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Unified selective sorting approach 
to analyse multi-electrode 
extracellular data
R. Veerabhadrappa1, C. P. Lim1, T. T. Nguyen1, M. Berk2, S. J. Tye3, P. Monaghan4, 
S. Nahavandi1 & A. Bhatti1

Extracellular data analysis has become a quintessential method for understanding the 
neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated 
nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-
electrode recording and data analysis as well as the limitations pertaining to some of the currently 
employed methodologies. To address some of the challenges, we present a unified algorithm in 
the form of selective sorting. Selective sorting is modelled around hypothesized generative model, 
which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The 
algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, 
least square and correlation concepts which strategically tailors a sequence to characterize and form 
distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort 
overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different 
levels of complexity and the performances are tabulated for comparison using widely accepted 
qualitative and quantitative indicators.

Neurophysiological studies are of paramount importance in revealing the underlying behaviours and properties 
of neurons and eventually providing a good understanding of the human nervous system. The studies have proved 
to be very important in the development of neuro-prosthetics and Brain Machine Interface (BMI) devices. As an 
example, intra-neuronal recordings from the primary motor cortex have been investigated to develop neural 
decoders that can eventually drive artificial prostheses or machines1. Further, the contribution of these studies in 
understanding neurological disorders are extremely valued, especially, the use of intracranial electrodes to gather 
information pertaining to epileptic patients2. Indeed, MEA’s have been employed to understand the influence of 
gamma-protocadherine, which regulates the endurance of a neural network and the generation of new synapses3.

One of the key aspects of neurophysiological studies involves the tapping of intra-neuronal signals, so as to 
decipher the neural networks collective behaviours without disrupting their natural functioning. Extracellular 
recordings are the preferred techniques to aid in neurophysiological studies, and the recordings can be mainly 
grouped into two categories, that is: in-vivo (invasive) and in-vitro (non-invasive). In-vivo recording techniques 
use a micro-electrode like probe or a tetrode (probe with four electrodes) to be surgically implanted onto a region 
of observation, in which intra-neuronal activities are recorded4. In contrast, in-vitro recording techniques use a 
micro-electrode array (MEA) with the cell samples cultured in a petri dish5. Similarly, active cell specimens from 
animals are collected and placed on the micro-electrodes from which the intra-neuronal activities are recorded6.

Problem Statement
Irrespective of the recording techniques used, the intricate nature of the nervous system poses major problems 
during tapping and processing of intra-neuronal signals. The main attribute of any intra-neuronal activity is the 
pattern made up of action potential followed by a refractory period, which is referred to as a neuronal spike7,8. A 
major problem associated with the processing of any intra-neuronal recording is that each electrode is subjected 
to more than one neuronal activity at any instance9. The electrode closer to a neuron renders stronger signals to 
be picked up by the channel, whilst action potential from neighbouring neurons superimposes upon the stronger 
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ones contributing as noise to the channel. Additionally, noise may also be contributed by the recording unit, 
processing system and the surrounding environment10 resulting in uncharacteristic spike events. To interpret 
the collective behaviour it becomes imperative to distinguish each neurons activity both in time and space under 
reduced influence of noise.

Existing Procedures and Drawbacks
The process of identifying the number of neurons and the spike times associated with each neuron is referred to 
as spike sorting. The major challenges in our sequential spike sorting algorithm can be broadly summarized as 
follows4,9.

•	 Detecting the instances at which the spiking activity appears in each voltage channel of the recording device;
•	 Extracting the spike shapes for clustering; and
•	 Estimating overlapping spikes.

Each of the aforementioned steps depend on the results of its preceding steps. The precision of results at each 
step is of utmost importance as any error accumulates through every step, thus degrading the performance of the 
algorithm. Simple spike detection techniques employ a hard thresholding, which is a straightforward technique. 
Each channel voltage is examined and through visualisation a statistical estimator such as: standard deviation 
of the channel signal8,11, root mean square4,12 or standard deviation of the background noise13,14 is employed to 
identify a spike event. Generally, the performance of these simple techniques degrades under low Signal-to-Noise 
Ratio (SNR)15. A more comprehensive method is described in ref. 16 where a window-based spike detector is 
proposed. Specifically, a preset window of defined duration scans for a positive peak followed by negative peak 
and corresponds the span to be a spike waveform. Nevertheless, the extracted spike duration represents only one 
spike and any secondary positive peaks will be ignored. Overlapped spike shapes with their unrepresentative 
appearance, as compared with typical spike shapes are considered as noisy or distorted waveforms.

Assuming that the spikes were detected comprehensively, appropriate feature vectors are required to be iden-
tified prior to clustering. Initially, spike shapes are extracted using windowed discriminators, as discussed in 
the previous paragraph. And to highlight the features of interest, the extracted spikes are subjected to a suitable 
transformation. Principle component analysis has been widely adopted in selecting the prominent features4,17. 
Alternatively, a random number of features that display higher deviation from normality, following a normality 
test, are chosen as the inputs for clustering13,18. It has been observed that the deviation results are dependent 
on the transformation method used on the data set and no standard is defined to test the quality of the selected 
features. Besides that, a poor data transformation could result in poor selection of features and could hinder the 
performance of clustering.

Standard clustering algorithms including k-means, partition around medoids (PAM) and hierarchical clus-
tering require prior knowledge of number of clusters, that is the K value19. The lack of ground truth forces one to 
use brute-force experiments to approximate the K-value. This dilemma of choosing an optimal K value leaves the 
general clustering algorithms not well disposed to sort neuronal spikes. Besides, many shortcomings of k-means 
are described in ref. 20, making it a even less favourable spike sorting method. To overcome these shortcomings, 
many novel clustering algorithms have been proposed, such as Wave_clus, which is an open-source spike sort-
ing program that incorporates the super paramagnetic clustering (SPC) algorithm13,21. Klustakwik is another 
open-source software based on genome clustering and CEM which uses the idea of classification by expectation 
maximization4. The Ordering Points To Identify Clustering Structure (OPTICS) is another algorithm22 developed 
to compensate the complex feature selection processes8. Despite the availability of such power clustering proce-
dures, they are often vulnerable under overlapping spike shapes.

Traditional approach employ Mclust, a manual procedure of forming clusters. Further, the clusters are visually 
examined and a clear un-contaminated spike shape is identified to represent the subset of a spike waveforms11. 
The representative spike waveforms were subtracted from an overlapping event and the one which resulted in the 
least channel voltage error was considered as the best match. This manual clustering and the arbitrary matching 
procedure based on spike waveforms voltage distribution across a channel, would not yield a good result under 
complex neuron populations and long recording durations. This shortcoming is addressed in ref. 23, where the 
background noise covariance is used to enhance the principal spike component in a channel, by targeting some 
specific spikes shapes. The model proposed in ref. 8 is based on the maximum likelihood estimation incorpo-
rating noise covariance characterization into their matching process. However, the algorithms lacks a definitive 
generative model, does not address any previous ground truth estimation processes and, as such the model is less 
attractive.

A more sophisticated model is proposed in refs 24 and 25, which assumes the channel voltage to be the result 
of a convolution between impulse spike train and spike shapes. The process also considers background noise dis-
tinction and greedy matching procedures to segregate overlapping spikes. The basic notion of the greedy match-
ing procedure simply identifies peaks as spike events and tends to recognize any detected events into a predefined 
groups formed by clustering algorithms. The lack of a comprehensive thresholding technique means that the 
greedy matching procedure identifies far too many false positives.

One common drawback of all the aforementioned models is that they fail to rationally address the spike event 
detection. Therefore, when the channel SNR is low these models perform ineffectively.

Proposed Approach and Improvements
The proposed selective sorting model addresses the problem of spike detection in novel way. We have adapted the 
concept of Cepstrum of Bispectrum (CoB) based spike detection owing to its effective results even at a low SNR26. 
Window-based spike waveform extractors are used to extract spike shapes in the detected region16. Instances at 
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which spikes are detected are stored as index information, which is later used during statistical estimation. The 
spikes are subjected to wavelet transformation and a test of normality is employed to choose the best features for 
clustering18.

A novel probability density function (pdf) based technique is introduced to visually examine the quality of 
the chosen features. The chosen features are subjected to three different clustering procedures including SPC21, 
Klustakwik25 and OPTICS22,27,28. The results are statistically compared, and the one with a better overall score is 
chosen for estimation of overlapping spikes. The statistical estimation introduced here incorporates the princi-
pal spike shape employing linear regression, noise distinction based filtration technique, which is followed by 
matching and iterative elimination through a model formulated in refs 8 and 23. The advantage of this algorithm 
is, instead of greedily choosing the spikes with the maximum peak8,24,25 the algorithm is restricted to only those 
indices detected during spike detection.

Selective Sorting Algorithm
Figures 1 and 2 summarizes the Smith and Mtetwa’s29 model for generating extracellular signals which is used as 
a basis for tailoring the proposed algorithm. An overview of the selective spike sorting algorithm is described in 
Fig. 3. Accordingly, the voltage information v(t) on a single channel can be formulated using (1) as

∑ν η= +
=

t s t t( ) ( ) ( )
(1)n

N

n
1

where n is the number of neurons assumed to be spiking over discrete time t, N is total number of neurons under 
consideration, sn is the spike train of the nth neuron and η(t) is noise. Spike train sn can be realized as representing 
the voltage information for any nth neuron without system noise η as

τ
=





σ =
.

S t w t( ) ( ), when ( ) 1;
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where wn(τ) is a distinct spike waveform associated with the nth neuron, τ is the length of each spike waveform, 
which is approximately 2.5 ms or 60 samples at 24 kHz sampling rate. The proposed algorithm carefully analyses 
the synthesizing process described by 1 and 2. At every step, we aim to distinguish the input impulse sequence 

Figure 1.  Summing of spike trains with noise giving the final extracellular voltage v(t). 

Figure 2.  Impulse responses of individual neurons and their respective spike waveforms leading to their 
respective spike trains sn. 
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δn(t) from the extracellular voltage ν(t). To facilitate this process establishing logical ground truths is very impor-
tant, which can be conveyed by an approximate estimate of the number of neurons and their spiking events δn(t).

With ground truth estimation as our foremost motivation and, considering the fact that ν(t) is made up of a 
combination of spike train sn(t) from n neurons and system noise η(t), as described in 1. We examine the spike 
sorting process by assuming an ideal case i.e. in a noise-free environment where only a single neuron is actively 
spiking during the recording process. As such, for n =​ 1 and η(t) =​ 0 in 1, ν(t) =​ sn(t) =​ s(t) and δ δ= ˆt t( ) ( )n . 
Extending this method for real case scenarios, where more than one neurons have contributed to the channel 
voltage, δ̂ t( ) represents a combined input sequence, i.e. if n ≥​ 1 then δ δ= ∑ =

ˆ t( )n
N

n1 .
Given δ̂ t( ), one simple method to segregate the combined sequence into n neuronal sequence δn(t) is to iden-

tify all M spike shapes τŵ ( )M  and group the similar ones based on a clustering procedure. It should be noted that 
not all spike shapes can be grouped as they include many overlapped spike shapes. The defined groups are used as 
a base to approximate the n value that is δn(t) from 2. This is under the assumption that τ∼w ( )M  represents the 
mean or an average spike shape for each group similar to wn. This leads to the probability of finding any nth spike 
waveform wn given δ̂ which follows a simple likelihood principle as

δ ν δ=∼ ∼ˆ ˆL w p w( , ) log{ ( , )} (3)

For a valid δ̂ the chances of finding the nth neuron follow the Bernoulli’s principle as

ν δ ν δ| ∝ −∼ ∼ˆ ˆ{ }p w f w( , ) exp 1
2

( ( , ))
(4)

where f refers to the transfer function defined by 2. By estimating the likelihood of all n neurons at all δ =ˆ t( ) 1, 
the one with the highest probability constitutes the ideal choice, which reflects on the respective δn(t) 
accordingly.

Methods
We summarize the concept of CoB-based spike detection from26. The CoB technique assumes a model where the 
channel voltage ν(t) is the resultant of a binomial incoming process δn(t) filtered through f(t), filter transfer func-
tion made up of the intra-neuronal spike shape wn(τ) and the spike transfer characteristic defined in 2, summed 
with noise η(t). By filtering ν(t) through an inverse filter f−1(t), the input sequence can be recovered along with 
its noisy component.

Estimating the combined impulse sequence.  If f(t) represents the filter transfer function in the time 
domain whereas F(n) in the frequency domain obtained by taking the Fourier transform of f(t). Bispectrum Bν(n, m)  
of voltage ν(t) is estimated by taking the third moment of 2-dimensional Fourier transformation at frequency 
components n and m using 5 as

= +ν
⁎B n m V n V m V n m( , ) ( ) ( ) ( ) (5)

Ceptrum can be computed by taking an inverse Fourier transform in logarithm of 5 at frequency m as

= νν
C n t IFT B n m( , ) [log{ ( , )}] (6)B

or by assuming V to be result of 2 in which case 6 can be rewritten as

Figure 3.  Overview of the proposed Selective sorting algorithm. 
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ξ= ∗ +
ν

C n t IFT F n F m F n m( , ) [log{ ( ) ( ) ( )}] (7)B

where ξ represents the skewness of δ(t). The term F(n) can be computed by solving 7 for log as

= −ν νF n e( ) (8)C n C( ,0) (0,0)B B

Now f−1(t) can be computed by taking the inverse Fourier transform of F−1(n). To recover the input sequence 
δn(t) from its noise term, the filtered signal is further subjected to a stationary discrete wavelet transform using 
the coiflet wavelet δn(t) owing to the fact that CoB just identifies the spike times but does not segregate it to their 
respective neurons.

As an example, we synthesize a single channel voltage data v(t) using the model described in ref. 29. For each 
of the distribution pattern shown in Fig. 4(a) our synthesizing model uses two distinct spike shapes displayed 
in Fig. 4(b). The model establishes the stringent case of overlapping and the capability of CoB to identify two 

Figure 4.  (a) Individual input spike train from each neuron which is summed to produce channel data, (b) 
Magnified part from (a), clearly showing the overlap interval, (c). The two green stars are the intervals of peaks 
detected by CoB, (d). Channel voltage after summing the spike trains in (a) which is further correlated by 
spikes originating from neighbouring neurons and very low Gaussian noise. The green stars indicate the spikes 
detected after applying CoB method.
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overlapping spike events with a near synchronous overlap as demonstrated in Fig. 4(c). The resulting voltage v(t) 
resembles as shown in Fig. 4(d).

Establishing and approximating the ground truths.  From 2, the recovered sequence δ̂ t( ) is modelled 
such that the spiked instance t is set to 1 as presence and 0 as absence. The following procedure relays the meth-
odology to distinguish this sequence into their respective neurons δn(t).

Spike waveforms extraction.  The windowed discriminator technique similar to the one described in ref. 16 is 
used to extract spike waveforms. For each instance of δ =ˆ t( ) 1 a waveform τŵ( ) of approximately T̂  samples are 
extracted where τ ranges between 1 and T̂ . Secondary spike found within T̂  are neglected and only the maximum 
peak for each waveform is considered. For uniformity and simplification of the feature selection procedure the 
waveforms are organised with all their peaks lined up as shown in Fig. 5.

Construction of feature set.  Feature selection follows the same procedure as described in ref. 13, where all M 
number of extracted spike waveforms, τŵ ( )M , are decomposed using Haar wavelets. The feature set is constructed 
by identifying 10 best features, which have a better deviation from normality. It is also possible that while some 
features are identified with better results in KS-test, they do not favour clustering. Therefore, each identified fea-
ture set is cross verified by plotting against their respective pdfs using the following expression

ψ
πσ

=τ

ψ

σ

Ψ

− −

τ

τ ψτ

ψτp e1
2 (9)

m( )

2

2

2

where, ψτ represents the wavelet transform at any τ over the dimension M, while ψτm  and σψτ are the respective 
standard deviation.

Clustering.  Three major clustering algorithms specially designed to enhance spike sorting are described. It is 
worth pointing out that real spike data always differ from synthetic spike data in terms of SNR, ground truths, and 
their unknown statistical distribution. The features selected in the previous step are subject to all the following 
clustering algorithms to better approximate the ground truths.

Super-paramagnetic clustering.  Super-paramagnetic clustering (SPC) is devised around the concept of the ising 
Model27,30 as in a chemical bonding of any lattice structure. Instead of restricting the number of states to just two 
(+​ or −​) q-states are introduced as in the potts model31. Each of the M waveforms is initially assigned to one of 
the q-states. The Euclidean distance ei,j of all M spikes are estimated and the shortest path is derived by assuming 
that the neighbours are formed within a specified K value as

=







→ − → → → −

.
e w w w w K, and are confined within boundary and vice versa;

0, otherwise (10)
i j

i j i j
,

2

where i, j =​ 1, 2, ··· M. The interaction strength Ji,j is evaluated as

Figure 5.  Spike extraction and aligning. 
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(11)i j

e
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where K̂  is the average neighbours identified for each i and j and a is the average of eij
27. The main feature of SPC 

is that by varying temperature T from low to high value over several Monte Carlo simulations, the system under-
goes magnetisation changes traversing from the ferromagnetic state to the paramagnetic state. The states simul-
taneously flip and take up a different q–value and the new states are defined at the super-paramagnetic phase 
forming the required clusters30,31. The probability of two neighbouring features sets change their states si and sj to 
a new state, which is determined by the thermal average of point-to-point correlation function δs s,i j

 as is defined 
in refs 12 and 13. This probability is expressed as

= − δ−P 1 exp (12)ij

J
T

ij
si sj,

Klustakwik.  Klustakwik has been an integral part of the spike sorting algorithm proposed in refs 12 and 32. The 
CEM algorithm by Celeux and Govaert33 is used as a platform to construct Klustakwik ver–1.5 an unsupervised 
clustering algorithm. The Expectation Maximisation method is adopted to estimate the maximum likelihood by 
incorporating classification between the expectation and maximisation method.

Klustakwik partitions a feature set into K partitions by iteratively splitting a defined cluster or deleting and 
re-assigning points from a cluster and simultaneously monitoring whether any of the actions improve the per-
formance. Many versions of Klustakwik have been developed with its predecessor constructed on the genome 
sequence clustering (gclust) platform and are publicly accessible4,28.

OPTICS.  The OPTICS algorithm was developed to abstain from using the tedious feature selection processes8. 
This algorithm partitions the data solely on the basis of set theory and Euclidean distance between the waveforms 
wn(τ). A pre-specified number of the minimum data samples K to be present in any group is used to estimate the 
boundary. The border samples which do not comprehensively satisfy the boundary conditions are not grouped22.

Statistical estimation.  From 3 to estimate the likelihood, we need to establish a subject which clearly dis-
tinguishes noise from the real data by isolating the overall noise characteristics from the clustered information. 
Putative spike waveforms ∼wn provide a platform to extract the noise attributes and by filtering ν(t) through a 
transfer function modelled using the covariance of noise. It is possible to enhance the components of ∼wn in ν. The 
likelihood Ln is computed for each n neuron. Following the Bernoulli’s principle an nth L with better probability is 
considered as a valid match and its respective sequence δn(t) is set to 1 to acknowledge the presence of spike. The 
statistical estimation steps for sorting overlapped spikes can be summarized as

•	 Estimating putative spike waveforms τ∼w ( )n .
•	 Estimating noise νΔ(t) and its covariance.
•	 Computing the coiflet type filter transfer function and filtering the channel voltage ν̂ t( ).
•	 Identifying the non-clustered index from δ̂ t( ) and performing a likelihood estimation for the probability of 

finding the nth waveform and updating the respective input sequence δn(t).

Estimating putative spike waveforms.  From 2, it can be assumed that a spike train sn(t) is associated with a dis-
tinct spike shape wn(τ) representing an important characteristic of a neuron. Therefore, the putative spike wave-
forms τ∼w ( )n  estimated by taking an average of spike shapes from each cluster approximate closely to the distinct 
spike shape. The clustering information is used to calculate spike impulse response δn(t) of each neuron as

δ =



 .∈ ∈ 

n t
t n

( , )
1 index has a spike for a particular cluster ;
0, no spike (13)

t T n N(1,2, ), (1,2, )

Each cluster is assumed to be originating from a particular neuron. As such, the indices of clustered spike 
waveforms are set to 1 and the rest to 0 over a complete t axis. The least squares linear regression method24 is 
adopted to estimate the putative spike shapes τwn ( ) as presented in 13. This is achieved to accommodate the trans-
fer function described in 2 as opposed to the convolution model.

τ τ=∼
τ δ ν δ

+w R R( ) \ ( ) (14)n ( ) ,n n

where τν δR ( ), n
 is the cross correlation between impulse response δn(τ) and the channel voltage ν(t) for any nth 

neuron, τδR ( )
n

 is the auto-correlation of δn(τ), +​ indicates the toeplitz matrix and\is the pseudo-inverse function. 
The indices detected correspond to the peak of the spike waveforms action potential and not the start of the spike 
waveform. Therefore the length of spike waveform τ has to be carefully adjusted between −​ve and +​ve lags such 
that the peak is at the 0.

Noise covariance estimation.  All the unwanted data from the channel voltage ν(t) are considered as noise. This 
includes system noise η(t) and the unclustered spike waveforms. A simple way to extract noise is to target those 
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clustered indices and eliminate their spike shapes τ∼w ( )n  from ν(t). The residual νΔ(t) contains noise, the unclus-
tered spike waveforms along with difference between τwn ( ) and τŵ( ) at each clustered index. Auto covariance 
ν∆

R m( ) of the residual noise νΔ represents the noise covariance of any particular channel as

ν ν= + .ν ∆ ∆∆

⁎R m E t m m( ) [ ( ) ( )] (15)

Estimating coiflet type filter transfer function.  Coiflet type wavelets are generally used to compute wavelet trans-
form34,35 of a signal which can enhance the signal strength over its noise component. By filtering the channel 
voltage ν(t) through the coiflet filter constructed using noise covariance ν∆R m( ) of a finite length m, it is possible 
to accentuate the presence of putative spike shape features. The Toeplitz matrix of ν∆R m( ) is initially computed 
and the centre column from the matrix defines the coiflet transfer function f(m). Figure 6(b) shows the spike 
shapes extracted from filtered ν̂ t( ) and Fig. 6(c) displays the estimated wavelet resembling noise characteristic 
filter. The filtering process has an overall effect on ν(t) therefore the putative spike shapes are re-estimated to 
produce τwn ( ).

Prediction and elimination.  With the new putative spike shapes τwn ( ), filtered voltage ν̂ t( ) and target instances 
δ̂ t( ), the maximum likelihood estimation described in 3 can be re-written to accommodate for Ln, i.e. the likeli-
hood estimated for each n neurons as

δ δ ν= ˆ ⁎L w p w w( , ) ( , ) (16)n n n n n n

Ln maximises the chances of finding τw ( )n  from the filtered voltage ν̂ t( ) at any tth instance of δ̂.
Note that δn described in 1 and 2 follows the Bernoullis principle where at any t the presence or absence of 
τw ( )n  is indicated by δn(t) equal to 1 or 0. With this assumption 16 becomes

δ δ ν δ ν= = = = − =ˆ ˆ ⁎ ˆ ⁎L w p w w p w w( 1, ) ( 1, ) 1 ( 0, ) (17)n n n n n n n n n n

Assuming the condition for δn =​ 1 and substituting 4 into 17 and considering the log likelihood, we obtain

δ ν δ= =






− =






∼ˆ ˆ ⁎{ }L w f w w( 1, ) log exp 1
2

( ( 1, ))
(18)n n n n n

δ ν δ= = − = ∼ˆ ˆ ⁎L w f w w( 1, ) 1
2

( ( 1, )) (19)n n n n

Neglecting the scaling factor of 1
2

 in 19 we have

δ ν δ= = − = ∼ˆ ˆ⁎ ⁎L w w f w w( 1, ) ( ( 1, ) ) (20)n n n n n

It should be noted that the entire operation is performed only for all δ =ˆ t( ) 1 and assuming that δn =​ 1 for each 
n neurons. According to the Bernoulli principle, the matching process follows a Bayesian distribution according 
to which there is either a chance of wn being present at that instance or not. At any δ̂ the maximum of the nth L 
wins the prediction and its respective δn(t) is set to 1.

Data
Two categories of data sets are used to test the performance of the proposed system. The data sets were chosen 
such that the degree of complexity could be augmented upon successful and promising results.

Figure 6.  (a) Putative spike shapes from original data, (b) Spike shapes recovered after noise optimization  
(c) Noise modeled wavelet.
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Synthetic data.  A synthetic data set C_Difficult1_noise(xx) (abbreviated as D1n-(XX)) from36 was used to 
test various phases of our algorithm. The ubiquitous nature of the availability of this data set with ground truth 
information makes it a popular choice for performance evaluation and comparison. Note that “XX” corresponds 
to the noise levels relative to the amplitude of the spike classes. Four data sets with noise levels 0.05, 0.1, 0.15 and 
0.2 were employed for comparative performance analysis. The data set is constructed with three distinct spike 
shapes sampled at 24 kHz with a known number of neurons (3 in this case) and overlapped spikes.

Extracellular data.  It is observed that in-vivo recordings are not stable; therefore in-vitro recordings are 
preferred in testing and development of any such algorithms37. Henceforth, we chose to evaluate the algorithm 
using publicly accessible data sets36 as well as multi-electrode raw data from an amphibian retina6,38. The eye of 
an amphibian animal is enucleated and highly precision surgical equipments are used to isolate the lens of the 
eye and the cornea from its posterior half. The eyecup is now filtered to extract the retina specimen form the 
surrounding vitreous. And finally, through careful dissection the pigment epithelium is removed from the eyecup 
resulting in a retina specimen of approximately 1.5mm radius. The dissection was performed in ringer’s solution 
which will be transferred along with the extracted specimen on to the electrode array recording bin.

The recordings were performed by Meister et al.6,38 using a dense electrode array comprising of 61 electrodes. 
The electrode array was fabricated by Regehr et al.39, designed by Pine and Gilbert40 and the development was 
supported by Caltech and Stanford Center for Integrated Systems. The dimension of each electrode was approx-
imately 5 μm radius and the spacing between the electrodes was 70 μm. Figure 7 is an overview of arrangement 
of electrodes in the MEA. During the recording process, the isolated cells are kept alive through an oxygenated 
solution and the retina cells are subjected to different coloured frames projected using an RGB display monitor. 
The electrical activity due to the stimuli response for each frame is recorded across an MEA comprising of 61 
electrodes6,38,40.

To establish the data set, we examine the spiking activity of 7 cells across all 61 electrodes, the recording com-
prises of 1.5 million samples. To narrow the importance of our algorithm on superseding spikes we observe the 
activity of cells 4 and 5 as shown in Fig. 7. The traces of spikes for cells 4 and 5 have equal chances of being found 
on a certain channel indicated by spikes with the highest amplitude. Therefore, this channel (identified as the 28th 
channel) presents sufficient chances of spike shapes from either cell to supersede one another.

Results and Performance Evaluation
The algorithm is examined through both quantitative and qualitative analyses and the results are compared to 
evaluate the performance of the algorithm. The synthetic data sets are the preferred choice for preliminary eval-
uation due to the availability of the ground truth information required to step-wise testing and calibration of the 
algorithm. The general quantitative analyses mentioned in refs 8, 25 and 26 include calculating the number of 
true spikes, number of false spikes, number of neurons approximated, number of correctly identified overlapped 
spikes and number of correctly sorted overlapped spikes. Qualitative analysis is the best way to compare the 
recovered spike shapes and spike trains especially with the raw data when there is inadequate information. The 
raw data relies on approximated generative information at every stage of the analysis procedure. Albeit, the raw 
data set used in this context provides partial generative information and initial data analysis results. We have 
compared our results with the original results which show substantial and effective improvement over its original 
predecessor.

The results of spikes detected by selective sorting is compared with a number of popularly adopted tech-
niques including noise standard deviation, root mean square of channel voltage and standard deviation of the 
channel4,8,12–14. Figure 8(a) demonstrates the superiority of selective sorting to identify a larger number of spikes. 
Figure 8(c) shows the number of falsely identified spike events, which validates the accuracy of selective sorting 
to correctly identify spike events. To maintain uniformity Fig. 8(a,c) are constructed using the same data set. 
Figure 8(b) shows the number of spike events detected for the raw extracellular data set. Although, the noise 
standard deviation displays an improvement in the number of spikes detected, the higher false positive readings 
in Fig. 8(c) reduces the performance of the technique, making it less favourable. Additionally, Fig. 8(c) is account-
able owing to its known ground truth information, which is not available for the raw data set.

Figure 7.  Spikes across 61-electrode MEA. (a,b) Show the spike shape of cell-4 and cell-5 scattered across all 
61 electrodes. (c) Displays the spike shapes of all the cells at 28th channel and the two peaks indicate the cell-4 
in cyan and cell-5 in magenta while the rest of the cells does not show much activity on this channel.
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Table 1 demonstrates a summary of results obtained by various ad hoc clustering approaches and the cluster-
ing procedure employed in selective sorting, along with the original information used to simulate the data set. 
Ideally, the spike sorting algorithms should aim to achieve the results similar to the ground truth information. 
The results in Table 1 compare the number of spikes allocated into any cluster and the number of clusters formed 
by any clustering approach for a particular data sets. For example, for the data set D1n −​ 0.1, Wave_clus produces 
5 clusters with 639, 470, 653, 424 and, 1059 spikes respectively and, the *​ indicates an over-lap spike cluster. The 
results for Wave_clus and Klustakwik were generated using the online portal41, which uses features selection via 
the KS-test. The result for OPTICS were generated using the conventional method which uses no feature selection 
processes8. It is evident from the results in Table 1 and Fig. 9 that the clustering process employed in selective 
spike sorting is very effective in identifying appropriate features, defining clusters corresponding to the right 
number of neurons and displays better sensitivity to overlapping spikes.

The greedy pursuit algorithms: Continuous basis pursuit (CBP), binary pursuit and Bayesian algorithm based 
greedy algorithms fairly share the same basic principle in their methodology, albeit, the results vary marginally 
depending on the algorithm used. For comparison purposes, we implemented the greedy pursuit method as 
described in ref. 25. Figure 8(d) highlights the final results in terms of number of spikes after overall computation 
of selective spike sorting, clustering algorithms and greedy pursuit. The superior advantage offered by greedy 
pursuit and selective spike sorting to sort overlapping spikes over other clustering algorithms could be visualised 
from the graph in Fig. 8(d). Further, it can be inferred from the results summarized in Table 2 that, the overall 
performance of selective sorting is very effective owing to its impressive number of sorted spikes to number of 
false positive’s ratio and rightfully targeting the genuine spikes as compared to greedy pursuit.

Figure 8.  Performance comparison of selective sorting with its counterparts, (a) Comparison of spike  
detection algorithms for sample data set C-Difficult1-noise37, (b) Comparison of spike detection algorithm  
for raw dataset6,33, (c) Comparison of false positive estimates for each of the existing detection algorithms and  
(d) Comparison of sorting algorithms.

Figure 9.  Visual comparison of clustering procedure outcomes for a sample data set. 
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For the raw data set, the spike detection technique employed in selective spike sorting identified 38,484 spike 
events and all the spike waveforms were extracted using a window of 31 samples with their peaks aligned at the 
12th index, as shown in Fig. 10(a). Interpolation was employed to improve resolution of each spike waveform and 
appropriate attributes were extracted for clustering. Figure 10(b) shows three clusters and the overlapped spikes 
window, following a full exploitation of super paramagnetic clustering and feature selection. Figure 6(a) shows 
the putative spike shapes, estimated for each cluster using the simple regression method. The background noise 
was tailored to represent a coiflet type wavelet as shown in Fig. 6(c). The original data was optimised by stationary 
decomposition of the original data through the estimated wavelet. The spike shapes extracted using the decom-
posed original data are shown in Fig. 6(b).

The prediction and elimination algorithm statistically incorporates the spike rates 0.0015, 0.0007 and 0.0001 
estimated for each cluster, respectively, to individually target the correlated spike shapes. The effect of the likeli-
hood principle is displayed in Fig. 11. Figure 11(a,b) display a strong similarity with spikes in their respective clus-
tered groups while Fig. 11(c) depicts the effect of overlapping, where the spike shapes of clusters-1 and clusters-2 
establishes a strong correlation with those of cluster-3.

The significance of the proposed algorithm can be realized through following analysis. We use the same proce-
dure as in refs 3 and 38 which involves approximating the stimuli response of each cell to an evoked frame on the 

Data set

Greedy pursuit 
(Continuous basis 

pursuit) Missed 
spikes

False 
positives

Selective 
Sorting Missed 

spikes
False 

positivesSorted Sorted

D1n01 3300 148 58 3291 157 5

D1n02 3373 41 125 3284 130 1

D1n005 3223 160 44 3249 134 2

D1n015 3376 96 92 3365 107 1

Table 2.   A comparison of final results obtained by unified continuous basis pursuit and unified selective 
sorting after successfully sorting the overlapping spikes.

Data set
Ground Truth with number of 

clusters and spikes in each cluster Wave_clus Klustakwik OPTICS
Selective 

sorting (SPC)

D1n-0.05 1115 792 491 977 1010

1113 1025 516 881 914

1155 531 659 946 943

494 343 393 113*​

217*​ 712

48

50

D1n-0.1 1164 639 400 2982 1000

1155 470 633 126 981

1129 653 45 15 971

424 1072 13 92*​

1059*​ 609 139

435

D1n-0.15 1159 1054 420 2939 909

1172 720 529 279 856

1141 675 491 803

360 1087 162*​

409*​ 633

15

D1n-0.2 1136 897 483 2010 962

1099 784 426 221 841

1179 439 404 909

111*​ 419 135*​

126

72

Table 1.   Comparison of clustering results formed by each of the ad hoc clustering algorithms. The values 
in the table indicate the number of clusters estimated and spikes allocated to each cluster. *​Indicates the cluster 
that constitutes overlapping spikes. First column presents the ground truth information about the synthetic data 
sets used with actual number of clusters and number of spikes in each cluster.
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display, so as to locate the spatial and temporal response fields of the retina. Figure 12 shows two conditions of the 
recovered spatio-temporal stimulus response of cell 4. The image quality in Fig. 12 (top) is high as compared to 
that in Fig. 12 (bottom), owing to fact that Fig. 12 (Top) is constructed using 16000 stimuli responses while Fig. 12 
(bottom) is constructed with just 4000 stimuli responses. The enhanced image quality in Fig. 12 (Top) was a result 
of algorithms capability to successfully identify and sort the overlapping and distorted spikes. This increase in true 
spikes to false positives ratio added extra pixels to the image, thereby receptive fields were more distinct.

One of important attributes of the algorithm is its ability to address correlated spike waveforms. A commonly 
accepted qualitative evaluation method in the absence of ground truth is by percentage similarity estimation i.e. 
coefficient of determination and another important technique is to employ correlation analysis24,42. To be adapt-
able for either of the analysis methods, we generate a pseudo temporal voltage information similar to synthetic 
data generation technique described in36 to compete with the original data. For each identified neuron, their 
individual voltage contribution V̂n is estimated, in an effort that the sum of individual voltage’s V̂m should resemble 

Figure 10.  Results for the raw data6,33 with selective sorting (a) Spikes detected using CoB and extracted using a 
windowed discriminator, (b) clustering result showing three clusters and overlapped spikes.
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the original data Vm. To do so, a temporal binary impulse response map δ(n, t) of each neurons spiking activity on 
an electrode is created. The estimated putative spike shape τ∼w ( )n  of each cluster on any channel as shown in 11a 
is fit into impulse area of temporal region such that

τ
τ δ

δ
− =






=
= .

∼
V t

w n t
n t

( )
( ) for ( , ) 1;

no spike, for ( , ) 0 (21)
m n

n
,

where m represents the channel identity or electrode number, n is the approximated neuron number and t is the 
time sample in integer. A channel voltage matrix at any spiking event is prepared to observe the correlation activ-
ity as shown in Fig. 10(a) for cell 4 and 10(b) for cell 5. As an example, Fig. 10 displays peak spikes on channel 28 
for both cell 4 and cell 5 indicating a correlation activity. This information is in turn used to estimate their respec-
tive impulse response and eventually to calculate individual temporal spike train or voltage response V̂ m using 21.

Comparing V̂m before and after processing the data Vm through the algorithm, correlation index is estimated 
for individual channels by identifying correlated channel and the respective neurons contributing to the channel. 
The results for the identified correlated channel 28 is shown in Fig. 13 where, identified correlation times to the 

Figure 11.  Cross correlation graph of putative spike shapes from each cluster with rest of spikes. 

Figure 12.  Comparison of stimuli response for low (top) and high spike counts (bottom). 
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right of peak in every cluster is shown in 13B and the resolved secondary amplitude is shown in 13C. Figure 13(A) 
also shows the algorithms ability to clearly isolate the correlated spike waveforms. Additionally, coefficient of 
determination was estimated for V̂m and channel data Vm by taking square of pearson’s correlation index. 
Ultimately, the coefficient of determination for correlated channels ranged between 95% to 98% similarity. The 
algorithm was capable of identifying additional 4682 spike events in channel 28.

Discussion and Conclusion
The ground truth information provided by the synthetic data sets has been effectively exploited to construct an 
efficient spike sorting algorithm. With the assistance of the generative model it is possible to explore the unknown 
distribution of spikes, spike train, and background noise resulting in the introduction of many key improvements 
which have not been possible with unknown synthetic data. The results for the synthetic and raw data clearly indi-
cates that SPC performs better in clustering the spikes and could be employed as a default approach for establish-
ing the partial ground truth. The selective spike sorting algorithm is convincingly effective because dependency 

Figure 13.  Correlated waveforms and correlation index results for each cluster from channel 28 (A). Correlated 
waveforms identified for respective clusters, (B). Time samples at which overlapping were identified, (C). 
Overlapping amplitudes resolved by the algorithm.



www.nature.com/scientificreports/

1 5Scientific Reports | 6:28533 | DOI: 10.1038/srep28533

of the performance is equally distributed throughout the unified sequence of the unit. The algorithm does not 
demand full identification at every ramification but rather depends on accuracy of the output. This motivation 
has resulted in reduced false identification, greatly reflecting on the improved efficiency of clustering algorithms. 
These results establish a strong rationale for the prediction and elimination methodology to work through the raw 
voltage data and sort the identified spike events.

Another significant advantage of selective spike sorting is that it provides the flexibility to analyse every data 
channel individually, irrespective of MEA or tetrode based recording. The ambiguity in selecting the appropriate 
cluster procedure is eliminated by the flexibility of formatted clusters offered in this algorithm. We incorporate 
threshold techniques to identify the spike shapes, and normalise the data as a preliminary step to improve the 
performance of CoB. The performance of COB is depends on amplitude of the neuron and response of spikes for 
bispectrum. This is really important for spike detection as its functioning is independent of shape of spike and 
depends on the frequency of spiking interval. The novel feature selection process and the clustering procedure 
bolster the spike detection procedure, establishing sufficient ground truths, and does not have to just rely on prob-
abilistic models. The statistical estimation method exploits the wavelet featured background noise to decompose 
any overlapping spikes and identifies the spikes on the basis of its shape and, spike rate at any pre-established 
spike event. Additionally, the inter spike interval sets a quantitative threshold on the length of spike shape; there-
fore any secondary spikes from the same cluster appearing inside the interval are neglected. With SPC, it is also 
possible to isolate uncharacteristic overlapping spikes which pose a problem with Klustakwik.

The performance of selective spike sorting is not limited to processing of individual data channel. The extra-
cellular data using the tetrode electrode, also provides intracellular spike shapes to match the spike events43, 
which could be used as references in designing the spatio-temporal filter. Multiple channel information, as in 
tetrode electrodes where the number of channels is fewer than that in an MEA, it is possible to tailor the noise 
covariance filter to be effective both in space and time. The real time realization of the algorithm combined with 
wireless in vivo monitoring techniques44 will lead to a state of the art system. This would be a remarkable achieve-
ment and open up neurophysiological studies to whole new exploring environment.
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