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Recent studies have revealed the polygenic nature of bipolar

disorder (BP), and identified common risk variants associated

with illness. However, the role of common polygenic risk in

multiplex families has not previously been examined. The

present study examined 249 European-ancestry families from

the NIMH Genetics Initiative sample, comparing subjects with

narrowly defined BP (excluding bipolar II and recurrent unipo-

lar depression; n¼ 601) and their adult relatives without BP

(n¼ 695). Unrelated adult controls (n¼ 266) were from the

NIMH TGEN control dataset. We also examined a prospective

cohort of young (12–30 years) offspring and siblings of individ-

uals with BPI and BPII disorder (at risk; n¼ 367) and psychiat-

rically screened controls (n¼ 229), ascertained from five sites in

the US and Australia and assessed with standardized clinical

protocols. Thirty-two disease-associated SNPs from the PGC-BP

Working Group report (2011) were genotyped and additive

polygenic risk scores (PRS) derived. We show increased PRS

in adult cases compared to unrelated controls (P¼ 3.4� 10�5,

AUC¼ 0.60). In families with a high-polygenic load (PRS score

�32 in two or more subjects), PRS distinguished cases with BPI/

SAB from other relatives (P¼ 0.014, RR¼ 1.32). Secondly, a

higher PRS was observed in at-risk youth, regardless of affected

status, compared to unrelated controls (GEE-x2¼ 5.15,
015 The Authors. American Journal of Medical Genetics Part B: Neu
P¼ 0.012). This report is the first to explore common polygenic

risk in multiplex families, albeit using only a small number of
ropsychiatric Genetics Published by Wiley Periodicals, Inc. 617
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robustly associated risk variants. We show that individuals with

BP have a higher load of common disease-associated variants

than unrelated controls and first-degree relatives, and illustrate

the potential utility of PRS assessment in a family context.

� 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsy-

chiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Large scale collaborative genome-wide association studies (GWAS)

have identified a number of risk loci significantly associated with

bipolar disorder (BP), includingODZ4 [Sklar et al., 2011;Muhleisen

et al., 2014], CACNA1C [Ferreira et al., 2008; Sklar et al., 2008],

ANK3 [Ferreira et al., 2008; Schulze et al., 2009; Muhleisen et al.,

2014],NCAN [Cichonet al., 2011],C15ORF53 [Ferreira et al., 2008],

and DGKH [Baum et al., 2008a,b]. Individually, each of those

genes/loci contributes only a small fraction toward overall disease

risk, typically<1%of the phenotypic variance [Ferreira et al., 2008].

It is now understood that multiple genes containing both common

and rare variants contribute to the genetic architecture of BP

[Sullivan et al., 2012], and there are significant overlaps in the single

nucleotide polymorphism (SNP)-based heritabilities of BP with

both schizophrenia andmajor depression [Lee et al., 2013]. Indeed,

variation across many thousands of common risk variants together

(termed polygenic risk [Purcell et al., 2009]) contributes a substan-

tial proportion (i.e., 25–40%) of the percentage of phenotypic

variance at a population level [Lee et al., 2011; 2013]—although

most of those loci do not individually reach genome-wide signifi-

cance thresholds for disease association with current sample sizes

[Craddock and Sklar, 2013; Dudbridge, 2013].

Examination of the cumulative effects of inheriting multiple risk

alleles—each of which are significantly or nominally associatedwith

disease risk—has been able to powerfully differentiate groups of

cases from controls in independent population-based studies

[Purcell et al., 2009, 2014; Patel et al., 2010; Ayalew et al., 2012;

TerwisschavanScheltingaet al., 2012].However, despitephenotypic

aggregation within families [McGuffin et al., 2003; Lichtenstein

et al., 2009], no studies have so far examined polygenic risk incor-

porating these common genetic factors in a family context in adults,

withonlyonegroup todate reportingonpolygenic risk inadolescent

offspring of individuals with BP [Whalley et al., 2012, 2013].

While first-degree relatives of individuals affected with BPwould

be expected on a theoretical basis to have a higher load of specific

disease-associated risk alleles than control individuals, this has not

previously been examined empirically. This is primarily because,

until recently, we have had very little knowledge about the specific

DNAvariants that contribute to risk forBP.However, as sample sizes

are steadily increasing through the Psychiatric Genomics Consor-

tium (PGC), and our power to detect such risk variants on a

population level is improving, we are gaining a greater understand-

ing of the underlying genetic contributors leading to BP. In 2011,

Sklar et al. identified 38 variants (pared to 34 by assessment of
independence with linkage disequilibrium) that contribute to dis-

ease risk (P< 5� 10�5) using a discovery sample of 7,481 individu-

als with BP and 9,250 controls. These SNPs were replicated in an

independent cohort comprising 4,496 cases and 42,422 controls,

with more SNPs than expected showing P< 0.01, P< 0.05, and the

same direction of effect [Sklar et al., 2011]. Hence, a substantial

numberof theseSNPsmaybeexpected to represent true riskvariants

(ormarkers for such alleles) for bipolar disorder.Here,we examined

polygenic risk derived from those specific variants in first degree

relatives of individuals with BP.

The present study tested the hypothesis that first-degree relatives

who are affected with BPwould have a higher polygenic risk load of

common risk variants in comparison to their relatives without BP,

and that individuals at increased familial risk of BP would have a

higher polygenic load of risk variants than control individuals. We

tested this hypothesis using three cohorts: (1) a group of singleton

cases with BP and controls from the National Institute of Mental

Health (NIMH); (2) a family cohort of adult relatives of individuals

with andwithout diagnoses of BP from theNIMHBipolar Genetics

Initiative; and (3) a prospective cohort of adolescents and young

adults who are at increased familial risk of developing BP due to the

presence of a first degree relative with a diagnosis of BP (henceforth

termed “at-risk”) and controls.
MATERIALS AND METHODS

Adult Participants From Family Studies
Two datasets were employed. The first comprised adult subjects

of European ancestry (n¼ 1,947) drawn from the NIMH Genet-

ics Initiative bipolar disorder family samples (waves I–IV Euro-

pean American families, n¼ 249 families, average of 6–7 subjects

across three generations per family) [Nurnberger et al., 1997;

Smith et al., 2009]. Subject diagnoses were obtained via standard

best estimate (BEFD) procedure (details in supplementary infor-

mation), and were diagnosed as having bipolar disorder type I

(BPI, n¼ 561); schizoaffective disorder-bipolar type (SAB,

n¼ 40); bipolar disorder type II (BPII, n¼ 119); recurrent uni-

polar depressive disorder (UPR, n¼ 155); or single episode

unipolar depressive disorder (UPS, n¼ 107). Primary analysis

utilized a narrow definition of case status, whereby subjects were
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defined as affected if having received a diagnosis of BPI or SAB

(n¼ 601). Subjects with BPII and UPR (n¼ 274) were excluded

on the basis of unknown overlapping etiology, as were relatives

with unknown diagnosis (n¼ 85). All other relatives (n¼ 695)

included those with other mental disorders ([i.e., those with any

DSM diagnosis excluding BPI, SAB, BPII, or UPR, n¼ 292],

never mentally ill [n¼ 296], or with single episode depression

[n¼ 107]), and were analyzed as a single group. Due to the small

numbers of relatives with no psychiatric diagnoses (i.e., only one

per family) comparisons between cases and never mentally ill

relatives were not attempted.

The comparison dataset comprised unrelated adult controls of

European origin drawn from the NIMH TGEN Control dataset

subjects (n¼ 403) from the control collection of Sanders et al.

[2010], who were screened to exclude those with any major mood

disorder or psychosis (https://www.tgen.org/). DNA was extracted

from whole blood by the Rutgers University Cell and DNA

Repository.
Young At-Risk Participants
Subjects were aged between 12 and 30 years, and were ascertained

from five independent sites in the US [Nurnberger et al.,

2011] (Johns Hopkins University; University of Michigan; Wash-

ington University in St. Louis; Indiana University) and Australia

[Roberts et al., 2013] (University of New South Wales). “At-risk”

subjects were recruited from families who had previously partici-

pated in BP genetics studies [Nurnberger et al., 1997; Dick et al.,

2003; Fullerton et al., 2010], a specialized BP research clinic

[Mitchell et al., 2009], were referred by clinicians or mental health

consumer organizations, or responded to other forms of publicity.

Subjects were recruited using a “top-down” ascertainmentmethod:

that is, all offspring of a proband with a confirmed DSM-IV

diagnosis of bipolar disorder type I (BPI), type II (BPII), or

schizoaffective disorder bipolar-type (SAB) who were in the age

range 12–30 were eligible for inclusion, independent of the diag-

nostic status of the offspring. The participants were predominantly

(94%) children or siblings of a proband; the remaining 6%

comprised second-degree relatives ascertained from families

with multiple cases of BP. Control participants were in the same

age range, but had no first-degree relative (parent or sibling) with a

DSM-IV diagnosis of BPI or BPII, SAB, recurrentmajor depression

(UPR), schizophrenia, recurrent substance abuse, or any past

psychiatric hospitalization; and no parent with a first-degree

relative who had a past mood disorder hospitalization or history

of psychosis. Control subjects were recruited via general medical

clinics, motor vehicle records, print and electronic media, and

notice boards in universities and local communities.

Peripheral blood samples were collected from a total of 367 at-

risk and 229 control individuals for genetic analysis. DNA was

extracted from whole blood by the Rutgers University Cell and

DNA Repository (US participants) or Genetic Repositories

Australia (Australian participants). The 596 participants came

from 426 families: the majority being single offspring (n¼ 299);

although 127 families with �2 offspring were included (90 with 2

offspring, 30 with 3 offspring, 5 with 4 offspring, and 2 with 5

offspring).
Institutional Review Board Approval
Written informed consent (or assent with parental consent for

subjects <18 years old) was obtained from all participants after a

thorough explanation of the study. All protocols were approved

through the individual hospital and University ethics committees

(Institutional Review Boards) at each of the participating US

university medical centers, University of New South Wales Human

Research EthicsCommittee, and the South Eastern Sydney Illawarra

Area Health Service, Australia.
Ascertainment of Clinical Diagnoses and
Demographic Information
Methods for ascertainment and diagnoses for the NIMH Genetics

Initiative family dataset have been described extensively elsewhere

[Nurnberger et al., 1997; Smith et al., 2009] and are summarized in

supplementary information.

For the at-risk cohort, proband consensus DSM-IV diagnoses

were determined by two independent psychiatrists using best esti-

mate methodology [Leckman et al., 1982], using information from

an adapted version of the Schedule for Affective Disorders and

Schizophrenia for School-Age Children—Present and Lifetime

Version (K-SADS-BP) [Kaufman et al., 1997; Geller et al., 2001],

the Diagnostic Interview for Genetic Studies (DIGS) Version 4

[Nurnberger et al., 1994], the Family Interview for Genetic Studies

(FIGS) [Maxwell, 1992], andmedical records (where available). For

participants under the age of 22, the K-SADS-BP was administered

as the diagnostic instrument. The FIGS was administered to all

participants 18 years of age or older, with parents completing FIGS

for participants under 18. Ethnicity was assessed by self-report via

grandparental origin information. The at-risk cohort was mainly of

European ancestry (73%), with subjects of Asian and African

ancestry each accounting for less than 10% of the sample (Table I).
Marker Selection, Genotyping, and Quality
Control
We chose for genotyping 38 SNPs that were robustly implicated in

bipolar disorder risk, on the basis of prior evidence of genetic

association (P< 5� 10�5) from the PGC [Sklar et al., 2011]; two

(rs3968, rs8006348) failed sassay design.

The remaining 36 SNPs [Sklar et al., 2011] were genotyped at

two sites, using iPLEX GOLD chemistry on the Sequenom Mas-

sArray (Supporting Information Table S1]. Tests for Hardy–Wein-

berg equilibrium, linkage disequilibrium, genotype missingness

and allelic, and genotypic frequency comparisons were conducted

using PLINK [Purcell et al., 2007]. Three failed genotyping or

Hardy–Weinberg equilibrium (P< 0.001) in either the US or

Australian at-risk sample (rs12912251, rs4332037, rs7578035),

and one was in linkage disequilibrium with another SNP

(rs11168751 with rs2070615; r2¼ 0.141, D0 ¼ 1.0). These SNPs

were excluded from polygenic risk score analysis, leaving 32

SNPs for determination of polygenic risk score. The successfully

genotyped SNPs had a >99.6% genotype pass rate.

NIMH controls were genotyped on the Affymetrix 6.0 array.

Imputation was employed via IMPUTE v0.5.0 [Marchini et al.,

https://www.tgen.org/


TABLE I. Racial Background of Combined United States and Australian At-Risk and Control Samples

All subjects (%) At-risk (%) Control (%)

European 478 (78.5) 335 (91.3) 143 (62.4)

Asian 38 (6.2) 1 (0.3) 37 (16.2)

African 40 (6.6) 5 (1.4) 35 (15.3)

Mixed race/other/unknown 53 (8.7) 26 (7.0) 14 (6.1)

Total 609 (100) 367 (100) 229 (100)

The total number of individuals in each racial group (reported in line with the seven US census categories) is given, along with the percentage (%) representation within each sample. The numbers of
individuals represented in the mixed race/other/unknown category were of Australian Aboriginal/Hawaiian/Pacific Islander (n¼ 7), American Indian/Alaska native (n¼ 1), mixed race (n¼ 18), or other/
unknown (n¼ 27) descent.
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2007] to determine the genotype for those SNPs not represented on

the array, using genotypes from Caucasian European individuals

(n¼ 82) fromHAPMAP3 release 24 as a reference panel. Themean

concordance of imputed and observed genotype calls was 97.4%.

The majority of SNPs (n¼ 26) imputed with <10% missing data,

but some SNPs had higher failure rates (Supporting Information

Table S1). The allele frequencies of each SNP in all European

ancestry subjects were close to those previously reported [Sklar

et al., 2011] for Europeans (�0.022–0.032), and were similar for

both directly observed and imputed SNPs (�0.031 and �0.025,

respectively) (Supporting Information Table S1).
Polygenic Risk Score Determination
To determine the additive polygenic load in each subject, a score of

one was given for each risk allele carried, so an individual subject’s

score could range from 0 to 64. Weighted-additive polygenic risk

scores were computed using the score function in PLINK [Purcell

et al., 2007]. Scores were weighted either by: (1) the effect size of

each SNP, as determined by the odds ratio of the risk allele from the

original discovery GWAS study by Sklar et al. [2011]; or (2) by

the PGC risk allele frequency from appropriate ethnic group to

derive ethnicity-specific PRS, using allele frequencies determined

the phase 1 of the 1000 genomes project [Abecasis et al., 2012].

Frequencies derived fromCEPH individuals (CEU)were applied to

people of European ancestry, frequencies from individuals of

African ancestry from south west US (ASW) were applied to

African-American individuals, and frequencies from Han Chinese

individuals from Beijing (CHB) were applied to individuals of

Asian ancestry.

For the at-risk and NIMH family samples, only individuals with

no missing genotypes (n¼ 364 at-risk, n¼ 226 young controls,

n¼ 601 NIMHBPI/SAB cases [including 236 singletons]), n¼ 969

other NIMH relatives (including subjects with diagnoses of BPII

and UPR) were included. As imputation was required for deter-

mination of genotypes in unrelated controls, a maximum of two

missing genotypes were permitted (n¼ 266 NIMH TGEN con-

trols), and the score normalized to a base of 64. For the comparison

of polygenic risk scores between singleton bipolar cases from the

NIMHbipolar genetics initiative and TGEN controls, subjects were

only included if a minimum of 31 SNPs were successfully geno-

typed (directly or by imputation), and polygenic risk scores were

adjusted on the basis of the total number of variants used.
Statistical Analysis
To test whether cases or at-risk individuals within families had a

higher averagepolygenic risk score as comparedwith controls, a linear

GeneralizedEstimatingEquations (GEE)modelwasused,with aone-

sided test for significance. The GEEmodel corrects for non-indepen-

dence of measurement between family members. A one-sided t-test

was utilized to test group differences in unrelated subjects. Relative

risk calculations were conducted relative to the mean polygenic risk

value for the case (bipolar disorder or at-risk) group. Statistical

analysis was conducted in SPSS (Version 20.0, IBM Corporation,

Armonk, NY). Estimates of the proportion of genetic variance

accounted for by the score were calculated via genRoc (http://glim-

mer.rstudio.com/kn3in/genRoc/) [Wray et al., 2010] and GPRS

software (https://gprs.shinyapps.io/start/) [Dudbridge, 2013].
RESULTS

Using polygenic risk scores derived from 32 of the most robustly

associated SNPs from the PGC, we conducted a risk load analysis to

determine whether a polygenic risk score derived from disease-

associated SNPs would: (1) distinguish unrelated BP cases from

unrelated control individuals; (2) distinguish relatives affectedwith

BP from their non-BP-affected or “unaffected” adult relatives; and

(3) distinguish a young at-risk population from a group of unre-

lated young controls.
Polygenic Risk Load Analysis in Adult Cases
Versus Unrelated Adult Controls
We used European ancestry subjects from 249 bipolar pedigrees

from theNIMHgenetics initiative sample.We selected a single case

with BPI or SAB from each of the families (n¼ 236; typically the

first subject recruited with a diagnosis of BPI or SAB for each family

for whom the maximum number of SNPs were successfully gen-

otyped) and compared polygenic risk scores to unrelated controls

from the NIMH control dataset (n¼ 266).

We found that the average polygenic risk score was higher for

singleton BPI or SAB cases than unrelated controls [mean¼ 32.67

� 3.85 and 31.35� 3.90, respectively; t(1,501)¼�3.81, P¼ 7.08

E-05, OR¼ 1.88 (95%CI¼ 1.31–2.69)] and that a score of�32 risk

alleles (defined by mean of the case group) was associated with an

increased relative risk of BP diagnosis of 1.31 (95%CI¼ 1.12–1.53)

http://glimmer.rstudio.com/kn3in/genRoc/
http://glimmer.rstudio.com/kn3in/genRoc/
https://gprs.shinyapps.io/start/


FIG. 1. Risk allele score distribution comparing unrelated

controls and singleton cases from NIMH families. Single cases

with BPI or SAB (n¼ 236, grey bars) were selected from NIMH

families and compared to unrelated controls from the TGEN

dataset (n¼ 266, white bars). The relative risk (RR) estimate of

1.31 (95%CI¼ 1.12–1.53) was calculated with respect to a risk

score of �32, with an overall odds ratio of 1.88 (95%CI¼ 1.31–

2.69). For the purposes of graphical representation, the frequen-

cy of risk scores are represented in even integers, and represent

bins which include both odd and even scores (i.e., bin 22 is the

sum of the frequency of 22 and 23 risk alleles).

TABLE II. Summary of Area Under the Receiver-Operator
Characteristic Curve (AUC), With Incremental Increase of SNP

Content in Polygenic Risk Score

Number of SNPs AUC (95%CI) P-value

10 0.528 (0.477–0.578) 0.287

13 0.548 (0.498–0.599) 0.062

14 0.554 (0.504–0.605) 0.037

15 0.556 (0.506–0.607) 0.029

20 0.573 (0.523–0.624) 0.0045

25 0.597 (0.547–0.646) 1.85E-04

30 0.606 (0.557–0.655) 4.24E-05

32 0.601 (0.552–0.651) 9.13E-05

SNPs were included in the polygenic risk score in order of decreasing odds ratio from the primary
GWAS reported by Sklar et al. (2011); and polygenic risk scores weighted by the odds ratio for
each SNP. Mean AUC estimates are given, along with the 95% confidence interval of each
measure.
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(Fig. 1). Results were similar in analyses weighted by minor allele

frequency (P¼ 0.0025) and odds ratio (P¼ 3.55E-05).
Sensitivity and Specificity of the SNP Panel
To determine the sensitivity and specificity of this limited SNP

panel with regards to potential predictive accuracy, area under the

receiver-operator characteristic curve (AUC)was conducted. Poly-

genic risk scores from unrelated individuals with diagnoses of BPI

or SAB from the NIMH family sample (n¼ 236) were compared

with unrelated controls from the TGEN dataset (n¼ 266). The

AUC was modestly increased from the null at a¼ 0.05 (AUC

¼ 0.60; 95%CI¼ 0.55–0.65). A score of �32 risk alleles had sensi-

tivity of 60% and specificity of 52%, and a score of�34 risk alleles

had sensitivity of 40% and specificity of 73%. Results were similar

in analyses weighted by allele frequency (AUC¼ 0.57; 95%CI

¼ 0.52–0.62) and odds ratio (AUC¼ 0.60; 95%CI¼ 0.55–0.65).

Based on the genetic epidemiology of bipolar disorder (i.e., disease

prevalence and sibling recurrence risk), the maximum theoretical

value for AUC is 0.97 or 0.80 if the variants included in the genomic

profile explain a quarter of the known genetic variance [Wray et al.,

2010]. The proportion of the known genetic variance explained by

the 32 SNP genomic profile (rĜG) is approximately 3%, and the

proportion of variance explained by the score on the liability scale

was estimated at Nagelkerke’s R2¼ 0.0088� 0.0062.

Iterative inclusion of SNPs ranked by odds ratios revealed that

the AUC estimate increased with the addition of each SNP, with the

AUC statistic becoming significant (i.e., P� 0.05) with the inclu-

sion of 14 SNPs with the highest odds ratios (OR� 1.15) (Table II).
It must be noted however, that while significant, the predictive

capacity of the PRS is low, indicative of the small effect sizes of

individual risk alleles.
Polygenic Risk Load Analysis Within Families,
Comparing Adult Relatives With Bipolar Disorder
to Other Relatives
We next sought to examine polygenic risk scores within multiplex

families, to determine if the average polygenic risk score would be

higher in cases compared to other relatives. We used European

ancestry subjects from 249 bipolar pedigrees from the NIMH

genetics initiative, and applied a narrow diagnostic model, where

only subjects with diagnoses of BPI or SAB were considered to be

cases (n¼ 601). The category “all other relatives” (n¼ 695) in-

cluded subjects with other mental illness (i.e., those with any DSM

diagnosis excluding BPI, SAB, BPII, or UPR) and those who were

never mentally ill.

As inheritanceofpolygenic riskhasnotpreviously been examined

in a family context, we first examined the relationship between risk

scores amongst related individuals in each family. We selected all

available sibling pairs from the 249 NIMH families (n¼ 777 pairs),

and examined the sibship correlation in polygenic risk score. As

expected, risk scores amongst all siblings regardless of phenotype

were significantly correlated (Pearson R¼ 0.53, P¼ 3.60� 10�57),

with an absolute mean score difference (ABS[sib1� sib2]) of�3.74

risk alleles (Fig. 2). Less predictably, phenotypically concordant case

pairs (n¼ 108) did not have significantly different absolute mean

score differences compared to phenotypically discordant sibpairs

(n¼ 103) and concordant non-case pairs (n¼ 95) (ANOVA,

F¼ 1.38, P¼ 0.25).

Next, we examined polygenic risk score differences amongst all

relatives in a within-family analysis (n¼ 249 families), comparing

all cases affected with BPI or SAB (n¼ 600) to all other relatives

(n¼ 695).We found no significant differences by diagnostic group

across all families (mean¼ 32.69� 3.94 vs. 32.45� 3.85; Wald



FIG. 2. Relationship between polygenic risk scores in sibling pairs from NIMH families. A) Distribution of polygenic risk score difference

between sibpairs (n¼ 777). B) A significant correlation between polygenic risk scores of sibling pairs was observed (n¼ 777, Pearson

R¼ 0.53, P¼ 3.60E-57).
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x2¼ 1.19, P¼ 0.13; RR¼ 1.06 (95%CI¼ 0.96–1.17), P¼ 0.14)

(Fig. 3A).

However, given the heterogeneity of bipolar disorder we hy-

pothesized that some families will have a higher load of these

specific common variants than others, and that polygenic risk score
FIG. 3. Analysis polygenic score by diagnosis in NIMH families comparing

patients affected with BPI or SAB (dark grey bars) were compared to all

representation, the frequency of risk scores are represented in even inte

(i.e., bin 22 is the sum of the frequency of 22 and 23 risk alleles). Relat

risk score of �32. A) All NIMH families (n¼ 249) included 600 cases an

between mean risk scores in case versus all other relative groups (mean

P¼ 0.13). Relative risk was not significant (RR¼ 1.06 (95%CI¼ 0.96–1.

(n¼ 202), where two or more individuals from each family had a risk sc

(n¼ 518) compared to all other relatives (n¼ 613)(mean¼ 33.40� 3.6

of risk scores in patients affected with BPI or SAB were shifted significan

significant increase in relative risk in cases (RR¼ 1.32 (95%CI¼ 1.03–1
differences may be informative of diagnosis only in families which

carry a high load of these specific common variants of small effect,

as opposed to families whose illness may be caused largely by

inheritance of rare pathogenic variation in a smaller number of key

genes.
cases to all other relatives. The distribution of risk scores in

other relatives (light grey bars). For the purposes of graphical

gers, and represent bins which include both odd and even scores

ive risk (RR) estimates were calculated with respect to an additive

d 715 other relatives. No significant differences were observed

¼ 32.69� 3.94 vs. 32.45� 3.85; GEE-Wald x2¼ 1.19, df¼ 1,

17), P¼ 0.14). B) Selected NIMH families with a high polygenic load

ore of �32. The mean risk score was significantly higher in cases

2 vs. 32.95� 3.70; GEE-Wald x2¼ 4.78, P¼ 0.014). The distribution

tly towards the right compared to their other relatives, with a

.70), P¼ 0.018).
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Hence, we selected only families in which two or more

individuals (regardless of diagnosis) had a high-polygenic risk

score (i.e., �32) and repeated the analysis in those 202 families.

We found that the polygenic risk score significantly differentiated

the diagnostic groups in families with a high-common variant

load, such that cases (n¼ 518) had higher polygenic risk scores

than other relatives (excluding those with diagnoses of BPII or

UPR; n¼ 613) (Wald x2¼ 4.78, P¼ 0.014; RR¼ 1.32 [95%CI

¼ 1.03–1.70], P¼ 0.018) (Fig. 3B). This was also significant when

subjects affected with BPII were included as cases in the model

(n¼ 621 cases vs. 613 other relatives; mean¼ 33.31� 3.61 vs.

32.92� 3.70; Wald x2¼ 3.53, P¼ 0.030; RR¼ 1.26 [95%CI

¼ 1.00–1.60], P¼ 0.032).
Polygenic Risk Load Analysis in Young First
Degree Relatives At-Risk of Bipolar Disorder
Next, we examined polygenic risk in young at-risk subjects of

European ancestry (n¼ 334) and compared those to age- and

ethnically appropriate controls (n¼ 142). The at-risk group showed

higher mean scores than controls (GEE-Wald x2¼ 5.15, P¼ 0.012)

(Fig. 4A). The relative risk estimate for subjects with scores�32 was

1.20 ([95%CI¼ 0.99–1.45], P¼ 0.036) (Fig. 4B). Results were simi-

lar in analyses weighted by allele frequency (GEE-Wald x2¼ 5.55,

P¼ 0.009) and odds ratio (GEE-Wald x2¼ 4.18, P¼ 0.020).

Expanding the cohort to include subjects from the three main

ethnic groups (i.e., European, Asian, and African) in an ethnicity-

specific weighted analysis showed an enrichment of risk alleles in

at-risk subjects compared to controls (GEE-Wald x2¼ 3.62,
FIG. 4. Polygenic risk score analysis in young European at-risk individua

individual were scored using an additive model, using only subjects of Eu

represented by the grey and white bars, respectively. A) The mean risk s

controls (31.07� 0.31) (GEE-Wald x2¼ 5.15, 0.012). B) The distribution

relative to control subjects. For the purposes of graphical representation

represent bins which include both odd and even scores (i.e., bin 22 is th

(RR) estimate of 1.20 (95%CI¼ 0.99–1.45) was calculated with respect

CI¼ 0.99–2.09).
P¼ 0.029; RR¼ 1.14 [95%CI¼ 1.01–1.29], P¼ 0.017) (Supple-

mentary Information Figure S1).
DISCUSSION

Many genomic variants together contribute to overall risk (termed

polygenic risk) for a number of complex traits [Peterson et al.,

2011; Hamshere et al., 2013; Meyers et al., 2013], and this genetic

architecture is evident in a number of psychiatric conditions—

including BP [Purcell et al., 2009; Lee et al., 2012, 2013; Smoller

et al., 2013; Bramon et al., 2014]. While the elucidation of the

genetic causes for BP has been challenging, the field is progressing

in understanding the genetic architecture of this complex disorder

(reviewed in [Craddock and Sklar, 2013]) and in identifying

specific genes which increase risk [Sklar et al., 2011]. Polygenic

risk scores based on multiple genetic variants across the genome

[Purcell et al., 2009] have successfully discriminated between

groups of unrelated cases and controls [Patel et al., 2010] and

also individuals with BP broadly defined as schizoaffective or non-

schizoaffective [Hamshere et al., 2011], indicating the potential

utility of risk score analysis in clinical diagnoses at a population

level. However, it is unclear as to whether polygenic risk score

analysis, with or without other clinical or biomarker data, could be

useful for diagnosis or risk prediction in persons with a significant

family history of BP, particularly given the non-random inheri-

tance of population risk alleles in related individuals and con-

founding shared environmental effects within a family. This

question is also pertinent due to the potential for high rates of

sporadic illness in typical gene discovery studies [Yang et al.,

2010]which are used to define commonpolygenic risk. The present
ls compared to controls. The total numbers of risk alleles per

ropean descent. At-risk (n¼ 334) and control (n¼ 142) groups are

core was significantly higher in at-risk subjects (31.99� 0.27) than

of risk scores in at-risk subjects was shifted toward the right

, the frequency of risk scores are represented in even integers, and

e sum of the frequency of 22 and 23 risk alleles). The relative risk

to a risk score of �32, with an overall odds ratio of 1.44 (95%
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study is the first to examine these common risk factors in the

context of inheritance within the family of a BP proband, exploring

both adult relatives of known diagnosis, and adolescent or young

adult relatives who are at-risk of future BP on the basis of a positive

family history.

Determination of polygenic risk scores can be performed using

strict (e.g., genome-wide significant P< 5� 10�8) or increasingly

permissive P-value thresholds to include variation with very small

genetic effects which may impact disease status. We chose to focus

our study on 32 SNPs that were the most significant independently

associated variants in the PGC-GWAS analysis [Sklar et al., 2011].

While we acknowledge that our limited SNP selection represents

only a small fraction of the total variation that contributes to bipolar

disorder risk [Lee et al., 2011, 2013], the selected SNPs arguably

represent the largest effect sizes on a population level and are

potentially least subject to statistical fluctuation and type I error.

We first sought to determine whether this SNP panel could be

useful in distinguishing individuals with a diagnosis of narrowly

defined bipolar disorder from unrelated control individuals. The

AUC value of the SNP panel (0.60) was small but significant, and

slightly higher than the median AUC values based on “known”

bipolar risk variants (n¼ 3) with genome-wide SNP data at a more

liberal P-value inclusion threshold of P< 0.0001–0.01 that was

previously reported in the WTCCC dataset [Evans et al., 2009].

This may indicate that the larger PGC analysis has a greater signal-

to-noise ratio in the top risk SNPs than those identified in the

earlier WTCCC analysis, and is consistent with simulation studies

which indicate that the accuracy of diagnostic prediction using

polygenic risk scores depends on the size of the training sample

[Purcell et al., 2009; Dudbridge, 2013].

We found that polygenic risk scores significantly distinguished

between diagnostic groups in families with a higher polygenic risk

load, but not in families with moderate–low polygenic loads—con-

sistent with genetic heterogeneity across families. Risk scores were not

sufficiently specific to classify diagnostic status on an individual basis.

Remarkably, we were also able to identify group differences between

young individuals at-risk of BP and young controls.

The PGC discovery sample from which the selected SNPs were

derived was ethnically European, and as such we restricted our

primary analysis to subjects of European descent. By expanding the

analysis to include the three major ethnic groups represented in the

at-risk cohort, we assume the same SNPs and alleles will confer risk

across different ethnic groups. There is little clear evidence regarding

ethnic-specific locus-heterogeneity, partly due to the smaller sample

sizes currently available for non-European gene discovery studies.

However, a recentmeta-analysis of European andAsianGWASdata

has shown that Asian subjects tend to have the same direction of

effect for themost significantly associated loci (P< 1e-06) with only

�2%of the top 41 SNPs showing a different direction of effect to the

European samples [Chen et al., 2013]. Additional method develop-

ment to address the use of polygene scores in the presence of ethnic

differences would be useful.

The purpose of our study was to determine whether a small

number of common risk variants could be useful in distinguishing

relatives of BP probands who are also ill, or may become ill in the

future. Despite the close genetic relationship between extended

family members, and a non-random inheritance of risk alleles
within a family, we were able to show that the polygenic risk score

did serve as amarker of ill versus well relatives on a group basis. We

would not recommend clinical application of such a score at this

time, but additional implementation of similar methods in longi-

tudinal clinical research studies is certainly called for.

Only one other group thus far has examined polygenic risk in a

prospectively recruited bipolar cohort, showing an increased ge-

nome-wide polygenic risk score in 70 at-risk individuals compared

to 60 controls [Whalley et al., 2013] at baseline assessment. This

group has also reported polygene associations with limbic brain

activation during functional MRI [Whalley et al., 2012], and white

matter integrity measures from DTI in a bipolar at-risk cohort

[Whalley et al., 2012]. Neuroimaging biomarkers have previously

been identified in the Australian at-risk subjects which were part of

the current study, with a lack of recruitment of the inferior frontal

gyrus in the high-risk participants compared to healthy controls

during an fMRI emotion inhibition task [Roberts et al., 2013].

Further investigations on the impact of polygenic risk on neuro-

imaging biomarkers may be particularly informative.

While this paper describes baseline associations of this at-risk

cohort, future investigation of this sample—which is being pro-

spectively evaluated as subjects transition through the peak period

of risk for the development of BP—will be able to determine if

polygenic risk scores are useful in future risk prediction for the

development of bipolar disorder. It remains to be seen as to

whether polygenic risk scores alone [Patel et al., 2010], or in

conjunction with early clinical signs, exposure to psychosocial

risk factors, and other potential biomarkers [Brietzke et al.,

2012] may provide a more robust predictor of future illness.

The predictive power of polygenic risk scores is likely to improve

with increased discovery sample sizes and the assessment of a larger

number of both common and rare genetic variants within the

prediction models [Sullivan et al., 2012; Chatterjee et al., 2013;

Craddock and Sklar, 2013; Dudbridge, 2013].
LIMITATIONS

Some of the parents or relatives of the US at-risk subjects were

ascertained from the NIMH families which were included in the

PGC discovery sample, and hence our family samples are not

entirely independent. However, there is no overlap between the

Australian at-risk subjects and the PGC discovery sample, nor are

the Australian at-risk subjects related to this sample. While the

overall contribution of those NIMH relatives to the PGC discovery

sample was very small (<2% of the cases from the PGC discovery

dataset), our findings should be considered as an extension rather

than an independent replication of the PGC findings (see also

discussion in [Wray et al., 2013]). Using only the most significant

SNPs is also a limitation of our study, and we acknowledge that

many more variants of importance in conferring risk to bipolar

disorder have not been assessed. Conversely, this is also a strength

of our study, as wewere able to directly genotype each variant in the

at-risk and family samples, rather than relying on imputed data or

surrogate SNPs. Indeed, fewer than half of the 32 SNPs in our panel

are represented on any one high-density SNP chip currently

commercially available, although direct genotyping of a larger

number of SNPs showing nominally significant association will
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be possible with the PsychChip (Illumina, San Diego, CA). Impu-

tation was used in the determination of genotypes in the unrelated

control group for AUC estimation, and while imputation accuracy

was high (97.4% concordance), this is a limitation of the AUC

analysis and, together with the small overlap between the PGC

discovery sample and the US family samples, should be taken into

consideration with interpretation of the AUC data [Wray et al.,

2013]. It should be noted that limitations of genotyping platform

and imputation did not apply to the key within-family results. We

also applied a genetic model which assumes additivity of risk alleles

in a single aggregate score as per the methods used by the PGC

[Purcell et al., 2009], although it should be noted that this is a

simplistic model which does not account for possible multiplica-

tive interaction effects between genes or genes and environment.
CONCLUSIONS

Our study provides conceptual support to the notion that poly-

genic risk scores may be useful in prospective risk prediction for

bipolar disorder. This may lead to future opportunities for early

identification and intervention strategies, such as prophylactic

pharmaceutical treatment, environmental modifications, or tar-

geted psychological interventions (reviewed in [McMurrich et al.,

2012; McNamara et al., 2012]) to reduce the impact and develop-

ment of symptoms, improve quality of life, and long-term out-

comes for patients.
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