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Abstract
Time course ‘omics’ experiments are becoming increasingly important to study system-

wide dynamic regulation. Despite their high information content, analysis remains challeng-

ing. ‘Omics’ technologies capture quantitative measurements on tens of thousands of mole-

cules. Therefore, in a time course ‘omics’ experiment molecules are measured for multiple

subjects over multiple time points. This results in a large, high-dimensional dataset, which

requires computationally efficient approaches for statistical analysis. Moreover, methods

need to be able to handle missing values and various levels of noise. We present a novel,

robust and powerful framework to analyze time course ‘omics’ data that consists of three

stages: quality assessment and filtering, profile modelling, and analysis. The first step con-

sists of removing molecules for which expression or abundance is highly variable over time.

The second step models each molecular expression profile in a linear mixed model frame-

work which takes into account subject-specific variability. The best model is selected

through a serial model selection approach and results in dimension reduction of the time

course data. The final step includes two types of analysis of the modelled trajectories,

namely, clustering analysis to identify groups of correlated profiles over time, and differential

expression analysis to identify profiles which differ over time and/or between treatment

groups. Through simulation studies we demonstrate the high sensitivity and specificity of

our approach for differential expression analysis. We then illustrate how our framework can

bring novel insights on two time course ‘omics’ studies in breast cancer and kidney rejec-

tion. The methods are publicly available, implemented in the R CRAN package lmms.

Introduction
Over the past decade, the use of ‘omics’ to take a snapshot of molecular behaviour has become
ubiquitous. It has recently become possible to examine a series of such snapshots by measuring
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an ‘ome’ over time. This provides a powerful tool to study stressor-induced molecular behav-
iour [1], developmental processes (e.g., ageing; [2]) and cyclic mechanisms (e.g., cell cycle; [3]).

Robust and powerful analysis tools are critical for capitalizing on the wealth of data to
answer key questions about system response and function. In addition to addressing the high-
dimensionality of the data, such tools must account for a high number of missing values, and
also variability within and between studied subjects. Many methods are limited by scale, and
are unable to handle either a large number of time points, a varying number of time points per
subject [4] or a very large number of molecules [5]. Hence there is an urgent need for filtering
and modelling these time course data, not only to decrease the number of profiles analyzed,
but also to collapse subject-specific profiles to a summary thereof.

The benefit of decreasing the number of profiles analyzed via filtering is evident when con-
sidering the scale of typical time course ‘omics’ experiments. Tens of thousands of molecules
can be measured at different time points, requiring multiple hypothesis tests to determine dif-
ferential expression. While the false positive rate can be controlled using multiple testing cor-
rections (e.g., FDR; [6]), these are frequently accompanied by an increase in the false negative
rate. Hence identifying and removing non-informative molecules prior to testing can help to
increase statistical power. This drives a need for accurate approaches to remove a large number
of non-informative profiles. Indeed, estimates are that only 30–40% of the genes are expressed
at array-detectable levels [7], increasing up to 60–70% for newer technologies like RNA
sequencing [8]. Furthermore, modelling can provide considerable benefits by summarizing the
remaining, informative profiles. Our aim in this study is to model the systematic process from
which expression levels derive, as a smooth function over time, so that observed measurements
can then be seen as a noisy realization of this function.

A popular modelling approach for time course data is smoothing splines, which use a piece-
wise polynomial function with a penalty term [9]. The two main drawbacks are the arbitrary
selection of the penalty and the computational burden, both of which have received extensive
attention. For example, [10] reparametrized smoothing splines in a linear mixed model spline
framework to address the arbitrary choice of penalty. However, the smoothing splines models
developed in this framework are still computationally challenging to fit with an increasing
number of time points [11, 12]. The standard smoothing splines approach faces similar chal-
lenges, which can in part be mitigated using spline regression. There the computation-limiting
factor is the number of polynomial pieces rather than the number of time points. Since splines
can be calculated using linear mixed models, a wide range of methods have been proposed to
improve computational efficiency of such models [13], [14]. More recently, [15] presented a
tradeoff between spline regression and the linear mixed model spline framework by combining
low-rank smoothers adapted from [16] with the penalty approach of [13]. The hybrid approach
results in a truncated spline basis which improves computational efficiency and relaxes the
importance of initial parameters choices.

After the filtering and modelling steps, the resulting summarized profiles can be clustered to
gain biological insight from their similarities. Indeed, clusters of correlated activity patterns
may predict putative functions for molecules and reveal stage- and tissue-specific regulators
[2]. To that end, several spline-based clustering methods have been proposed in the literature
[17, 18]. However, common limitations include additional assumptions on the distribution of
the data, computational cost and dependency of the resulting clusters on the initial parameters.
To our knowledge, no approach currently incorporates subject-specific random effects in a
spline model in order to accurately model subject-specific variation before clustering.

Hypothesis testing can also be performed within the mixed effect model framework to gain
biological insight from differences between groups and across time. Several methods have been
proposed which can all handle missing data and different numbers of replicates per time point,
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but are often limited when only a few time points are observed, as is typically the case for costly
high-throughput experiments. Approaches such as linear models for microarray data
(LIMMA; [19]) test contrasts of interest in a spline framework using an empirical Bayes
approach [20], but do not account for subject-specific variation in the model. Extraction and
analysis of Differential Gene Expression (EDGE; [21]) does model subject-specific effects as
scalar shifts from the mean population response but lacks flexibility and has been reported to
not adequately model data in simulated scenarios [22]. A more flexible approach is Smoothing
Splines Mixed Effects (SME; [22]), which models subject-specific effects as full curves, but with
the risk of over-smoothing profiles in some cases.

In this paper we propose a novel framework for time course ‘omics’ studies which is sum-
marized in Fig 1). First, we extend a quality assessment and filtering approach to time course
data to identify and remove non-informative molecular profiles. Second, we propose a serial
modelling approach which avoids both under- and over- smoothing by allowing the data to
drive the complexity of the curve in order to fit the appropriate model. These modelled and
summarized profiles can then be analyzed for clustering and differential expression analyses.
We illustrate the use of our framework in simulation and real time course ‘omics’ case studies.

Material and Methods

Material
We first applied the filtering and modelling stages of our framework to two publicly available
transcriptomics datasets, which are briefly described below. The main analyses and biological

Fig 1. Overview of the analysis framework. The proposed framework consists of three stages: quality
control and filtering; serial modelling of profiles; and analysis with clustering to identify similarities between
profiles or with hypothesis testing to identify differences over time, between groups, and/or in group and time
interactions.

doi:10.1371/journal.pone.0134540.g001
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interpretations were then performed on two proteomics datasets from breast cancer and kidney
rejection studies.

S. paradoxus evolution data (GSE36253). The evolutionary principles of modular gene
regulation in yeast were investigated by [23]. They tracked growth on glucose in real-time by
measuring the growth rate, glucose, and ethanol levels. Expression of 5,503 genes was measured
at six physiologically comparable time points. Samples were hybridized to microarrays with the
reference chosen to be the same physiological phase in all cases. In this study we selected a sin-
gle species (S. paradoxus) with two to four biological replicates per time point.

M. musculus chemoimmunotherapy data (GSE27440). The anti-tumour efficiency of a
chemotherapeutic drug on bone marrow in mice was investigated by [24]. Expression of
13,443 genes was measured pre-treatment, 1, 2 and 5 days after chemotherapy of tumour-bear-
ing mice. At each time point five biological and two technical replicates were assayed.

iTraq breast cancer data (PRD000178). Proteomic changes in MCF-7 cells resulting
from insulin-like growth factor 1 (IGF-1) stimulation were investigated by [1]. As impairment
of the IGF-1 receptor signalling network is involved in tumour growth and chemotherapy
resistance, the study of proteins involved in this network may help to understand the underly-
ing mechanisms and to identify potential drug targets. iTraq Liquid Chromatography followed
by a two-dimensional Mass Spectrometry scan (LC-MS/MS) was used to quantify proteins at 0
h (no IGF-1), 6, 12 and 24 h after IGF-1 stimulation. This procedure was repeated in three sep-
arate cultures. In total 899 proteins were identified. Sample-wise scaled log2 fold changes for
time points 6, 12 and 24 h relative to baseline (0 h) were reported for 264 proteins with mini-
mum two measured replicates. We applied our full data-driven modelling approach to this
dataset, finishing with cluster analysis to explore patterns of protein response to IGF-1
stimulation.

iTraq kidney rejection data. The PROOF Centre of Excellence performed a longitudinal
study to identify diagnostic biomarkers in blood plasma to predict acute renal allograft rejec-
tion [25]. The iTraq kidney rejection dataset is a subsample thereof which includes 10 Acute
Rejection patients (AR) and 20 Non-Rejection patients (NR). In this discovery study, iTraq
MALDI-TOF MS/MS technology was used to quantify plasma protein relative concentrations
in blood samples tracked prior to (0 weeks) and post transplant at 0.5, 1, 2, 3, and 4 weeks. In
total, 140 proteins were quantified from blood samples. We applied our full data-driven model-
ling approach to this dataset, finishing with differential expression analysis to identify proteins
whose profiles differed between the two groups.

Simulated data. For each of six different scenarios varying noise levels and fold changes,
we simulated 100 datasets, each consisting of 140 profiles, 50 of which were differentially
expressed. For each dataset, we applied our differential expression approach and LIMMA [19],
and compared their sensitivity and specificity to differential expression over time, between
groups and in group�time interactions. A detailed description of the simulation procedure can
be found in the Supporting Information files, with examples of simulated profiles (Figure A in
S1 File).

Methods

Quality control and filtering
Filtering on the overall standard deviation of molecule expression is a common approach in
static gene expression experiments to remove non-informative molecules prior to analysis [26].
The justification is that low standard deviations indicate little molecular activity, and so mole-
cules which vary more are of more interest. In time course experiments however, molecules
can vary both over time and between subjects. Therefore, an increase in the overall standard
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deviation does not necessarily indicate interesting molecular behaviour and the additional time
dimension of the data needs to be accounted for.

Rather than the overall standard deviation, defined below as sM, we considered two filter
ratios based on the standard deviations across time and subjects. These estimates can be used
to identify low quality and/or non-informative profiles. Let T be the number of time points and
n the total number of subjects. For each molecule, we denote by yi(t) the expression for subject
i at time t, with i = 1, . . ., n and by sT the average of standard deviations (SD) computed per
time point with

sT ¼ 1

T

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

i¼1

ðyiðtÞ � mtÞ2
s

; where mt ¼
1

n

Xn

i¼1

yiðtÞ:

Similarly, sI is the average of SDs computed per subject, with

sI ¼
1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT

t¼1

ðyiðtÞ � miÞ2
s

; where mi ¼
1

T

XT

t¼1

yiðtÞ;

and sM is the SD for each molecule, over all subjects and time points:

sM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Tn� 1

XT

t¼1

Xn

i¼1

ðyiðtÞ � mMÞ2
s

; where mM ¼ 1

Tn

XT

t¼1

Xn

i¼1

yiðtÞ:

Missing values were excluded from the relevant sums. We then define the filter ratios RT and RI

as

RT ¼ sT
sM

and RI ¼ 1� sI
sM

:

Our filter ratios are motivated by the expectation that the SD values for profiles consisting
purely of noise are different compared to those with a true signal over time. Fig 2 illustrates
some example profiles to motivate the use of one of the ratios, RT, for quality control. The first
type of profile consists purely of noise, resulting in sT � sM and therefore RT� 1. The second

Fig 2. Examples of ‘noisy’ and differentially expressed profiles. Profiles changing over time (blue) have a
mean of the standard deviations per time point (sT) smaller than the mean of the standard deviations per
molecule (sM), while these means have similar values for noisy molecules (brown). In both cases the mean of
the standard deviations per subject (sI) is similar to sM.

doi:10.1371/journal.pone.0134540.g002
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type of profile has a true signal over time, resulting in sM greater than sT and RT< 1. Hence, RT

provides one means of discriminating between non-informative and informative profiles. We
generally expect subject-specific profiles to be close to the mean molecule profile, resulting in
RI � 0, as would also be true for noisy profiles over time. Therefore, on its own, RI is only a
good discriminator of unambiguously flat profiles, for which sI may often be smaller than sM,
resulting in RI > 0. Nevertheless, the combination of both RT and RI can provide additional
insights into the variance structure of the molecules and can guide the user to make more
informed choices about filter ratio thresholds as illustrated in our case studies.

During our filtering stage, we first removed molecules with more than 50% missing data
and applied model-based clustering (R package mclust [27]) on the filter ratios RT and RI

by specifying two clusters. Based on the rationale described above, we expect the cluster of
profiles with low RT and RI to be informative and propose to discard profiles in the cluster
with high RT and RI. In the specific case where a time course study includes the comparison
of multiple conditions or treatments, it is important to avoid filtering profiles which may be
non-informative within a condition but are differentially expressed between conditions.
Therefore, we propose to apply the filtering approach to each condition separately, with the
additional requirement that profiles must be found non-informative in all conditions in
order to be removed.

Modelling
In high-throughput experiments, thousands of molecule profiles need to be modelled in an
efficient manner. Biological variability both between and within subjects must be
accounted for, and experimental procedures typically result in different numbers of repli-
cated measurements per molecule and time point. The combination of all of these factors
requires a flexible, robust model-fitting procedure which can easily accommodate different
sources of variation.

Model fit with Linear Mixed Model Splines (LMMS): For each molecule, we determine an
appropriate model via a serial model fitting approach. This avoids under- or over-fitting by
allowing the data structure to drive the model complexity, rather than relying on a priori
assumptions such as in [19], [21]. We make comparisons between successive models using a
goodness of fit test, retaining a more complex model only if it fits the data better than a simpler
model. The goodness of fit is assessed with the log likelihood ratio test as implemented in the
anova function of the nlme package. The four models considered in this process are described
below, listed in order of increasing complexity.

The first model assumes the response is a straight line and is not affected by subject varia-
tion. For each molecule, we denote by yij(tij) its expression for subject (or biological replicate) i
at time tij, where i = 1, 2, . . ., n, j = 1, 2, . . .,mi, n is the sample size andmi is the number of
observations for subject i. We fit a simple linear regression of expression yij(tij) on time tij,
where the intercept β0 and slope β1 are estimated via ordinary least squares:

yijðtijÞ ¼ b0 þ b1tij þ �ij; where �ij � Nð0; s2
�Þ: ð1Þ

As nonlinear response patterns are commonly encountered in time course biological data
[28], our second model replaces the straight line in Eq 1 with a curve that is modelled using a
spline truncated line basis as proposed by [15]:

yijðtijÞ ¼ f ðtijÞ þ �ij; where �ij � Nð0; s2
�Þ: ð2Þ

In Eq 2 f represents a penalized spline which depends on a set of knot positions κ1, . . ., κK in
the range of {tij}, some unknown coefficients uk to be estimated, an intercept β0 and a slope β1.
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That is,

f ðtijÞ ¼ b0 þ b1tij þ
XK
k¼1

ukðtij � kkÞþ;

with ðtij � kkÞþ ¼
(
tij � kk if tij � kk > 0;

0 otherwise:

ð3Þ

Since a spline is a composition of curve segments and the knots define the break points of the
curve segments, the choice of the number of knots K and their positions influences the shape of
the curve. As proposed by [29], we estimate the number of knots based on the number of mea-

sured time points T as K ¼ maxð5;minðbT
4
c; 40ÞÞ, setting knots κ1. . .κK at quantiles of the

time interval of interest.
In order to account for subject variation, our third model Eq (4) adds a subject-specific ran-

dom effect Ui to the mean response f(tij). Assuming f(tij) to be a fixed (yet unknown) popula-
tion curve, Ui is treated as a random realization from an underlying Gaussian distribution
independent from the previously defined random error term �ij. Hence, the subject-specific
curves are expected to be parallel to the mean curve as we assume the subject-specific random
effects to be constant over time:

yijðtijÞ ¼ f ðtijÞ þ Ui þ �ij; where Ui � Nð0; s2
UÞ: ð4Þ

A simple extension to this model is to assume that the subject-specific deviations are straight
lines. Our fourth model therefore fits subject-specific random intercepts ai0 and slopes ai1:

yijðtijÞ ¼ f ðtijÞ þ ai0 þ ai1tij þ �ij;

with �ij � Nð0; s2
�Þ and ðai0; ai1ÞT � Nð0;SÞ:

ð5Þ

We assume independence between the random intercept and slope, and therefore the covari-
ance matrix for the random effects S is diagonal.

Derivative information for Linear Mixed Model Splines (DLMMS): The derivative of
expression profiles contains valuable information about the rate of change of expression over
time [9, 30]. We consider the derivative of the mean population curve f(t) from Eq 3. Note that
for profiles modelled using only Eq 1 the derivative is constant and is equal to the estimate of
the slope. Otherwise, the derivative at any time point t in the relevant time interval is:

f 0ðtÞ ¼ b̂1 þ
XK

k¼1

ûkIðt; kkÞ with I ¼
(
1 if t � kk � 0;

0 otherwise;

where b̂1 and ûk denote the estimates of the intercept and spline coefficients. The derivatives of
the LMMS profiles can then be used instead of the modelled profiles to gain new insights in the
downstream cluster analysis.

Clustering
Clustering of time profiles allows insight into which molecules share similar patterns of
response, which may in turn indicate a shared biological basis. Similarities between trajectories
may be seen not only in terms of shape and magnitude, but also rates of change, or speed.
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However, detecting these similarities can be challenging due to noise and missing values in sub-
ject-specific measurements. Hence, the choice of modelling approach often has critical impact
on the ability to identify clusters of biologically similar molecules.

We compared our modelling approaches LMMS and DLMMS to two single-step models
using the workflow shown in Fig 3. As a basic comparison, we first calculated the mean at each
time point for each molecule as it is arguably the most common way of reducing subject
dimension. As a more sophisticated alternative, we applied the R package implementation of
the recently proposed modelling approach Smoothing Splines Mixed Effects (SME) [22], which
uses a single model that treats each subject-specific trajectory as a smooth function of time.

For clustering, we compared the performance of five algorithms using the Dunn index [31]
from the clValid R package [32]. The Dunn index is the ratio of the smallest inter-cluster
distance to the largest intra-cluster distance. A large index value indicates a good separation of
the clusters, and is our criterion of choice to determine both the appropriate number of clusters
and the best performing clustering algorithm.

We selected clustering algorithms for comparison based on representatives of different clas-
ses of standard techniques: a model-based algorithm (mclust; [27]), hierarchical clustering,
k-means, partitioning around medoids (cluster; [33]), and Self-Organizing Maps

Fig 3. Workflow for the profile cluster analysis. Trajectories derived from Linear Mixed Model Spline
(LMMS) and Derivative Linear Mixed Model Spline (DLMMS) were compared to trajectories derived either
from the mean or Smoothing Splines Mixed Effects (SME) models. Five clustering algorithms—hierarchical
clustering (HC), kmeans (KM), Self-Organizing Maps (SOM), model-based (model) and Partitioning Around
Medoids (PAM) were then applied on modelled trajectories using a range of two to nine clusters. The
performance of each algorithm was assessed using the Dunn index. Gene Ontology (GO) term enrichment
analysis was performed on each of the obtained clusters.

doi:10.1371/journal.pone.0134540.g003

Linear Mixed Model Spline for Time Course ‘Omics’Data

PLOS ONE | DOI:10.1371/journal.pone.0134540 August 27, 2015 8 / 20



(kohonen; [34]). The last four algorithms utilize a dissimilarity metric to cluster profiles
derived from SME, mean and LMMS and the Euclidean distance metric for DLMMS.

A size-based Gene Ontology (GO) term enrichment analysis was then performed to validate
the biological relevance of each cluster, using the hypergeometric distribution based on the
number of molecules in the domain of interest [35]. We specifically examined the molecules’
spatial link (Cellular Compartment), basal activity (Molecular Function) and involvement in a
series of molecular events (Biological Process). All annotations were obtained from the org.
Hs.eg.db R package [36].

Differential expression analysis
While cluster analysis can provide valuable insight into behaviour patterns common to groups
(clusters) of molecules, differential expression analysis in a time course experiment can high-
light significant responses to perturbations of each molecule. Our LMMS framework enables
assessment of the significant differences over time or between individual groups based on the
whole molecular trajectory instead of analysing individual time points.

LMMS for differential expression analysis (LMMSDE): We extended the LMMS model-
ling framework to test between groups, across time, and for interactions between groups and
time as follows. Suppose we have R different groups of subjects, with hi denoting the group for
each subject i. Further, we define hir to be the indicator for the r

th group, that is, hir = 1 if hi = r
and 0 otherwise. Starting from the model in Eq 3 which is fit for a single group, we can extend
our formulation to allow for variations to the mean curve depending on which group contains
each subject. Thus the mean curve for each group fhi in the full LMMSDE model is given by:

fhiðtijÞ ¼ b0 þ b1tij þ
XK

k¼1

ukðtij � kkÞþ

þ
XR

r¼2

hirða0r þ a1rtijÞ þ
XR

r¼2

hir

XK

k¼1

vrkðtij � kkÞþ
( )

:

ð6Þ

For each r = 1, . . ., R, α0 = α0r are the differences in intercept between each group and the first
group; α1 = α1r are the differences in slope between each group and the first group; and vrk are
the differences in spline coefficients between each group and the first group.

We can test different hypotheses depending on which parameters are equal to zero. Firstly,
for a single group, 8r> 1, we have hir = 0, and time effects will be detected only if the goodness
of fit of this model is better than the null model which fits only the intercept. Secondly, to
detect differences between groups, we set α1 = 0 and β1 = 0, and test a goodness of fit against
the null model which also has hir = 0. Finally, if we include all parameters we can model the
group � time interactions, by allowing different slopes and intercepts in the different groups.
We compare this to the null model where the effects over time do not differ between groups.
For each case we compared the fit of the expanded model from Eq (6) with the corresponding
null model using the likelihood ratio test as implemented in the anova function from the R
package nlme [37].

Comparisons with LIMMA: We compared our approach to LIMMA [19], which is a set of
methods for microarray data analysis integrating empirical Bayes approaches with linear mod-
els. We tested for differences over time and between groups using the following two-step pro-
cess. First, linear spline models were fitted over time for every group. Second, contrasts of
coefficients from the fits were tested for significance. Correction for multiple testing was
applied for both methods for a significance level of 0.05 using the FDR approach from [6].
Note that no filtering was performed before differential expression analysis for two reasons:
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first, we wanted to compare the results based only on differences between models, and not on
differences in filtering approaches; second, p-values derived from LIMMA are based on poste-
rior estimates and the removal of non-informative profiles before analysis would therefore bias
the results.

Results

Quality control and filtering
We considered the performance of our filtering procedure in both proteomics and transcrip-
tomics datasets. On the iTraq breast cancer (Fig 4A) and iTraq kidney rejection data (Fig 4B,
4C) we obtained one cluster with low RT and RI ratios, and a second cluster with high values
for the two ratios. We therefore removed the molecules from that second cluster. Similar types
of clusters were observed for all transcriptomics datasets.

In total, between 35% and 76% of the data were removed (Table 1). As our filtering process
is based on identifying high signal to noise ratios over time, we expected the remaining profiles
to be enriched for those differentially expressed over time. In Fig 5 we present the relationship
between the filter ratios and p-values obtained from performing a differential expression analy-
sis over time using the new LMMSDE approach. We highlight the decrease in p-values when
there is a decrease in filter ratios in theM. musculus data (similar results were obtained in the

Fig 4. Clustering of filter ratios on proteomic datasets. Scatterplots of filter ratios RT on the x-axis against
RI on the y-axis for A) iTraq breast cancer dataset andB) andC) the iTraq kidney rejection dataset for group
Allograft Rejection (AR) and Non-Rejection (NR) respectively. Colors indicate clusters from a 2-cluster
model-based clustering, with red squares indicating molecules that cluster as ‘informative’ and will remain in
the analysis and blue circles indicating ‘non-informative’molecules that will be removed prior to analysis.

doi:10.1371/journal.pone.0134540.g004

Table 1. Types of models used to summarize profiles. The number (proportion) of profiles modelled with
each model selected by our proposed LMMS approach. Models are abbreviated as linear (LIN), spline (SPL),
subject-specific intercept (SSI), and subject-specific intercept and slope (SSIS). Models were applied to cell
line breast cancer data (Cell), Saccharomyces paradoxus evolution data (Yeast),Mus musculus chemother-
apy data (Mouse), andHomo Sapiens kidney rejection Non-Rejection (NR) data (Human). The row
‘Removed’ indicates the percentage of filtered profiles using the 2-cluster model-based clustering on RT and
RI.

Model Cell Yeast Mouse Human

LIN Eq 1 93 (.55) 125 (.035) 205 (.1) 3 (.091)

SPL Eq 2 75 (.45) 3427 (.95) 1769 (0.87) 3 (.091)

SSI Eq 4 30 (.008) 56 (.028) 10 (.3)

SSIS Eq 5 2(.0005) 3 (.002) 17 (.51)

# Modelled 264 3586 2033 33

% Removed 36 35 67 76

doi:10.1371/journal.pone.0134540.t001
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other datasets). However, contrary to our expectation we also observed for some low RT values
large p-values. We can explain the large p-values for low RT in Fig 5A by the presence of a large
number of missing values (> 50%) in the raw data (Fig 5B). Subsequently, the removal of pro-
files with more than 50% of missing data resulted in the expected previously described trend of
decreasing p-values with decreasing RT and RI values (Fig 5C).

Modelling
The power of our LMMS modelling lies in its ability to adaptively fit the complexity of the data.
Since some molecules are more prone to subject-specific variations than others, we generally
expect that a single model will be insufficient to appropriately model all types of trajectories.
We illustrate our point through the application of LMMS to datasets with increasing organism
complexity, from cell lines measured in a controlled environment to H. sapiens with varying
genetic and environmental factors. Table 1 shows that the proportion of complex models
required to summarize molecule profiles increases with organism complexity.

Clustering
We compared clustering of profiles from the iTraq breast cancer dataset which had been mod-
elled with mean, SME, LMMS and DLMMS (Fig 6). For each method, performance of different
algorithms and optimal number of clusters (from two to nine) was assessed using the Dunn
index.

This criterion resulted in different selections for these two quantities for the four modelling
approaches (S3 File). This in turn led to different shapes of profiles being represented in the
clusters selected for each modelling approach. The LMMS modelled profiles could be grouped
into the largest number of clusters, which allowed better discrimination between temporary
changes and linear increases/decreases over time when compared to the other approaches
(Fig 6A).

We subsequently assessed the biological relevance of the proteins identified within each
cluster with a GO term enrichment analysis. After removal of GO terms that contained only
one molecule, we identified 62 unique enriched GO terms (adj. p-value� 0.05, S1 Table) across

Fig 5. Filtering ratios of theMusmusculus data. The filter ratios RT and RI were calculated for every
molecule. Colors in A) indicate the -log10(p-values) for differential expression over time and in B) the
proportion of missing values.C) is after discarding profiles with > 50% of missing values, with colors as inA).

doi:10.1371/journal.pone.0134540.g005
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all clusters and methods. Most of the methods identified some specific and unique GO terms: 9
for LMMS, 10 for mean and 1 for DLMMS (Figure B in S4 File). Clustering profiles using the
methods mean and SME resulted in the enrichment of the intrinsic apoptotic signaling path-
way (GO:0097193) which was found to be altered under IGF-1 stimulation [38]. Both LMMS
and DLMMS found enriched biological function for programmed cell death (GO:0012501)
and negative regulation of programmed cell death (GO:0060548), which were also shown to be
altered under IGF-1 stimulation [39].

Interestingly, among the enriched GO terms identified by LMMS or DLMMS we observed
biological processes involved in glucose metabolic processes (GO:0006006), glycolysis
(GO:0006096) and gluconeogenesis (GO:0006094). These processes play an important role in
cancer progression [40], indicating that growth of the cancer cells may be stimulated by IGF-1.
The small cluster numbered 3 for the LMMS profiles was the only cluster in any of the methods
that identified profiles with monotonically increasing expression. These profiles were involved
in biological processes such as gluconeogenesis (GO:0006094), G-protein coupled receptor
binding (GO:0001664) and phosphorylation (GO:0016310), which have all been shown to be
an important part of the IGF-1 signalling cascade in association with cancer [41], [39, 42] (S2
Table).

Differential Expression Analysis

Simulated data
We compared the proposed LMMSDE with LIMMA on the unfiltered simulated data with
varying expression patterns and levels of noise. For each scenario, we recorded how many of 50
differentially expressed molecules were detected as significant after correction for multiple test-
ing and calculated average sensitivity and specificity over all 100 replicates (Table 2). Overall,
LIMMA and LMMSDE performed very well at a noise level similar to what was observed in
real data (Noise = 1), with both specificity and sensitivity higher than 0.96 for fold change (FC)

Fig 6. Clustering of the iTraq breast cancer dataset. Clustering was performed on the summarized profiles
obtained from A) Linear Mixed Model Spline (LMMS),B) Derivative Linear Mixed Model Spline (DLMMS), C)
mean andD) Smoothing Splines Mixed Effects (SME). The best clustering algorithm and the best number of
clusters were chosen according to the Dunn index. In A), B) andD) we used hierarchical clustering and inC)
Partitioning Around Medoids (PAM) clustering. The x-axis represents time (in hours) and the y-axis intensity
in terms of log2 transformed protein abundance.

doi:10.1371/journal.pone.0134540.g006
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levels above 1.5. For lower fold changes (FC = 1.25), differences between the two methods
became more apparent. LMMSDE was still very sensitive (0.98) to group differences, but the
performance of LIMMA (0.85) dropped. With increased variability, the difference between
methods became more dramatic, as LMMSDE was much more sensitive compared to LIMMA
except for the lowest FC. Similar trends were observed for all differential expression tests per-
formed and LMMSDE consistently outperformed LIMMA for low FC and high variability.

iTraq kidney rejection data
We performed a differential expression analysis on the iTraq kidney rejection dataset to illus-
trate our LMMSDE analysis on complex and real data. In addition to applying the differential
expression approaches LIMMA and LMMSDE on the full data set as in the simulated case
study, we also applied our filtering approach for multiple conditions and removed profiles that
were identified as non-informative in both conditions (64% of profiles were removed) before
LMMSDE analysis. Filtering before differential expression analysis was only applied for
LMMSDE, since removal of non-informative profiles should increase statistical power without
biasing results. In contrast, filtering before LIMMA analysis affects posterior estimates and can
bias p-values.

We compared LMMSDE and LIMMA in terms of the number of proteins declared as differ-
entially expressed between the two groups and investigated their biological relevance with
respect to the biological questions from the study. Two analyses were performed: to identify
the molecules with significant differences between groups, and to identify molecules showing
significant group�time interactions leading to different trends between the two groups over
time. While no differentially expressed molecules were identified by LIMMA for either group
or interaction effects, LMMSDE identified 35 differentially expressed proteins with a group
effect and 12 proteins with a significant interaction effect (FDR adjusted p-value< 0.05). On
the filtered dataset LMMSDE identified 13 molecules with a significant group effect and nine
molecules with a significant interaction effect. Note that these differentially expressed proteins
were also identified in the analysis of the full dataset. The effect size of differential proteins
identified with both group and interaction effects tended to be small, with a magnitude of aver-
age fold change of< 1.5.

For the 13 (three not annotated) molecules that were declared as differentially expressed
between groups, the top enriched biological process (Table 3) was the negative regulation of
endopeptidase activity (GO:0010951). This is of interest since an increase in the activity of
serum neutral endopeptidase has been shown to play an important role in acute renal graft
rejection [43]. An additional enrichment observed in the complement activation

Table 2. Simulation results. Averaged sensitivity for LMMSDE and LIMMA after 100 simulations. Differential expression between groups and/or time was
tested with increasing noise and fold change (FC) levels.

Effect Noise FC LMMSDE LIMMA Effect Noise FC LMMSDE LIMMA Effect Noise FC LMMSDE LIMMA

1.25 0.877 0.793 1.25 0.98 0.85 1.25 0.96 0.927

1 1.5 0.981 0.963 1 1.5 0.997 0.976 1 1.5 0.993 0.987

time 2 0.997 0.992 group 2 0.999 0.995 group 2 0.999 0.998

1.25 0.044 0.019 1.25 0.66 0.053 * time 1.25 0.347 0.124

3 1.5 0.667 0.354 3 1.5 0.943 0.494 3 1.5 0.845 0.703

2 0.939 0.838 2 0.986 0.881 2 0.965 0.938

doi:10.1371/journal.pone.0134540.t002
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(GO:0006956) is also of biological relevance as innate immune responses are major causes of
graft rejection [44]. Therefore, these molecules present good candidate biomarkers for the pre-
diction of allograft rejection. Some differentially expressed molecules were also present in bio-
logical processes involving platelet degranulation (GO:0002576) and platelet activation
(GO:0030168), which have been shown to contribute to hyperacute rejection of both allografts
and xenografts [45].

Out of the nine molecules (1 not annotated) with a significant interaction between group
and time, the most promising protein differentially expressed was IQ calmodulin-binding
motif-containing protein 1 (IQCB1). This protein is particularly relevant to this study, as it is a
nephrocystin protein localized to the primary cilia of renal epithelial cells. Mutations in this
gene were shown to be strongly associated with Senior-Løken-Syndrome Type 5, a disorder
causing nephronophthisis and renal failure [46].

Discussion
Thus far, very few methods have been developed to analyse high-throughput time course
‘omics’ data. Statistical analysis is challenging due to the high level of noise relative to signal in
such data, and the time measurements add an extra dimension of variability both within and
among subjects. Our data-driven approach focuses on magnifying the inherent signal, by
removing non-informative profiles that potentially interfere in downstream analysis, and by
using a linear mixed model spline framework to account for subject-specific variability. This
procedure provides clearer signals in both clustering and differential expression analysis.

The filtering of non-informative profiles is an important first step in analysis, as such pro-
files otherwise introduce noise and reduce statistical power in downstream clustering and dif-
ferential expression steps [47, 26, 48]. We have extended the standard deviation filter for static
microarray experiments proposed by [26] and introduced a computationally fast approach
accompanied by useful visualizations (see Figs 4, 5). We demonstrated that our filtering
approach was effective at discriminating informative from non-informative profiles by com-
paring the values of our filter statistics RT and RI with the test statistics from differential expres-
sion analysis over time.

Table 3. iTraq kidney rejection dataset: Gene Ontology (GO) term enrichment analysis.GO term enri-
chement analysis based on the proteins identified by LMMSDE as differentially expressed between Allograft
Rejection (AR) and Non-Rejection (NR) patients after filtering using a 2-cluster model-based clustering based
on RT and RI. The top GO biological processes are listed along with their FDR adjusted p-value and log odds
ratio (OR).

GO GO Description adj. p-value log(OR)

GO:0010951 negative regulation of endopeptidase activity 4.30e-03 5.57

GO:0006956 complement activation 6.40e-03 6.45

GO:0006958 complement activation, classical pathway 6.40e-03 6.36

GO:0002576 platelet degranulation 8.30e-03 5.67

GO:0045471 response to ethanol 8.30e-03 5.55

GO:0042593 glucose homeostasis 8.80e-03 5.43

GO:0006935 chemotaxis 1.00e-02 5.14

GO:0007596 blood coagulation 1.00e-02 3.84

GO:0030168 platelet activation 1.70e-02 4.30

doi:10.1371/journal.pone.0134540.t003
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For multiple treatment groups, we filtered separately for each group, removing only mole-
cules identified as non-informative in both groups. An alternative option would be to calculate
the ratios for each group separately, but apply the model-based clustering on all ratios from all
groups. We found very little differences compared to a filtering approach applied on each treat-
ment group. Using one of these approaches, it is possible that molecules that vary between
groups, but show little change over time could be removed. However, these molecules, though
differentially expressed, would be detected in a cross-sectional study, and are most likely not of
primary interest in time course studies where the focus is on molecules changing expression
over time.

In spite of the clear relationship between differential expression and filter ratios, we found
the selection of thresholds to be challenging. Threshold choice can be affected by a variety of
issues such as level of missing data and the number of replicates at each time point. In our anal-
ysis, we applied 2-cluster model-based clustering on the ratios to discriminate informative
from non-informative profiles. However, we suggested guidelines to address these issues and
our R package lmms allows the user to set their own thresholds. A drawback of our proposed
filtering method is the requirement of the same sampled time points across subjects, and the
need for at least three replicates per time point. If these do not hold, it may be necessary to col-
lapse time points into bins prior to analysis to have sufficient density of data. Further investiga-
tion of filters allowing for less constrained sampling could be very useful for adaptive sampling
designs.

Current modelling approaches for time course data fit the same statistical model to each
molecule, allowing for either subject-specific intercepts [21] or subject-specific intercepts and
slopes [22]. However, we expect that effects of environmental and/or genetic factors on expres-
sion vary for individual molecules. Therefore, as acknowledged by [22], the use of only one
model for all molecules has the serious limitation of under-smoothing or over-smoothing the
representative profiles. Our method improved upon existing methods by allowing the data to
drive the complexity of the models rather than having a single fixed model. Our analyses
showed that model flexibility was necessary, and that not only the choice of model was mole-
cule-dependent, but also that the proportion of complex models increased with organism com-
plexity. Our LMMS modelling approach was applied to a range of typical time course
transcriptomics and proteomics experiments with different numbers of replicated measure-
ments (3 to 20 per time point) and time points (4 to 6), and we expect the approach to be scal-
able and highly valuable for larger experiments.

In this study we clustered time course data based on their summarized profiles to identify
groups of molecules representing relevant molecular processes. We did not consider here clus-
tering of subjects to identify groups with similar sub-phenotypes. However, similar approaches
can be applied to this alternate biologically interesting question [49].

Clustering analysis relies not only the choice of algorithm, but also on the number of clus-
ters and the distance metric. There are a variety of options available for all of these, but we have
focused on common choices in this study, and expect that other options would produce similar
results. We observed that application of different modelling approaches (e.g. mean, SME,
LMMS) resulted in different input data structure to the clustering algorithms. As clustering
outputs are highly dependent on the input data structure [50], it was not surprising that the
clustered patterns and the optimal number of clusters varied across algorithms and conse-
quently led to differences in biological interpretation between clusters. We showed that apply-
ing LMMS prior to clustering allowed the identification of a cluster of biologically interesting
co-expressed genes. This highlights the importance of accurately modelling before clustering.

Differential expression analysis is often based on an underlying model of the data which
attempts to explain changes over time, between group, and through interactions while
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simultaneously accounting for noise in the data. We compared an approach based on linear
models, LIMMA, with our approach, LMMSDE, which is based on our linear mixed model
spline framework. An alternate spline-based approach is EDGE [21], but a comparative analy-
sis was not feasible with the current version of their package. In our simulation study, we
showed that LMMSDE gave superior results as it led to higher sensitivity, particularly for small
fold changes and high noise levels. Consequently, in a real biological data setting, LMMSDE
identified highly relevant differentially expressed molecules while LIMMA identified none. We
note that for both LMMSDE and LIMMA, the choice of spline basis can have a major effect on
differential expression analysis. We have focused here only on the linear penalized spline basis,
but there are many alternatives available, including the cubic spline and penalized cubic spline,
which we have implemented as options in our R package lmms. Higher-degree polynomials
may provide additional power for detection of differential expression over time when the pro-
files display nonlinear behaviour, as in cluster 1 (Fig 6) for the breast cancer data.

An additional benefit of LMMSDE was the ability to first perform filtering, which reduced
the number of tests performed and increased our ability to detect truly differentially expressed
molecules. The same type of analysis could not be performed with LIMMA, as its test statistic
is based on an empirical Bayes approach using posterior estimators for degree of freedom and
standard deviation. Therefore, a filtering of low variance molecules would affect posterior esti-
mates [26] and bias the results. By proposing a unified framework we thus achieve gains
throughout the entire statistical analysis process.

Conclusion
We proposed a novel framework for analysing time course ‘omics’ data, unifying quality con-
trol and filtering, modelling, and analysis in a linear mixed model spline framework. The first
step ensures the reproducibility and interpretability of the data. The second step is a highly
flexible data-driven approach aimed at modelling high-throughput data with potentially differ-
ent noise levels and trajectories over time. It can handle missing values, has low computational
burden, and avoids arbitrary input parameters. In the third step, similarities between profiles
can be assessed through clustering, or differences over time and between groups can be
assessed through LMMSDE. The unification of our modelling with clustering led to the identi-
fication of biologically relevant profile clusters. The unification of our modelling with differen-
tial expression analysis outperformed LIMMA in the situations of high noise levels and low
fold changes. In application of LMMSDE to real data, this higher sensitivity resulted in novel
identification of differentially expressed molecules biologically relevant to kidney rejection.
The LMMS framework is implemented in the R package lmms and is freely available for down-
load from CRAN.

Supporting Information
S1 File. Example of simulated profiles with a time effect (Figure A), a group effect
(Figure B) and a group and time interaction (Figure C). The noise level is equal to that in
the kidney rejection data and the groups of each individual are indicated in grey full lines
(group 1) or black dashed lines (group 2). In Figure A the expression increases over time with
a fold change of log(2) from the first to the last time points, in Figure B the fold change
between the two groups is equal to log(2), in Figure C the profiles measured on individuals
from group 1 (group 2) increase (decrease) over time with a fold change of log(2).
(PDF)
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S2 File. Relationship between filter ratios, differential expression and presence of missing
values in multiple datasets. Filter ratios RT (x-axis) and RI (y-axis) are shown for: simulated
data (Figure A); iTraq breast cancer data (Figure B); Saccharomyces paradoxus evolution data
(Figure C); iTraq kidney rejection Allograft Rejection (AR) data (Figure D). Molecules are col-
oured according to −log10 p-values for Linear Mixed Model Spline for Differential Expression
analysis (LMMSDE) test for differential expression over time (first column) and the proportion
of missing values (second column).
(PDF)

S3 File. Internal stability of iTraq breast cancer clusters: using the mean (Figure A);
Smoothing Splines Mixed Effects (SME) (Figure B); Linear Mixed Model Spline (LMMS)
(Figure C) and Derivative LMMS (DLMMS) (Figure D) for summarizing the profiles across
the biological replicates. Dunn indices are displayed for a number of clusters varying from two
to nine with the five different cluster algorithms: hierarchical clustering (HC), kmeans (KM),
Partitioning Around Medoids (PAM), model-based (model) and Self-Organizing Maps
(SOM). Higher Dunn indices indicate better clustering performance.
(PDF)

S4 File. iTraq breast cancer cluster Gene Ontology (GO) term enrichment analysis. Venn
diagram of significantly enriched GO terms identified by clustering of the mean, Smoothing
Splines Mixed Effects (SME), Linear Mixed Model Spline (LMMS) and Derivative LMMS
(DLMMS) before (Figure A) and after (Figure B) removing GO terms that contained only one
molecule.
(PDF)

S1 Table. iTraq breast cancer dataset: overlapping enriched Gene Ontology (GO) terms.
Shown are the GO terms identified concordantly by clustering of at least two of the modelling
approaches (Linear Mixed Model Spline (LMMS), Derivative LMMS (DLMMS), mean or
Smoothing Splines Mixed Effects (SME)).
(PDF)

S2 Table. iTraq breast cancer dataset: unique identified Gene Ontology (GO) terms.
Enriched GO terms uniquely identified by clustering of the profiles modelled by the different
approaches considered. For each enriched term, the cluster number (Cluster), the number of
molecules with GO terms in that cluster (Counts), the number of molecules in the data with
that GO term (NMol), the number of molecules in the cluster (Size), the GO description, ontol-
ogy (Ont), false discovery rate adjusted p-value (adj. p), and log odds ratio (OR) are given. The
table is sorted by p-value within each cluster. Linear Mixed Model Spline (LMMS); Derivative
LMMS (DLMMS) and Splines Mixed Effects (SME) use hierarchical clustering while the mean
uses PAM clustering. For LMMS three clusters were identified, while two clusters were identi-
fied for DLMMS, mean and SME.
(PDF)
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