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A woman has an increased risk of breast cancer if her lifelong estrogen exposure is 
increased due to an early menarche, a late menopause, and/or an absence of child-
bearing. For decades, it was presumed that the number of years of exposure drove the 
increased risk, however, recent epidemiological data have shown that early life exposure 
(young menarche) has a more significant effect on cancer risk than late menopause. 
Thus, rather than the overall exposure it seems that the timing of hormone exposure 
plays a major role in defining breast cancer risk. In support of this, it is also known 
that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, 
yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This 
suggests that the effects of estrogen on the mammary gland/breast are age-dependent. 
In this review article, we will discuss the existing epidemiological data linking hormone 
exposure and estrogen receptor-positive breast cancer risk including menarche, 
menopause, parity, and aberrant environmental hormone exposure. We will discuss the 
predominantly rodent generated experimental data that confirm the association with 
hormone exposure and breast cancer risk, confirming its use as a model system. We will 
review the work that has been done attempting to define the direct effects of estrogen 

 on the breast, which are beginning to reveal the mechanism of increased cancer risk. 
We will then conclude with our views on the most pertinent questions to be addressed 
experimentally in order to explore the relationship between age, estrogen exposure, and 
breast cancer risk.

Keywords: parity, breast cancer risk, menarche, menopause, estrogens

Breast cancer remains one of the most prevalent diseases in the western world, with one in eight 
women predicted to be affected by breast cancer in their lifetime. Improvements in detection, anti-
estrogen therapies, and cytotoxic chemotherapy have led to increased survival rates, from 72% in 
1980s to 89% in 2010. Despite this, the incidence of breast cancer has increased over the same period 
(1, 2). This year in Australia, 15,930 women are predicted to be diagnosed with breast cancer and this 
figure is expected to rise to 17,210 women by 2020. Similar increases in incidence have been reported 
in America, the United Kingdom, and China (3–5). Estrogen receptor (ER)-positive breast cancers 
are the only subtype that are increasing (6–9) and as they make up 75–80% of all breast cancer cases 
this may explain the increase in breast cancer incidence overall. It has been postulated that the rising 
incidence of ER+ breast cancer is driven by hormonal risk factors such as low and/or late parity, 
early menarche, late menopause, as well as the use of combined oral contraceptive (OCP) pill and 
postmenopausal hormone replacement therapy (HRT) (10–13) rather than determinants such as 
BMI and BRCA1/2 status. In this review we will discuss the epidemiological data and experimental 
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models used to investigate the effects of these different hormonal 
factors on ER+ breast cancer risk.

PARiTY

Childbearing and a lack thereof have been known to influence 
breast cancer risk ever since Bernardino Ramazzini documented 
an increase in breast cancer incidence in nuns in the eighteenth 
century (14). Over the last century, these observations have 
been supported by numerous epidemiological studies (15–17). 
Depending on the age at which childbearing begins, after a tran-
sient increase risk period immediately following pregnancy (18), 
parity provides lifelong protection against breast cancer by up to 
50% (19). In the last two decades, large case–control and meta-
analysis studies have shown that the protection provided by parity 
is restricted to hormone receptor positive tumors (ER+PR+) 
(20–22). Recent studies have attempted to investigate whether 
parity reduces the risk of different molecular subtypes of breast 
cancer but have shown conflicting results (23–25) highlighting 
the need for larger studies to shed light on these inconsistencies.

The older a mother is at the age of the first full-term birth, 
the less the protection that is instilled by the pregnancy (18, 20, 
26–28). After 35 years of age, parity paradoxically increases risk 
compared to women who have not had children. An increasing 
number of births also confer protection (29–33) with additional 
births providing an extra 10% reduction in risk (34). In addition, 
the spacing between births can influence breast cancer risk, with 
less than 1 year or greater than 3 years providing more protec-
tion than a birth space of 1–2  years (35). The protective effect 
of childbearing is important to consider in relation to current 
reproductive trends. Recent reports have identified that more 
women in western cultures are remaining childless or delaying 
childbearing until after 35 years of age (1, 2, 36). In 2012, up to 
20% of Australian women were childless, and of those that were 
bearing children, 24% had their first child after 35 years of age 
(37). It is, therefore, proposed that this decline in childbearing 
and increasing age at first full-term birth may be contributing to 
the rise in breast cancer incidence.

Considering the influence of age at first birth, number of births, 
and birth spacing on breast cancer risk, it is not surprising that 
breastfeeding is also able to modulate risk (38, 39). The reduc-
tion in breast cancer risk offered by breastfeeding is 4.3–4.5% for 
every 12 months of breast feeding (40, 41), a reduction that is in 
addition to the reduced risk following each birth. Despite these 
findings and a recommendation from the National Health and 
Medical Research Council to breastfeed for at least 6 months (42), 
only 50% of Australian babies were being breastfed at 4 months 
and this dropped to 29.7% at 9–12 months of age (43). In contrast 
to the protective effects of childbearing, the protection conferred 
by breastfeeding is not limited to ER+ breast cancer (20, 44, 45). 
The mechanisms of breastfeeding-induced protection are largely 
unknown, as are the reasons why its effects are not restricted to 
ER+ cancers.

In addition to the epidemiological studies in women, parity-
induced protection against breast cancer has also been shown 
experimentally through the use of rodent models. Rodents have 
been used due to the similarities in morphological structure 

between the mammary gland and human breast and the con-
servation of genes and pathways between rodent and human 
mammary epithelial cell subpopulations (46). Parity in rodents 
reduces the incidence of carcinogen-induced mammary tumors 
(47, 48) and, as with women, shows a dependence on age, with 
younger mothers showing a greater reduction in tumor incidence 
(49, 50). The rodent models have also shown that the protective 
effects of pregnancy can be simulated through the administra-
tion of pregnancy levels of estrogen and progesterone to rodents  
(51, 52). This provides supporting evidence that parity-induced 
protection may be hormonally driven, and thus may explain why 
its protection is restricted to ER+ breast cancers. The mechanisms 
underlying parity-induced protection remain an active area of 
research with investigators assessing the role of the mammary 
stem cells, ER+ cells and other growth factors (53, 54).

MeNOPAUSe

Menopause is defined as the final menstrual period. It occurs 
when there has been a change in a woman’s reproductive hor-
mones and the ovaries no longer release any eggs. Menopause 
itself is not a breast cancer risk factor, but over 70% of all breast 
cancer diagnoses are made in women who are 50 or older, and thus 
postmenopausal women have a higher risk than premenopausal 
women. The timing of menopause has been shown to significantly 
affect breast cancer risk. While not documented historically, the 
duration of reproductive years was identified as a breast cancer 
risk factor in early epidemiological studies (15, 55). Large-scale 
case–control studies and meta-analyses have now consistently 
shown that younger age at menopause decreases ER+ breast can-
cer risk (10, 56–59), with each year older at menopause increasing 
the risk by 2.9–4% (10, 59).

The age at which a woman undergoes menopause varies 
considerably between and within ethnicities (60); however, 
mother–daughter and twin studies have found that only 44–63% 
can be accounted by heritability (61–63). Mother and daughter 
studies have postulated that the heritability may be driven by 
genetic changes in hormone expression as the maternal age at 
menopause was found to be a strong predictor for high follicle-
stimulating hormone (FSH) levels (an indicator of ovarian aging) 
in daughters (64). Genetic studies have tried to ascertain what 
may be mediating the timing and found that polymorphisms 
within the ER gene and ER signaling pathway are significantly 
associated with age at natural menopause (65, 66). It is not clear 
whether these polymorphisms are associated with increased or 
decreased ER signaling. Larger-scale genome-wide sequencing 
studies (between ~3,000 and 40,000 women included compared 
to ~200–900 in previous studies) have confirmed this association 
and have also reported further polymorphisms in DNA dam-
age and repair genes and genes associated with mitochondrial 
DNA, FSH, and immune components (67–70). Together,  
these studies only explain ~4% of the variation in age at meno-
pause. Furthermore, only one single nucleotide polymorphism 
(rs2517388) for age at menopause was associated with breast 
cancer risk (71). The rs2517388 polymorphism is located within 
a gene that encodes for a subunit of the MLL histone methyltrans-
ferase protein (72). MLL has been shown to act as a coregulator 
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of ER-induced progesterone receptor gene activation (73). It 
is also involved in estrogen-dependent activation of kinesins 
(74), which have been linked to tamoxifen resistance. This may 
indirectly explain the link between the polymorphism, age at 
menopause, and breast cancer; however, this has not been tested 
functionally. Thus, the underlying reason why age at menopause 
affects breast cancer risk is still unknown. Women with a later 
menopause have been shown to have longer mean menstrual 
cycle length (75) than those with an average age menopause. It is 
not known what mediates this, but it is intriguing to think that 
it may be related to hormone levels in the follicular phase of the 
menstrual cycle seeing as the follicular phase length drives total 
cycle length.

Mouse models exploring the effects of menopausal age on  
breast cancer risk are challenging as mice do not undergo nat-
ural menopause. This may explain the lack in experimental data 
exploring or even confirming the abovementioned polymor-
phisms associated with age at menopause in animal models. 
However, like humans, menopause can be induced in mice by 
surgical removal of the ovaries. Using such a system one group 
have assessed the effect of timing of HRT on the postmenopausal 
mammary gland in an effort to explain the increase in breast 
cancer risk observed following HRT (76). They found that the 
postmenopausal gland (5  weeks post ovariectomy) was more 
responsive to estrogen-driven proliferation compared to their 
model of peri-menopause (immediately following ovariectomy). 
Similar studies could be performed to shed light on the underlying 
mechanism of an early versus late menopause as being protective 
against breast cancer incidence.

MeNARCHe

Age at menarche, like menopause, is also associated with breast 
cancer risk. However, unlike age at menopause, the older a 
woman is at age at menarche, the lower her risk of breast cancer. 
Several groups have now shown that starting menses prior to 
11 years of age increases the risk of breast cancer, while a later 
age at menarche (14 years) reduces the risk (10, 58, 59, 77–81). 
Sisti and colleagues showed that the relative risk of breast cancer 
was increased by 5% for each year younger at menarche (78) and 
the Collaborative group on hormonal factors reported up to an 
18% reduction in risk in those girls experiencing a late menarche 
(≥ 13), compared to those who began cycling at 11 (10).

During the last decade, epidemiological studies reporting 
on trends in age at menarche have shown that irrespective of 
ethnicity, the average age of menarche is ~12 years (10, 82–84). 
Historically, age at menarche was much older (85). A review 
published in 1982 assessing reports on age at menarche including 
220,037 European women from 1795 to 1981 observed a 2–3 
month decline in age at menarche per decade (86) with some 
reports finding the age at menarche to be as late as 16.5 years in 
1840. They also observed a similar decline (2 months per decade) 
in US reports from 1877 to 1947. A more recent study assess-
ing a cohort of 94,170 British women found a decline in age at 
menarche from 13.5 for girls born between 1908 and 1919 to 12.3 
for girls born between 1990 and 1993 (84). This decline in age at 
menarche has also been observed in macaque colonies (87, 88)  

indicating that rather than being an effect of evolution, the 
decrease is due to environmental influences. Both the earlier and 
more recent human studies noticed that the rate of decline in age 
at menarche slowed in 1940s and has now been fairly consistent 
(average of 12 years of age) over the past 70 years. It is believed 
that this plateau in menarcheal age is due to improved nutrition 
and life quality. This is an important finding as the breast cancer 
incidence has continued to increase rapidly over the past century 
suggesting that early age at menarche is not the major reproduc-
tive factor influencing breast cancer incidence.

Factors that have been shown to affect the age at menarche 
include gestational exposure to smoke (89), diet (90), psycho-
logical state (91, 92), and BMI (93–95). The effect of BMI on age 
at menarche has not only been supported by numerous epide-
miological findings but has also been shown experimentally in 
rhesus monkeys (87) and confirmed by genome-wide sequencing  
(96, 97). In one sequencing study, 30 new loci associated with 
age at menarche were identified, most of which have no clear 
function individually, but pathway analysis classified them 
into two groups, lipid metabolism and gene expression/cellular 
growth (96). While poor dietary choices contributing to BMI is 
considered an environmental factor influencing age at menarche, 
the effect of BMI on age at menarche has also been shown to 
be due to heritable factors (98). Indeed, excessive maternal 
weight gain during gestation has been shown to lower the age at 
menarche in daughters (99, 100). In concert with this, small-scale 
studies have shown that increased gestational weight gain leads 
to greater chance of obesity in adolescent offspring (101, 102),  
which then is known to influence the age at menarche (89, 93–97). 
Cumulatively, these data indicate that alterations during critical 
developmental points can actually determine a daughter’s weight 
which then influences her age at menarche and then in turn her 
breast cancer risk later in life.

It is unexpected that genome-wide sequencing studies did not 
find a strong association of estrogen-regulated genes and path-
ways with age at menarche, as was shown in the age at menopause 
studies (67, 96, 97). Certainly, menarche begins in response to 
ovarian hormones including estrogen, and higher levels of urinary 
estrogens have been observed in girls experiencing precocious 
menarche (103). This may be a key link to the influence age at 
menarche has on breast cancer risk, as if higher estrogen levels 
correlate with earlier age at menarche, it may be that the increase 
in breast cancer risk associated with younger ages at menarche is 
estrogen driven.

Despite the identification of candidate genes involved in the 
timing of menarche, experimental work to define the mechanism/s 
underlying pubertal timing has been limited. Most studies have 
been restricted to exploring the effects of environmental determi-
nants such as exposure to seasonal changes (although the effect 
on age at menarche is thought to be a by-product of changes in 
growth), diet, and social status. This is due to the required use of 
macaques and non-human primates who also undergo a defined 
menarche (104). Of the 19 single nucleotide polymorphisms that 
have been associated with age at menarche, only two have also 
been associated with breast cancer risk (71), and thus a lot is still 
unknown about both why a women undergoes menarche when 
she does and why this affects her breast cancer risk.
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AGe AT MeNARCHe iS MORe 
iNFLUeNTiAL THAN AGe AT 
MeNOPAUSe ON BReAST CANCeR 
RiSK

The observation that lengthening the reproductive life of a 
woman, either by an earlier menarche or later menopause, 
increases the risk of breast cancer would suggest that the overall 
duration of the exposure to estrogen is underlying the risk. 
However, a recent meta-analysis of reproductive events and 
breast cancer risk has found that age at menarche may be more 
of a deciding factor on the risk than age at menopause (10).

It is common practice for all epidemiological studies assess-
ing reproductive factors on breast cancer risk to consider both 
menarche and menopause. This is due in large part to the earli-
est epidemiological studies identifying an association between 
reproductive timing and breast cancer risk (15, 55). Reanalysis 
of these landmark studies using modern statistics confirmed the 
early associations and also assessed whether age at menarche or 
age at menopause had a greater influence on breast cancer risk. 
This report showed inconsistent effects of age at menarche but 
very consistent effect of age at menopause where younger age at 
menopause reduces risk of breast cancer across two cohorts of 
women (27). A similar finding was also reported a decade earlier 
finding age at menopause a greater influence on breast cancer risk 
among parous women (105). However, since these reports, the 
Collaborative group on Hormonal Factors in Breast Cancer pub-
lished a meta-analysis of 117 previously reported epidemiological 
studies showing that while later age at menopause does increase 
the risk of breast cancer, each year earlier at menarche increases 
breast cancer risk more than each year later at menopause (10). 
The meta-analysis included 425,055 women (118,964 cases versus 
306,091 controls) providing it with sufficiently more power than 
the earlier work with a maximum of 1,000 cases and controls. The 
Collaborative group on Hormonal Factors in Breast Cancer also 
noted that there is no relationship between age and menarche 
and age at menopause, in that an earlier age at menarche does 
not influence the age at menopause and vice versa. This has been 
identified in a number of epidemiological reports with Forman and 
colleagues meta-analysis observing that of 36 studies investigating 
age at menarche and menopause, just 12 found a significant asso-
ciation between the 2 (60). This lack of an association has also more 
recently been supported by genome-wide sequencing analysis (70).

These findings contradict earlier theories that the influence of 
age at menarche and menopause on breast cancer risk was simply 
due to the duration of exposure to cycling ovarian hormones. 
Instead, it seems that the timing of the first exposure of the mam-
mary gland to cyclic hormones sets up a developmental program 
that has consequences for breast cancer risk later in life.

ABeRRANT HORMONe eXPOSURe iS 
MORe iNFLUeNTiAL iN THe YOUNG, 
RATHeR THAN OLD MAMMARY GLAND

Aberrant hormone exposures via clinical administration or 
natural exposure are known to increase the risk of breast cancer. 

Elevated endogenous hormones increase breast cancer risk; 
dizygotic twins can be exposed to up to two times the maternal 
estrogen levels that single pregnancies experience (106). In line 
with this studies have reported increased breast cancer risk in 
women later in life who belong to a dizygotic twin pair (106, 107).

Exogenous hormone exposure also modulates breast cancer 
risk with in utero exposure to synthetic estrogens, combined OCP 
use in young women, and HRT in postmenopausal women all 
increasing breast cancer risk. Maternal use of synthetic estrogen 
diethylstilbestrol, which was widely prescribed in 1940–1960s to 
prevent pregnancy complications, has been shown to significantly 
increase the risk of breast cancer in offspring (108, 109), but not 
until after the age of 40. Combined OCP use (estrogen + progestin)  
increases the risk of breast cancer (12, 110, 111) and like early age 
at menarche, the younger a woman is at the start of use, the higher 
her risk of breast cancer. One large meta-analysis reporting on 
54 studies including 53,279 cases and 100,239 controls observed 
an RR of 1.6 (SD 0.142, p = 0.0001) for women who began OCP 
use before the age of 17 compared to an RR 1.2 (SD 0.047) in 
women commencing treatment after 22 years of age. The longer 
the duration of OCP also further increases the risk of breast 
cancer (112, 113). However, unlike age at menarche and in utero 
aberrant hormonal exposures, the increased risk of breast cancer 
from OCP is not lifelong and disappears between 4 and 10 years 
after use ceases (12, 110–113). Similarly, HRT use (estrogen and 
progestogens) in postmenopausal women increases the risk of 
breast cancer [adjusted RR = 2.0 (95% CI 1.8–2.12)] (114) and 
the risk increases with longer duration of use (11, 115). Like OCP 
use, the increased risk observed during HRT returns to baseline 
levels within 1–5 years (11, 114) but unlike OCP use, earlier age 
at first use is not associated with a higher increase in incidence.

Very few studies have been performed to experimentally 
explore the stimulatory effect of exogenous hormonal exposure 
on the normal mammary gland. In regard to HRT, as mentioned, 
rodent studies are complicated by the fact that rodents do not 
undergo natural menopause. Despite this, two studies have been 
performed assessing the effects of either estrogen alone (76) or 
estrogen in combination with progesterone (116) and both found 
a stimulation in proliferation in the mammary gland. However, 
estrogen alone does not increase the risk of breast cancer 
(117) and thus these findings cannot be readily applied to the 
epidemiological studies in women. Additionally, while estrogen 
combined with synthetic progestins is known to increase the risk 
of breast cancer, some studies have shown that estrogen with 
micronized progesterone does not (118, 119). Using macaques 
one group investigated the benefits of using micronized proges-
terone rather than synthetic progestins in HRT (120). They found 
increased lobular and ductal proliferation in those who received 
estrogen plus progestin compared to those receiving estrogen 
plus micronized progesterone. Transcriptional profiling of mam-
mary tissue isolated from the two treatment groups showed a 
significant upregulation in the epidermal growth factor receptor/
HER2 pathway and increased expression of proto-oncogene 
c-MYC (120). They did not see any changes in genes involved in  
ER signaling, which was unexpected given HRT increases the 
incidence of ER+ breast cancer. As these studies were performed 
in ovariectomized monkeys, their finding—while a significant 
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advancement in our understanding of how aberrant synthetic 
hormonal exposure increases breast cancer risk—can only be 
applied to epidemiological findings on HRT and breast cancer 
risk, not OCP. To date, there have been no experimental studies 
on the effects of estrogen and progestin on normal mammary 
gland activity in ovary-intact mice.

Cumulatively, the epidemiological studies assessing aberrant 
hormonal exposures again point to the young mammary gland 
as being the most susceptible to hormone fluctuations and breast 
cancer risk modulation.

wHAT iS UNiQUe ABOUT THe YOUNG 
MAMMARY GLAND THAT MAKeS iT SO 
SUSCePTiBLe TO CANCeR iNDUCTiON 
AND PROTeCTiON?

The fact that two crucial reproductive events, menarche and 
young age at parity, have the greatest effect on lifetime breast 
cancer risk suggests that the young mammary gland represents 
a crucial window in tumorigenic susceptibility. Why this is the 
case is less clear. Based on the epidemiological evidence for this, 
a few hypotheses have been generated, but again few have been 
tested experimentally, and this work is largely restricted to rodent 
models.

Mammary stem cells were originally proposed to play a role 
in the increased susceptibility to carcinogens in the young mam-
mary gland. Russo and colleagues reported morphologically 
distinct structures within the mammary gland at different stages 
of transformation sensitivity, as ascertained through exposure to 
chemical carcinogens (48–50). Terminal end buds (TEBS) are 
club-like structures that facilitate the invasion of the mammary 
tree through the mammary fad pad in response to the onset of 
estrogen signaling at puberty (121). Once the buds reach the 
edges of the fat pad, they regress. Russo and colleagues quanti-
tated the number and size of the TEBS and related the numbers 
to timeframes of susceptibility to the chemical carcinogen 
7,12-dimethylbenz(a)anthracene (50). They showed that tumor 
incidence was highest when the TEB number and density was 
highest (49, 122). As it had been previously suggested that TEBs 
house mammary stem cells (123), they concluded that the density 
and number meant more mammary stem cells and thus a larger 
pool of transformation-sensitive cells. These data are compelling, 
however, support for mammary stem cells being housed or even 
enriched in the TEBs is conflicting (124–127). Furthermore, many 
groups have shown that mammary stem cells are not highest in 
number in the young mammary gland, but rather accumulate 
with age (127–129).

It has to also be considered that the high proliferative index 
of the mammary gland at puberty puts the cells at risk of obtain-
ing and perpetuating deleterious mutations. As mentioned 
above, the pubertal mammary glands of rodents have a high 
content of TEBs, and it has been shown by several groups that 
the cells within these TEBs are highly mitotic (124, 130–133). 
During the process of the cell cycle, many checkpoints are in 
place to ensure the integrity of the DNA to be replicated and 
divided before mitosis can be completed. Should an error in 

DNA replication arise, DNA repair pathways are activated with 
varying levels of efficiency (134). Homologous recombination of 
double-stranded DNA breaks is considered the most effective 
repair mechanism, while non-homologous end-joining, although 
faster, is more prone to errors. Whether a normal cell chooses 
homologous recombination or non-homologous end joining to 
repair double-stranded DNA breaks is cell-cycle stage-specific 
(135–137). Homologous recombination is preferred for repair 
during S and G2/m phases as the machinery and DNA repair 
template required for homologous recombination are readily at 
hand. However, in the case of rapid proliferation, such as that seen 
at the onset of puberty in response to estrogen signaling (138), 
DNA replication stress occurs which may result in excessive 
amounts of homologous recombination. Ironically, this can lead 
to more mutations if misalignments (which are an infrequent but 
potentially detrimental consequence of homologous recombina-
tion) occur (139, 140). DNA replication stress can also lead to 
the selection of error-prone DNA damage repair mechanisms 
(141), and sometimes no repair at all. This results in potentially 
oncogenic mutations being passed onto daughter cells that then 
in turn may perpetuate the accumulation of more deleterious 
mutations. So, another hypothesis is that the earlier the surge of 
estrogen signaling at puberty, the earlier the start of rapid prolif-
eration of mammary cells to generate the ductal tree and the more 
time the mammary gland has to accumulate these mutations that 
ultimately lead to tumor formation. Why this accumulation in 
mutations takes decades to reach a critical point at which they 
develop into tumors is unclear.

Switching cells from a proliferative program to a differentia-
tion pathway is a common therapeutic avenue to prevent further 
growth of tumors (142–144). Pregnancy is the first time the mam-
mary gland terminally differentiates. In the human this involves 
the conversion of immature type 1 mammary lobules (similar 
to the rodent TEBs) to the more differentiated type 3 lobules, 
while the acinar milk-producing units are considered a transient 
type 4 that arise briefly to facilitate lactation (145). Thus, parous 
mammary glands are comprised mostly of type 3 lobules, while 
nulliparous mammary gland are predominantly made up of type 
1 lobules, although they do contain a small number of type 2 and 
even sometimes type 3 lobules. Compared to type 1 lobules, type 3 
lobules are relatively growth quiescent and thus not contributing 
to potentially deleterious proliferative-induced DNA mutations. 
Therefore, should a woman undergo the terminal differentiation 
required for pregnancy at a young age, rather than remaining in 
a state of prolonged proliferation, her mammary tissue will be 
induced to become prematurely growth quiescent, and protected 
from oncogenic transformation.

CONCLUSiON AND FUTURe 
PeRSPeCTiveS

Overall epidemiological studies have revealed that age at 
menarche is a stronger determinant of breast cancer risk than 
age at menopause. Despite this, the trend for a decline in age at 
menarche has not been steadily changing while breast cancer 
incidence has continued to rise, indicating that age at menarche 
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is not likely to be fueling the increase in breast cancer cases. 
Furthermore, one questions why if the age at menarche and age 
at menopause influence breast cancer risk, why are so few of the 
gene polymorphisms associated with these reproductive factors 
also related to breast cancer? Together the studies indicate that 
estrogen exposure is not the underlying link between menarche/
menopause and breast cancer (because age at menarche has more 
of an influence). The work to date indicates that they influence 
breast cancer risk in different ways with menopause timing 
likely to be hormonally driven, whereas age at menarche might 
influence breast cancer risk indirectly through BMI. Increasing 
epidemiological evidence for these theories is emerging but 
functional studies are lacking.

By contrast, childbearing trends are mirroring breast cancer 
incidence. Increasing numbers of women today remain nul-
liparous, women are having fewer children and a quarter of 
new mothers are delaying the start of childbearing (2, 36, 37). 
These reproductive changes over the last century correlate with 
the increased breast cancer incidence over the same period. 
Functional studies have been performed using rodent models to 
show that the protection afforded by parity against breast cancer 
is hormonally driven and may involve mammary stem cells  
(53, 146), but are still yet to delineate the exact mechanisms of 
how undergoing a full-term pregnancy equips the mammary 
gland with protection against carcinogenesis.

The studies reviewed herein show that age at menarche and 
timing of pregnancy have the greatest influence on breast cancer 

risk indicating that this early window of life is the most sensi-
tive. The protection afforded by parity does not affect all women 
and unfortunately we have no way to identify those who are 
protected by childbearing. It is intriguing to postulate that the 
women with the potential to receive the protective effects of parity 
may be the same women who are most at risk of a carcinogenic 
insult. It may be that their mammary glands are more sensitive 
to developmental programming, be it protective or detrimental. 
The important questions remaining are can we predict who these 
women are, and can we use this information to develop preven-
tive therapeutics? Through further functional validation of the 
genetic pathways involved in age at menarche, age at menopause 
and parity, the field may step a little closer to understanding these 
complex reproductive systems and their effects on breast cancer 
risk.
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