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Abstract
The cough reflex represents a primary defensive mechanism for airway protection in a variety of
mammalian species. However, excessive and inappropriate coughing can emerge as a primary
presenting symptom of many airway diseases. Cough disorders are characterized by a reduction in
the threshold for reflex initiation and, as a consequence, the occurrence of cough in response to
stimuli that are normally innocuous in nature. The current therapeutic strategies for the treatment
of cough disorders are only moderately effective. This undoubtedly relates in part to limitations in
our understanding of the neural components comprising the cough reflex pathway. The aim of this
review is to provide an overview of current concepts relating to the sensory innervation to the
mammalian airways, focusing particularly on the sensory receptors that regulate cough. In addition,
the review will highlight particular areas and issues relating to cough neurobiology that are creating
controversy in the field.

Introduction
The basic nature of the respiratory system (i.e., inspiration
of air from the surrounding environment for gas
exchange), as well as the shared nature of the initial ana-
tomical structures for the passage of food and air, places
the airways and lungs under the constant threat of expo-
sure to a variety of harmful airborne particles, organisms
and other substances as well as aspirated gastric contents
or accidental inhalation of foodstuffs. It is therefore not
surprising that a variety of defensive mechanisms have
evolved along with the normal function of the respiratory
system to help protect against such threats. Airway protec-
tion relies upon specialized epithelial barriers and
immune responses as well as a variety of highly co-ordi-
nated neural reflex responses that help to limit the degree
of potential harm and ultimately remove or expel the
harmful substance from the airways.

Perhaps the most widely recognized neural response
involved in airway protection is coughing. Coughing is
generally characterized by a reflex-evoked modification of
breathing pattern in response to airway irritation [1].
Reflex cough occurs when subsets of airway afferent (sen-
sory) nerves are activated by inhaled, aspirated or locally
produced substances. These afferent nerves provide mod-
ifying inputs to the brainstem neural elements controlling
respiration, and consequently help generate the cough
respiratory pattern [1-3]. Although widely studied for
many years, there has been much debate surrounding the
identity of the airway afferent nerve subtype that precipi-
tates reflex coughing (see below). In addition, cough can
also be initiated voluntarily. Little is known about the cor-
tical pathways responsible for voluntary coughing,
although they likely share similarities with those path-
ways responsible for voluntary breath holding and other
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conscious modifications of respiration. This review will
focus on the current understanding of the anatomical and
physiological arrangement of the sensory components
responsible for reflex coughing. In addition the review
will highlight how modifications of the sensory pathways
from the airways could lead to inappropriate coughing in
disease.

Classification of afferent nerve fiber types innervating the 
airways and lungs
Before describing which afferent nerve fibers are involved
in reflex coughing, it seems appropriate to first provide a
brief overview of the various afferent nerve subtypes that
have been described in the mammalian airways. For the
purposes of this review, much of the classification of air-
way afferents will relate to information gained from stud-
ies employing guinea pigs, the most widely utilized
species with respect to airway innervation and cough.
Whether studies in guinea pigs (or indeed any other exper-
imental animal) can be directly translated to humans is a
subject for additional debate. The discussion will also be
restricted to only those afferent fibers that innervate the
airways caudal to (and including) the larynx.

Airway sensory nerves do not form a homogeneous pop-
ulation. However, to date, there is no single classification
scheme that adequately and unambiguously subcatego-
rizes the various afferent nerve subtypes that have been
described in the airways. Although a functional classifica-
tion is commonly employed (describing the physiological
responsiveness of airway afferents), subtypes can be alter-
natively delineated based on their origin, location in the
airways, neurochemistry, electrophysiological properties
or by the reflexes that are evoked secondary to afferent
activation [4]. This lack of a universal classification
scheme, coupled with attempts to classify an afferent sub-
type using only one phenotypic trait, often leads to some
confusion as to the identity of a given afferent nerve type.
It is therefore desirable to consider multiple characteristics
when defining an airway afferent fiber.

In guinea pigs (and likely true for all mammals) airway
sensory nerves can be broadly functionally classified as
either primarily mechanically sensitive (low threshold
mechanosensors) or primarily chemically sensitive
(chemosensors or alternatively, nociceptors) (Fig 1). Low
threshold mechanoreceptors are readily activated by one
or more mechanical stimuli, including lung inflation,
bronchospasm or light touch, but generally do not
respond directly to chemical stimuli unless the stimulus
acts upon airway structural cells to result in mechanical
distortion of the nerve terminal [5-8]. Conversely, chem-
osensors are typically activated directly or sensitized by a
wide range of chemicals, including capsaicin, bradykinin,
adenosine, PGE2, but are relatively insensitive to mechan-

ical stimuli [9,10]. This broad delineation, however, may
not be strictly correct as at least some low threshold mech-
anosensors also directly respond to chemical stimuli,
including acid and ATP, although these mediators may
still activate the nerve terminal via mechanical mecha-
nisms [11,12]. Subtypes of both the mechanosensors and
chemosensors are readily identified (described below).
Regardless of the afferent fiber, the majority of airway
afferent nerves originate in the vagal sensory ganglia
(nodose or jugular) [13,14]. A small population of fibers
(believed to be a subpopulation of chemosensitive
nerves) may have their origin in dorsal root ganglia adja-
cent to the upper thoracic spinal cord [15]. Little is known
about the role of spinal afferents in airway defense.

Low threshold mechanosensors
Two classic types of low threshold mechanosensors have
been described in the intrapulmonary airways of a
number of mammalian species, namely the rapidly adapt-
ing receptors (RARs) and slowly adapting receptors
(SARs) [8,9,16-20]. However, when comparing only a
limited number of phenotypic traits RARs and SARs may
appear indistinguishable (Table 1). Thus, RARs and SARs
both originate in the nodose ganglia, terminate in the
intrapulmonary airways and lung parenchyma, conduct
action potentials in the Aβ-range (10–20 m/s) and are
sensitive to many mechanical stimuli, including changes
in lung volume, airway smooth muscle constriction and
airway wall oedema [9,12,17-21]. Accordingly, RARs and
SARs may both display activity when the lungs are inflated
[9,16-19]. RARs and SARs are also both generally insensi-
tive to a wide range of chemical stimuli, unless the stimu-
lus evokes coincidental changes in airway smooth muscle
tone, mucus secretion or airway wall volume [8,17,19].

Nevertheless, RARs and SARs can be differentiated by
comparing their individual mechanical activation pro-
files, mechanical adaptation properties, central termina-
tion patterns and the reflexes that each precipitate (Table
1). Thus, RARs may be activated during both inflation and
deflation of the lungs (including lung collapse) [9,17].
SARs, on the other hand, display activity during tidal
inspirations, peaking just prior to the initiation of expira-
tion [9,16]. As their names suggest, RARs display rapid
adaptation (i.e., a rapid reduction in the number of action
potentials) during sustained lung inflations, whereas
SARs adapt slowly to this stimulus [9,17]. It is important
to note, however, that this rapid adaptation shown by
RARs during sustained lung inflations is unlikely an elec-
trophysiological property of the nerve terminal but rather
relates to the nature of the stimulus. RARs typically adapt
slowly to other types of mechanical stimuli, including
dynamic lung inflations, bronchospasm and lung col-
lapse [12,19]. Finally, activation of RARs evokes tachyp-
nea and airway smooth muscle constriction, whereas
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SARs are likely the primary afferent fibers involved in the
Hering-Breuer reflex, which terminates inspiration and
initiates expiration when the lungs are adequately inflated

[16,17]. SAR activation also inhibits cholinergic drive to
the airway smooth muscle, resulting in a reduction in air-
way tone [8]. The different reflexes that are evoked by

Basic schematic classification of afferent nerve subtypes innervating the guinea pig airwaysFigure 1
Basic schematic classification of afferent nerve subtypes innervating the guinea pig airways. Abbreviations: RAR; rapidly adapting 
airway mechanoreceptor; SAR, slowly adapting airway mechanoreceptor.

Table 1: Properties of low threshold mechanosensor subtypes innervating the guinea pig airways.

SAR RAR Cough Receptor

Anatomical Characteristics:
Ganglionic Origin Nodose Nodose Nodose
Extrapulmonary Termination No No Yes
Intrapulmonary Termination Yes Yes Few
Substance P Expression No No No
TRPV1 Expression No No No

Functional Characteristics:
Conduction Velocity (m/sec) ~18 (Aβ) ~15 (Aβ) ~5 (Aδ)
Mechanical Threshold Low Low Low
Sensitive to:

Punctate Mechanical Yes Yes Yes
Capsaicin Yes1 Yes1 No
Hypertonic Saline Unknown Unknown Yes
Bradykinin Yes1 Yes1 No
Acid No Unknown Yes

Inflation (≤50 cmH2O) Yes Yes No
Deflation/Collapse No Yes No
Stretch Yes Yes No
Bronchoconstriction Yes Yes No
ATP Yes Yes No

Reflex Effects on Respiration Hering-Breuer Tachypnea Cough

1 SARs and RARs are insensitive to the direct action of these chemicals on the nerve terminal. However, chemical stimuli such as capsaicin and 
bradykinin can activate SARs and RARs secondary to airway smooth muscle contraction, mucous secretion or edema formation. Cough receptors 
are insensitive to both the direct and indirect actions of capsaicin and bradykinin. See text for references.

Low Threshold Mechanosensors Chemosensors (Nociceptors) 

ExtrapulmonaryIntrapulmonary Extrapulmonary

A -Fibers
(half)

C-Fibers
(half)

Intrapulmonary

A -Fibers
(few)

C-Fibers
(most)

Cough ReceptorsSARs RARs

Airway Afferent Nerves
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these afferent nerve subtypes likely reflect the distinct
brainstem neurons innervated by RARs and SARs
[reviewed in 22].

A third type of low threshold mechanosensor has been
described in the guinea pig airways [12]. These fibers also
originate from the nodose ganglia, but are primary
located in the extrapulmonary airways (larynx, trachea
and large bronchi) and are quite distinct to RARs and
SARs (Figure 2; Table 1). Extrapulmonary low threshold
mechanosensors are exquisitely sensitive to punctate
mechanical stimuli (such as touch) but are insensitive to
physiologically-relevant tissue stretching, changes in
luminal pressure or airway smooth muscle constriction
[12]. Extrapulmonary low threshold mechanosensors are
also readily differentiated from their intrapulmonary

counterparts by a much slower conduction velocity (~5
m/sec, Aδ-range) and a lack of sensitivity to the purinergic
agonist ATP [12]. During sustained punctate mechanical
stimulation, extrapulmonary mechanosensors display
rapid adaptation, although again this likely reflects some
property of the mechanics of the stimulus in relation to
tissue surrounding the nerve terminal rather than reflect-
ing electrophysiological adaptation [23]. Circumstantial
evidence suggests that analogous fibers may be present in
the extrapulmonary airways of cats, dogs and humans
[2,24-30]. It is presently unknown whether this mechano-
sensor subtype is activated during normal breathing.

Chemosensors
Chemically-sensitive airway afferent fibers are found
throughout the airways and lungs and are generally quies-
cent in the normal airways, becoming recruited during air-
ways inflammation or irritation. Airway chemosensors are
derived from both the nodose and jugular vagal ganglia,
as well as from the dorsal root ganglia [13-15]. As
described above, chemosensors are typically defined by
the ability of a variety of chemicals to directly activate the
nerve terminal (i.e., not secondarily to structural altera-
tions within the tissue; Table 2). However, care needs to
be taken when differentiating an airway chemosensor
form other airway afferent nerve subtypes. For example,
often airway chemosensors are stereotypically defined by
their responsiveness to the irritant chemical capsaicin
and, hence, the expression of the capsaicin receptor
(TRPV1). This definition, however, is not strictly accurate,
as at least some species possess capsaicin-insensitive,
TRPV1-negative chemosensors [31]. Alternatively, it may
be assumed that all airway chemosensors are C-fiber type
nociceptors. This is also incorrect, as airway (and other
visceral) chemosensors that conduct action potentials in
the Aδ-fiber range have been identified (analogous to
somatic Aδ-nociceptors) [13,32,33]. Furthermore, due to
the overwhelming number of studies conducted in guinea
pigs, chemically-sensitive fibers are often presumed to
express tachykinins (substance P and/ or neurokinin A)
(Fig 2). Guinea pigs are perhaps unique amongst mam-
mals and express a high density of tachykinin-containing
airway C-fibers, especially in their extrapulmonary air-
ways [34-36]. Indeed, in the airways of most mammalian
species (and in the guinea pig intrapulmonary airways)
the majority of C-fiber chemosensors do not express tach-
ykinins [35,36]. Given these reasons, airway chemosen-
sors are sometimes thought of as high threshold
mechanosensors. Within this group are fibers that are not
readily excited by mechanical stimulation (bronchocon-
striction, lung inflations light touch, etc), but can be acti-
vated using severe mechanical manipulations (lung
hyperinflation, forceful punctate stimuli etc) and one or
more chemical stimuli (capsaicin, bradykinin, adenosine
etc).

Photomicrographs of the guinea pig trachea showing (a) all nerve fibers immunostained for the pan neuronal marker Protein Gene Product 9.5; (b) jugular ganglia derived chemo-sensitive C-fiber plexus immunostained for substance P and (c-f) four representative nodose ganglia-derived low thresh-old mechanosensors (putative cough receptors) stained using the Fluorescent Marker (FM) 2–10Figure 2
Photomicrographs of the guinea pig trachea showing (a) all 
nerve fibers immunostained for the pan neuronal marker 
Protein Gene Product 9.5; (b) jugular ganglia derived chemo-
sensitive C-fiber plexus immunostained for substance P and 
(c-f) four representative nodose ganglia-derived low thresh-
old mechanosensors (putative cough receptors) stained using 
the Fluorescent Marker (FM) 2–10. Note the clear distinc-
tion between the terminal arrangements of airway C-fibers 
and cough receptors. The terminal structure of guinea pig 
SARs, RARs and Aδ-chemosensors is presently unknown. 
Magnification: X40 (a), X100 (b) and X200 (c-f).
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Airway afferent nerves and cough
The identity of the afferent nerve fiber subtype that is pri-
marily responsible for evoking reflex coughing has been
the subject of much debate. Studies in experimental ani-
mals and in humans show clearly that multiple types of
mechanical and chemical stimuli can (under the right
experimental conditions) evoke coughing [1,12,24-
30,37,38]. This would argue that multiple afferent nerve
subtypes (mechanosensors and chemosensors) might be
involved in the production of reflex coughing. However,
not all stimuli evoke cough under all conditions [3,12].
This might suggest divergence between multiple reflex
pathways or the existence of primary and secondary cough
afferent pathways (discussed below).

Rapidly adapting receptors (RARs) and chemosensors
RARs have long been presumed to be the primary afferent
nerve fibers that evoke defensive cough in the airways
[1,4,5,39]. Indeed, it has been proposed that coughing
can be initiated following the activation of RARs by airway
smooth muscle constriction, mucous accumulation,
mechanical irritation and even capsaicin and bradykinin
application (due to the resulting airway obstruction)
[1,4,17]. However, several observations argue against the

role of classic RARs as the primary cough-provoking affer-
ent fibers. For example, many stimuli that produce robust
activation of RARs (e.g. thromboxane, leukotriene C4
(LTC4), histamine, neurokinins, methacholine) are inef-
fective or only modestly effective at evoking cough
[17,28,40-42]. Moreover, in some coughing species (e.g.,
guinea pigs) many RARs are spontaneously active
throughout the respiratory cycle and yet cough is only
induced in response to very specific stimuli [8,12,14,19].

Evidence also supports a role of airway chemosensitive
nerve fibers in the cough reflex. For example, stimuli that
are known to activate airway chemosensors, such as cap-
saicin, bradykinin and citric acid, are amongst the most
potent tussigenic agents in conscious animals and
humans [12,26,38,43,44]. However, capsaicin and brady-
kinin do not evoke cough in anesthetized animals or
humans, even though cough can be evoked in these same
animals by mechanically probing the airway mucosa
[12,25,27]. In fact, in anesthetized animals acute capsai-
cin challenge has been shown to inhibit breathing and, as
a consequence, inhibit cough evoked by mechanical stim-
ulation of the airways [12,25,27]. These conflicting obser-
vations have lead to suggestions that in conscious animals

Table 2: Properties of chemosensor subtypes innervating the guinea pig airways.

C-Fiber C-Fiber Aδ-Fiber

Anatomical Characteristics:
Ganglionic Origin Nodose Jugular Jugular
Extrapulmonary Termination No Yes Yes
Intrapulmonary Termination Yes Yes Few
Substance P Expression (%)1 Yes (50) Yes (90–100) No (0)
TRPV1 Expression2 Yes Yes Yes

Functional Characteristics:
Conduction Velocity (m/sec) <1 <1 ~6
Mechanical Threshold High High High
Sensitive to:

Punctate Mechanical Yes3 Yes3 Yes3

Capsaicin Yes Yes Yes
Hypertonic Saline Unknown Yes Yes
Bradykinin Yes Yes Yes
Acid Yes Yes Yes

Inflation (≤50 cmH2O) No No No
Deflation/Collapse No No No
Stretch No No No
Bronchoconstriction No No No
ATP Yes No No
Serotonin (5-HT) Yes No Unknown

Reflex Effects on Respiration Apnea4 Apnea4 Apnea4

1 Percentage of soma expressing substance P shown in parentheses [taken from ref 36]. 2 Functionally responsive to capsaicin and/or TRPV1 
detected immunohistochemically. There is no data available indicating percentage of cells expressing TRPV1. 3 All airway afferents are responsive to 
punctate mechanical stimulation. However, the threshold for activation is approximately 100 fold higher for chemosensors compared to 
mechanosensors. 4 The basic respiratory reflex evoked by capsaicin is apnea or respiratory slowing, often proceeded by rapid shallow breathing. 
However, the precise reflex response evoked by each chemosensor subtype has not been described. See text for references.
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cough-evoked by chemosensor stimuli relies on cortical
processing of the stimulus, in which the activation of a
subset of airway chemosensors generate the conscious
perception of airway irritation and promote the urge to
cough [3]. Indeed, it is interesting that capsaicin-evoked
cough can be consciously suppressed in human subjects
[45]. If this hypothesis is correct, then chemosensor-medi-
ated cough may not strictly be reflexive in nature. Rather,
the perception of airway irritation may induce the con-
scious/ voluntary decision to cough. The true respiratory
reflex response that is evoked by airway chemosensor
stimulation may in fact be rapid inhibition of respiratory
activity, which is observed during anesthesia and perhaps
over-ridden (unless the reflex is robustly activated) by vol-
untary control in the conscious state.

The guinea pig 'cough receptor': Conflicts and opinions
The recent characterization of an extrapulmonary low
threshold mechanosensor in the guinea pig airways (dis-
tinct to classic intrapulmonary RARs and SARs) may pro-
vide some important insights into the identity of the
primary cough-provoking afferent nerve fiber. As
described above, these fibers are found within the wall of
the larynx, trachea and mainstem bronchi and are func-
tionally differentiated from RARs and SARs by their sensi-
tivity to light punctuate mechanical stimulation, but not
to tissue stretch, bronchospasm, ATP and positive/ nega-
tive luminal pressures within the physiological range [12].
In addition to touch-like sensitivity, extrapulmonary
mechanosensors are also activated by rapid changes in pH
(e.g., as might be expected to occur following aspiration of
gastric contents) [11,12]. Mechanical irritation and
changes in pH are both stimuli that readily evoke cough
in conscious and anesthetized animals and humans [11-
13,26,46]. This sensitivity profile, their apparent ideal
location for airway defense (i.e., in the large airways), the
absence of this fiber subtype in species that do not cough
(e.g. rats and mice) and several other anatomical and
functional observations makes these extrapulmonary low
threshold mechanosensors a likely candidate for the pri-
mary afferent nerve subtype that evokes reflex defensive
coughing in guinea pigs. Accordingly, the term 'cough
receptor' has been reintroduced to describe this guinea pig
afferent nerve fiber subtype [3,12,47-49].

The identification of a unique afferent fiber subtype
involved in generating cough from the guinea pig airways
has generated much discussion within the field of cough
research. For example, although these extrapulmonary
fibers are easily distinguished from classic RARs and SARs
in guinea pigs, it is unclear whether analogous fibers exist
in the large airways of other species. The observation that
the cough reflex can be readily evoked by light touch of
the larynx, trachea or mainstem bronchi but not by bron-
choconstricting agents, in dogs, cats and humans, pro-

vides circumstantial evidence that similar fibers may exist
in these species [2,24-30]. It is also presently not known
whether cough is the only reflex event initiated by this
fiber type, nor is it certain that other fiber types can not
produce coughing under some circumstances. However,
this fiber type is the only sensory nerve in the guinea pig
airways that once activated can initiate cough in both con-
scious and anesthetized animals [12]. Nevertheless, care-
ful experimentation is required to adequately address
these issues.

The appropriateness of employing the term 'cough recep-
tor' to describe the guinea pig extrapulmonary low thresh-
old mechanosensor has also been questioned. Although
physiologists commonly describe sensory nerve fiber
types as 'receptors' (e.g., muscle stretch receptors, tension
receptors, RARs and SARs etc), the term 'receptor' can
equally be applied to describe a pharmacological entity
(e.g. a G-protein coupled receptor or a ligand-gated ion
channel). Given the latter definition, and the observation
that capsaicin is one of the most tussigenic stimuli availa-
ble in conscious animals and humans, it is not surprising
that TRPV1 (i.e., the capsaicin receptor) has been identi-
fied as a possible 'cough receptor' in guinea pigs and
humans [50]. With this approach, any protein responsible
for the transduction of a mechanical or chemical stimulus
into electrical activity in the sensory nerve terminal (lead-
ing to cough) is a pharmacological cough receptor, and
therefore a given sensory nerve is likely to have many dif-
ferent cough receptors. However, by defining a protein as
a cough receptor it implies that this protein is therefore
involved in the cough reflex irrespective of the cell type,
tissue or species in which it is expressed. Using the exam-
ple of TRPV1, it is unlikely that all TRPV1-expressing cells
in the airways, and (perhaps with the exception of some
nasal and esophageal afferent neurons) improbable that
any TRPV1-expressing cells in other tissues or organs are
involved in the cough reflex. Furthermore, species such as
rats and mice lack the cough reflex, despite possessing
numerous TRPV1-positive and capsaicin-sensitive airway
afferent nerves [31,51,52].

Although these issues may seem an argument of seman-
tics, they highlight the problems associated with the lack
of any standard and widely accepted nomenclature system
for defining terms and concepts employed by the field.
Given that a 'cough receptor' was defined in the first
instance as a putative afferent nerve subtype that evokes
cough (and was not obviously intended to be employed
to describe a pharmacological entity) [49], it therefore
seems appropriate to define the guinea pig extrapulmo-
nary low threshold mechanosensitive afferent nerve sub-
type as the only cough receptor identified to date.
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Multiple and interacting cough reflex pathways
The breath-to-breath activity of intrapulmonary SARs and
RARs is known to play an important role in regulating the
excitability of brainstem breathing circuits [53-57]. In
addition, activation of bronchopulmonary chemosensors
can have profound influences on breathing pattern
[12,25,27,58,59]. Given that many of the brainstem neu-
ral elements involved in breathing and coughing are
shared, it seems therefore logical that alterations in the
activity of most airway afferent nerves will play a role in
shaping the cough motor pattern, perhaps contributing to
different types of cough. For example, the basic primary
defensive cough pathway (i.e., uncontrollable cough in
response to an acute stimulus such as aspiration or direct
mechanical probing of the airway mucosa) is likely medi-
ated primarily by extrapulmonary low threshold mech-
anosensors (cough receptors). This pathway may
therefore represent the primary basic defensive cough
reflex pathway that serves to protect the airways from
acute assaults. However, cough associated with airways
obstruction or more chronic airway irritation (as would
be expected to occur in airways disease) may involve the
recruitment of other afferent (RAR and/ or chemosensor)
pathways. In this scenario, secondary airway afferent
pathways may evoke or modify cough responses via inter-
actions with central elements of the primary cough
pathway.

One of the problems faced when attempting to study cen-
tral afferent interactions involved in coughing is the large
gap in our understanding of airway sensory nerve integra-
tion in the brainstem. Nevertheless, recent studies in
guinea pigs have provided some evidence to support the
hypothesis that central interactions between cough recep-
tor afferents and airway chemosensors may play an
important role in cough reflex hypersensitivity in disease
[3,60,61]. In anesthetized guinea pigs, chemosensors play
a permissive (but not essential) role in cough evoked by
some mechanoreceptor stimulants [62]. Furthermore,
activation of normally quiescent airway chemosensors
(using capsaicin or bradykinin) does not evoke cough but
rather potentiates cough evoked by tracheal cough recep-
tor stimulation [60]. Chemosensor-evoked potentiation
of cough may reflect convergence of cough receptors and
chemosensors onto common brainstem neurons respon-
sible for generating cough [14,22], and shares many
similarities with the interaction between cutaneous mech-
anosensors and chemosensors in the spinal cord, which is
thought to underlie the manifestation of aberrant pain
states [Reviewed in 22, 63]. Studies in guinea pigs and
humans also suggest that chemosensitive afferent input
from the nose or esophagus may heighten cough sensitiv-
ity via central interacting mechanisms [64-66].

Combined, these observations suggest that the recruit-
ment of airway or other visceral chemosensors, and the
subsequent increase in central cough pathway excitability,
may contribute to the hypertussive states that accompany
inflammatory diseases of the airways, nose and/ or
esophagus. These data also indicate that it may be possi-
ble to design future therapeutic strategies that reduce the
excitability of secondary cough afferent pathways, thereby
treating cough hypersensitivity associated with disease
without inhibiting the basic (primary) defensive cough
reflex which is essential for airway protection and normal
airway functioning.

Conclusion
Coughing, although essential for protecting the airways
from the possible deleterious effects of acute airway irrita-
tion, can become excessive and non-productive in many
airways diseases. The recent increased interest in cough
reflex sensory neurobiology has unveiled a previously
unrecognized complexity in the interacting roles of multi-
ple afferent nerve subtypes in regulating this defensive
reflex. However, further careful dissection of the cough
sensory pathways is still required for the identification of
future therapeutic targets for the effective treatment of
cough disorders.
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