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Abstract

Background: High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to
non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many
biological properties of this extracellular genetic material remain unknown. Research that further characterizes
circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated
bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data.

Methods: In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from
two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach
to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment
lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome.

Results: We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal
and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular
microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in
clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by
correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our
work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning
up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific
nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but
is absent in nucleosome-free mitochondrial DNA.

Conclusions: These background signals in cell-free DNA sequencing data stem from the non-random biological
cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in
particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here
could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.
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Background
The existence of cell-free DNA circulating in human
plasma was discovered in 1948 [1] however, the study of
this phenomenon was delayed in the following decades
due to the lack of suitable laboratory techniques. In re-
cent years, the use of methods such as PCR, and its
more sophisticated derivatives, along with advances in
next-generation sequencing have expanded our under-
standing of cell-free DNA, although many facets of its
biology still remain unknown.
Current understanding of cell-free DNA encompasses

that it exists as double-stranded molecules, which are
biologically fragmented into both short (<1 Kb) and long
segments (>10 Kb) [2, 3]. This disparity in size along
with evidence from experimental and observational
studies have led researchers to postulate apoptosis [4, 5],
necrosis [2, 6] and active release [4, 7] as potential
mechanisms that may produce extracellular DNA. The
relative contributions of these three processes and how
their contributions change in pathological conditions is
still under investigation.
While first discovered in human plasma and serum,

cell-free DNA has now been extracted from other body
fluids such as urine [8, 9], cerebrospinal [10], synovial
[11] and pleural [12] fluids. While a majority of cell-free
DNA circulates as histone bound nucleosomal elements
[13, 14], at least a portion of this DNA appears to be
housed with lipoprotein virtosomes or held within mem-
branous vesicles. These are believed to grant protection
against further enzymatic degradation and recognition
by immune cells that could trigger autoimmune responses.
Such packaging is also hypothesized to play a part in the
effective clearance of cell-free DNA [15]. Detailed infor-
mation of the mechanisms associated with these processes
is lacking and remain somewhat controversial.
With the evolution of next-generation sequencing

(NGS), quantitative aspects of cell-free DNA as a poten-
tial non-invasive biomarker are being studied and uti-
lized in diverse fields such as cancer genome scanning,
prenatal testing, rheumatoid arthritis research as well as
transplant rejection and dialysis monitoring [16–23].
Most published analyses on cell-free DNA appear to be
clinically motivated. Therefore, research that further
characterizes circulating DNA could substantially in-
crease its diagnostic value by allowing the application of
more sophisticated bioinformatics tools that lead to an
improved signal to noise ratio.
There have been two studies of note in recent years

that have documented the differences between cell-free
and cellular DNA using sequencing data. A 2009 analysis
by Beck et al. used low-coverage pyro-sequencing data
(>0.001X) of serum cell-free DNA from 50 healthy indi-
viduals in comparison to cellular DNA matched to 4 of
the subjects. They observed that essentially no functional
genomic feature such as annotated genes was over-
represented in cell-free DNA. The highest variations in
coverage between the 50 subjects were documented in
the representation of coding sequences (CDSs), untrans-
lated regions (UTRs) and pseudogenes. This study also
documented an over-representation of Alu elements in
comparison to the genome as well as an under-
representation of long interspersed nuclear elements L1
and L2 [24].
A 2012 study utilized SOLiD sequencing technology

also revealed differences in repetitive-sequence represen-
tation between cell-free DNA from apoptotic human
umbilical-vein endothelial cells and cellular DNA from
the same living cells [25]. Alu repeats and certain satel-
lite repeat subtypes were found to be over-represented,
whereas L1 repeats were under-represented in the cell-
free apoptotic DNA. L1 elements are mainly located in
the transcriptionally inactive heterochromatin and Alu
repeats localize to gene-rich euchromatin regions that
have high rates of transcription. This disparity in repeat
region presence in cell-free DNA fragments has also
been documented by older studies [26, 27].
Other sequencing studies have examined cell-free

DNA features such as fragment lengths with the most
comprehensive analyses carried out on DNA originating
from pregnancies [8, 28]. Circulating fetal DNA makes
up 3 to 20 % of the total cell-free DNA in a pregnant
woman’s plasma [29–31]. This percentage increases with
gestation [32, 33] and has been shown to have an inverse
relationship with maternal weight [33–35]. The primary
origin of cell-free fetal DNA appears to be the syncytio-
trophoblast of the developing embryo that makes up
part of the placenta [36, 37]. Although there is evidence
that both apoptosis and necrosis adds to the fetal DNA
in the maternal circulation, there is no consensus on
their relative contribution to the total pool of cell-free
DNA [38]. The fetal fragments can be detected as early
as the fourth week and reliably after the seventh week of
gestation using PCR based methods [39, 40] and is
cleared from the maternal blood within hours after
childbirth [41, 42].
Studies have shown that the DNA molecules in mater-

nal plasma have a size distribution that exhibits a num-
ber of peaks. The most prominent peak in their data was
around 166 bp with the next occurring at 143 bp,
followed by a series of smaller peaks at intervals of ap-
proximately 10 bp. The researchers also documented
that a very small proportion of fragments exhibited
lengths close to 350 bp. The peak at 166 bp is hypothe-
sized to represent DNA that is wrapped around one nu-
cleosomal unit while the peaks at 10 bp periodicity are
related to the enzymatic cleavage of DNA wrapped
around the histone core of each nucleosome. The stud-
ies also reported that fetal DNA was generally shorter
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than maternal DNA with fetal fragments showing a clear
reduction of the 166 bp peak. Due to the selective nature
of PCR used in the sequencing library preparation, these
studies have been limited to investigation of lower mo-
lecular weight fragments (<1 Kb). The samples were se-
quenced at relatively low whole-genome coverage with
cell-free DNA samples only averaging 10 million reads.
The advancement of bisulfite sequencing technology

[43, 44] in the past few years has enabled the high-
resolution interrogation of the epigenetic landscape of
cell-free DNA. While the large background of maternal
DNA makes it challenging to investigate fetal-specific
methylation signals, recent studies report that placental
tissue appeared to be generally hypo-methylated when
compared with other somatic tissues and that fetal cell-
free DNA has methylation profiles similar to the placen-
tal methylomes [45, 46]. Bisulphite analysis also shows
that there are gestational age related epigenetic changes
[47] and that longer fragments exhibit higher propor-
tions of methylated CpG sites [48].

Aims of study
In this work, we utilize previously published, matched
cell-free and cellular DNA from two pregnant women,
which have been sequenced to a very high depth result-
ing in some of the most high coverage datasets available
in the cell-free DNA research field (>70X, >50X). The
data was generated by Kitzman et al. [49] with the aim
of assembling the fetal genome non-invasively along
with genetic information from the mother and father.
Here, we utilize this data in a descriptive approach to in-
vestigate the characteristics of cell-free DNA present in
maternal plasma. Our aims are broadly two-fold: whilst
expanding what is known about cell-free DNA in human
plasma we endeavor to document cell-free DNA features
that have the potential to be utilized as clinically action-
able biomarkers either on their own or in conjunction
with other known characteristics. The specific datasets
used are ideal for our aims as they provide high-quality
whole-genome information at a great sequencing depth
along with the experimental set up of matched cellular
and cell-free DNA.
This study examines the different signatures related to

the enzymatic cleavage of cell-free DNA in an attempt
to document the non-randomness associated with the
process. The high density of sequencing reads has en-
abled a substantial extension of previous analyses into
the fragment size distributions as we investigate the peri-
odicity associated with the fragment lengths and how the
lengths are dependent on the genomic location within
chromosomes. We also show that the mapping locations
of cell-free DNA fragments associate with arrays of nucle-
osomes on a genome-wide level by correlating them with
nucleosome and open chromatin enrichment positions
from ENCODE. The matched cell-free, cellular setup al-
lows us to extend our previous work on determining the
motif structure associated with cell-free DNA cleavage
[50]. Since maternal plasma is a mixture of fragments
from the mother and fetus, we separate the two compo-
nents in silico and compare the aforementioned bio-
logical signatures to assess the differences between
maternal and fetal DNA.

Methods
Ethics statement
This study was performed on raw sequencing data pub-
lished by Kitzman et al. in their 2012 work of non-
invasively sequencing the fetal genome [49]. Please refer to
this paper for the original ethics. This data can be retrieved
at the dbGaP archive [51] under project accession number
[dbGap:phs000500.v1.p1]. A National Human Genome
Research Institute (NHGRI) Data Access Committee
assessed and approved the project request submitted by
the authors. All samples were anonymized and no fur-
ther ethics approval was needed prior to the use of the
data.

Study design and datasets used
The main dataset (I1_M) we used consists of two samples
of DNA from a pregnant female: cell-free DNA from
plasma (I1_M_plasma) and cellular DNA from leucocytes
(I1_M_cellular). A second pair of matched plasma and cel-
lular samples from a separate pregnancy (G1_M_plasma,
G1_M_cellular) published by Kitzman et al. was used to
replicate the major findings of this study. Both subjects
I1_M and G1_M carried male fetuses at gestation ages of
18.5 and 8.2 weeks, with fetal fractions estimated by the
original study to be around ~13 and ~7 % respectively.
The details of the extraction, purification and prepar-

ation of sequencing libraries for the DNA are provided
in Kitzman et al. [49]. It is of note that during library
preparation only the cellular DNA samples underwent
fragmentation by sonication and subsequent size selec-
tion in the range of approximately 250 - 450 bp inclusive
of adapters. These two steps were unnecessary for the
biologically fragmented cell-free DNA in the plasma and
were consequently by-passed, giving the opportunity to
investigate fragment length distribution properties of
cell-free DNA. All four DNA libraries underwent paired-
end sequencing on the HiSeq 2000 instrument to gener-
ate paired-end reads of length 101 bp.

Data processing
The read sequences in FASTQ format were aligned to
the human genome, build 37 (hg19) using Novoalign
V2.08.03 [52] with per-base quality score recalibration
enabled. The genome reference used for mapping, had
known SNPs encoded as IUPAC ambiguous codes to
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minimize the different alleles generating mismatches,
which is particularly advantageous with the increased
heterogeneity stemming from the mixture of fetal and
maternal DNA. Novoalign was chosen instead the BWA
mapper used in the original study, as it is implements a
more sensitive and accurate alignment algorithm that also
allows for the usage of an ambiguous reference allowing
the alignment of more reads with greater specificity.
Reads that mapped to multiple locations and read

pairs that were designated as PCR duplicates were dis-
carded from each dataset using a combination of SAM-
tools V0.1.18 [53] and Picard software [54]. Local
realignment around indels was performed via the GATK
software suite [55] as a final read-processing step.
Unless otherwise mentioned, all proceeding analyses

were carried out on fragments separated by chromo-
somal origin (by autosomes and mitochondrial DNA).
When paired-end information was needed, only paired-
reads that were correctly oriented with insert sizes com-
parable with the expected variation in each DNA library
were used for analysis.
Only reads with mapping quality greater than the

Phred-scale value of 13 were used, which corresponds to
less than 5 % probability that the read is wrongly
mapped. Custom R [56] and python scripts were written
for analyses and any specific R packages used are stated
in the text.

Analyzing genome-wide and inter-chromosomal fragment
length distributions
The DNA fragment lengths were inferred from the
paired reads to examine the exact lengths present in
each dataset. We performed Fourier analysis on the cell-
free DNA fragment length density in the range 50 - 450 bp
using the fast Fourier transformation as implemented in
the spectrum package in R. This technique was used to
de-convolve any complex periodicities present in the dis-
tribution of fragment lengths into a combination of simple
periodic waves. We then analyzed the power spectrum of
single frequencies via a periodogram to determine import-
ant frequencies that could explain the oscillation pattern
of the observed data.
In order to assess the multi-modality of the major

peaks in the cell-free DNA fragment length distribution,
we fitted a 3-component Gaussian mixture model to the
inferred lengths in both a genome-wide and per chromo-
some basis. The maximum likelihood approach was used
to estimate the model parameters via the expectation
maximization algorithm. Initial estimates for the means,
standard deviations and proportions of the three under-
lying distributions were determined from the observed
data. Quantiles of the theoretical and empirical genome-
wide fragment length distributions were plotted to assess
the fit of the model. We then visually examined the mixing
probabilities assigned to the three components between
all chromosomes to investigate any inter-chromosomal
imbalance in the three subgroups of fragment lengths in
cell-free DNA.

Analyzing intra-chromosomal fragment length
distributions
Since multiple prior studies have reported over- and
under-represented repetitive regions in cell-free DNA
[24–27], we investigated differences in fragment lengths
originating at these sub-chromosomal regions. Repetitive
locations in the human genome are curated in the
Repbase database [57] under a ‘class/family/type’ classifi-
cation with ‘type’ being the most specific grouping. The
RepeatMasker annotation that draws on Repbase (Repeat
Library 20090604) categorizes repeats into 57 unique
‘class/family’ combinations and 1395 unique repeat ‘types’.
We first separated cell-free DNA fragments into the ‘class/
family’ categories depending on if the 5′ end of the frag-
ment mapped to these regions on the hg19 genome refer-
ence. We retained 32 of the most abundant categories that
had at least 10,000 sequenced fragments aligning to them
with mapping quality > = 13 and visually compared the
fragment length profiles. To carry out a more specific in-
terrogation of these regions, we used pattern matching of
the repeat ‘type’ names to collapse them into more general
categories and compared their fragment length profiles.
Fifty of these repeat categories were chosen, mainly based
on their genome-wide abundance in order to have enough
power for the fragment length analysis. Certain categories
of low abundance were also included to have a fair repre-
sentation of the different classes of repetitive elements as
specified in Repbase.

Summarizing the higher-order genomic enrichment of
cell-free DNA
We carried out strand cross-correlation analysis [58] to
capture recurrent events of read coverage along the gen-
ome in the plasma and cellular datasets; with the hy-
pothesis that the non-random nature of cell-free DNA
cleavage would lead to clusters of reads that would not
be present in cellular DNA sequencing data. To this ef-
fect, one read from each read pair was randomly sam-
pled to simulate single-end read data. The Pearson
correlation between the per-base coverage of the forward
and reverse strands was calculated, each time shifting
the reverse strand by increments of 1 bp (beginning
from a lag of 20 up to 5000 bp). The cross-correlation
value per strand-shift was plotted and compared be-
tween each sample.
Annotation from the ENCODE consortium was used

to investigate the relationship between the read density
signal in plasma data and chromatin higher-order struc-
ture. The randomly fragmented cellular data was used as
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a control. Nucleosome occupancy annotation for differ-
ent cell-types was generated by the ENCODE project
with the use of MNase-seq data where micrococcal nu-
clease (MNase) was used to isolate the DNA fragments
bound to histones and subjected to high-throughput se-
quencing. Subsequent alignment of these fragments gen-
erated a nucleosome map. Open-chromatin regions were
mapped using FAIRE-seq, where DNA was randomly
fragmented using sonication. Subsequent formaldehyde
assisted cross-linking of histones separated out the
nucleosome-bound DNA from the nucleosome-depleted
chromatin [59]. The latter fraction of fragments were se-
quenced and mapped to the human genome. These data
were downloaded as uniformly processed signal files with
normalized scores of nucleosome-occupancy (MNase-seq)
or depletion (FAIRE-seq) for each base. Further informa-
tion for these annotation tracks can be found at the EN-
CODE data portal [60].
All annotation was selected for the Gm12878 lympho-

blast cell-type, which is one of three highly curated Tier
1 cell-lines provided by the ENCODE project and most
closely matched the cell-free DNA, which is predomin-
ately of hematopoietic origin [61]. More information on
this cell type can be found from the ENCODE project
website [62].
The sequencing data from the I1_M and G1_M samples

were converted into signal tracks using the Wiggler soft-
ware [63], which is the official tool used by the ENCODE
project to create the genome-wide MNase-seq and FAIRE-
seq tracks used in the analysis. In brief, the software counts
the read coverage per base along the genome and calculates
a signal value by smoothing these counts using a Tukey
kernel. The strand specific signal values are summed at
each position and the final signal is corrected according to
the mappability of the genomic regions.
The signals from ENCODE and the empirical tracks

generated from the cell-free DNA data were binned into
non-overlapping windows of 1 Kb by assigning the aver-
age signal value of all positions in the window. The win-
dow size is informed by the cross correlation analysis
result that gives insight into the degree of distribution
and consistency of read clustering patterns along the
genome. Pearson correlation was calculated for each pair
of binned datasets (2 ENCODE tracks, 4 plasma/cellular
samples, thus a total of 8 comparisons) and the resulting
correlation matrix was visualized using the corrplot package
in R. To avoid outlier values in the sequencing signal tracks
from unnecessarily affecting the correlation, we trimmed
10 % of the largest absolute residual values from a linear
model fit to this data during each pair-wise analysis.

Analysis of nucleotide signature at fragmentation sites
The proportions of each nucleotide (A, T, C, G) in an
interval surrounding fragment start sites (+/- 25 bp)
were calculated to examine if the breaks in cell-free
DNA are random and independent of the underlying se-
quence. These position-specific proportions were then
normalized by the genome-wide expected values for each
type of mononucleotide to assess the relative frequencies.
Fragments were then stratified according to their length
into two intervals of [100, 140] bp and [200, 250] bp be-
fore repeating the previous analysis to investigate any size
specific nucleotide signatures. The intervals were chosen
with the prior knowledge that these fragment lengths
would have a high likelihood of representing cleavage
within nucleosomes (interval 1) and cleavage within linker
DNA regions (interval 2).
We then used the de novo motif discovery software

DREME [64] to mine the cell-free DNA data for motifs
related to nuclease cleavage. Ten million fragments were
randomly sampled from each plasma dataset and the
2 bp sequence on either side of the 5′ fragment ends
were input into the software as the test sequences, each
5 bp in total length. The decision to limit the search to
short DNA motifs was motivated by our previous work
[50] which investigated the most influential positions
around the cleavage sites in cell-free DNA. Similarly, 10
million sequences of identical length from the matched
cellular data were input as the negative sequences, which
were unlikely to contain motifs of interest. The program
uses a Fisher’s exact test to determine the significance of
each motif found in the test set as compared with its
representation in the negative set.

Investigating fetal-specific cell-free DNA characteristics
As previously described [65], SAMtools software was
used to infer the genotypes at ~3 million HapMap Phase
II SNPs for the matched plasma and cellular data separ-
ately. We identified all SNPs in the cellular samples
where the mother was homozygous (AA) and selected
the informative subset of these SNPs in the matched
plasma sample, which exhibited the alternate allele ori-
ginating from the fetus (i.e. fetus was heterozygous (AB)
for the genotype). The paired-reads corresponding to the
DNA fragments carrying the fetus specific alleles were
separated out from the plasma data. The remaining frag-
ments carrying the shared allele were used as maternal
DNA by reason of the low fetal fraction in these sam-
ples. While the original study by Kitzman et al. did con-
tain paternal sequencing data, there were concerns of
poor quality noted in the original study since it was de-
rived from saliva. Thus, we chose not to utilize the pa-
ternal information to further filter fragments carrying
the shared allele.
Analysis of the fragment lengths and mononucleotide

signature at the cleavage sites was carried out to docu-
ment the differences between the fetal and maternal
fragments. Separating the two components using alleles
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leads to fragment locations being restricted to those in
the vicinity of informative SNPs and a relatively small
number of eligible fragments for the fetus. Therefore,
certain genome-wide investigations were ruled out and
the analysis scope was limited to the two avenues stated
previously.

Results
Sequencing coverage statistics
All subsequent results are based on matched cellular
and cell-free plasma DNA from two pregnancies (I1_M
and G1_M) that have undergone 101 bp paired-end se-
quencing on the Illumina HiSeq platform. Table 1 pro-
vides the clinical details and naming conventions for the
relevant datasets as provided by Kitzman et al. [49].
Table 2 specifies the number of sequencing reads at

each step of the data-processing pipeline and provides
the whole-genome coverage for each dataset. Eight per-
cent of sequencing reads are unable to be aligned in
plasma as opposed to ~3 % in the cellular datasets.
Plasma DNA also shows a higher number of PCR dupli-
cates compared to cellular (3 % vs. 0.5 %), which is ex-
pected, given the extra PCR cycles in the library protocol
when using a low starting volume of DNA. However, simi-
lar proportions of multi-mapping reads (3-4 %) were ob-
tained for all datasets regardless of the origin of the DNA.
After read filtration, I1_M has very high genome-wide
counts for cell-free plasma DNA with a mean coverage of
74 X (2.2 billion reads) and 32 X for the cellular compo-
nent. G1_M gives 52 X mean coverage (1.6 billion reads)
for plasma and 27 X for cellular data.
Figure 1 presents the empirical cumulative distribution

function of the total read depth at genomic positions for
the 4 datasets. There is greater variation in per-base
coverage between the two plasma datasets than their
matched cellular counter parts. For example, 75 % of the
bases in I1_M_plasma is covered by 87 reads or less
compared to 63 in G1_M_plasma, while for I1_M_cellu-
lar and G1_M_cellular the values are around 35 and 28
respectively.

Genome-wide and inter-chromosomal fragment length
distributions
The fragment length density for cellular DNA is uni-
modal, with a narrow range of sizes (first quartile =
153 bp, median = 177 bp, third quartile = 202 bp). There
Table 1 Details of datasets used in study

Sample name Type of DNA Fetal karyoty

I1_M_plasma Cell-free 46, XY

G1_M_plasma Cell-free 46, XY

I1_M_cellular Cellular -

G1_M_cellular Cellular -
is no discernible difference between the cellular auto-
somal and mitochondrial profiles (Fig. 2). The cellular
data mode at ~182 bp is due to the random nature of
DNA cleavage and subsequent size selection that frag-
ments undergo at library preparation.
Cell-free autosomal DNA in contrast, presents two clear

modes at approximately 167 bp and 340 bp with a much
wider mode around 510 bp. These three peaks appear to
correspond to the lengths of DNA associated with a
mono-, di- and tri-nucleosome structure respectively.
While the first cell-free DNA autosomal mode peaks

at ~167 bp, it also shows minor peaks at roughly 145,
134, 123, 113, 102, 92 and 82 bp (Additional file 1).
Three more signals are visible at 151, 173 and 177 bp.
The fragment lengths appear to exhibit an approximate
periodicity of 10 bases below 145 bp. This periodicity
decreases in longer fragments and in the second mode
the periodicity decreases to ~ 5 bp although it is not as
strong or consistent as in the first major peak. This is
possibly due to the substantially low number of observa-
tions in longer fragment lengths.
The spectral analysis of the fragment length distribu-

tion shown in Additional file 2 confirms these observa-
tions. The first two dominant frequencies occur at
0.00556 and 0.092 and correspond to periodicities of 180
and 10.9 bp on the reciprocal scale. Several signals
smaller than 10 bp also appear in the Fourier analysis,
which appears to reflect the high frequency pattern vis-
ible in fragment lengths longer than 145 bp.
It should also be noted that in I1_M and G1_M sam-

ples the mode in the matched cellular DNA corresponds
to the first mode of cell-free DNA autosomal fragments
by chance as it is only due to the specific sizes selected
in the library preparation.
In contrast to the autosomal cell-free DNA, fragments

mapping to mitochondrial DNA lack the 3-mode signa-
ture and exhibited a wider range of sizes. This observa-
tion may relate to the absence of higher-order packaging
in the circular mitochondrial DNA, leaving it more ex-
posed to enzymatic cleavage. This further adds evidence
for the hypothesis that it is the nucleosome packaging
and the approximately 10 bp 360° turn of the double
helix that are key determinants for the fragmentation of
autosomal cell free DNA.
As Additional file 3 shows, a 3-component Gaussian

mixture provides an adequate fit for the autosomal
pe Gestational age Fetal DNA fraction

18.5 weeks ~13 %

8.2 weeks ~7 %

- -

- -



Table 2 Alignment and processing statistics for sequencing read data

I1_M_plasma G1_M_plasma

Number of reads Proportion of total Number of reads Proportion of total

Total 2663662496 1 1920061404 1

Aligned 2462191486 0.92 1758285925 0.92

Uniquely aligned 2366811398 0.89 1686208471 0.88

Non-duplicates 2312044964 0.87 1641590824 0.85

MAPQ > = 13 2225473345 0.84 1585773977 0.83

Proper pairs 1112724850 - 792884037 -

Whole-genome coverage 74.2 X 52.6 X

I1_M_cellular G1_M_cellular

Number of reads Proportion of total Number of reads Proportion of total

Total 1091176962 1 903802456 1

Aligned 1056822490 0.97 888679846 0.98

Uniquely aligned 1023380388 0.94 860508538 0.95

Non-duplicates 1019233466 0.93 858226379 0.95

MAPQ > = 13 983181449 0.90 838372718 0.93

Proper pairs 491581650 - 419209864 -

Whole-genome coverage 32.6 X 27.4 X
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fragment lengths when only modeling the tri-modal nu-
cleosomal signal. The estimates for the genome-wide
proportions of the mono-, di- and tri-nucleosomal dis-
tributions are 0.88, 0.11 and 0.01 for I1_M_plasma and
0.90, 0.09 and 0.01 for G1_M_plasma. The corresponding
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Fig. 1 Empirical cumulative distribution functions of per-base read coverage
are named I1_M_plasma and G1_M_plasma while the cellular DNA from the
means of the three component distributions for I1_M are
169, 341 and 508 bp with the distributions exhibiting
standard deviations of 24, 35 and 43 bp. G1_M has esti-
mated means of 167, 337 and 492 bp with standard de-
viations of 23, 36 and 42 bp for the 3 components
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respectively. Full details of the genome-wide and per-
chromosome maximum likelihood estimates of the dis-
tribution parameters are presented in Additional file 4.
An inter-chromosomal comparison shows that the mix-

ing proportions of the model components reveal no gross
imbalances in the 3 fragment length groups between the
chromosomes (Fig. 3), with the largest variation occurring
in the proportion for the second component.

Intra-chromosomal fragment length distributions
Cell-free DNA has previously been shown to exhibit
higher proportions of repeats such as SINEs and micro-
satellites and decreased amounts of LINE elements [24, 25].
It is interesting to note that LINE elements are mainly lo-
cated in condensed heterochromatin and Alu repeats
localize to more open euchromatin regions. Whether DNA
fragments from these repeat regions are released in these
unbalanced proportions or specific cell-free DNA clearing
mechanisms maintain the under/over-representation is
currently not well understood. We investigated fragment
lengths originating at different repeats to gain an insight
into this imbalance hypothesizing that any preferential en-
zymatic clearing mechanisms could also affect the size of
the DNA molecules containing specific repeats.
We make use of the Repbase database and RepeatMasker

annotation for this analysis [57]. When comparing 32 broad
categories of abundant repeats as per the class/family classi-
fication in RepeatMasker, there appears to be no difference
in the fragment sizes with the density curves overlaying
each other closely (Additional file 5). Narrowing the scope
to 50 more specific repeat types within the broader classifi-
cations also shows no gross imbalances in fragment lengths
except in three categories (Fig. 4). Details for the 50 repeat
types analyzed are provided in Additional file 6.
Figure 4 compares the lengths of fragments mapping

across the genome to those originating from specific re-
gions containing micro-satellites annotated as (CATTC) n
and (GAATG) n as well as regions of alpha repeat elements.
More than 200,000 fragments are used to create the density
curves for each micro-satellite and more than 3 million
fragments are used for the more abundant alpha repeats.
The two groups of microsatellites clearly show smaller
fragment sizes when compared to the genome-wide profile.
It is of note that the GAATG motif is the reverse-
complement of CATTC generating the hypothesis that
both strands are affected by a similar cleavage process to
produce this divergence in fragment lengths. Alpha repeats
in contrast appear to show more enrichment than expected
in the third mode that corresponds to the tri-nucleosome
lengths suggesting that they are protected from nucleases.
None of the other 47 types showed a notable deviation in
their fragment length profiles (results not shown).



Fig. 3 Estimated proportions from the 3-component Gaussian mixture model of the cell-free fragment lengths separated by chromosome. For
both samples I1_M_plasma and G1_M_plasma, these estimates approximate the proportion of mono-, di- and tri-nucleosome lengths in each
chromosome. All other mixture model parameters are reported in Additional file 4. The solid lines depict the average value in each component
while the dashed lines demarcate +/- 3 standard deviations from the mean
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Higher-order genomic enrichment of cell-free DNA
Cell-free DNA autosomal fragment lengths show clear
signs of nucleosome related cleavage (Fig. 2). We further
investigate this non-random cleavage by examining
sequencing-read coverage patterns along the genome
using strand-cross correlation analysis [58]. The cross-
correlation plot for cell-free DNA (Fig. 5) shows a strong
periodicity that gradually decreases in amplitude but never-
theless extending over a region up to 3000 bp. Overall, the
strength of the correlation is a function of the depth of se-
quencing as evidenced by the decrease in values for G1_M
(52 X) compared to I1_M (74 X). The different signals con-
tributing to this pattern is described below.
The best overlay (highest correlation) between the

reads on the forward and reverse strands, when they are
shifted with respect to each other, occurs at 167 bp. This
corroborates the dominant fragment length in Fig. 2.
The corresponding cross-correlation plot for the cellular
data only shows one signal and it is at 177 bp, which
corresponds to the median cellular fragment length
(Additional file 7).
In cell-free DNA, high correlation between the read

counts of the two strands recur at multiple distances of
~190 bp from each other. These recurring peaks suggest
that cell-free DNA reads occur in equidistant clusters.
Therefore, the cross-correlation analysis suggests that
paired reads across the two strands are separated by dis-
tances equivalent to the fragment lengths present (the
most prevalent being 167 bp) and the reads on the same
strand are separated by ~190 bp. This pattern can be ob-
served to extend up to 3 Kb. This regularity of coverage
enrichment is not present in the randomly fragmented
cellular data as there is no periodicity in the correlation
signal (Additional file 7).
To investigate the relationship of these read clusters

with higher-order chromatin organization we downloaded
annotation tracks that give signal strength for stable nu-
cleosome cores (MNase-seq) and open chromatin regions
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(FAIRE-seq) in the lymphoblast cell-line (Gm12878) avail-
able through the ENCODE project [59, 63]. For each
plasma sequencing dataset, we converted the read cover-
age at each position along the chromosomes into a
window-based signal, utilizing the software used to gener-
ate the ENCODE signal tracks. The cellular samples
underwent the same process to act as controls. Subse-
quently, pairwise Pearson correlations were calculated for
the signal values between the 6 tracks (I1_M_plasma,
G1_M_plasma, I1_M_cellular, G1_M_cellular, MNase-seq,
FAIRE-seq). Fig. 6 provides the pictorial representation of
the resulting correlation matrix.
The results show that cell-free DNA fragment-end po-

sitions are moderately correlated with the open chroma-
tin regions in the annotation (Pearson’s correlations of
0.45, 0.49) while these cleavage positions have little to
no correlation with the nucleosomal core positions
(0.14, 0.07). In contrast, cellular DNA with its random
fragment positions show low correlations in the range of
0.25 – 0.37 with both MNase-seq and FAIRE-seq signals.
There also appears to be very little correlation between
nucleosome position and open-chromatin signal tracks
although we would expect a negative correlation. The
non-random nature of cleavage in cell-free DNA is
highlighted by a high-correlation in the coverage signal



Fig. 6 Pearson’s correlation of cell-free and cellular DNA read coverage signal with open/closed chromatin enrichment annotation. Pairwise Pearson’s
correlation is calculated between fragment start site signal tracks from cell-free and cellular DNA sequencing data along with open chromatin
(FAIRE-seq) and nucleosomal position (MNase-seq) signal annotation from ENCODE. The figure provides the pictorial representation of the
resulting correlation matrix
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between the two plasma datasets (0.75), while the cellu-
lar DNA samples only shows a moderate correlation
with each other (0. 41).
This analysis was conducted to gain an overall under-

standing of the cleavage patterns of cell-free DNA frag-
ments along the genome. The experimentally derived
annotations of the genome that describe open and
closed chromatin states that were used in this analysis
are noisy signals. Despite this, the results support the
hypothesis that the structure in plasma sequencing data
correlates with known biological signals. This was evi-
denced by both cross-correlation analysis using read-
depth measures and genomic co-location of fragment
ends with related ENCODE annotation.

Nucleotide signature at fragmentation sites
In this analysis, we examined the base proportions
around the read starts in the I1_M and G1_M sequen-
cing data. Cellular DNA does not show a dependence on
specific nucleotides for the region surrounding the frag-
ment break (position 0 in Fig. 7) except for a small pref-
erence for Cytosine at a position in the reference
genomic sequence adjoined to the 5′-end of the read
(position -1). This appears to be a technical bias related
to the shearing process involved in the Covaris instru-
ment used to fragment the cellular DNA [66]. The base-
preference per position is very similar between the
autosomal and mitochondrial components of the cellular
data except for the difference in average proportion of the
bases due to one of the strands in mitochondrial DNA be-
ing Cytosine-rich (referred to as the heavy strand).
In contrast to cellular DNA, the nucleotide propor-

tions for cell-free DNA autosomal fragments show a
clear position specific pattern with Cytosine taking
prominence at positions 0 (cleavage site), 1 and -2. The
pattern extends up to ~10 bp on either side of the site
as seen in Additional file 8, which gives the relative fre-
quencies of the nucleotides at each position. We also
note that the nucleotide signatures in G1_M and I1_M
are very similar to the patterns observed in 29 low-
coverage (>0.5 X) datasets that we have published previ-
ously [50]. The low-coverage datasets are generated from
independent samples using different sequencing plat-
forms and different versions of library-prep kits. Since
this analysis reproduced the nucleotide pattern, it ap-
pears to give further evidence that this signature is not a
technical artifact of the downloaded data and strongly
indicates a biological origin.
Compared with the result in autosomal fragments,

cell-free mitochondrial DNA shows a noticeable lack of
perturbation in base proportions except at the cleavage
site where it shows a small preference for Cytosine. The
differences between the autosomal and mitochondrial
profiles appear to connect back to the fragment size



Fig. 7 Mononucleotide frequencies for the region of 51 bp (+/−25 bp) around fragment start sites. The y-axis denotes the proportion of each nucleotide
at fixed positions relative to the 5′ end of the DNA fragment and the vertical line at 0 denotes the fragment start. Sample I1_M is denoted with lines while
circles represent the G1_M values. For both cellular and cell-free data in the two samples, fragments are divided into autosomal and mitochondrial classes
displayed in dark and light colors for each base respectively
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differences seen in Fig. 2 and the higher-order structural
differences between the two categories of DNA.
We do not observe a notable difference in position

specific nucleotide preference when separating the frag-
ments by size (Additional file 9). However, we do ob-
serve that fragments we inferred to be cleaved within
the nucleosome subunit (lengths 100-140 bp) has higher
proportions of G and C bases than those originating
from cleavage at the linker DNA (lengths 200-250 bp)
evidenced by the inversion of the marginal profiles
between the two fragment classes. This observation is
supported by previous work, which document that nu-
cleosomal regions are generally GC-rich while linker re-
gions are GC-poor [67, 68].
Moving on from the marginal nucleotide profiles, we

investigate the joint distribution of nucleotides at the
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cleavage site by looking for short sequence motifs with
differential enrichment between cell-free and cellular
DNA. Additional file 10 presents the top result for both
I1_M and G1_M. This motif corroborates the marginal
profiles in Fig. 7 in that nucleotide C takes prominence
in both the 0th and 1st position at the cleavage site. Bases
C, G and T are preferred over A in position -2 and C, T,
A nucleotides are preferred over G at position 2. There
is little support for a specific base at the position imme-
diately before the fragment start (-1). This motif was the
top result in both datasets with ~1.5 million cell-free
DNA sequences out of 10 million supporting the full
5 bp motif compared to ~0.5 million in cellular DNA.

Comparison of maternal and fetal fragments
Sample I1_M has 26,162 SNPs that were genotyped with
high confidence as homozygous in the mother (I1_M_cellu-
lar) and heterozygous in the cell-free DNA mixture
(I1_M_plasma). Close to 224,000 fragments carry the fetal-
specific allele at these informative SNPs and 1,749,269 frag-
ments carrying the shared allele were classified as maternal
for analysis purposes. Sample G1_M only contained 7497
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Fig. 8 Size distributions of maternal cell-free DNA contrasted with fetal DN
two components using allelic information at informative SNPs. Fragment si
informative SNPs due to its lower coverage and we sepa-
rated out 351,648 maternal and 22,843 fetal fragments.
When comparing the fragment length profiles between

these two components (Fig. 8) we see that the fetal dis-
tribution is shifted toward the shorter end, compared
with the maternal distribution. Table 3 provides sum-
mary statistics for the two classes of fragments and
shows that the median maternal fragment length in
I1_M and G1_M is 174 and 171 bp respectively while
the median for the fetal component is ~160 bp. We see
that the fetal-specific signal is depleted for the di-
nucleosomal peak (third quartile) and there are more fetal
sequences with lengths shorter than that of a mono-
nucleosome (first quartile for maternal fragment sizes in
I1_M and G1_M is 162 and 159 bp respectively while the
fetal values are calculated to be 141 and 142 bp).
Interestingly, even though there is a marked difference in

size, the position specific nucleotide pattern is very similar
between maternal and fetal fragments (Fig. 9). There is also
no evidence for a strand specific fragmentation signature
since the 3′ ends of the fragments show the reverse com-
plement of the 5′ pattern.
300 400 500 600

DNA Fragment Type

cell−free maternal
cell−free fetal
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nt Length (bp)
A for two subjects (I1_M and G1_M). Fragments are classed into the
zes are calculated using the paired-positioning of sequencing reads



Table 3 Summary statistics for maternal and fetal fragment
lengths

Statistic I1_M G1_M

Maternal Fetal Maternal Fetal

Q1 162.0 141.0 159.0 142.0

Median 174.0 160.0 171.0 161.0

Mean 191.5 166.9 185.0 166.6

Q3 191.0 176.0 186.0 175.0

Standard dev. 66.3 51.0 59.9 50.4
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Discussion
In this study we interrogate multiple sequence signals
that appear due to the non-random nature of cell-free
DNA fragmentation using high coverage sequencing of
maternal plasma.
By first examining the fragment lengths present in

cell-free DNA and then investigating the position of
fragments along the genome, we corroborate the leading
hypothesis in literature [8, 28] that fragmentation is pri-
marily between nucleosomes with subsequent intra-
nucleosomal cleavage along the DNA helical turn. The
lengths corresponding to one nucleosomal subunit ap-
pear to be the most prevalent and conserved size with
di- and tri-nucleosomal lengths showing much lower
proportions. We examine the periodicity in cell-free
DNA fragment length distribution using Fourier analysis
and confirm the ~180 and ~10 bp periodicity due to the
two levels of cleavage which others have only assessed
visually. In addition, because of the high coverage data,
we are able to show that longer fragments do not exhibit
this stable 10 bp pattern and certain lengths show a de-
creased periodicity of ~5 bp. Only around 10 % of the
fragments are shorter than 145 bp, which is the range
that exhibits the 10 bp periodicity most clearly. This
length (~145 bp) is related to DNA wrapped around the
nucleosome (excluding the DNA connected to the per-
ipheral histone H1 which adds ~20 bp). The lack of frag-
ments in this range could be due to the rapid enzymatic
activity once the DNA wrapped around the histones are
exposed to cleavage. Hence, cell-free DNA associated
with one full nucleosomal subunit (~167 bp) appears to
be preferentially protected from further enzymatic
cleavage and creates a stabilizing structure in circula-
tion evidenced by its prevalence in the fragment length
distribution. We also show that these sequence signa-
tures are completely missing from mitochondrial DNA
that lacks the higher-order packaging which nuclear
DNA undergoes, lending more evidence to the hypoth-
esis of nucleosome-related cleavage.
While there is no major difference in the fragment

length distributions between chromosomes and in differ-
ent repeat categories within chromosomes, our analysis
illuminated a few exceptions. Fragments containing a
repeating motif of CATTC and reverse complement
GAATG show higher than average rate of cleavage. Pre-
viously, these repeats had been shown to be over-
represented in the cell-free DNA from apoptotic human
umbilical-vein endothelial cells [25]. Since the other sim-
ple repeats analyzed did not show this difference in frag-
ment lengths, our observations would indicate that this
motif is specifically involved in the biological processes
that produce cell-free DNA. Investigating this rationale
further is beyond the scope of this study although this
observation maybe useful in cancer research which uses
cell-free DNA micro-satellite instability as a biomarker
for presence of tumor DNA. We also observed that frag-
ments with sizes in the order of tri-nucleosomal DNA
were enriched for alpha repeats. It can be hypothesized
that since alpha repeats generally occur in heterochro-
matin regions, the longer fragment lengths are due to
the regions being generally inaccessible by enzymes due
to the dense packaging.
Utilizing cross-correlation analysis, we showed that

cell-free DNA exhibited highly regular spacing of se-
quence read-counts, where fragment end coverage alter-
nates between high and low in neighboring regions
corresponding to the ‘beads-on-a-string’ nature of con-
secutive nucleosomes in stretches up to 3 Kbp. This
gives cell-free DNA sequencing data remarkable struc-
ture in terms of read coverage across the genome.
Utilizing ENCODE annotation we showed that the

cell-free DNA fragment starts and ends are more corre-
lated with open chromatin regions than nucleosomal
cores, corroborating the previous observations that the
DNA is cleaved at nucleosome linker regions. This ana-
lysis is an approximate examination of the non-random
cleavage patterns of cell-free DNA fragments along the
genome. While ENCODE provides the most curated an-
notation, it is highly likely that it only represents a fraction
of the chromatin elements in the genome as it requires
concordance between data from different replicates, differ-
ent laboratories of origin etc. Furthermore, the lympho-
blast cell-type used may not be ideal for cell-free DNA in
blood, which is almost certainly a mixture of fragments
from varying tissue origin [69]. These inconsistencies, gen-
eral noisiness in sequencing data when averaging across
the genome and read coverage imbalances between sam-
ples needs to be taken into account and could explain the
only modest difference between plasma cell-free DNA and
cellular data for open chromatin.
However, these two analyses show that coverage in

cell-free DNA sequencing data does not vary simply due
to technical biases such as GC-content and read mapp-
ability along the genome but also due to biological fac-
tors. This is important in copy-number variation
analysis where CNVs in certain regions would be harder
to detect simply due to lack of cell-free DNA fragments



Fig. 9 Comparison of the nucleotide signature at fragmentation sites for fetal and maternal fragments. This plot illustrates the mononucleotide
frequencies for the region of 51 bp (+/−25 bp) around fragment starts and ends. The y-axis denotes the proportion of each nucleotide at fixed positions
relative to the 5′ and 3′ ends of the DNA fragment and the vertical line at 0 denotes the strand specific fragment end. Maternal proportions per position
are connected with lines while circles represent the fetal values. For both components, the proportions have been averaged over I1_M and G1_M. The
close overlay of the fetal proportions and maternal values show that the variability between them is nearly negligible

Chandrananda et al. BMC Medical Genomics  (2015) 8:29 Page 15 of 19
originating from these regions despite the overall depth
of sequencing. Benjamini and Speed [70] showed that in-
corporation of such fragment features and coverage pat-
terns was possible and improved CNV detection for
cellular DNA data. Our previous work [50] also showed
that even using only some of the biological signals detected
in this work already lead to a substantial improvement in
trisomy 21 detection. Therefore, it is likely to be beneficial
for other bioinformatics algorithms to take this fine-scale
structure in the sequencing data into account to avoid this
biological bias in coverage.
In a novel result, we showed that cell-free DNA cleav-

age is sequence dependent where mononucleotide fre-
quencies show a consistent position specific pattern in



Fig. 10 Summary of the main sequence signatures and underlying biological signals documented by the study
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the region spanning up to 10 positions on either side of
the DNA cleavage site. This marginal sequence motif is
similar in nucleosomal core and linker regions but is ab-
sent in nucleosome-free mitochondrial DNA. The pat-
tern we see at the cleavage site could be the final result
from a complex mixture of cell-free DNA in circulation
due to different factors i.e. different proportions of apop-
totic/necrotic input, endo- and exo- nuclease activity and
different tissue origin. However, this specificity of nucleo-
tides at positions around the breakpoint has implications
for sequence motifs and is a potential source of variability
that can be used to compare between different diseased
states in cell-free DNA biomarker analysis.
Although we analyzed the above sequence signatures

using the cell-free DNA mixture in maternal plasma as a
whole, we also separated the two components belonging
to the mother and fetus. Our work corroborated obser-
vations by others [8, 28] that showed that fetal DNA
tends to be shorter than maternal DNA. However, we
have now shown that both fetal and maternal cell-free
DNA components are affected by comparable enzymatic
or biological processes due to the similarity in the nu-
cleotide signature at the fragment ends. Since cell-free
DNA fragmentation mechanisms are not fully under-
stood we can only speculate that perhaps shorter frag-
ments are preferentially released into circulation from
fetal cells or that fetal DNA is not as well packaged as
maternal DNA leaving it more exposed towards enzymes
in blood and thus producing shorter fragment lengths.
Conclusions
In recent years, high-throughput sequencing of cell-free
DNA has revolutionized prenatal testing by providing a
more accurate non-invasive screening method for fetal
aneuploidy. Cell-free DNA also shows great promise as a
source of data to detect early signs of cancer, interrogate
the genetic landscape of tumours and track the evolution
of associated mutations after treatment. However, clin-
ical research has been impeded by the lack of knowledge
on the biology of this extracellular DNA and the low sig-
nal to noise ratio in the procured data.
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Here we show that there is considerable biological
background signal (Fig. 10) in cell-free DNA sequencing
data that could be harnessed to improve existing bio-
informatics analysis as well as providing reproducible
biological variation, which, when taken into account,
should improve detection methods in particular for copy
number variation.
The landscape of cell-free DNA in circulation would

differ in various pathological conditions due to differ-
ences in apoptotic and necrotic contributions to the
total pool of cell-free DNA, the behavior of the immune
system or epigenetic changes resulting in alterations of
chromatin structure [71]. In this work we have discov-
ered potential sources of variability in cell-free DNA
data. These, along with the descriptive measures we im-
plement can be used to characterize the changes in cell-
free DNA occurring in the aforementioned situations.
Our observations using cell-free DNA in plasma can also
be used as a base line in biomarker studies to compare
and contrast between extracellular DNA from different
sources such as urine, synovial and cerebrospinal fluids.
Additional files

Additional file 1: Figure S1. Size distributions of autosomal cell-free
DNA from two subjects (I1_M and G1_M). The plots show the ~ 10 bp
periodicity in fragment lengths smaller than 145 bp and the approximate
5 bp periodicity in fragment sizes between 290−390 bp.

Additional file 2: Figure S2. Smoothed periodogram of the time-series
fit to the cell-free autosomal fragment lengths of samples I1_M and G1_M.

Additional file 3: Figure S3. Goodness of fit of the 3-component
Gaussian mixture model fitted for the genome-wide autosomal fragment
lengths in cell-free DNA data. While the distribution function of the mixture
is the sum of weighted Gaussian probabilities, its inverse is computed
numerically.

Additional file 4: Table S1. Estimated parameter values from the
3-component Gaussian mixture model. The model is fitted to the
autosomal fragment lengths calculated in the genome-wide context
and in each chromosome separately.

Additional file 5: Figure S4. The density profiles of autosomal fragment
lengths originating at 32 different repeat categories in sample I1_M_plasma.
The number of fragments used to calculate the size distribution is depicted
in the legend beside each repeat category.

Additional file 6: Table S2. Specific repeat types examined for difference
in fragment length densities. The information has been retrieved using
Repeat Library 20090604 in the RepeatMasker annotation.

Additional file 7: Figure S5. Strand cross-correlation analysis for cellular
DNA. The 3′ strand is shifted with respect to the forward strand in increments
of 1 bp and the Pearson’s correlation between the per-position read counts
for each strand is calculated to generate this cross-correlation plot.

Additional file 8: Table S3 Normalized mononucleotide frequencies for
the region of 51 bp (+/−25 bp) around autosomal fragment start sites for
cell-free DNA.

Additional file 9: Figure S6. Mononucleotide frequencies for the region
of 51 bp (+/−25 bp) around fragment start sites, separated by fragment
length. The y-axis denotes the proportion of each nucleotide at fixed
positions relative to the 5′ end of the autosomal DNA fragment and the
vertical line at 0 denotes the fragment start. Values are averaged
between I1_M and G1_M samples. Fragments are divided into two classes
according to their length displayed as solid and dashed lines respectively.
Additional file 10: Figure S7. Top result from the discriminatory
sequence motif analysis using DREME software.
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