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Abstract

Since the 1950s, vision researchers have been working towards the ambitious goal of restor-
ing a functional level of vision to the blind via electrical stimulation of the visual pathways.
Groups based in Australia, USA, Germany, France and Japan report progress in the transla-
tion of retinal visual prosthetics from the experimental to clinical domains, with two retinal
visual prostheses having recently received regulatory approval for clinical use. Regulatory
approval for cortical visual prostheses is yet to be obtained; however, several groups report
plans to conduct clinical trials in the near future, building upon the seminal clinical studies
of Brindley and Dobelle. In this review, we discuss the general principles of visual pros-
theses employing electrical stimulation of the visual pathways, focusing on the retina and
visual cortex as the two most extensively studied stimulation sites. We also discuss the sur-
gical and functional outcomes reported to date for retinal and cortical prostheses, concluding
with a brief discussion of novel developments in this field and an outlook for the future.

Introduction

Since the 1950s, vision researchers have been working towards the
goal of restoring a functional level of vision to the blind. There are
a variety of approaches to achieving this goal; however, a common
technique is to electrically stimulate the visual pathways with a
vision prosthesis, or ‘bionic eye’. The underlying premise of such
stimulation is to evoke neuronal activity at a site within the visual
pathway that remains functional irrespective of the underlying
cause of blindness. This activity then propagates along the remain-
ing intact visual pathway to the visual cortex, resulting in some
form of visual perception.

Globally, between 32 and 39 million people suffer from blind-
ness, with the most common and treatable causes being cataract

or uncorrected refractive error.1 Blindness resulting from retinal
disease, such as age-related macular degeneration (AMD) and
inherited dystrophies such as retinitis pigmentosa (RP), often
leaves the inner retina and optic nerve relatively intact, rendering
sufferers of these conditions candidates for a retinal vision prosthe-
sis. Conversely, damage to the inner retina or optic nerve requires a
prosthesis that stimulates more distal sites along the visual
pathway.

With these factors in mind, the site targeted for stimulation will
differ according to the extent and location of disease or damage.
Those sites already identified as suitable include the retina, optic
nerve, lateral geniculate nucleus and the visual cortex. The relative
benefits and drawbacks of each are numerous and have been previ-
ously discussed in detail.1–4 Differences in neural architecture and
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electrical signalling, ease of surgical access and implantation and
physical dimensions dictate that the challenges inherent in stimulat-
ing at each anatomical target are diverse and complex.1

Regardless of the targeted location, the typical response to electri-
cal stimulation is the eliciting of light percepts called phosphenes
which, if sufficiently discrete in character and elicited in suitable
numbers, may be utilized to provide a blind person with useful
information about their surroundings. It is this fundamental observa-
tion that underpins the current efforts to develop visual prostheses.

At present, there are a large number of research groups interna-
tionally working towards the development of visual prostheses,
covering each viable target region within the visual pathway. There
are almost 20 research teams developing retinal prostheses with
varying implant locations, with groups based in Australia, USA,
Germany, France and Japan reporting progress in translating retinal
visual prostheses from the experimental to clinical domains. The
Argus II device (Second Sight Medical Products, Inc., Sylmar, CA,
USA)3 and the Alpha IMS (Retina Implant AG, Reutlingen, Ger-
many)5 received regulatory approval for clinical use in the
European Union in 2011 and 2013 respectively, whilst the Argus II
was approved for use by the FDA in 2013 under the Humanitarian
Use Device programme. Clinical studies of these devices are
demonstrating improvements in visual acuity and/or the ability to
undertake activities of daily living.6,7

Two groups have reported on the development of bionic vision
devices based around electrodes implanted into or around the optic
nerve8,9 and another two have described the implantation of electro-
des into the lateral geniculate nucleus of non-human primates10 and
rats,11 with the goal of developing a visual prosthesis based on
stimulation of these targets.

Despite significant progress having been made since the first
attempts to develop a cortical visual prosthesis over 50 years ago,12

regulatory approval for these devices is yet to be granted. To our
knowledge four groups (Australia, USA, Canada and Spain) are
developing cortical visual prostheses,1 and clinical trials of these
are anticipated within the next several years.

Retinal and cortical prostheses: general
considerations

System architecture

There is some commonality in the architecture of electrically stimu-
lating visual prostheses, whether retinal or cortical.1,2,6,7,13,14 These
common features include capture of digital images by a camera, typi-
cally built into a pair of glasses. Simplification of images and/or fea-
ture extraction will highlight objects, floor areas or printed text or
simply enhance contrast prior to the generation of patterned electrical
impulses for transmission to the electrode arrays. This transmission
may take place across a wired or wireless connection, which may also
be used to transfer power to the implanted electronics. The circuitry
required to provide stimulus pulses to the electrodes can either be
incorporated into the electrode array/s themselves or contained within
a separate implanted package tethered to the electrodes.

A variation on this approach involves a light-sensitive element
(e.g. photodiodes) incorporated into the implant, wherein it may be

combined with a stimulating electrode array directly into a single
construct.6,15 In one embodiment of this technique, image data is
transmitted to the combined photodiode/electrode array by a minia-
ture glasses-mounted infrared projector, the light from which is also
converted to electrical energy to power the electrodes.15 Another
approach is to amplify weak photoelectric signals generated by
ambient light incident on a photodiode array.6 This requires that the
array be powered separately, which can be achieved by a wireless
radiofrequency link.6 The latter method has the advantage of allow-
ing for natural gaze fixation and eliminates the need for head move-
ments when scanning the environment. Intraocular image capture
has also been described for a retinal prosthesis; however, in princi-
ple, it could be extended to cortical devices.1

Electrode implantation and stimulation

Of all known stimulation sites, the retina and visual cortex have the
longest history of development. A prototype retinal stimulator was
developed by Tassicker in 1956,16 whilst the first experimental cor-
tical device was reported by Button in 1958.12

When stimulating the retina, visual percepts are elicited via direct
stimulation of surviving inner retinal cells (bipolar and ganglion
cells). Axons from the ganglion cells converge at the optic disc to
form the optic nerve, which conveys visual information distally. An
advantage of the retinal approach is the ability to use the vision pro-
cessing abilities of the inner retina to optimize the visual percepts.
However, the requirement for viable inner retinal neurons renders ret-
inal implants unsuitable for a number of blinding conditions, includ-
ing glaucoma where these cells are lost, and traumatic ocular injury
where the integrity of the globe is destroyed. To date, the majority of
retinal prostheses have been implanted in patients with RP.

Electrical stimulation of the visual cortex may be achieved via
surface or penetrating electrodes. From the perspective of eliciting
smaller central phosphenes and thus providing higher acuity central
vision, primary visual cortex (V1) offers some technical advan-
tages. Retinocortical magnification, which results in a significant
over-representation of the foveal visual field on visual cortex, pro-
vides for a substantially greater surface area within which to
implant stimulating electrodes and thus elicit central phosphenes.17

On the other hand, much of V1 is relatively inaccessible to the
implantation of penetrating electrodes, and current cortical prosthe-
sis development efforts are typically focused on devices that stimu-
late the occipital pole and its surroundings.18

Whilst surgical access to the occipital pole is relatively straight-
forward, neurosurgery undertaken for non-life-saving reasons is a
prospect that requires careful planning from an ethical, medico-
legal and procedural perspective.1 Clearly, the implantation of reti-
nal or suprachoroidal arrays carries a correspondingly lower risk of
mortality and morbidity. Therefore, uncertainties about risk versus
benefit must be addressed before implantations of cortical electrode
arrays in blind individuals will pass regulatory scrutiny. In this con-
text, psychophysical studies including simulated phosphene vision
experiments will be of paramount importance in determining the
likely functional benefit of prosthetic vision. Moreover, detailed
preoperative assessment of the psychological fitness of potential
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implant recipients will be a key factor in maximizing the efficacy
of post-implantation visual rehabilitation and training.1

A key challenge common to both retinal and cortical implants is
maximizing central phosphene resolution and thus visual acuity, via
the implantation of small, densely packed electrodes in either the
macula in the retina, or occipital pole of the cerebral cortex. Limita-
tions to this density arise due to a combination of factors, including
but not limited to current spread from nearby electrodes causing
phosphene fusion, and the interplay between the delivered charge,
activation thresholds, electrode surface area and the likelihood of tis-
sue or electrode damage.19 Beyond the limits of electrode size and
array density imposed by physical and biological factors, further
improvements in acuity will only be achievable with more sophisti-
cated stimulation strategies, which continue to be developed.19

Retinal visual prosthesis implantations
and outcomes

Of the various vision prosthesis modalities, retinal implants have had
the highest number of human clinical trials to date. Bionic Vision
Australia recently completed a clinical trial of a suprachoroidal
implant, with the recipients (n = 3) showing sustained phosphene
perception, stable implant location and significantly improved light
location detection over a period of 12 months.14 Other clinical stud-
ies have shown efficacy for retinal prostheses placed in the epiret-
inal, subretinal and intrascleral locations (Fig. 1, top).5,20,21

All reported outcomes to date have been in patients with the end-
stage retinal degenerative diseases RP and choroideremia. In early
2015, surgeons in Manchester implanted the first epiretinal implant
(Argus II) in patients with AMD, and pilot clinical results are antici-
pated in the near future. This important study looks to expand the
number of patients who benefit from visual prostheses, but in doing
so presents different challenges. In particular, patients with AMD
have at risk their central vision only, with good function remaining in
their peripheral vision. Thus, the implant must offer a greater level of
visual acuity and functional benefit than is currently possible to jus-
tify the surgical procedure and potential risk to peripheral vision.

Surgical methods for the various retinal implant designs vary in
complexity, and intraoperative and postoperative adverse events
have been noted. These have included conjunctival and scleral ero-
sions, retinal detachment, hypotony and endophthalmitis with epir-
etinal devices,22 increased retinal microaneurysms with subretinal
devices23 and subretinal haemorrhage with suprachoroidal
devices.14 From preliminary reports, it appears that suprachoroidal
and intrascleral implantations offer improved surgical safety and
stability, with fewer intraoperative complications.14,21 This is likely
due to the fact that the device does not require implantation through
penetrating incisions into the posterior globe, nor mechanical
attachment to the retinal surface.14 However, as the electrodes in
these devices are further from the ganglion cells, patient perceptual
thresholds for electrical stimulation are higher than in epiretinal or
subretinal prostheses.24 Despite this, suprachoroidal and intrascleral
electrode stimulation has proven effective.20,21

Participants in retinal prosthesis trials to date have all had very little
baseline vision, with most having ‘bare light perception’ only. From
this profound impairment, retinal implant recipients have shown

improvements in visual acuity, as measured using grating acuity tasks
or Landolt C optotypes.14,25,26 All of these postoperative visual acui-
ties classify as ‘ultra-low vision’, and would not be sufficient to enable
reading of standard size print or facial recognition. However, it has
been shown that this level of vision can enable some patients to recog-
nize large letters.20 Notably, camera functions (e.g. zoom) can improve
visual acuity measures in retinal implants, albeit at the expense of a
reduced visual field. For applications such as navigation, the visual
field size and the apparent location of phosphenes are also important.
It is desirable that patients can navigate around large objects without
excessive head or eye scanning that results from narrow visual fields.
If phosphenes are displaced relative to the straight-ahead position,

Fig. 1. Top: Schematic representation of the human eye showing the surgi-
cal locations for epiretinal, subretinal, suprachoroidal and intrascleral electro-
des. Reproduced from Ayton et al.,14 with permission under the terms of
the Creative Commons Attribution License. Bottom: The prototype supra-
choroidal implant used in the Bionic Vision Australia pilot study. The elec-
trode array is composed of 33 platinum electrodes on a silicone substrate,
of which 24 were able to be stimulated. The array was attached to a percu-
taneous connector via a helical lead wire, which was implanted behind the
ear and allowed direct stimulation of the array. Image provided by Dr David
Nayagam, Bionics Institute.
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strategies such as adjusting head position or eye gaze direction may be
required in order for objects to be perceived in the correct position.

Despite the variation in acuity measures from different implant
designs, functional vision outcomes (which reflect how people use
their prosthetic vision on real world tasks) have been relatively sim-
ilar. Devices tested to date have enabled improvement on subjects’
ability to recognize objects on a table,25,26 and to navigate around
high-contrast obstacles in orientation and mobility tasks.25 Such
increases in independent mobility are the main goal for the present-
generation vision prostheses, and will remain a key element of
vision restoration assessments in the future.27

Cortical visual prosthesis implantations
and outcomes

There is little contemporary data describing the stimulation of vis-
ual cortex electrode arrays in humans; the limited short- and long-
term data that is available principally derives from the work of
Brindley and Dobelle. Brindley developed and implanted three pro-
totype wirelessly operated electrode arrays, each of which success-
fully elicited large numbers of phosphenes.28 The arrays of
platinum electrodes were embedded in silicon, moulded to fit the
occipital poles of a ‘typical human brain’ plaster model.29 Dobelle
developed a Teflon array which was inserted subdurally over the
medial occipital cortex and connected to the stimulating electronics
via a transcutaneous connector.30 The limitations of Dobelle’s
design are inherent in later reports of system failures, infections and
seizures,31 suggesting that major modifications and/or improve-
ments to such devices would be required before they could be con-
sidered fit for further clinical trials.

Limited human studies on intracortical microelectrodes were per-
formed at the US National Institutes of Health in the 1990s, which
demonstrated their ability to deliver highly focal stimuli at low
stimulus currents.32 These experiments demonstrated that intracorti-
cal microstimulation could elicit phosphenes in a blind subject who
also reported no visual percepts from cortical surface stimulation.
Six electrodes were concurrently stimulated; however the contem-
porary belief is that a functional prosthesis should elicit many more
phosphenes to provide measurable improvements in mobility,
object recognition and the reading of printed text.33 Notably, how-
ever, a recent survey conducted with recipients of the Dobelle

implants suggests that the functional benefits were obtained across
the entire spectrum of phosphene map sizes, ranging from 119 phos-
phenes to just seven.34 Thus, there may be substantial variability in
the experiences of individual prosthesis recipients, independent of
the number of phosphenes reported. Carefully designed training
and rehabilitation programmes will therefore be necessary to
achieving successful outcomes,35 as will the development of appro-
priate tools for quantifying that success.27,36

Current efforts to develop a cortical visual prosthesis remain
centred around the concept of high-density stimulation via arrays of
intracortical microelectrodes (Fig. 2) implanted into the occipital
pole or its immediate surroundings.37,38 This approach takes advan-
tage of the high cortical magnification at this location to provide a
theoretically denser central phosphene map.

Clinical experience with the experimental implantation of corti-
cal penetrating electrode arrays is largely limited to temporary
implantations in patients undergoing epilepsy or brain tumour
surgery,4 or to patients participating in longer term trials of experi-
mental cortical motor prostheses.39,40 For the latter, the available
information suggests most patients experience an uneventful recov-
ery from implantation surgery.

Beyond the initial electrode implantations and a successful
recovery from surgery, numerous challenges will need to be over-
come in order to achieve a functional cortical visual prosthesis in
the long term.1,4,41,42

Novel approaches

Beyond the direct injection of electrical current using electrodes, artificial
stimulation of neural pathways can also be achieved using alternating
magnetic fields,43 low-intensity focused ultrasound,44 optogenetics,45

thermal changes and using microfluidic devices to inject neurotransmit-
ters or to alter ionic gradients across neural cell membranes.46

Aside from novel techniques for stimulation itself, new methods
for interfacing neural tissue with conventional electrodes are being
developed. A group based in Japan has cultured neurons directly
onto a microelectromechanical substrate, which then interface to the
central nervous system neurons (e.g. retinal ganglion cells) by grow-
ing along nerve guides. Using such techniques, it is anticipated that
more reliable connections between the electrodes and the target neu-
rons may be achievable.47

Fig. 2. (a) A close-up view of a single cortical visual prosthesis tile with 43 penetrating electrodes, as developed by the Monash Vision Group. (b) Scanning
electron micrograph of the electrodes, showing an annular stimulating surface approximately 500 μm from the tips. (c) Artist’s rendering of the headwear,
showing the data and power transmitting/receiving coil overlying the recipient’s occiput and the implanted tiles. (a and b) Reproduced from Lowery et al.,18

with permission (© 2015 IEEE). (c) Supplied courtesy of Monash Art, Design and Architecture and Monash Vision Group.
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Outlook and future directions

The outlook for prosthetic vision devices is largely dependent on
achieving the dual goals of validating safe techniques for surgically
implanting electrode arrays,48,49 and the necessary demonstration
of clinical efficacy that must precede regulatory approval.22 This is
a particularly pressing issue for cortical devices, given the need to
perform a craniotomy to obtain access to the cortical surface. Safety
is of paramount importance; with safe electrode implantation tech-
niques in place, it will be possible to continue developing improved
stimulation strategies,24,50 image processing algorithms51 and psy-
chophysical assessment paradigms27,36 to optimize efficacy. Further
improvements may result in these devices becoming viable vision
restoration options for a broader range of blinding conditions, and
even for those with some residual vision.

Whilst great progress has been made in the development of vis-
ual prostheses, research into alternative therapies and/or vision res-
toration strategies continues apace. For example, subretinal
injections of human embryonic stem cells have demonstrated safety
and vision improvement in patients with AMD and macular dystro-
phy.52 Gene transfer therapies have been trialled in patients with
Leber’s congenital amaurosis,53 with trial subjects showing sus-
tained vision improvements over a 2-year period.54 Optogenetic or
optopharmacological methods may be used to confer light sensitiv-
ity to retinal ganglion cells in RP and AMD,55 and neurotrophic
factors may be administered intravitreally to support and/or regen-
erate retinal neurons affected by glaucoma.56

Interestingly, retinal stimulation has been found to have a neuro-
trophic, anti-apoptotic and anti-inflammatory effect,57,58 delaying
photoreceptor degeneration in rat models of RP and preserving the
function of retinal ganglion cells after experimental injury.59 This
effect was hypothesized in recipients of the artificial silicon retina
subretinal implant, who reported improvements in baseline visual
function with the device switched off, between 1 week and 2 months
after surgery.60

In summary, electrical stimulation of the visual pathways is a
viable strategy for vision rehabilitation in the blind, and clinical
translation of devices that stimulate the retina is underway. Several
cortical devices are being developed, for which first-in-human trials
may be conducted in the near future. Multiple biological therapies
are being explored in parallel, and it remains to be seen how these
competing or complementary approaches will compare, with
regards to their safety, longevity, and the degree of improvement in
functional vision that can be achieved.
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