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Abstract: The early detection of colorectal cancer is vital for disease management and patient survival.
Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal
Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood
Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood
from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the
point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal
immunochemical-based biosensor platform that may be further developed into a point-of-care
test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of
10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based
quantitative FIT diagnostic systems.

Keywords: biosensors; immunosensor; interdigitated electrodes; colorectal cancer; screening;
impedance; point of care; label-free; diagnostics

1. Introduction

Colorectal cancer (CRC) accounts for 10.0% and 9.2% of all cancers in men and women,
respectively [1]. The annual number of new CRC cases has been forecasted to increase from 1.2
to 2.2 million cases worldwide within the next two decades [2]. Notably the majority of the rising
incidence is expected to occur in developing countries [3,4], which has been attributed to the adoption
of Westernized lifestyles and transition into chronic-degenerative disease dominated causes of mortality
as these countries continue to undergo economic transition from low to a middle-income status [4].

Survival of CRC is highly dependent on the stage of diagnosis. Five-year survival ranges from
90% for CRC detected at the localized stage; 70% for regional; and down to 10% in people with distant
metastasis [5]. Although colonoscopy remains the gold standard for CRC diagnosis [6], fecal occult
blood test (FOBT) as means of detecting hemoglobin in the fecal sample is a valuable screening tool that
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has been incorporated into nation-wide screening programs in high income countries [7,8]. However,
the administration of FOBT in low- to middle-income countries largely occurs on a case-to-case basis
to triage colonoscopy referrals [9].

In general, there are numerous ways to detect forms and variants of hemoglobin, including
enzymatic, cationic chromatography, affinity chromatography, and immunochemical methods [10].
However, the commonly used tests for detection of hemoglobin in fecal samples include the
guaiac-based FOBT (gFOBT), and the fecal immunochemical test (FIT). The gFOBT utilizes guaiac
and hydrogen peroxide to detect the heme component of hemoglobin. Although it is cheaper [11],
gFOBT is less specific towards colorectal bleeding, requires subjective interpretation and is prone to
both positive as well as negative interferences [12,13]. In comparison, through immunochemical based
detection of the globin moiety, the FIT is more sensitive and specific towards colorectal bleeding [14].
In addition, unlike gFOBT, FIT does not require dietary restrictions, is less affected by concomitant
medication use, and requires fewer stool samples.

Currently, FIT tests are available in qualitative and quantitative formats. The former is available
in a point-of-care cassette-like format while the latter is laboratory based. They also differ in the way
the cutoff value is set. Whilst cutoffs for qualitative FITs are pre-set by the manufacturers, quantitative
FITs allow the user to set their desired cutoff value [15]. This provides flexibility to adjust cutoff
values to suit local CRC screening policy. Quantitative FITs also allow the development of tailored
risk algorithms for different subpopulations because fecal hemoglobin concentrations may be affected
by age, gender, or geographical location [15–17]. Laboratory-based quantitative FIT has been shown
to have higher sensitivity and specificity for CRC [18,19], and is beginning to replace gFOBT for
CRC screening in high-income countries [12,20]. Table 1 compares the performance characteristics of
qualitative and quantitative FIT products commonly used in CRC screening programs.

Table 1. Comparison of Performance between Qualitative and Quantitative Fecal Immunochemical
Test (FIT) platforms.

Assay
Platform Physical Form Clinical Cutoff Quoted Lower Limit

of Detection Result Output

Qualitative
FIT

Lateral-flow
immune-

chromatography
Cassette form

Varying
depending on
manufacture

ALL-DIAG- Hemotrust®:
6 µg·Hb/g·Feces [21]

Positive or Negative based
on manufacturer cutoff

Eiken OC Light®:
10 µg·Hb/g·Feces [22] Subjective Interpretation

Quantitative
FIT

Immuno-
turbidimetric

Laboratory
based, bulky
machinery

Varying
depending on

end-user

HM-Jackarc®:
7 µg·Hb/g·Feces [23]

NS-PLUS C15®:
4 µg·Hb/g·Feces [23]

Positive or Negative based
on end user’s cutoff

OC-SENSOR DIANA®:
10 µg·Hb/g·Feces [23]

FOB Gold®:
2.55 µg·Hb/g·Feces [23]

Objective Interpretation

Despite its advantages over qualitative FIT, laboratory-based quantitative FIT is not practical in
limited resource settings owing to infrastructural, geographical and financial constraints. To overcome
these limitations, we have developed a novel, low cost and quantitative FIT biosensor platform
adaptable into a point-of-care device. The biosensors detect or quantify biochemical molecules or
proteins based on their binding affinities. The biosensors contain immobilized capture probes which
can bind to the corresponding target molecule from a complex solution and result in a change at a
localized surface. There are many methods to evaluate this change. Among them, the impedance
biosensor allows quantification of biological molecules in a sample by measuring the changes in the
capacitance or resistance [24] caused by the binding of target molecules to the immobilized probes [25].
The compact planar impedance biosensors can be implemented as part of integrated on-chip systems
and require a smaller volume of sample for the measurements compared with laboratory based
platforms, an essential property for point-of-care devices [24]. The interdigitated electrode (IDE)
sensors are highly sensitive and have been used to perform label-free detections of a wide range
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of biological materials including DNA [26–28], antigen-antibody interactions [29–31], and whole
cells [32–35].

Here, we report the development of surface optimized IDE sensors for quantitative detection
of hemoglobin protein in human feces. The devices were transformed to electrochemical biosensors
by immobilization of anti-hemoglobin antibody receptor on to the IDEs, which specifically binds to
hemoglobin protein spiked in human feces. The binding caused a change in the device impedance at
concentrations as low as 10 µg·Hb/g feces, comparable to the lower detection limit of conventional
bench-top quantitative FIT detection systems (Table 1). The results provide proof-of-principle data that
makes it feasible to quantitatively measure hemoglobin concentration in fecal samples using label-free
impedance spectroscopy technology.

2. Materials and Methods

Ninety-nine percent (3-Aminopropyl)triethoxysilane (APTES), human hemoglobin (in lyophilized
powder form) and rabbit polyclonal anti-human hemoglobin antibody (whole purified antiserum,
product code H4890-2ML) were purchased from Sigma Aldrich (St Louis, MO, USA).
25% glutaraldehyde and 98% Ethanolamine were purchased from the University of Melbourne
Chemical Store (Melbourne, Australia). Standard microscope slide (Menzel SuperFrost) was ordered
from Thermo Fisher Scientific (Scoresby, Australia) and medical grade pressure sensitive adhesive
(PSA) tape ARcare 90445 was acquired from Adhesive Research (Glen Rock, PA, USA). The acrylic
sheets were purchased from Plastics Center (Cheltenham, Australia). APTES and glutaraldehyde were
prepared to 2% solution in ethanol and 2.5% solution in milli-Q water respectively. Both were filtered
using a 0.22 µm membrane to remove large debris.

2.1. Sensor Fabrication

Microscope glass slides were coated with 5 nm chromium (Cr) and 100 nm gold (Au) using
electron beam evaporator (Intlvac Nanochrome II). The Cr/Au coated glass slides were then patterned
using the laser ablation system (SUSS SLP300 with solid-state laser technology at 355 nm wavelength)
to produce the microelectrode array. Figure 1a shows an array of sensors fabricated on the same
microscope glass slide. Figure 1b illustrates the IDE sensing area with 49 electrodes. The width and
length of the electrodes are 20 µm and 1 mm respectively. The gap between adjacent electrodes is
10 µm. Prior to sensor functionalization, the Cr/Au coated glass slides were treated with oxygen
plasma before a layer of 10 nm thick SiO2 was selectively evaporated on the sensor surface.

2.2. Sensor Functionalization, Sample Preparation and Measurement Workflow

The fabricated IDE sensors were then prepared for functionalization and subsequent hemoglobin
detection (Figure 2). Firstly, the sensors are cleaned thoroughly with acetone, iso-propanol and water
(5 min each in ultra-sonicator bath). They were then dried under nitrogen stream followed by low
power oxygen plasma treatment to activate the sensor surface with hydroxyl (–OH) groups. In detail,
the glass slide with IDE sensors was immersed in 2% APTES in 95% ethanol for 1 h to allow for
the aqueous silanization of the oxide surface to occur. This aqueous silanization process has been
extensively described elsewhere [36] and has been implemented for various sensing applications [37,38].
The slide was then washed thoroughly 3 times in ethanol (5 min each) before it was incubated in 2.5%
glutaraldehyde in milli-Q water for 2 h. This created aldehyde groups (–COH) on the sensor surface.
The chip was then washed with milli-Q water before being dried in a fume hood. To isolate sensing
regions from each other, acrylic wells with patterned PSA tape were quickly laminated on the slide
surface. Figure 1c–e illustrates this process.
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Figure 1. (a) An array of interdigitated electrode sensors on a microscope slide with acrylic detection
chambers adhered; (b) A magnified image of the sensing region (scale bar 500 µm); (c) 3-D Illustration
of a pair of interdigitated electrode (IDE) sensors; (d) Top view of the IDE sensor pair; (e) An exploded
view of the IDE sensor pair showing different layers in correct order. From bottom to top: Glass slide
(1 mm), laser ablated Cr/Au sensors (105 nm), patterned pressure sensitive adhesive tape (80 µm),
acrylic well (1.5 mm).
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Figure 2. Functionalization protocol for the detection of hemoglobin; (a) Sensors are functionalized
with APTES and glutaraldehyde prior to attachment of antibody. (b) Detection of target peformed
electrically following solid-state Ab-Ag binding.

Antibodies to human hemoglobin were immobilized on the sensor surface by spotting 20 µL of
antibody solution (whole antiserum diluted 1:100 in 1× PBS) to each acrylic well. Primary amines
groups (–NH2) (either on lysine residues or the N-terminus of each polypeptide chain of the antibody)
facilitated the reaction with the exposed aldehyde groups available on the sensor surface. The antibody
receptor was covalently immobilized on the sensor surface. Next, the glass slide was incubated in a
humid chamber at room temperature for 30 min before being placed in a 4 ◦C refrigerator overnight.
The incubated sensors were then gently washed with PBS and immersed in a blocking solution for half
an hour (1% ethanolamine and 1% goat serum in 1× PBS). This step helped improve the specificity of
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the assay since ethanolamine blocks the unreacted aldehyde group and goat serum reduces non-specific
antibody-antigen binding. After a gentle wash with 1× PBS, the sensor array was ready for testing.

Fresh human stool was collected and stored at 4 ◦C prior to usage, and then diluted in 1× PBS to
a stock concentration of 10 mg/mL. Stock hemoglobin solution at 4 mg/mL was prepared by diluting
human hemoglobin protein (in powder form) in 1× PBS. The stock hemoglobin solution was then
diluted with stock fecal sample solution into testing concentrations of 0.01 mg, 4 mg, and 40 mg of
hemoglobin per gram of fecal sample (in 1× PBS). Twenty microliters of the hemoglobin-spiked fecal
samples were spotted on the sensors and incubated for an hour at room temperature in a wet chamber.
1× PBS was added as the negative control. After incubation, the sensor array was washed three times
with PBS. Electrical measurements were then performed with the sensors immersed in PBS.

2.3. Electrical Measurement Setup and Circuit Modelling

The IDE sensor was connected in series with a reference resistor Rref = 1 kΩ. The circuit (Figure 3)
was excited by a sinusoid signal (peak-to-peak amplitude of Vpp = 100 mV) at a distinct set of
frequencies (100 Hz, 1 kHz and 10 kHz) using a function generator. A lock-in amplifier setup utilizing
the SR830 lock-in amplifier (Stanford Research System) was employed to measure the voltage on the
reference resistor (V0) before and after the incubation of human hemoglobin protein. The changes in
the amplitude and the phase of V0 versus hemoglobin concentrations at different frequencies were
recorded and analyzed.
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Figure 3. (a) Electrical measurement setup showing the sensor under test connected in series with a
reference resistor (Rre f ). (b) Equivalent circuit of the experimental setup.

The IDE sensor was modeled as a resistor in parallel with a capacitor. These two components are
connected in series with a reference resistor. The measured voltage V0 is related to the signal generator
output as

V0/Vi = Rre f /
(

Zs + Rre f

)
(1)

Here, Vi in the input voltage, Rref is the resistance of the reference resistor, Zs is the impedance of
the sensor, R is the resistance of the sensor. Moreover, the impedance properties are described in

Zs = R/(1 + jωRC) (2)

where C is the capacitance of the sensor and ω is the frequency in rad/s. By solving Equations (1) and (2),
R and C can be calculated.

2.4. Statistical Analysis

Kruskal-Wallis analysis was performed for each applied frequency to determine the frequency
most optimal for distinction of hemoglobin concentration. Prism for Mac was used for all statistical
analyses. p < 0.05 was considered statistically significant.
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3. Results and Discussion

In this study, IDE sensors coated with a thin layer of SiO2 functionalized with antibodies to human
hemoglobin were used to detect the hemoglobin in human fecal samples at very low concentration.
The SiO2 coating helped to enhance the sensor sensitivity by reducing the internal double layer
capacitance at the PBS/electrode interface as well as the polarization of the electrodes [37]. The output
voltages measured at the reference resistor at 100 Hz, 1 kHz and 10 kHz frequencies (both amplitude
and phase) were recorded. Baseline measurements were made just before the sample was placed on the
functionalized sensors immersed in 20 µL of PBS. After 1-hour incubation of the sample on the sensor,
the sensors were gently washed with PBS (3 × 5 min each) and measurements were performed again
with the sensors immersed in 20 µL of PBS. The change in the output voltage (i.e., the difference in
voltage across the reference resistor before and after the incubation of hemoglobin) was recorded using
the lock-in amplifier. Detection of fecal hemoglobin was performed directly using the lock-in-amplifier
setup, as well as indirectly by extracting the resistance and capacitance data.

The amplitude and phase of this change (∆V0 and ∆θ0), are shown in Figure 4 for different
frequencies (100 Hz, 1 kHz and 10 kHz) as a function of varying hemoglobin concentrations (0.01,
4 and 40 mg·Hb/g·feces). As can be seen from the Figure 4a,b, the ∆V0 exhibits an increase in
magnitude and an increase in ∆θ0 at the frequencies under consideration (negative ∆V0 and positive
∆θ0). It can also be observed that ∆V0 and ∆θ0 are not only most distinct at 1 kHz (p = 0.0205 for
amplitude, p = 0.0014 for phase) and 100 Hz (p = 0.0028 for magnitude, p = 0.0328 for phase), but also
exhibit the largest magnitude of change compared to the two other frequencies.
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Figure 4. Frequency dependent change in (a) amplitude (∆V0) and (b) phase (∆θ0) of the output
voltage after 1 h incubation in hemoglobin-spiked fecal samples of different concentrations. Figure
represents mean with standard error of measurement, * indicates p < 0.05 and ** indicates p < 0.01,
ns = not significant (Kruskal-Wallis ANOVA), n = 3 per concentration.

Figure 5a,b shows the amplitude (V0) and the phase (θ0) of the output voltage at the optimal
frequency of 1 kHz. The arrows in Figure 5a,b indicates the direction of changes from before incubation
of samples to after incubation and wash. The change in V0 and θ0 for varying hemoglobin concentration
are plotted in Figure 5c, d respectively, at the optimal frequency of 1 kHz. At this set frequency, ∆V0

increased monotonically with the increase of hemoglobin concentration. At 0.01 mg·Hb/g, 4 mg/g
and 40 mg/g, the average difference compared with control samples is 2 mV, 3.19 mV and 6.27 mV.
The non-zero change in voltage in the control sample, when PBS was added to functionalized surface
could be attributed to the effect of Helmholtz double layer at lower frequencies [38] while for samples
with hemoglobin, the voltage changes are primarily due to the binding of the hemoglobin protein to
receptor antibody tethered to the sensor surface. The increased change in voltage with hemoglobin
concentrations indicates that the impedance of the biosensor increases with the higher concentrations
of hemoglobin.
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Figure 5. The (a) amplitude and (b) phase of the output voltage measured before and after 1 h
incubation in hemoglobin-spiked fecal samples of different sample concentrations; (c,d) show the
changes in amplitude and phase from baseline, respectively. Figures represent mean with standard
error of the measurement. The excitation frequency is 1 kHz, n= 3 per concentration tested.

The change in sensor impedance due to the binding of hemoglobin was further analyzed using the
sensors’ equivalent resistance and capacitance calculated using Equations (1) and (2). Figure 6 shows
the change in the resistance and capacitance at different frequencies and hemoglobin concentrations.
As can be seen from Figure 6a,b, upon binding of hemoglobin to the surface immobilized receptor, the
capacitance increases towards a negative value whilst the resistance increases towards a positive value.
The change in resistance and capacitance was also highly dependent on the applied frequency.
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Figure 6. Frequency dependent change in (a) capacitance (∆C) and (b) resistance (∆R) after 1 h
incubation in hemoglobin-spiked fecal samples of different concentrations (mg·Hb/g·feces). Figure
represents mean with standard error of measurement, * indicates p < 0.05, ** indicates p < 0.01,
*** indicates p < 0.001, ns = not significant (Kruskal-Wallis ANOVA), n = 3 per concentration.

It was noted that the applied frequency affects both the magnitude of change as well as the
distinction and consistency between samples. Although the magnitude of capacitance and resistance
change is the largest at 100 Hz, it was observed that there was substantial overlap between the
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resistance values of 4 mg·Hb/g·Feces compared to negative control, as can be seen in Figure 6b.
Because of the tendency of impedance drift to occur at lower frequencies such as 100 Hz and lower,
more noise was observed at the 100 Hz frequency measurement. Therefore, 1 kHz was determined as
the optimal frequency for parameters of capacitance and resistance. For more clarity, these changes in
capacitance and resistance at 1 kHz are further extrapolated in Figure 7.
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Figure 7. (a) Monotonic increase in resistance (red) and capacitance (blue) at 1 kHz with increasing
concentration of fecal hemoglobin. (b,c) show changes from baseline for both capacitance and resistance
respectively at 1 kHz applied frequency. Figure represents mean and standard error of measurement.
N = 3 per concentration tested.

This result indicates a successful detection of feces with a LOD of 10 µg·Hb/g·feces. This
study provides proof-of-concept data regarding the use of impedance biosensors as an alternative
to current FIT tests. The results show that differentiation of various concentrations of hemoglobin
in crude fecal samples can be performed in a rapid and label-free manner, using both direct lock-in
amplifier parameters (amplitude and phase) as well as extracted impedance parameters (resistance and
capacitance). By characterizing these parameters, detection can be optimized at a certain frequency,
which in this study was found to be 1 kHz. Sample handling is crucial for the integration of the
detection platform into a point-of-care device. This study shows that with minimal sample handling is
required, with only PBS dilution involved to obtain characterization. Both minimal sample handling
as well as label-free detection allows for reduced cost and time required for the detection platform.
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4. Future Research

Future research is needed for the verification of our proof-of-principle findings in a larger panel
of samples to determine the clinical sensitivity and specificity. Additional future directions of the work
will include efforts to shorten the turnaround time and to integrate the platform into an automated
system, which includes microfluidics and a built-in phase sensitive detection in the electronic reader
that correlates reliably to the impedance changes occurring in the sensors. Because of the minimal
sample processing required in this proof of concept stage, we envision that testing of the samples will
only require a separate collection tube containing a set amount of buffer. Since the sensitivity and
specificity of FIT for CRC diagnosis is dependent on its accurate measurement of hemoglobin in a
given weight of feces, it will be important that fecal mass is consistent across tests. Therefore, it will be
important to optimize different collection apparatus for consistent uptake of fecal mass.

5. Conclusions

The proposed sensors can detect the sample to a minimum concentration of 10 µg·Hb/g·feces,
which is comparable to currently used bench-top quantitative FIT detection. Upon the introduction of
hemoglobin protein spiked in human feces, the antibody receptors specifically bind to the proteins,
causing a change in the device impedance within 1 h incubation. Differentiation between different
hemoglobin concentrations in human fecal samples can be performed through several parameters either
directly using the lock-in amplifier technique through amplitude and phase characterization, as well as
indirectly by extracting equivalent values of capacitance and resistance. All parameters can be detected
optimally at a single frequency of 1 kHz. The results presented in this paper provide proof-of-principle
data that demonstrates the feasibility to quantitatively measure hemoglobin concentration in fecal
sample using impedance spectroscopy technology without labelling, applicable for screening of
colorectal cancer.
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