-amplifying and
self-sustaining relationship between the development of
chronic oxidative stress and chronic systemic inflamma-
tion is sometimes described as an ‘autotoxic loop’ [25,29].
ROS and RNS can also contribute to the development

of chronic oxidative stress and inflammation via the oxi-
dative and nitrosative modification of proteins, lipids, and
DNA, resulting in modification of DNA bases and tertiary
protein structure, lipid peroxidation of cell membranes,
and the production of highly reactive aldehydes and ke-
tones. The net result of these processes is the indirect and
direct formation of damage-associated molecular patterns
capable of activating pathogen sensing receptors on the
surface and in the cytoplasm of immune cells [15,29-32].
The origin of oxidative stress in the brains of people

suffering from a range of neuroimmune diseases, such
as MS and PD, is still a matter of debate. There is now
however strong evidence supporting the hypothesis that
the oxidative stress in the brains of such patients stems
from the transduction of inflammatory signals to the
brain following the establishment of chronic inflamma-
tion and oxidative stress in the periphery. There is ample
evidence demonstrating that systemic inflammation can
lead to the development of chronic neuroinflammation
[33-35]. Communication of inflammatory signals to the
brain is mediated by PICs via a number of routes, in-
cluding innervation of the vagus nerve, carrier-enabled
transport across the blood brain barrier (BBB), activation
of endothelial cells within the BBB and perivascular
macrophages, and finally via transport through circum-
ventricular organs devoid of a functional BBB [36,37].
The transduced inflammatory signals may lead to the
development of chronic neuroinflammation via the acti-
vation of microglia if of sufficient intensity and/or dur-
ation or lead to the development of ‘primed’ microglia
[34,36,38]. Microglial priming involves the up-regulation
of a range of surface receptors such as MHC class II,
CD11b, and CD11c integrins, co-stimulatory molecule
CD86, and Toll-like receptor TLR4 [38].
Following the up-regulation of these receptors, such

microglia become exquisitely sensitive to subsequent in-
flammatory stimuli, leading to an exaggerated production
of neurotoxic molecules that may exacerbate the pre-
existing pathology and may even accelerate the progres-
sion of existing neuroinflammatory or neurodegenerative
diseases [39-41]. Activated microglia exert their neuro-
toxic effects by releasing PICs, such as tumor necrosis fac-
tor (TNF), interleukin (IL)-1, IL-6, and interferon (IFN),
and free radicals including superoxide NO and peroxyni-
trite as well as inflammatory molecules such as prosta-
glandin E2. Moreover, TNF, IL-1, and IFN can act as
secondary sources of RNS and other inflammatory mole-
cules acting as potent inducers of inducible NO synthase
(iNOS) and via their capacity to upregulate Cox-2 with the
resultant production of prostaglandin E2 [36,38,42]. While
the relationship between the establishment of chronic sys-
temic inflammation and the development of chronic neu-
roinflammation is highlighted by numerous authors,
the increase in levels of systemic inflammation follow-
ing the development of neuroinflammation is perhaps
under-appreciated. This may occur via a number of dif-
ferent mechanisms, including cytokine leakage from the
central nervous system (CNS) into the circulation, in-
creased cytokine synthesis in the periphery, primarily in
the liver, and the escape of antigenic molecules likely
activating Toll-like receptors on peripheral immune
cells flowing ingestion by antigen presentation cells
[38,39,43-45]. While these mechanisms could account
for the presence of activated cell-mediated immunity in
patients with MS, CFS, PD, bipolar disorer, depression,
schizophrenia and autism as discussed below, they
would not appear to explain the changes in lymphocyte
populations and T cell differentiation patterns seen in
illnesses like MS and PD. Whatever the cause, chronic
inflammation in the body and/or the brain is character-
ized by the presence of elevated ROS and RNS together
with increased levels of PICs.
The aim of this paper is to outline how excessive levels

of PICs, notably TNF-α, ROS, and RNS, can lead to mito-
chondrial dysfunction and compromised bioenergetics in
PD, MS, CFS, depression, bipolar disorder, schizophrenia
and autism, by inhibiting the electron transport chain
(ETC), the tricarboxylic acid cycle, and fatty acid oxida-
tion, adversely affecting the activity and structure of struc-
tural and regulatory proteins and the integrity of essential
functional lipid membranes. In short, this paper aims to
demonstrate that chronically elevated levels of these pro-
inflammatory entities are common denominators in pav-
ing the many roads to mitochondrial dysfunction.

Discussion
Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in MS
Evidence of immune dysfunction in MS
Chronic activation of the humoral and innate arms of
the immune system in both the periphery and the CNS
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is a characteristic finding in MS patients. Commonly re-
ported abnormalities include elevated levels of activated
T helper (Th)2, Th17, and Th1 T cells, abnormal func-
tion of regulatory T cells, and activated naive B cells with
impaired tolerance together with changes in the overall
B cell subpopulation distribution pattern [6,29,46]. The
relation between an activated peripheral immune system
and the development of neuro-inflammation is thrown
into stark relief in relapsing remitting MS by the proven
efficacy of treatment with the monoclonal antibodies ri-
tuximab [47] and natalizumab [48], which target periph-
eral immune cells and ameliorate disease activity in the
CNS [49]. Increased TNF-α levels in the periphery often
precede active disease, and levels of this cytokine predict
disability levels as measured by the expanded disability
status scale (EDSS) [50-52]. Significant increases in plasma
levels of IL-2, IL-1β, IL-4, and IL-13 have also been re-
ported [53]. Given the strong positive relationship between
TNF-α levels and degree of physical disability, it is of the-
oretical relevance that the levels of TNF-α and other PICs
correlate significantly with the severity of fatigue which af-
fects the vast majority of people with this illness [6,54-56].
The existence of a chronically activated peripheral im-
mune system goes some way to explain the development
and/or the maintenance of chronic systemic inflammation
seen in sufferers of this disease, which we will now turn to
illustrate. However, before doing so, this would seem to
be an opportune juncture to emphasize the accumulat-
ing and persuasive evidence that a diagnosis of MS rep-
resents a spectrum of illnesses where different disease
processes converge to produce a similar pathology [57,58].
For a fuller consideration of the evidence that has led
many workers to this conclusion, the reader is referred to
the work of Ortiz et al. [29].

Evidence of chronic oxidative stress in MS
There is now ample evidence highlighting the pivotal role
of oxidative stress in the pathogenesis of MS [59-61]. Sev-
eral authors have reported the existence of oxidative dam-
age in the brain cerebrospinal fluid (CSF) and blood of MS
sufferers [29,62]. Elevated levels of protein carbonyls have
been detected in post-mortem brains of patients suffering
from this disease [63]. Significantly elevated levels of other
surrogate markers of oxidative stress have also been de-
tected in the CSF and plasma of MS patients [60,63,64].
Studies investigating markers of oxidative and nitrosative
stress in CSF have demonstrated increased levels of ethane
and pentane, which are acknowledged markers of lipid per-
oxidation [65], malondialdehyde [66], hydroxynonenal [29],
and isoprostanes [67]. Nitrotyrosine, a surrogate marker for
peroxynitrite formation, is often found in active demyeli-
nated lesions [68]. Unsurprisingly, iNOS levels are also ele-
vated in lesions [69] and in CSF of patients with this illness
[66]. High levels of NO, peroxynitrite, and superoxide have
also been observed in spinal fluid extracted from patients
with MS [66]. Interestingly, CSF levels of NO metabolites
correlate positively with relapses [70]. Furthermore, Tasset
et al. [9,71] have reported significant peripheral levels of
oxidative stress in patients with relapsing remitting MS.
Further evidence of the causative role of oxidative stress in
the pathophysiology of MS is provided by a recent longitu-
dinal study demonstrating that levels of oxidative stress in-
creased dramatically during relapses but its presence was
barely detectable in patients during remission [72]. It is also
worthy to note that research teams have discovered that
levels of oxidative stress in the blood and CSF correlate sig-
nificantly and positively with levels of disability as measured
by the EDSS [11,73]. The latter study also reported that
levels of oxidative stress correlated significantly and posi-
tively with the extent of gadolinium-enhanced lesions [73].

Evidence of mitochondrial dysfunction in MS
Although the weight of evidence demonstrates that, while
the development of pathology in the early stages of MS is
largely driven by inflammation [74], mitochondrial dys-
function appears to have a crucial role in the progression
of this disease [75,76]. Mitochondrial abnormalities in MS
include altered structure and distribution coupled with a
wide array of molecular and biochemical abnormalities
[18,75,77-79]. Oxidative damage to mitochondrial DNA
and impaired Complex I activity is a characteristic finding
in active MS lesions [80]. Complex I and Complex III ac-
tivity is also reduced in normal tissue within the motor
cortex [81]. Complex IV activity is also decreased in lesions
as well as in normal-appearing white and grey matter
[82,83]. Studies utilizing NMR spectroscopy have demon-
strated evidence of globally impaired bioenergetics and in-
creased production of lactate in the CSF [84,85]. Lazzarino
et al. [86] provided tantalizing evidence in a longitudinal
investigation suggesting a global impairment of adenosine
triphosphate (ATP) synthesis in MS when they reported
that progressive central ATP depletion over a 3-year period
correlated significantly and positively with increased phys-
ical disability as measured by changes in EDSS.

Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in autism
Immune abnormalities in autism
A diagnosis of autism similarly in all probability represents
a group of illnesses with heterogeneous etiology [87,88].
Epigenetics, rather than genetics, seemingly plays a domin-
ant role in driving the development and persistence of these
illnesses [89-91]. Several studies have investigated the pres-
ence of immune abnormalities in children afforded a diag-
nosis of autism herein described as children with autism
(CWA) and in the parents of such children. Overall, the
results demonstrate that CWA and their immediate
family members, especially mothers, display markers of
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autoimmunity, abnormal cellular immunity, and aberrant
expression of cytokines and other soluble mediators [92-95].
Abnormal expression of PICs and anti-inflammatory cyto-
kines and their signaling effector molecules is commonly de-
tected in CWA. These findings have been noted in the brain
[96-99], gastrointestinal tract [100,101], and peripheral blood
[102,103]. CWA commonly have increased plasma IL-
1Β and abnormal cellular IL-1Β responses following mitotic
stimulation of peripheral mononuclear blood leucocytes
[103,104]. Abnormal levels of IL-6 in peripheral blood
[103,105] and the brain [92,96,106] is another common
finding. The observations relating to elevated levels of
PICs extend to TNF-α [107,108] and INF-γ, which are
once again elevated in the brain [92] and the peripheral
circulation, interestingly, correlated with the levels of
other inflammatory mediators such as NO [109,110].
The vast range of immune abnormalities displayed by
many CWA is beyond the scope of this paper. An inter-
ested reader is referred to previous work for a more in
depth treatment of the issue [94,103]. What remains
unclear is if this evidence of immune dysregulation re-
flects a narrow sense of immunity in terms of cellular
defense against exogenous pathogens or reflects dysregu-
lation of signaling moieties with a wider range of intracel-
lular signaling roles.

Evidence of oxidative stress in autism
The presence of chronic oxidative stress is commonly
reported in CWA [111-114]. Interestingly, this abnor-
mal state is sometimes reported in parents [115]. Sev-
eral authors have also reported genetic abnormalities in
GSH pathways in CWA [116-119], and some of these
abnormalities correlate positively with the severity of
symptoms [2,120]. Several researchers have detected lower
concentrations of reduced GSH increased concentrations
of oxidized GSH and a decreased GSH/glutathione disulfide
ratio [117,121,122]. The mitochondrial reduced GSH re-
serve appears decreased in at least some children afforded
this diagnosis compared to healthy controls. Additionally,
in many studies, decreased GSH levels and several other
markers of increased oxidative stress correlate positively
with disease severity [123,124]. Other authors have reported
a positive correlation between the severity of gastrointes-
tinal dysfunction and surrogate markers of oxidative stress
[125]. It is worthy of note that the aforementioned studies
measured markers of oxidative stress in the periphery, but
there is also a robust body of evidence demonstrating the
existence oxidative stress in post-mortem brain samples
from CWA compared to healthy controls [126-132].

Mitochondrial dysfunction and impaired bioenergetics in
autism
Numerous workers have also reported the presence of
mitochondrial dysfunction in CWA [133-139]. In many
instances, biomarkers of mitochondrial dysfunction appear
associated with disease severity [140,141]. It must be
stressed, however, that not all children afforded a diagnosis
of autism display evidence of mitochondrial dysfunction, as
might be expected if this diagnosis actually represents
several different diseases. Systematic reviews place the
percentage of CWA displaying evidence of mitochon-
drial dysfunction as between 30 and 50% [114,142].
Historically, the bulk of published literature examining
bioenergetic impairments have focused on blood and urine
measures. However, an increasing number of researchers in
recent years have reported evidence of impaired mitochon-
drial function in the brains of CWA compared to healthy
controls [126,129,132,143-146]. Studies involving 31P-mag-
netic resonance spectroscopy have reported decreased pro-
duction of ATP elevated levels of lactate, reduced levels of
carnitine [140,147-149], and other measures of mitochon-
drial dysfunction [150,151].

Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in Parkinson’s disease (PD)
Immune abnormalities in PD
There is evidence that a diagnosis of PD also represents a
range of illnesses of heterogeneous etiology [152,153]. A
wide array of peripheral immune abnormalities have been
detected in patients with PD. The reduction in lymphocyte
numbers in general and CD19 B, together with CD3 and
CD4 subsets, is especially commonplace. Of the remaining
subsets, an increased frequency of T cells secreting Th1 cy-
tokines and a reduced frequency of Th2 cytokine-secreting
T lymphocytes is also a common finding. For details of
these immune abnormalities and the evidence supporting
their existence, the reader is referred to an excellent review
by Mosely et al. [45]. The cause of these immune abnor-
malities in the periphery is far from clear. One suggestion
proposes that various elements of the adaptive and innate
immune system could become activated as a result of the
escape of CNS proteins into the periphery, which could
function as damage-associated molecular patterns [30]. It
is worthy of note that corrupted species of proteins specific
to this disease, including the phosphorylated form of
α-synuclein, are found in peripheral tissues in PD patients
[154]. Other authors have suggested prolonged pathogen
infection or chronic exposure to environmental toxins as
the root cause of immune dysregulation and chronic in-
flammation seen in people with this illness [38]. Further,
albeit indirect, evidence of abnormalities in immune and
inflammatory pathways in patients with PD stems from
the existence of elevated levels of Cox-2 and members of
the NF-kappaB family in the substantia nigra, and ele-
vated levels of IL-15, IL-10, and RANTES in the CNS and
peripheral circulation in people afforded this diagnosis
[155,156]. A number of authors have reported abnormally
elevated serum levels of TNF-α and TNF receptor 1 in
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patients with PD [43,157,158]. Elevated levels of IL-6 have
also been detected in the plasma of PD patients, which
correlate positively with an increased disease risk [159].
Elevated levels of IL-1β has also been detected in the CSF
and the strata of patients with PD, with the latter findings
being post-mortem [160-162]. Abnormally, high levels of
TNF-α and INF-γ are also commonly observed in the
CSF and post-mortem tissue of people suffering from
this illness [161,163]. It is also particularly noteworthy
that peripheral immune responses have the capacity to
trigger exacerbation of PD symptoms, probably on the
basis of neuroinflammation [163-165].

Evidence of oxidative stress in PD
Oxidative stress is considered to be the common under-
lying mechanism driving cellular dysfunction and ultimate
demise in genetic and idiopathic cases of PD. The wealth
of evidence supporting this viewpoint includes increased
levels of oxidized lipids [166], proteins and DNA [167],
and decreased levels of reduced GSH in the substantia
nigra of PD patients [168-171]. Other abnormalities indi-
cative of oxidative stress observed in the substantia nigra
and other regions of the brain include carbonyl modifi-
cations of soluble proteins [172,173], oxidized DNA
[167,174], and increased levels of malondialdehyde and
4-hydroxy-2-nonenal, and reduced levels of polyunsa-
trurated fatty acids [175,176]. Nitration and nitrosylation of
several proteins, including of alpha-synuclein and parkin,
have also been repeatedly documented [177-179]. Many
studies have also reported strong evidence of chronic oxi-
dative stress in PD blood and CSF strongly suggesting that
PD is a generalized disease [167,180-185].

Mitochondrial dysfunction and bioenergetic abnormalities in PD
Early evidence demonstrating a link between mitochon-
drial dysfunction and the pathogenesis of PD involved a
number of reports illustrating Complex I impairment in
the post-mortem substantia nigra pars compacta of pa-
tients [186,187]. This Complex I deficiency is also evident
in the frontal cortex of PD [188], and remarkably in per-
ipheral tissues such as skeletal muscle [189] and platelets
[190], strongly suggesting the presence of global impair-
ment in mitochondrial Complex I activity in this disease.
It is also worthy of note that oxidative damage to Complex
I and subsequent complex miss-assembly is a common
feature of isolated mitochondria in the brains of PD
sufferers [191].
Decreased function of Complex III is also commonly de-

tected in the platelets and lymphocytes of PD patients
[190,192]. A strong link between impairments in the assem-
bly of mitochondrial Complex III and an increase in free
radical damage in the mitochondria isolated from PD pa-
tients has also been reported [193]. It is possible that the in-
crease in free radical damage stems from an increased
production in ROS and RNS. This increase in free radical
release may be due to the increased leakage of electrons
from Complex III (as explained below). Alternatively, the
inhibition of Complex III assembly causes a severe reduc-
tion in the levels of functional Complex I in mitochondria
[194], which could lead to an increase in free radical pro-
duction through Complex I deficiency. The use of magnetic
resonance spectroscopy has revealed evidence of in vivo
widespread mitochondrial dysfunction in virtually every re-
gion of the brain in PD patients, demonstrating that bio-
energetic abnormalities and a shift to anaerobic metabolism
are not confined to the substantia nigra [195-197]. It is
worth stressing, however, that studies investigating mito-
chondrial dysfunction in PD highlight that its pathophysio-
logical heterogeneity as mitochondrial function is normal
in many patients afforded this diagnosis [198].

Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in chronic fatigue syndrome (CFS)
Immune abnormalities in patients with CFS
Metzger et al. [199] reported evidence of abnormal Th17
T cell activity in driving the symptoms of people within
their trial cohort. It is of interest that Th17 cells have a
critical role in mucosal defense, with particular functions
in gut and respiratory defenses. Other studies examining
receptors expressed on the surface of T cells extracted
from people with CFS have also provided evidence of
impaired T cell activation with a possible Th17 differ-
entiation pattern [200,201]. Other studies report the
presence of activated but anergic T cells (Review [6]).
Recent evidence has challenged the view that people
with CFS display immune abnormalities consistent
with a Th2 pattern of T cell differentiation. While some
patients present with a Th2 profile and a preponder-
ance of anti-inflammatory cytokine production, others
present with a Th1 or possibly Th17 profile, with the
synthesis of PICs being dominant [202-204]. Elevated
levels of TNF-α and IL-1β are, in fact, particularly
commonplace observations in patients recruited into
studies using the internationally agreed diagnostic
guidelines [202,205-211]. However, some patients also
present with elevated levels of Foxp3-expressing regu-
latory T cells likely in an attempt to counter the prolif-
eration of activated T cells [212,206]. While there is
ample evidence that many patients afforded a diagnosis
of CFS display profound immunological abnormalities
characteristic of a chronically activated but dysregu-
lated peripheral immune system, it must be stressed
that some patients with such a diagnosis do not (review
[213]). Such disparate often conflicting findings, be-
tween and within cohorts, are typical of studies investi-
gating the existence of diverse neuropathology (review
[1]). These and other lines of evidence strongly argue
that a diagnosis of CFS does not represent a unitary



Morris and Berk BMC Medicine  (2015) 13:68 Page 6 of 24
illness with a single pathogenesis and pathophysiology
but rather represents a spectrum of illnesses where differ-
ent pathophysiological processes converge to produce a
very similar phenotype [214-217]. This is a core issue
across neurobiology, where diagnoses, in the absence of
coherent knowledge of pathophysiology, are made on the
basis of symptomatology. Nowhere in the rest of medicine
does phenomenology parallel pathophysiology, nor should
we expect it to do so in neuropsychiatric disorders. The
situation is thus made more complex as a diagnosis of
CFS is also afforded to people who present with weariness
of uncertain or overtly psychological origin either with or
without additional non-specific and intermittent symp-
toms [218-220]. Furthermore, patients afforded a diagno-
sis of CFS using one of these localized or department-
specific protocols are often recruited into studies using
predetermined scores on varius non-specific fatigue scales
and symptom inventories [218,221]. It must be empha-
sized that there is therefore no evidence of a consistent
pattern immune or neurological abnormalities and, in-
deed, no evidence of mitochondrial dysfunction in pa-
tients afforded a diagnosis of CFS using any of these
alternative approaches [213,222-224].
Evidence of chronic oxidative stress in patients with a
diagnosis of CFS
Elevated oxidative stress is an almost invariant finding
in studies investigating this phenomenon in patients
afforded a diagnosis of CFS, with many studies report-
ing a significant positive correlation between markers of
oxidative stress and symptom severity. Several authors
have reported that oxidative and nitrosative stress mea-
sures demonstrate a significant and positive correlation
with symptom severity [225-232]. Miwa and Fujita [233]
reported that a fall in the oxidative stress levels of patients
corresponded with their transition into remission. Several
authors have reported systemic increases in markers of
nitrosative and oxidative stress including malondialde-
hyde, isoprostane, 8-OH-deoxyguanosine, 2,3-diphospho-
glyceric acid, thiobutyric acid, and protein carbonyls
[225-230,233-235]. iNOS and NO production is signifi-
cantly increased in many patients relative to levels in
normal controls [225,236]. Oxidative imbalance is re-
ported in skeletal muscle, and its severity has been re-
ported to correlate positively with objective measures
of muscle fatigability reported by affected patients [237].
Finally, a recent NMR spectroscopy study reported sig-
nificantly decreased cortical GSH levels in the brains of
patients diagnosed according to the Fukuda guidelines
[232]. As this review has emphasized, oxidative stress
and chronic inflammation, metaphorically like pyrexia,
are ubiquitous findings in diverse and seemingly unre-
lated disorders.
Evidence of mitochondrial dysfunction in patients afforded
a diagnosis of CFS
A number of studies investigating bioenergetic perform-
ance in patients diagnosed with CFSs have reported evi-
dence of mitochondrial dysfunction, including a loss of
mitochondrial membrane integrity and oxidative damage
to translocatory proteins in a class of peripheral mono-
nuclear blood cells [238-240]. These findings support earl-
ier work reporting abnormal mitochondrial morphology
in muscle biopsy tissue and defects in aerobic metabolism
not characteristic of muscle disuse [241-244]. Several au-
thors utilizing 31P NMR spectroscopy to investigate the
bioenergetic performance of striated muscles in CFS suf-
ferers have reported profound defects in oxidative phos-
phorylation, as evidenced by direct or surrogate markers
of ATP re-synthesis and low basal levels of ATP produc-
tion [245-250]. Another line of evidence, once again pro-
duced via the use of NMR spectroscopy, demonstrates the
existence of abnormal lactate responses to exercise in
some patients with CFS [251-253]. Notably, the observed
changes in the heart rate of patients coupled with an
examination of muscle fiber morphology could not be at-
tributed to deconditioning [252,253]. The pathophysio-
logical heterogeneity within the trial cohorts, however, was
striking, with approximately 50% of patients displaying
these abnormalities while the other cohort members dis-
played no metabolic abnormalities in muscle function
[251-253]. This gives further support to the view that a
diagnosis of CFS, even using internationally agreed criteria
as in these studies, does not represent a single illness. This
is even more graphically illustrated in a study by Barnes
et al. [254], where only 20% of patients were found to have
muscle defects in oxidative metabolism. In a recent re-
view, Filler et al. [223] concluded that there was ample
evidence of mitochondrial dysfunction and impaired bio-
energetic performance in patients afforded a diagnosis of
CFS, but once again it was confined to patients diagnosed
according to internationally agreed criteria and not appar-
ent in all patients. Vermeulen et al. [255] conducted two
exercise tests using cycle ergonometry, on CFS patients on
consecutive days, and found that patients attained their
anaerobic threshold at a markedly lower oxygen consump-
tion than their putatively healthy counterparts in the first
test. Importantly, the anaerobic threshold attained by pa-
tients occurred at a much lower oxygen consumption in
the subsequent test. These findings were also evidenced in
the patients maximal exercise capacity relative to healthy
controls, which was also attained at a much lower oxygen
capacity than the control group and correlated with
differences in ATP production [255]. In a follow-up
study, Vermeulen and Vermeulen [256] examined exer-
cise performance in a cohort of CFS patients and re-
ported a loss in the linear relationship between heart
rate and cardiac output and the dissipation of oxygen
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concentration gradient between venous and arterial
blood characteristic of mitochondrial dysfunction. Fi-
nally, the use of NMR spectroscopy also revealed that
some patients display significantly increased ventricular
lactate levels, indicative of widespread mitochondrial
dysfunction [232,257]. Readers interested in a detailed
explanation of the characteristic changes in exercise
physiology characteristic of mitochondrial dysfunction
are referred to previous studies [1,258]. Again, as with
oxidative stress, these increases in lactate are found in
seemingly divergent disorders that are not overtly mito-
chondrial in nature, including schizophrenia [259], and
reflect a shift to anaerobic or possibly aerobic glycolysis
as a mode of ATP generation.

Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in bipolar disorder
Evidence of immune dysfunction in bipolar disorder
Many lines of evidence converge to suggest a role of im-
mune dysregulation in bipolar disorder. Bipolar disorder is
commonly associated with autoimmune disorders includ-
ing MS, thyrotoxicosis, ulcerative colitis, psoriasis, and
rheumatoid arthritis [260]. To date, a number of studies
have consistently shown that there are elevated C-reactive
protein levels in bipolar disorder, both in acute mania and
remission [261,262]. Similarly, TNF-α and IL-6 have shown
consistent patterns of elevation in the disorder. Interest-
ingly, there is a suggestion of stage-specific changes in these
markers, with elevated levels of PICs in early and late
stages, but loss of elevated IL-10, an anti-inflammatory
cytokine, in late stage illness [263,264]. A recent meta-
analysis showed that there are higher concentrations of
TNF-α, soluble IL-2 receptor, and soluble TNF receptor
type 1 in bipolar patients than in controls [265]. The study
did not find significant differences between bipolar disorder
patients and healthy control subjects for IL-1, IL-2, IL-5,
IL-6, IL-8, IL-10, IL-12, IL-1β, IL-1 receptor antagonist,
IFN-γ, transforming growth factor-β1 (TGF-β1), and TNF
receptor type 2 [265]. A range of anti-inflammatory agents,
including aspirin, minocycline, N-acetylcysteine, curcumin,
anti-TNF-α agents, celecoxib, and omega-3 fatty acids are
being investigated as an adjunct to treatment as usual for
use in mood disorders, and the extant, albeit preliminary,
evidence shows promise [266]. Finally, many of the known
risk factors for the development of mood disorders drive
systemic inflammation, including physical inactivity, stress,
poor diet, obesity, smoking, atopy, altered gut permeabil-
ity, dental caries, vitamin D deficiency, and dysregulated
sleep [35].

Evidence of chronic oxidative stress in patients with a
diagnosis of bipolar disorder
There is consistent evidence from peripheral marker
studies that the brain’s primary antioxidants, GSH,
catalase (CAT), superoxide dismutase (SOD), and GSH
peroxidase are altered in those with bipolar disorder
[267]. In addition, there is post-mortem data that GSH
is depleted in those individuals who have bipolar dis-
order, as well as in people with schizophrenia [268]. In
parallel, there is now meta-analysis level data showing
increased markers of oxidative stress. The most con-
sistent findings are increased lipid peroxidation, DNA/
RNA damage, and raised NO in bipolar disorder com-
pared to controls, with high effect sizes for lipid perox-
idation [269]. Oxidative damage to proteins (protein
carbonylation) is also consistently shown [270]. Clinical
data suggests there are correlations between illness sever-
ity and the extent of oxidative stress, such that those with
greater illness duration, and a larger number of prior
episodes show decreased antioxidant defenses [264,271].
Atypical antipsychotic drugs, as a class, possess redox-
active properties although the extent to which they medi-
ate their pharmacological benefits is uncertain [272,273].
Lithium and valproate also have extensive effects on oxi-
dative markers [274,275]. Remission in bipolar depression
was mirrored by increases in oxidative defenses and
reductions in oxidative stress measures [276]. Lastly,
many of the known environmental precipitants and
risk factors for depression appear to be transduced via
redox signaling [277].
Mitochondrial dysfunction and bioenergetic abnormalities
in bipolar disorder
Of all the disorders mentioned in this review, bipolar
disorder has the highest face validity as a primary dis-
order or mitochondrial bioenergetics, being a biphasic
disorder of symptomatically increased and decreased
energy and activity. Mania is known to be associated
with increased brain energy generation, while depression is
associated with decreased energy generation [278]. Patients
with bipolar disorder have a higher prevalence of primary
mitochondrial disorders than the general population, par-
ticularly mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like episodes [279]. Abnormalities in brain and
lymphocyte mitochondrial distribution and morphology
using electron microscopy have been observed in bipolar
disorder [280]. Proton magnetic resonance imaging stud-
ies show an increased brain glutamate/glutamine ratio
in bipolar disorder [281]. This increased excitatory glu-
tamate creates a high energy demand. Additionally, ele-
vated lactate levels and decreased intracellular pH suggest
a shift to glycolysis and imply dysregulation of mitochon-
drial bioenergetics [282,283]. Furthermore, there is evi-
dence of changes in expression of genes encoding for
mitochondrial complexes, particularly Complex I and
IV [284,285]. Mitochondrial dysfunction is thus a target
of novel therapeutic endeavors in this disorder [286].
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Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in major depression (MDD)
Evidence of immune dysfunction in MDD
MDD is characterized by evidence of activated cell-
mediated immunity with many patients demonstrating
(Th1) style response with elevated levels of IFN-γ
[287,288]. Several meta-analyses and numerous recent
studies have demonstrated elevated levels of IL-1β, TNF-
α, and IL-6 together with increased levels of neopterin
and soluble IL-2 receptors, which globally indicate in-
creased cell-mediated immunity and macrophage activity
[289-293]. However, there is evidence of biologically dis-
tinct MDD subtypes where Th2 cytokines predominate
[294]. Investigating therapeutic responses to the anti-
depressant duloxetine, the existence of patients with a
Th2-biased cytokine profile whose positive response to
treatment was indicated by a Th1 shift in their cytokine
profile was reported; this contrasted with other patients
whose baseline cytokine profile was characteristic of a
Th1 profile which shifted towards a Th2 cytokine pat-
tern in response to treatment [294]. This supports very
similar findings in an earlier study by the same authors
[295] and is in line with the work of other researchers
where the positive effects of treatment were evidenced
by increased levels of TNF-α and decreased levels of IL-
4 [296]. Other findings include evidence of increased
numbers of circulating Th17 T cells, diminished num-
bers of regulatory T cells (Tregs), and a significantly
increased Th17/Treg ratio [297].

Evidence of oxidative stress in patients with a diagnosis of
MDD
Nitrosative and oxidative stress are now considered to
play a major role in the pathophysiology of MDD
[298-301]. It seems likely that this state arises as a result
of elevated production of ROS and RNS and compro-
mised cellular antioxidant defenses. Galecki et al. [302]
reported elevated levels of SOD and CAT activity and a
global deficit of antioxidant defenses [302]. Deficiencies
have also been reported in other antioxidant compounds
such as vitamins C and E [303-305]. There is also evi-
dence of widespread lipid peroxidation in crucial areas
of the brain such as the prefrontal cortex whose levels in
female patients correlate with the severity of symptoms
[306,307]. The existence of lipid peroxidation is further
evidenced by high levels of serum malondialdehyde and
oxidative damage to lipids in peripheral tissues [302,308].
Elevated levels of urine and plasma isoprostane and
8-oxo-2’-deoxyguanosine have also been reported, which
bears testimony to excessive levels of ROS and RNS pro-
duced outside the brain [303-305]. It is significant that the
concentration of oxidative stress markers in the periphery
correlates positively with the chronicity and severity of the
illness irrespective of patient gender [299,307-309]. Given
such a relationship, it is not surprising that antioxidant
compounds are being trialed as potential antidepressant
treatments [310,311]. The level of oxidative damage to
lipids and DNA is sufficient to form neoepitopes and pro-
voke antibody responses [312,313]. The presence of
oxidative damage to mtDNA bears further testimony to
the severity of oxidative stress in sufferers of this illness
[314,315].

Evidence of bioenergetic impairments and mitochondrial
dysfunction in patients with MDD
As previously discussed, there is copious evidence impli-
cating the activation of immuno-inflammatory pathways
and chronic oxidative and nitrosative stress in the gen-
esis, persistence, and severity of MDD [316-320]. How-
ever, there is a growing awareness that the archetypal
symptoms of MDD, such as neurocognitive impairment,
sleep disturbances lethargy, fatigue, and loss of motiv-
ation, may also be driven by mitochondrial dysfunction
primarily in the domain of the ETC [321-323]. This is
perhaps expected as the bidirectional association be-
tween elevated PICs, chronic oxidative and nitrosative
stress, and mitochondrial dysfunction has been clearly
established and will be discussed in detail below [1,36].
There is also accumulating evidence that mitochondrial
dysfunction plays a role in the etiology of the illness.
Several neuroimaging studies utilizing PET or SPECT

technology have detected impaired bioenergetic metab-
olism in numerous regions of MDD patient brains, not-
ably in the basal ganglia and prefrontal cortices [6,321].
Other authors have reported widespread abnormalities
in blood flow, energy and glucose metabolism, as well as
a reliance on glycolysis as a source of ATP production
[324-327,321]. A number of studies have demonstrated
the existence of mitochondrial dysfunction in the per-
ipheral tissues of MDD patients, which is of interest, as
it would be expected in light of growing data implicating
systemic inflammation in the genesis of the illness [317].
For example, Gardner et al. [328] demonstrated that stri-
ated muscle mitochondria of patients with MDD, who con-
comitantly presented with physical symptoms, synthesized
a significantly lower amount of ATP and showed impair-
ments in respiratory chain enzyme activity, particularly at
Complex III and IV [328]. Hroudová et al. [329] were the
first research team to demonstrate mitochondrial dysfunc-
tion in the peripheral mononuclear blood cells of MDD pa-
tients, and this finding has been confirmed in an even
more recent study by Karabatsiakis et al. [330]. These
authors assessed mitochondrial respiration in intact per-
ipheral blood mononuclear cells via the use of high-
resolution respirometry using a healthy volunteer control
group [330]. They demonstrated that MDD patients dis-
played grossly impaired mitochondrial functioning along
several dimensions. Importantly, mitochondrial respiration
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correlated significantly and negatively with the severity of
many depressive symptoms, notably loss of energy, fatigue,
and difficulties concentrating strongly, suggesting a causa-
tive role for ATP shortage in the genesis of such symp-
toms [330].

Immune dysfunction, oxidative stress, and mitochondrial
dysfunction in schizophrenia
Evidence of immune dysfunction in schizophrenia
A range of immunological abnormalities have been de-
tected by several authors in patients with schizophrenia
[331,332]. Most researchers have focused on levels of
plasma cytokines following mitogenic stimulation of per-
ipheral blood mononuclear cells, and have broadly revealed
the existence of a Th2-biased immune system, although
the detailed picture is somewhat mixed [333-336]. How-
ever, more recent data also indicates the presence of ele-
vated levels of TNF-α, IL-1β, and IL-6 in treatment-naive
patients, which appear to drive the genesis and main-
tenance of neuroinflammation in at least some patients
[337-340]. Moreover, accumulating data also indicates
the existence of elevated numbers of effector and mem-
ory Th17 cells which are responsible for the develop-
ment of neuropathology and autoimmunity in other
illnesses [337]. The probable contribution of Th17 T cells
to the pathophysiology of schizophrenia was highlighted
in a recent study by Ding et al. [338]. These authors re-
ported the presence of activated Th17 T cells in drug-
naive first episode schizophrenia patients and also noted a
significant positive relationship between the proportion of
activated Th17 cells and the levels of IL-17, TNF-α, IL-6,
and INF-γ with the negative symptom on the positive and
negative syndrome scale [338]. Perhaps even more import-
antly, the proportion of Th17 cells decreased in patients
displaying a positive response to risperidone which corre-
lated positively with the change in score [338].

Evidence of oxidative stress in schizophrenia
Chronic systemic inflammation and oxidative stress is an
invariant feature of schizophrenia [337,341,342]. It is
now recognized that levels of inflammation and oxida-
tive stress correlate with the level of cognitive impair-
ment in patients with first episode schizophrenia [343].
It would also appear that levels of oxidative stress correl-
ate with severity of positive symptoms [344]. It probably
unsurprising to learn that oxidative and nitrosative stress
is causatively implicated in the pathogenesis and patho-
physiology of the illness [345-347]. Numerous authors
have reported the presence of oxidative damage to pro-
teins, lipids, and DNA [346,348]. There is evidence of
ROS and RNS overproduction and reduced levels of an-
tioxidants [349,350]. Numerous research teams have de-
tected the presence of oxidative stress in the prefrontal
cortex and CSF in vivo [351]. Post-mortem studies have
revealed the presence of this phenomenon in the anter-
ior cingulate cortex [352].
The presence of oxidative stress is not confined to the

brains of those with schizophrenia, but is also found in
plasma and peripheral tissues of patients [353-355]. Spe-
cific abnormalities include elevated levels of malondial-
dehyde and NO coupled with significantly reduced levels
of GSH relative to healthy controls [344,356,357]. It is
worthy of note that the presence of thiobarbituric acid
reactive substances and protein carbonyls are seen both
in the early and late stages of the disease [358]. It is also
worthy of note that the presence and levels of molecules
signifying the presence of oxidative and nitrosative stress
correlate with the enzymatic activity of Complex I [359].
It is fair to state, however, that some controversy remains
regarding the activities and levels of enzymatic antioxidant
activity evaluated by SOD, CAT, and GSH peroxidase,
with normal and abnormal levels and activities being re-
ported by different research teams [360-362]. Reflecting
the classification of Davis [363], a recent meta-analysis
suggested that total antioxidant status, red cell catalase,
and plasma nitrite are potential state or acuity markers
of the disorder, while others, including red cell SOD,
are trait markers [364].

Evidence of bioenergetic impairments and mitochondrial
dysfunction in schizophrenia
Several authors demonstrated a range of ultrastructural
abnormalities in the mitochondria of patients suffering
from schizophrenia, which may play a major role in its
pathogenesis [365,366]. Many of these studies have re-
lied on the examination of post-mortem brain tissue by
electron microscopy and abnormalities reported have in-
cluded denuded numbers, reduced density, and significant
defects in cross-sectional profiles [367,368]. Enlarged
mitochondria with disrupted cristae have been detected
in astrocytes of patients with longstanding illness, and
may be the source of the progressive astrocyte dysfunc-
tion seen in the illness [369]. Interestingly, ultrastruc-
tural abnormalities in these organelles are not confined
to the brain, as impaired mitochondrial numbers and
density are also evident in peripheral blood mononuclear
cells [370,371]. Abnormalities in Complex I activity are
also a frequently reported finding [372,373]. The pattern
of these abnormalities in the brain is somewhat inconsist-
ent, but dependent on the location and function of the tis-
sue sampled [374-377]. A recent study conducted by
Akarasu et al. [378] detected Complex I hyperactivity in
peripheral blood from schizophrenia patients, which the
authors proposed as a diagnostic marker for the illness.
Increased activity of Complex I in peripheral tissues was
reported in an earlier study [375]. The evidence demon-
strating impaired activity of mitochondrial complex en-
zymes induced by conformational changes in the frontal
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or prefrontal cortex appears to be more consistent,
however, with the decreased activity of Complex I, III,
and IV [377,379-381].
Impaired bioenergetics and an increase in glycolytic

ATP production secondary to mitochondrial dysfunction
has been detected in the post-mortem brains of schi-
zophrenia patients via the use of NMR spectroscopy
[382-384]. The same technique has also revealed elevated
levels of lactate and a decrease in levels of pyruvate de-
hydrogenase, indicative of mitochondrial dysfunction and
a shift to energy production via glycolysis in the CSF of
patients with this illness [385,386]. Several studies have re-
ported a positive association between a range of defects in
the mitochondrial genome and the development of schizo-
phrenia [387,388]. There is also a growing body of evidence
suggesting an increased maternal transmission of schizo-
phrenia, which may indirectly indicate a potential role for
mitochondrial inheritance in the etiology of the illness
[389,390]. Numerous authors have demonstrated an associ-
ation between certain mitochondrial haplotypes and disease
risk, and the associations also extend to age of onset[390].
In a similar vein, functional single nucleotide polymor-
phisms in mitochondrial genes encoding for Complex I,
ATP synthase, and Cox subunits also confer an increased
risk of developing the illness [391-393]. Table 1 provides a
summary of the various mitochondrial and bioenergetic
abnormalities recorded in the illnesses discussed above.

The role of NO peroxynitrite and proinflammatory
cytokines in the genesis of mitochondrial dysfunction and
impaired oxidative metabolism
Nitric oxide (NO)-mediated impairment of energy production
NO impacts on mitochondrial performance and levels of
ATP production in a number of ways, notably, by playing a
major role in governing oxygen delivery [394,395] and,
crucially, by inhibiting the performance of the ETC.
NO inhibits the activity of Complex IV via a number of
mechanisms, not least by acting as a competitive antag-
onist for the binding of oxygen to the enzyme’s active
site [396-398]. NO also inhibits electron transfer be-
tween cytochrome b and c, namely the electron transfer
Table 1 Range of mitochondrial abnormalities seen in MS, CF

Mitochondrial abnormality MS C

Ultrastructural abnormalities in mitochondria + +

Evidence to shift in energy production via glycolysis + +

Mitochondrial dysfunction in peripheral immune cells + +

Mitochondria DNA damage +

Damage to the electron transport chain ++

High lactate in brain or cerebrospinal fluid + +

Bioenergetic impairment Skeletal muscle +

Decreased mitochondrial membrane potential +

MS, Multiple sclerosis; CFS, Chronic fatigue syndrome; PD, Parkinson’s disease; AUT,
at Complex III [399,400], which directly leads to in-
creased production of ROS [401]. Finally, NO inhibits
NADH dehydrogenase activity and electron transfer at
Complex I [399,402,403]. Although the reaction with
Complex III is somewhat ponderous [404], the reaction
between Complex I and Complex IV, otherwise known
as cytochrome c oxidase (COX), is extremely rapid and
generally reversible. It is worth noting at this juncture
that inhibition of these components of the ETC can be
a source of pathology other than by direct inhibition of
ATP production. Both reactions produce a number of
derivatives responsible for generating the nitrosative
stress of mitochondrial origin observed in a number of
different illnesses, mainly neuroimmune or autoimmune
[397,401,405-407]. NO reacts with the iron and copper
ions of the heme-CuB and sulfhydryl groups located at
the active site of COX [408-411], while inhibition of Com-
plex I stems from the S-nitrosylation of Cys39 prominent
on the ND3 subunit [410,412,413].
The inhibition of Complex I and COX is normally re-

versible but is less so following prolonged excessive pro-
duction of NO [402,413,414]. While the reaction of NO
with both ETC complexes is extremely rapid compared to
the reaction with Complex III, inhibition of Complex IV
following exposure to NO occurs within seconds or milli-
seconds [415], while inhibition of Complex I may occur
within minutes [413]. The onset of NO inhibition on Com-
plex I is slow (minutes) [413], whereas on COX is very fast
(milliseconds to seconds) [415,396]. As previously dis-
cussed, when excessively elevated levels of NO persists in
the cellular environment, enabling prolonged nitrosylation,
the inhibition of COX and Complex I may become virtu-
ally irreversible [416-419], leading to a substantial inhib-
ition of the ETC, impaired oxidative phosphorylation, and
a decreased synthesis of ATP [1,36,396,420]. This situation
leads to the induction of glycolysis even in an environ-
ment of abundant oxygen in an attempt to compensate
for loss of ATP [421,422]. This is very similar, in
principle, to the Warburg effect [423], and the weight
of evidence suggests that the efficiency of this compen-
satory mechanism varies with cell type and location
S, PD, AUT, MDD, Schiz and BPD

FS PD AUT MDD Schiz BPD

+ + + + +++ +

+ ++ ++ ++ ++

+ ++ ++ ++ ++ +

++

+++ + ++ +

+ + + ++ +

++ +

+

Autism; MDD, Major depression; Schiz, Schizophrenia; BPD, Bipolar disorder.
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[424,425]. Prolonged nitrosylation of COX, however,
likely overcomes this compensatory mechanism leading
to a situation of chronic ATP depletion [396]. NO also
has a positive effect on net ATP production by playing
a crucial role in mitochondrial biogenesis within skel-
etal muscle [384]. This positive contribution is consid-
ered to be mediated by its capacity to upregulate the
transcription of peroxisome proliferator-activated receptor
gamma coactivator-1 (PGC-1α) [426-428]. In an inflam-
matory environment, however, this stimulatory effect is
countered by the presence of elevated levels of TNF-α,
which reduces the expression of PGC-α, a key regulator of
energy metabolism, via the upregulation of NF-kappaB
and p38 MAPK kinases [132,429,430]. Moreover, inhib-
ition of the ETC predisposes to the excessive produc-
tion of superoxide anions, which react with NO to form
the highly dangerous peroxynitrite [1,36,402]. This re-
active species has the capacity to compromise virtually
every element and system involved in the generation
and regulation of energy production as we will now
illustrate.

Peroxynitrite-mediated impairment of energy production
Peroxynitrite has a much longer half-life than its mo-
lecular ancestors and is much more reactive [431,432].
Thiol oxidation and nitration of tyrosine residues are the
major mechanism by which peroxynitrite induces con-
formational change in proteins [433,434]. Peroxynitrite
also causes oxidative damage to mitochondrial structural
proteins and enzymes and peroxidative damage to lipids
within membranes leading to profound changes in func-
tion and membrane integrity [1,435,436]. Peroxynitrite
inhibits mitochondrial respiration by inactivation of
ETC I and III [437,438]. Inactivation of mitochondrial
electron transport enzymes increases mitochondrial pro-
duction of superoxide and hydrogen peroxide generated
by mitochondria [437], creating adaptive and synergistic
damage [439].
Peroxynitrite can make an indirect contribution towards

mitochondrial dysfunction by inhibiting SOD [440] and
glutaredoxin [441], and by oxidizing reduced GSH and
other thiols [442-444]. GSH depletion, in turn, exacerbates
peroxynitrite-induced pathology [445]. This intimate
bidirectional relationship with oxidative and nitrosative
stress is reviewed in Morris and Maes [1] and Morris
et al. [36]. The oxidation of critical cysteine groups by
this highly reactive species inactivates a plethora of enzymes
playing indispensable roles in bioenergetic processes,
including glyceraldehyde-3-phosphate dehydrogenase
[446,447], NADH dehydrogenase [403], creatine kinase
[448], succinate dehydrogenase [449], cytochrome c reduc-
tase [450], and ATP synthase [451,452]. These enzymes are
also inactivated by nitration of tyrosine damage to their
iron sulfur centres [451,452] and, thus, are highly prone
to inactivation by chronically elevated levels of peroxyni-
trite. The redox activity of cytochrome C is severely im-
paired by nitration and, hence, this cytochrome is also
very readily disabled in an environment of chronically ele-
vated peroxynitrite. Nitration of cytochrome c significantly
elevates its peroxidatic activity, leading to increased syn-
thesis of hydrogen peroxide accelerating further oxidative
corruption of mitochondrial proteins [453,435]. Peroxyni-
trite also disrupts the ferrous-sulfur active site of the tri-
carboxylic acid cycle enzyme aconitase, leading to its
inhibition and impairing ATP production [454,455]. The
enzyme nicotinamide nucleotide transhydrogenase, which
catalyzes the reduction of NAD, is another crucial mito-
chondrial enzyme readily inactivated by peroxynitrite-
mediated nitration and oxidation [456]. The subsequent
depletion of NADPH impairs the ability of mitochondria
to further regenerate reduced GSH, exacerbating the pre-
existing oxidative stress within the organelle [457,458].
Chronically elevated levels of peroxynitrite lead to mito-
chondrial membrane depolarization [459,460], which is
probably mediated by thiol oxidation of cysteine residues
of proteins within the permeability transition pore com-
plex [461,457].
Peroxynitrite can inhibit cellular energy production

via yet another mechanism, the activation of poly
[ADP-ribose] polymerase 1 [462,463], the chronic acti-
vation of which leads to impoverished levels of NAD+,
an essential cofactor enabling the performance of the
tricarboxylic acid cycle, glycolytic pathway, and the
ETC [462,464-466]. Depletion of NAD+ thus results in
severely diminished cellular ATP stores, resulting in
profound cellular dysfunction [467,468]. Peroxinitrite
can also grossly impair function of p53 by inducing
conformational change in the transcription factor’s ter-
tiary structure [469-471]. This altered structure im-
pairs or even eliminates the capacity of the p53 protein
to bind to DNA and thus exert its normal functions
[472,469]. p53 plays a crucial role in coordinating in-
creases in cellular metabolic activity to match increas-
ing energy demands [473-475]. Loss of p53 facilitates
the switch to anaerobic glycolysis as a source of ATP
[476,477], resulting in dramatically reduced oxygen up-
take and mitochondrial respiration [478] and a mark-
edly diminished capacity for exercise [479]. Elevated
levels of peroxynitrite can also impact the activity of
proteins with a regulatory role in mitochondrial func-
tion, such as parkin and DJ-1, by inducing conform-
ation changes leading to their loss of function or
affecting post-translational signaling mechanisms ren-
dering their protective actions ineffective [480]. Sche-
matic representations of the deleterious effects of
chronically elevated levels of ROS and RNS on mito-
chondrial function and energy production are pre-
sented in Figures 1 and 2 below.



Figure 1 Schematic representation of the inhibitory effects of NO and ONOO- on the ETC, enzymes of the tricarboxylic cycle and
antioxidant enzymes. NO and peroxynitrite inhibit the mitochondrial respiration via different mechanisms: NO itself causes selective, rapid, potent, but
readily reversible inhibition of cytochrome oxidase and increased production of RNS within the intermembrane space. On the other hand, excessive levels
of peroxynitrite and other RNS leads to slow, weak non-selective, but essentially irreversible inhibition of a wide range of mitochondrial components.
Peroxynitrite inhibits Complex I, Complex II, cytochrome oxidase ATP synthase, MnSOD, aconitase, creatine kinase, and a plethora of other
proteins playing an essential role in energy production. In addition, peroxynitrite is a potent oxidant capable of inducing peroxidation of mitochondrial
membrane lipid components, hence increasing membrane permeability and disrupting the potential difference between the inner and outer membrane
and inducing mitochondrial membrane transition. Inhibition of ATP production and electron chain dysfunction leads to the production of ever increasing
production of ROS and RNS leading to a vicious circle culminating in eventual bioenergetic failure and often cellular necrosis or apoptosis.

Figure 2 Mitochondrial ultrastructural damage and impaired capacity for energy generation in an environment of chronic nitro-oxidative
stress. Excessive levels of peroxynitrite cause oxidative and peroxidative damage to lipids and proteins, leading to profound ultrastructural
damage, including disrupted cristae, loss of outer membrane integrity, mitochondrial permeability transition, and uncoupling of ETC activity
from oxidative phosphorylation.
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Pro-inflammatory cytokine (PIC)-mediated impairment of
energy production
The adverse effects of elevated levels of TNF-α on mito-
chondrial biogenesis have already been discussed; however,
excessive levels of TNF-α and other PICs, typifying a state
of chronic systemic inflammation, can additionally disable
oxidative phosphorylation [1]. This is evidenced by elevated
levels of lactate levels and impaired mitochondrial function
characteristic of chronic inflammatory states [481-483]. It is
worthy of note, however, that this PIC-mediated suppres-
sion of ETC function is ultimately mediated by NO via a
number of different mechanisms [484,485]. PICs can also
inhibit mitochondrial respiration directly. TNF-α, one of
the major PICs, can block electron transfer at Complex I
[486,487], Complex III [488,489], and COX [490-492], lead-
ing to a significant reduction in the rate of respiration and
the activities of the enzymes in the ETC [492,493]. TNF-α
increases mitochondrial membrane permeability leading to
membrane depolarization, increased intracellular calcium
and a marked decrease in mitochondrial membrane poten-
tial [494,495], and increased generation of ROS [496,497].
TNF-α and IL-1β collude to inhibit the ETC and suppress
pyruvate dehydrogenase activity [498,499]. IL-1β and
TNF-α, acting in concert, have also been shown to in-
crease aerobic glycolysis and inhibit oxidative phos-
phorylation [499]. Prolonged excessive levels of TNF-α
also induces the development of aerobic glycolysis and ap-
pears to be yet another mechanism for inducing Warburg-
like metabolism, whereby cells predominantly generate en-
ergy by glycolytic, non-oxidative breakdown of glucose, in
an environment of excessive oxidative stress [490,491].

Summary
This paper has detailed some of the evidence demon-
strating the existence of immune dysfunction, oxidative
stress, and mitochondrial dysfunction in many patients
diagnosed with MS, PD, autism, bipolar disorder, depres-
sion, schizophrenia, and CFS. It is proposed that these
apparently non-specific findings may contribute to the
pathophysiology in each illness. Excessive levels of per-
oxynitrite, NO, and PICs clearly have the capacity to in-
hibit the activity of the ETC at several points, alone or
synergistically, leading to the depletion of ATP production
and promoting a switch to anaerobic glycolysis. Peroxyni-
trite and TNF-α can also depolarize the mitochondrial
membrane via a number of different mechanisms once
again having a deleterious effect on the generation of
ATP. Peroxynitrite in particular can damage lipids and
proteins, altering their conformation and function, causing
structural damage to integral mitochondrial proteins and
lipid membranes and to proteins regulating the function
of the organelle. The capacity of peroxynitrite to inactivate
a range of enzymes with an essential function in the gen-
eration of energy and the regulation of energy generation,
such as p53, can provide other pathways to impaired oxi-
dative metabolism. However, peroxynitrite is not alone in
its ability to impair the activity of essential transcription
factors as evidenced by the capacity of TNF-α to inhibit
the production of PGC-1α and indirectly impair activity-
stimulated mitochondrial biogenesis. It must be empha-
sized, however, that the presence of these inflammatory
entities in an environment of oxidative stress is highly un-
likely to be the sole cause of the mitochondrial dysfunc-
tion and impaired energy production seen in people with
these illnesses. Genetic and epigenetic factors are also
surely involved. Consequently, it is impossible to calculate
the extent of the contribution that these entities make to
the phenomenon of bioenergetic impairment seen in these
apparently disparate illnesses, but it is likely that they play
at least a part.
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