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Abstract

Search effectiveness metrics are used to quantify the quality of a ranked list of search results

relative to a query. One line of argument suggests that incorporating user behaviour into

the measurement of search effectiveness via a user model is useful, so that the metric scores

reflect what the user has experienced during the search process. A wide range of metrics

has been proposed, and many of these metrics correspond to user models.

In reality users often reformulate their queries during the course of the session. Hence,

it is desirable to involve both query- and session-level behaviours in the development of

model-based metrics. In this thesis, we use interaction data from commercial search engines

and laboratory-based user studies to model query- and session-level search behaviours, and

user satisfaction; to inform the method for evaluation of search sessions; and to explore

the interaction between user models, metric scores, and satisfaction.

We consider two goals in session evaluation. The first goal is to develop an effectiveness

model for session evaluation; and the second goal is to establish a fitted relationship

between individual query scores and session-level satisfaction ratings. To achieve the first

goal, we investigate factors that affect query- and session-level behaviours, and develop a

new session-based user model that provides a closer fit to the observed behaviour than do

previous models. This model is then used to devise a new session-based metric, sINST. In

regard to the second goal, we explore variables influencing session-level satisfaction, and

suggest that the combination of both query positional and quality factors provides a better

correlation with session satisfaction than those based on query position alone. Based on

this observation, we propose a novel query-to-session aggregation function, that is useful

for scoring sessions when sequences of query reformulations are observed.

We also propose a meta-evaluation framework that allows metric comparisons based

on empirical evidence derived from search interaction logs, and investigate the connection

between predicted behaviour and observed behaviour, and between metric scores and user

satisfaction at both query and session-levels.
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estimated Ĉ(i) (micro- and macro-averaged method) and the Ĉ(i) com-
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Chapter 1

Introduction

The search engine has become a primary tool for information seeking and discovery. People

who wish to find an explanation about a particular topic can use a Web search engine,

such as Bing.com or Google.com, in order to fulfil their information needs. The success

of current search engines cannot be separated from the research and development in the

area of Information Retrieval (IR).

In particular, search engine improvement cannot be achieved without a reliable eval-

uation. Two kinds of IR evaluation have emerged: online and offline evaluations. Online

evaluation usually involves comparing the quality difference between two systems in a

production environment, and using implicit feedback, such as clicks or query reformula-

tions [111, 118, 167]. On the other hand, offline evaluation does not require user feedback.

This offline paradigm usually involves three components: (1) a test collection consisting

of a corpus, queries, and relevance judgements; (2) effectiveness metrics quantifying the

quality of the search results rankings; and (3) statistical tests justifying that one system

is better than the other. These two evaluation approaches complement each other.

Online evaluation is a powerful technique for the evaluation of IR systems, since it

reflects many aspects, including interaction and presentation. However, this approach is

usually time-consuming and expensive. In addition, online evaluation, such as A/B testing,

might alter users’ search experience to the extent that they become disenchanted with the

search system. In contrast, offline evaluation is suitable for tasks that need to be repeated

multiple times, such as tuning a retrieval heuristic. Further, this kind of evaluation has

a long-standing history dating back to the 1960s [50], and serves a basis for IR evalua-

tion events, such as TREC1, CLEF2, and NTCIR3. This thesis is primarily about offline

evaluations and effectiveness metrics.

1https://trec.nist.gov
2http://clef.isti.cnr.it
3http://research.nii.ac.jp/ntcir/index-en.html
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2 Introduction

In the 1950s, when the term “information retrieval” was first introduced by Mooers

[156], two fundamental IR effectiveness metrics, precision (the proportion of retrieved

documents that are relevant) and recall (the proportion of relevant documents in the

collection that are retrieved), were described together by Kent et al. [120] along with the

concept of relevance – a debatable evaluation criterion that should be carefully defined (see,

for example, the approach of Schamber et al. [191] and the review of Saracevic [187, 188])

– in order to measure the effectiveness of a search system. Before that, Gull [69] also

described the use of recall for comparing the effectiveness of two search systems based on

library catalogue entries. This indicates that the development of evaluation metrics was

an early priority in the history of IR.

In the 2000s, there have been increasing concerns for the development of metrics from

a user modelling perspective, as well as for the relationship between metric scores and

user-reported satisfaction ratings. From this perspective, a “good” metric is one that has

a plausible user model (a model that describes how users interact with search engine

results) [44, 103, 151, 240], and that also has a strong correlation with user satisfaction [6,

91]. Many user-oriented metrics are based on the user model embodied in the expected

search length metric proposed by Cooper [53] in 1968, where users sequentially scan down

the ranking until some stopping rank position. Several authors argue that metrics should

take into account that users are less likely to examine documents retrieved further down

the ranking than top ranked documents, so that the metrics are useful in the context of

interactive IR [102, 117, 151]. Figure 1.1 compares the effectiveness of two search results

pages for a particular query, including the idea that the examination probability is non-

increasing as a function of rank position.

Between 2010 and 2020, a range of model-based metrics were developed [22, 47, 105,

106, 115, 153, 181, 195, 195, 241]. With the increasing number of metrics came the need

for classifying and comparing them. In the same period, there has also been a growing

interest in generalising existing metrics (and their corresponding user models) in order to

develop a framework for search effectiveness metrics. The benefit of having a framework

is that existing metrics can be compared under the same score interpretation and under

the same characteristics [39, 47, 153, 169, 180].

Recently, Moffat et al. [153, 155] described the C/W/L framework, establishing the re-

lationship between metrics and user models, and showing that many existing metrics, such

as precision, fit this structure. With this framework, the user behaviour is characterised

by three interrelated quantities, including the conditional continuation probability func-

tion C(i) that denotes the conditional probability that the user examines the document
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System A System B

Figure 1.1: Comparison of two ranked lists of results generated from two different systems,
Bing.com and Google.com, for the query “parenthood and phd” (searched on 2020-10-20).
Note that the level of opacity increases with rank position, illustrating that the user is
less likely to examine documents retrieved further down the ranking than top ranked
documents.

at rank i+ 1, given that they have just examined the one at rank i.

A series of model-based metrics has been proposed by specifying C(i) functions. These

metrics (and their publication years) are, respectively, rank-biased precision [151] (2008),

INSQ [152] (2012), INST [153, 155] (2013), and a metric based on an information foraging

model [20] (2018). Rank-biased precision has a fixed C(i) at all ranks, but is sensitive

to different levels of the user’s persistence via its parameter. The C(i) function of INSQ

varies with rank position i, and is sensitive to the user’s initial goal for undertaking a

search activity (goal sensitive). An extension of the INSQ metric, INST, is not only goal

sensitive but also adaptive, meaning that the user behaviour changes as the user encounters

relevance in the ranking. A metric based on the information foraging model is also goal

sensitive and adaptive, with an additional property that the user keeps inspecting the

ranking as long as the rate of gain exceeds their minimum expectation (rate sensitive).
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Existing frameworks, including C/W/L, have provided a foundation to compare the

underlying user models across metrics. However, these frameworks focus on evaluating the

quality of a single SERP with respect to a single query. Most of the metrics described

previously, such as precision and INST, were also developed based on this assumption.

However, real interaction between an IR system and a user seeking information usually

involves query reformulations for a single information need, leading to a search session

with multiple queries [95, 121]. Researchers attending the Third Strategic Workshop in

Information Retrieval in Lorne (SWIRL) in 2018 discussed the long-term issues of the IR

field [9]. As stated in its meeting report by Allan et al. [9, p. 28], one agreed strategic

direction is the development of metrics that measure the “success of the search session as

a whole”, and that are sensitive to the different types of search task.

Furthermore, it remains unclear how to measure the accuracy of user models, that is,

how close any model is, in terms of hypothesised behaviours in the C/W/L structure, to

the observed user behaviour. An investigation is also needed to see whether metrics that

fit observed behaviour tend to produce scores that are correlated with user satisfaction.

This meta-evaluation issue is critical for the development of query- and session-based

metrics that embody user models, since meta-evaluation provides a justification for “good”

effectiveness metrics.

This thesis addresses the problem of using search interaction logs for modelling user

behaviour and satisfaction, informs methods for the evaluation of multi-query sessions,

and explores the interaction between metric scores, user models, and user satisfaction.

This first introductory chapter discusses the overarching issue and research questions,

describes the contributions in this thesis, and concludes with an overview of how this

thesis is organised.

1.1 Research Questions

The overarching issue of this thesis is: to what extent can search interaction logs be used

to model user behaviour and satisfaction, and to derive evidence that allows metric com-

parisons? More specifically, the following interrelated research questions are considered:

1. Is it possible to use search interaction logs to model user behaviours? If so, what

factors affect both query- and session-level user behaviours?

2. What factors affect session satisfaction?



1.2 Contributions 5

3. To what extent do metric scores correlate with user satisfaction at both query- and

session-levels?

4. To what extent do user models predict observed behaviours?

In considering these questions, we develop metric-based user models from the perspec-

tive of C/W/L framework via the argument that a good model is one that reflects three

hypothetical probabilities: those associated with viewing, continuing, and stopping be-

haviours [153, 155]; and via the notion of user satisfaction. We also explore the correlation

between metric scores and user satisfaction for meta-evaluation of metrics. In this context,

the ground-truth of satisfaction lies in the user’s mental state, and requires an approxi-

mation [117]. One way to approximate the ground-truth of satisfaction is by employing

Likert scale user-reported satisfaction ratings. Previous work has constructed lab-based

datasets containing five-point style ratings (ranging from unsatisfied to very satisfied) at

both query- and session-levels [46, 104, 105, 139, 145]. These pre-existing datasets are

employed in our experiments4.

1.2 Contributions

The main contributions of our investigation are:

1. We propose three heuristics for computing empirical conditional continuation prob-

abilities (query-level behaviour) from a set of impression sequences (Section 3.3);

2. We propose a new impression model for inferring impression distributions from click

sequences, and demonstrate that this model is useful for computing empirical contin-

uation probabilities when impression sequences are not available but click sequences

are (Sections 3.4–3.6);

3. We extend the query-based C/W/L framework by adding a new quantity, condi-

tional reformulation probability (session-level behaviour). Using impression model

and methods for computing continuation probabilities, we utilise interaction logs

from both commercial search engines and lab-based user studies to investigate fac-

tors that affect query- and session-level behaviours (Sections 4.4 and 4.5);

4In making use of data collected and made available by other researchers, it is assumed that ethics
and other necessary permissions including informed consent have been appropriately obtained by those
researchers. Outside of the Seek.com data, collection of which was covered by SEEK’s user terms and
conditions, and by a research agreement between them, RMIT University, and The University of Melbourne,
no new data was collected during the course of this project.
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4. Using the extended C/W/L structure and findings from observation data, we pro-

pose a new session-based effectiveness metric for offline evaluation using session test

collection, where each topic is associated with a fixed sequence of queries. Our pro-

posed metric is the first session-based metric that is goal sensitive and adaptive

(Section 4.6);

5. We also propose a novel query-to-session aggregation method that is useful for scoring

sessions when knowledge of how many times the user reformulated and what queries

they submitted is available. This method is based on the combination of individual

query qualities and positional factors in the session (Sections 4.7 and 4.8);

6. We investigate the relationship between user model and observed behaviour, and

between metric scores and session satisfaction at both query- and session-levels; we

also explore whether the metrics with user models that fit observed behaviour also

tend to be the metrics that correlate well with satisfaction ratings (Chapter 5); and

7. We propose a method for measuring user model accuracy, and investigate the effect

of adaptivity for improving metric accuracy (Section 5.5).

1.3 Thesis Structure

Chapter 2. A wide range of fundamental issues in IR offline evaluation are introduced

in Chapter 2. It surveys the use of test collections for assessing the quality of IR systems in

an offline fashion, and reviews both traditional and modern search effectiveness metrics.

Before addressing the dualism between metrics and user models, Chapter 2 describes

research that explores user search behaviours. The connection between metrics and user

models is described through the lens of C/W/L framework, and Chapter 2 reviews meta-

evaluation approaches that involve a wide range of criteria, including user satisfaction and

user model accuracy.

Chapter 3. The first part of our contributions is presented in Chapter 3. First, it de-

scribes our proposed methods for computing empirical conditional continuation probabil-

ity, one of the key quantities in the C/W/L structure, from logged viewing behaviours5.

5This is based on the following published papers:

• Alfan F. Wicaksono and Alistair Moffat. Empirical Evidence for Search Effectiveness Models. In
Proc. CIKM, pages 1571–1574, 2018.

• Alfan F. Wicaksono. Measuring Job Search Effectiveness. In Proc. SIGIR, page 1453, 2019.
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However, users’ viewing behaviours may not be observable, while clicking behaviours al-

most always can be, particularly from commercial search engine logs. Chapter 3 then

demonstrates that it is possible, to some extent, to predict viewing behaviours from ob-

served clicking behaviours6. Next, a new impression model is proposed for inferring view

distributions from clickthrough actions. Finally, Chapter 3 shows that the impression

model is useful for computing empirical continuation probabilities from click logs7. Fig-

ure 1.2 shows dependency diagram for three contribution chapters in this thesis, including

Chapter 3. Two tools developed in Chapter 3, heuristics for inferring empirical continua-

tion probabilities and impression models, are used for behavioural analysis in Chapter 4

and for meta-evaluation in Chapter 5.

Chapter 4. The second key contribution in this thesis is about the evaluation for multi-

query sessions. As shown in Figure 1.2, two goals for session evaluation are considered:

(1) the first goal is to develop a user model for evaluation using session test collections,

where each topic corresponds to a fixed sequence of queries, with each simulated user

assumed to follow that sequence when reformulating queries8; and (2) the second goal is

to establish a fitted relationship between individual query scores and session-level satis-

faction ratings. To address the first goal, Chapter 4 describes an extension to the existing

query-based C/W/L structure. Chapter 4 then presents our analysis of commercial search

interaction logs in regard to variables influencing query- and session-level behaviours. Note

that this investigation requires the impression models and methods for inferring empiri-

cal continuation probability proposed in Chapter 3 (see Figure 1.2). A goal-sensitive and

adaptive session-based effectiveness metric is then developed using observational results

derived from search logs. Finally, Chapter 4 addresses the second goal, exploring factors

affecting session-level satisfaction, and proposes a novel session satisfaction model that

combines both positional and quality factors. This satisfaction model is useful for aggre-

gating individual query scores in the session when the sequence of query reformulations

is known.

6This is based on the following published paper:

• Alfan F. Wicaksono and Alistair Moffat. Exploring Interaction Patterns in Job Search. In Proc.

Aust. Doc. Comp. Symp., pages 1–8, 2018.

7This is based on the following published paper:

• Alfan F. Wicaksono, Alistair Moffat, and Justin Zobel. Modeling User Actions in Job Search. In
Proc. ECIR, pages 652–664, 2019.

8This work is currently under review.
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Figure 1.2: Dependency diagram for the thesis contributions.

Chapter 5. Meta-evaluation is the main issue addressed by Chapter 59. First, it explores

the relationship between metric scores and user-reported satisfaction ratings at both query-

and session-levels (see the box with label “User Model Accuracy” in Figure 1.2). Note that

computing session-level scores requires the query-to-session aggregation methods described

in Chapter 4. Second, Chapter 5 addresses the dual of that relationship – the relation-

ship between metric-based user models and user behaviour – and describes our proposed

method for measuring the accuracy of a user model through the lens of the C/W/L struc-

ture (see the box with label “Metric Scores & Satisfaction” in Figure 1.2). The impression

models described in Chapter 3 allow for the measurement of user model accuracy via

logged behaviours that do not contain impression or eye-fixation sequences, such as click

logs. Finally, Chapter 5 considers the question of whether the metrics with accurate user

models also tend to be the metrics that have a relationship with user satisfaction.

9The material in Chapter 5 (except Sections 5.5.4 and 5.6.2) is based on the following published paper:

• Alfan F. Wicaksono and Alistair Moffat. Metrics, User Models, and Satisfaction. In Proc. WSDM,
pages 654–662, 2020.



Chapter 2

Background

This chapter introduces the main concepts behind information retrieval evaluation. Sec-

tion 2.1 describes methodologies and fundamental evaluation metrics for assessing the

quality of IR systems. Section 2.1 also argues that the use of recall as a metric for search

effectiveness has some problems, including that it is difficult to associate recall with the

criteria of user satisfaction. Hence, rather than using recall, or striving to estimate recall,

it is more useful to incorporate an accurate user model into the precision-based metric,

assuring the connection between metrics and what search users have experienced.

It is thus necessary to consider both system and user contexts in the assessment of

search quality, including that an effectiveness metric should embody a user model reflecting

how the simulated users interact with the result pages. In this case, a key to development

of any user-oriented effectiveness metric is the understanding of the behaviour of search

engine users from available search interaction logs. Section 2.2 discusses prior research

that explored user interaction patterns from observational data.

After describing the user search behaviour, this chapter introduces C/W/L framework

as a tool that connects metrics and user models (Section 2.3). In particular, this framework

is useful for comparing user models of existing precision-based metrics, and for developing

a new user model (and thus, a new metric) through the same lens of user characteristics.

Section 2.4 then describes the classification of existing user models and the process of how

they can be mapped into C/W/L framework.

The effectiveness metric itself also needs to be evaluated. This meta-evaluation problem

involves defining the criteria for a good metric, including user satisfaction, user preference,

user model accuracy, robustness, and sensitivity. This thesis focuses on user satisfaction

and user model accuracy as two key indicators for good metrics. Section 2.5 discusses the

notion of user satisfaction in the context of IR evaluation. Finally, Section 2.6 elaborates

existing meta-evaluation approaches, ranging from empirical-based approaches, such as

correlation analysis with satisfaction ratings, to axiomatic-based approaches. To under-

9



10 Background
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Figure 2.1: Connectedness of the topics in Chapter 2. Yellow rectangles represent sections
and their main topics. Several subtopics are also grouped together under common high
level topics. Blue arrows represent the reading order that needs to be followed.

stand the structure of this chapter, Figure 2.1 explains the connectedness of the topics

that are covered.

2.1 Information Retrieval Evaluation

Evaluation is central to the development of information retrieval systems. However, eval-

uation of any IR system is a complex task, involving many facets, such as the system

being evaluated, evaluation criteria, metrics, instruments, and methodology [188]. There

are at least two major paradigms in IR evaluation: (1) user-based evaluation involving

a representative sample of search engine users; and (2) test collection-based evaluation,

which requires a collection of documents, a set of topics, and relevance judgements. This

section focuses on the latter paradigm, exploring some of its requirements, in particular

test collection-based (offline) metrics.

2.1.1 The Use of Ranking, Search Success, and Evaluation

The Use of Ranking. The typical interaction between an information retrieval (IR)

system and a user can be described as follows: (1) the user submits a query, a realisation of

an information need, to the system; (2) the system then generates result pages containing

a set of items or documents, which is deemed to provide the answers; and (3) the user
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finally interacts with the result pages to fulfil their information need. Van Rijsbergen [222,

p. 6] states that two main objectives of an IR system are “(1) to retrieve all the relevant

documents and (2) at the same time retrieving as few of the non-relevant as possible”. These

objectives are also described by Cleverdon and Keen [51] as the two factors influencing

the success of reciprocal actions between the system and the user. Therefore, one crucial

challenge is to find a mechanism that is able to organise the retrieved set of documents,

so that users receive as much useful information as possible from the retrieved items.

The most widely adopted search result organisation is the ranked list presentation,

where the retrieved documents are organised in a ranking-style interface and ordered

based on their system-estimated likelihood of being relevant. As a result, a document that

has the highest estimated relevance score is placed in the top rank position, and thus users

expect to see part of the ranking that is most likely to satisfy their information need.

Robertson [170] describes the history of ranked retrieval systems. According to the

Robertson’s review, the idea of using a probabilistic approach for generating results ranking

was proposed by Maron and Kuhns [146] in 1960. Maron and Kuhns [146] describe the

concept of ranked retrieval in the abstract of their paper:

The resulting technique called “Probabilistic Indexing,” allows a computing

machine, given a request for information, to make a statistical inference and

derive a number (called the “relevance number”) for each document, which is

a measure of the probability that the document will satisfy the given request.

The result of a search is an ordered list of those documents which satisfy the

request ranked according to their probable relevance.

In the 1960s, Salton also started carrying out historical series of experiments using the

SMART system, which generates ranked list of results (see, for example, the experiment

results by Lesk and Salton [131]).

The theoretical justification for results ranking presentation is the probability ranking

principle (PRP), which was envisioned by Cooper [54] in the 1970s, and analysed by

Robertson [168] in 1977. This is also recorded in Robertson’s book [168, p. 295] as follows:

If a reference retrieval system’s response to each request is a ranking of the

documents in the collections in order of decreasing probability of usefulness

to the user who submitted the request, where the probabilities are estimated

as accurately as possible on the basis of whatever data made available to the

system for this purpose, then the overall effectiveness of the system to its users

will be the best that is obtainable on the basis of that data.
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Figure 2.2: A SERP containing a ranked list of links and summaries, plus vertical results
(images), generated by Bing.com on 2020-09-24, for query “ten blue links”.

The main concern with PRP is that it assumes that the relevance of a particular item is

not affected by that of other items in the same ranked list. This assumption is at odds with

what users perceive. For instance, consider a case where two identical useful documents

are located in the first and third rank positions. Users would probably regard the third

document as being not useful since they have already seen the same document at rank

position 1 [68]. If we expect diversity in our search results, PRP has no longer provided

an optimal result [230]. Much past research has addressed diversity and novelty in the

ranked list of results [3, 40, 48, 166], and propose a counterpart of PRP, such as PRP for

interactive information retrieval (IIR-PRP) [67], and a more dynamic version of IR [193].

However, the use of variants of PRP results basically still makes use of the ranked list

of documents as the main presentation method, but with a re-ranking mechanism, which is

responsive to the user feedback. Indeed, apart from being simple, the main advantages of

the ranking-based search results presentation are: (1) its evaluation instruments have been
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well-developed; (2) it is adopted by major IR evaluation conferences, such as Text RE-

trieval Conference (TREC), Cross-Language Evaluation Forum (CLEF), and NII-NACSIS

Test Collection for IR systems (NTCIR) [225]; (3) major commercial search engines, such

as Google.com, Bing.com, Yandex.ru, and Yahoo.com still employ the ranked list style of

presentation. For commercial search engines, a search engine results page, SERP, was tra-

ditionally a ranking with “ten blue links” to relevant items. However, the development of

search interface recently has provided SERPs with more complex vertical results, such as

images, maps, videos, and wiki-boxes [231]. Figure 2.2 shows a snapshot of SERP initiated

from Bing.com using the query “ten blue links”.

As an alternative to the ranked list style, some authors propose the use of cluster-

based presentation, where a set of retrieved documents is grouped into clusters based on

topical proximity [81, 99]. The justification of this presentation style is the cluster hypoth-

esis, which states that “closely associated documents tend to be relevant to the same re-

quests” [99, 222]. Hearst and Pedersen [81] propose Scatter/Gather, a cluster-based SERP

browsing mechanism, which in turn provides empirical evidence that supports the clus-

ter hypothesis. In the Scatter/Gather paradigm, first the user poses a query; second, the

system then responds with the top-n documents and clusters them into several topically-

coherent groups; finally the user inspects a subset of retrieved documents by selecting a

particular cluster that interests them. Each cluster of retrieved documents is associated

with a descriptive textual summary consisting of a set of topical words characterising its

information. Hearst and Pedersen [81] carried out a user study to evaluate the effectiveness

of Scatter/Gather, and the results suggested that in most cases the participants success-

fully chose the cluster with the largest number of relevant documents, suggesting that the

clustering paradigm offered by the Scatter/Gather is beneficial to users.

Leuski and Allan [132] combined the ranked list and the clustering paradigms by po-

sitioning a spring-embedded visualisation between two ranked lists (left and right ranked

lists) on the screen. In the visualisation, a document is represented as a single colored cir-

cle, indicating the proximity to the known highly scored (and slightly scored) documents,

and any two similar documents should be close to each other. Hence, this visualisation

allows users to determine the clusters of documents that potentially provide useful infor-

mation, or to visually decide what other documents are topically similar to a particular

document. If a particular document in a ranked list is selected, the corresponding point

in the spring-embedded visualisation is then highlighted. To evaluate the effectiveness of

this visualisation, Leuski and Allan [132] conducted user studies to compare the use of the

spring-embedded visualisation with that of the traditional ranking style and found that,
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in general, users were satisfied with their visualisation and clustering mechanism.

Research into search interfaces has developed rapidly. Teevan et al. [209] find that

users tend to perfom orienteering (a behaviour whereby users follow a series of small steps

to find the target information instead of jumping directly using a keyword search) even

though they merely search for a specific information, such as phone numbers or office

addresses. Teevan et al. [209] further suggest to incorporate this phenomenon into the

design of future search interfaces. Cutrell et al. [60] designed a search interface, Phlat,

that aims at improving the quality of a personal search system. One of its characteristics

is that it allows users to tag their personal content with textual metadata, so that they

can easily return to their items in the future. Arguello et al. [15] propose an approach

for combining search results from different verticals (webpages, images, videos, news, and

so on) in a ranked list style of presentation. They formulise the task as a block-ranking

problem, whereby each block is defined as a group of items that should be placed together

in the ranking. Wang et al. [231] propose a method to render different vertical search results

in an optimal way. They define the task as an optimisation problem, so that search results

and their corresponding presentations maximise the user satisfaction score. In contrast to

Arguello et al. [15], the proposal of Wang et al. [231] does not restrict search results from

being presented in a ranked list style. Moreover, they could also be presented in multiple

columns on the same page. Overall, these research projects are applicable to the search

engines that still rely on the ranked list style of presentation.

The Success of IR Systems. A typical IR system returns a ranked list of documents

sorted by system-estimated relevance (according to the user’s information need) with likely

best one placed in the top of the ranking. The user then interacts with the ranking in any

of a wide variety of ways. For example, the user might scan all results before clicking at

a particular link; or the user might abandon the SERP after examining all snippets from

rank 1 to 5 since none of them seems to be relevant. Cleverdon and Keen [51] list five

factors that contribute to the success of a search activity:

1. The presence of relevant documents,

2. The absence of non-relevant documents,

3. The response time between the query submission and the search results being gen-

erated,

4. The presentation of the search results, and
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5. The effort being made by the user.

Sanderson [184] added further factors to the list, such as the quality and representativeness

of the query being submitted, the context of the query, and the type of information need.

All of these factors should be considered when measuring the utility of a SERP.

Ranking Evaluation. Suppose two IR systems return two different ranked lists of docu-

ments for the same query. One of the critical questions to ask is: “which ranking is better?”,

or in a broader sense, “which system is more effective?” In a production environment, the

difference in quality between the two rankings can be inferred from implicit feedback gen-

erated by users, such as clickthroughs and query reformulations [111, 118, 167]. This

evaluation mechanism is often referred to as A/B testing, which is a form of controlled

experiment testing a causal relationship between system changes and their effects on the

behaviour of users [124]. Note that A/B testing is widely employed for major commercial

search engines [124]. Another family of online evaluation method is the interleaving ap-

proach [45], where two rankings initiated from the same query are interleaved into a single

ranked list using a certain strategy [111, 167]. The clickthrough information observed from

the combined ranking is then used to decide which system provides better rankings.

The relative quality of two rankings can also be assessed in an offline fashion using a

test collection, which typically consists of a collection of documents, a set of queries, and

a set of relevance judgements. With this evaluation paradigm, each item in the ranking is

assigned a relevance score (often in a binary scale, where 0 is for a non-relevant document,

and 1 for a relevant one), transforming a ranked list of items into a relevance vector. For

example, consider two SERPs of length five with the following relevance vectors:

−→r1 = 〈0, 0, 0, 1, 1〉 , −→r2 = 〈1, 1, 1, 1, 1〉 ,

where the first SERP contains relevant items at rank positions 4 and 5, while the second

one is full of relevant items. By examining at the two vectors, one can easily conclude that

the second SERP might have a better quality than the first one. However, as the vector

becomes more complex, an effectiveness metric becomes necessary to the assessment of a

ranking by transforming its relevance vector into an effectiveness score, which is deemed

to reflect what users have experienced when interacting with the SERP. A key property

of any effectiveness metric is that it should depend on part of the ranking that has been

inspected by the user [188]. However, some traditional metrics, such as average precision

and recall, fail this expectation.
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2.1.2 User-Based and Test Collection-Based Evaluation

The field of IR has a long history of using an experimentation-based approach for con-

ducting an evaluation task. According to Voorhees [225], there are two broad classes of

IR evaluation: user-based evaluation and test collection-based (or system) evaluation. The

latter is based on the Cranfield evaluation paradigm [50]. These evaluation paradigms

complement each other. User-based evaluation can be conducted in several ways, ranging

from laboratory-based user studies, which require a direct observation of user behaviours,

interviews, and questionnaires, to online experimentation, such as A/B testing [124] and

interleaving [45]. Meanwhile, test collection-based evaluation allows researchers to perform

offline experimentation without directly receiving (either implicit or explicit) feedback from

actual users.

User-Based Evaluation. User satisfaction has always been the goal of any IR system

[55], or at least an important concept that cannot be dismissed in IR evaluation [199].

Therefore, user-based evaluation seems to be an appropriate way to evaluate the effec-

tiveness of a particular search system since it can capture many user aspects, such as

satisfaction, presentation, and interactions [29, 201, 209]. This evaluation method can be

conducted in a laboratory environment, where research participants are asked to complete

tasks using a search engine, while at the same time, their search activities, including click-

throughs, dwell time, query reformulations, and mouse hovers, are recorded by the system.

Other user studies also employ eye-tracking tools to capture sequences of eye fixations on

the screen [107, 110]. Researchers might also interview their experimental subjects, or ask

them to complete a questionnaire, in order to obtain feedback on the extent to which they

feel satisfied at the end of a search session. All types of feedback from participants are

then combined to evaluate the quality of the tested search engine.

However, a traditional lab-based user study might not be sufficient as the complexity of

the system increases. Online experimentation are needed to address the issue of complexity

and scalability of the target system [85, 87]. One of the most popular online evaluation

approaches to compare the performance of two systems in a production environment is

A/B testing. However, this evaluation method requires large amount of data so that the

evaluation results are reliable, and also risks altering the search experience of users to the

extent that they may become alienated with the service. Another online experimentation,

called interleaving, can give reliable comparisons of retrieval algorithms using less data

than A/B testing [45]. With interleaving, two rankings – the rankings “A” and “B” –

generated by two different systems for the same query are interleaved using a certain rule.
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The combined ranked list is then given to users, and the comparison results are obtained

by interpreting the resulting clickthrough data. Several interleaving strategies have been

proposed [111, 167]. Balanced interleaving randomly picks a ranking to fill the first rank

slot in the interleaved ranking, and then the two rankings consecutively contribute to

the remaining part of the combined ranking with duplicate items being skipped [111].

This interleaving strategy, however, suffers from introducing biased results: when the two

rankings are almost identical, it tends to favour one over another. Radlinski et al. [167]

propose Team-Draft interleaving to remove this bias issue. The idea is to think of the

problem as combining two football teams, for which each team has a captain who has

the right to select the next best player (that is, a document), and add the player into

their team and the interleaved ranking. In each turn, the captain whose team has fewer

members than the other should pick their player first. However, when both teams have

the same number of players, a random selection is applied.

Test Collection-Based Evaluation. User-based evaluation method can be expensive

and time-consuming. In particular, the group of participants should ideally be a repre-

sentative sample drawn from the actual users of the IR system being evaluated, and that

may entail expense and also a decreased ability to repeat and reproduce any particular

measurement. This can be problematic for some tasks that may need to be repeated as

small changes happen in the system.

The main advantage of a test collection-based evaluation, as opposed to the user-based

approach, is that it can be repeated multiple times at a lower cost, and thus it is suitable

for tasks that involve running multiple experiments, such as tuning a retrieval heuristic.

Indeed, the original goal of test collection-based experimentation is to build and optimise

heuristics for finding and ranking a set of items for a query [52].

One well-known approach to collection-based evaluation was developed at the Cranfield

Aeronautical Laboratories in the 1960s using three main assumptions [50]:

1. The relevance of a document is represented as the topical similarity between the

topic, a textual representation of information needs, and the document;

2. All users in the population correspond to the same relevance judgements, meaning

that the relevance judgement for a query or topic is agreed by all users in the

population; and

3. Each topic or query has a complete list of relevant documents.
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This Cranfield paradigm has been widely adopted in major IR evaluation efforts, such

as TREC, CLEF, and NTCIR [184, 225]. In practice, the instantiation of this paradigm

usually involves three components: (1) a test collection, (2) evaluation metrics, and (3)

a mechanism to justify that one method is better than the other, based on the scores

generated by the evaluation metrics. Voorhees [225] further note that the former compo-

nent (that is, a test collection) is divided into three: (1) a set of documents, (2) a set of

topic statements, and (3) a set of relevance judgements (or qrels). Moreover, the set of

documents in the test collection must be from the same domain as the operational setting

being evaluated. For example, if the domain of the operational setting is about legal issues,

it would not be appropriate to use a collection of documents from medicine.

A set of topics is a collection of queries that will be given to the retrieval system.

The system then runs all topics against the set of documents in the collection using

its underlying retrieval algorithm. In a TREC evaluation, a topic generally contains an

identifier, a title, a description, and a narrative section, expressed in text [225].

A test collection is not complete without a set of relevance judgements that assign

relevance scores to all topic-document pairs. TREC evaluations usually employ a binary

indicator to assess the relevance of a document with respect to a particular topic (1 for

relevant, and 0 for non-relevant). It is also possible to use a more fine-grained relevance

score (graded relevance) [102, 172]. Furthermore, there are many guidelines for relevance

assessment [198, 225]. In case of TREC, Voorhees [225] suggests that the relevance assessors

should pretend as if they were making a written report about a particular topic in order to

produce a reliable set of relevance judgements. If any part of a document being judged helps

the assessors to complete their writing task, the document then is marked as “relevant”,

otherwise it is “non-relevant”. In addition, relevance judgements can also be obtained via

crowd-worker assessments [238].

Once we have a test collection, we load and index all documents in the collection

into our retrieval system, and subsequently run all topics againts all documents using a

retrieval algorithm. For each topic, the system returns a ranked list of documents which

have been sorted by decreasing order of the score of being relevant, which is known as a

run. After that, we compute an effectiveness score of the system for a particular query

using the provided relevance judgements (qrels) and an evaluation metric. The overall

effectiveness score is usually computed by averaging the scores across all topics. However,

as is noted by Voorhees [225], a test collection-based effectiveness score cannot be used

in isolation. That is, while relative scores can be used as a tool to compare one retrieval

system to another (or to contrast different configurations of the same retrieval system) on
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the same test collection, they should not be regarded as having meaning in isolation as

absolute quantities. Moreover, any test collection experimentation should also adhere to

the common rules for experimental design [208].

A test collection and evaluation metric, together, can be thought of as a simulation of

users as if they were interacting with search result pages in an operational setting [184].

Hence, the resulting score can be interpreted as the utility derived by the simulated user

when they are examining the ranking, suggesting a prediction of how well a system will

perform relative to another under the same simulated operational setting [184].

Although the assumptions embodied in the test collection-based evaluation provide

a simple way to evaluate and compare different retrieval runs (under the same test col-

lection), as well as allowing easy repetition of the evaluation process with other retrieval

systems, some problems still remain. A series of studies found that the results from a test

collection-based evaluation are not in good agreement with those from a user-based evalu-

ation, in the sense that the systems that perform well according to a test collection-based

evaluation might not do so under a user-based evaluation [83, 218, 219]. Kelly [117] argue

that this phenomenon could be due to the idiosyncratic nature of relevance. For exam-

ple, a user might consider a particular document as being relevant although the TREC

assessor might not think so, and vice versa. In general a test collection-based evaluation,

such as TREC-based evaluation, assumes that the notion of relevance is (usually) binary,

one dimensional, and static, while the actual nature of relevance itself is very dynamic

and situational.

The second problem is that the user behaviour as simulated by some popular metrics,

such as average precision, generally may not accurately reflect actual user behaviour. In a

TREC evaluation, a retrieval system usually returns a ranked list of 1000 documents for

a particular topic (or query), and then a metric is employed to quantify the utility of the

ranking into a score. In the case of average precision, simulated users are assumed to alter

their browsing behaviour based on the part of the ranking that has not yet been seen, which

cannot be done by real users [151]. Kelly [117] further notes that this indicates that some

metrics are only appropriate to validate the performance of the system (a system-centric

metric: how good is the system in returning relevant documents?), but not necessarily the

usability of the system (a user-centric metric: is the system usable?). Moffat et al. [155]

argue that the solutions to that problem are two, removing recall as a factor as for average

precision, and incorporating user behaviour into search effectiveness metrics.

Voorhees [225] describes other issues potentially raised from the realisation of the

Cranfield paradigm (especially in the TREC evaluation setting), such as differences in
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relevance judgements. Nevertheless, a test collection-based evaluation is stable when it

comes to comparing multiple ranked lists of documents generated by different retrieval

systems. Voorhees [225] compares several system rankings generated using different sets

of relevance judgements. By repeating this experiment multiple times in different config-

urations (by varying four factors: topics, systems, metrics, and groups of assessors), the

correlation coefficients across the generated rankings are high for all configurations, sug-

gesting that this evaluation paradigm is stable. Zobel [247] and Sanderson and Zobel [185]

demonstrated that significant differences in effectiveness metric scores observed on a test

collection via the use of statistical tests (such as t-test and Wilcoxon) are reliable, mean-

ing that the same results will likely continue to occur in other settings. Over the years,

test collection-based evaluation has been popular among IR researchers, and contributing

much to the development of modern search system, including Web search engine [52].

2.1.3 Search Task Classification

It has been widely recognised that an information need is what drives the user to perform

search [31, 94, 157, 222]. The user translates their information need into a query, and then

submits the query to a search system. Search results generated by the system in response

to the query are intended to fulfil the user’s information need. However, the notion of

information need is rarely defined and still not clear [30, 190]. Borlund and Pharo [30]

note that one way to operationalise the concept of information need is via the notion of

search task, which is defined by Wildemuth et al. [235, p. 1134] as “goal-directed activities

carried out using search systems.”

In particular, categorising search tasks is a key aspect to the evaluation of search engine

system. For example, different type of tasks leads to different effectiveness metrics [57] and

different information-seeking behaviour [119, 155]. Kelly et al. [119] note that search tasks

can be categorised according to type (such as, navigational and exploratory) and according

to properties (such as, complexity).

Broder [31] introduces a taxonomy that groups Web search tasks into three classes.

The first class is navigational, whereby the user wishes to find a particular site that they

have in mind. For example, the user enters the query “unimelb library” to target The

University of Melbourne library website1. Rose and Levinson [173] note some motivations

for navigational queries, including that typing natural language queries via a search service

is more convenient than directly typing the URL. Further, this task type is still connected

1https://library.unimelb.edu.au/

https://library.unimelb.edu.au/
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with the known-item search task in earlier TREC evaluation [116]. The “home page finding

task” in the TREC 2001 Web Track is also a navigational task [79]. The second class is

informational, whereby the user’s intent is to seek for information on one or more web

pages, for example, with the goal to gain knowledge about something. The third class is

transactional, whereby the user wishes to reach a site with the goal to perform further

interactions or transactions, such as online shopping or downloading resources. Broder

[31] further used a set of queries drawn from AltaVista.com at that time, and found that

the proportions of navigational, informational, and transactional queries are, respectively,

20%, 48%, and 30%. Rose and Levinson [173] provide a refinement of Broder’s taxonomy

by replacing the notion of “transactional” with a more general term, “resource”, and by

providing subcategories for both informational and resource queries.

Kelly et al. [119] argue that Broder’s taxonomy is essential in the context of Web search

at that time, but is less useful in the context of interactive IR because the categories are

too broad. To develop search tasks, Kelly et al. [119] further used six types of cognitive

processes from Anderson and Krathwohl’s Taxonomy of Learning Objectives [14]. Moffat

et al. [155] adapt three levels of this taxonomy to understand the relationship between

task complexity and two quantities: the expected number of relevant documents and the

expected number of queries. The first level is Remember, which is the lowest level in the hi-

erarchy and involves fact-finding questions, such as “When was Gerard Salton born?” The

second level is Understand, which involves “constructing meaning from oral, written, and

graphic messages through interpreting, exemplifying, classifying, summarizing, inferring,

comparing, and explaining” [119]. The third level is Analyse, which involves “breaking

material into constituent parts, determining how the parts relate to one another and to

an overall structure or purpose through differentiating, organizing, and attributing” [119].

Chen et al. [46] used Broder’s taxonomy and two levels from Anderson and Krathwohl’s

taxonomy (Remember and Understand) as confounding factors when investigating the

relationship between user satisfaction and effectiveness metric scores.

2.1.4 Fundamental Effectiveness Metrics

Saracevic [188] notes five requirements that need to be considered when a system is eval-

uated, including an IR system: (1) a system, that is, the test collection and the process or

the retrieval algorithm being evaluated; (2) criteria, which is associated with the goal or

objective of the system; (3) metrics, which quantify effectiveness as a single score, depend-

ing on the criteria being used; (4) measuring instruments, such as relevance judgements;
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and (5) a methodology to conduct the evaluation and obtain the measurements. Here, we

are particularly interested in metrics.

IR system evaluations mostly employ the notion of relevance as their main criterion.

This is mainly due the widespread use of the test collection-based evaluation, such as the

TREC evaluation framework, which is based on the Cranfield paradigm [225]. The use of

relevance as a standard criterion for an IR system was envisioned by Kent et al. [120] in

1955, where the effectiveness of the system, a representation of how well the system in

fulfilling an information need, can be thought of as being equivalent with the performance

of the system, which is associated with the ability to find relevant documents. With this

perspective, metrics are system-centric rather than user-centric, and are usually referred

to as effectiveness metrics, performance metrics [117], or system effectiveness metrics [4].

In addition to relevance, Saracevic [188] describes other criteria that are more user-centric,

such as utility, success, completeness, and cost.

Although we can separate the test collection and the metrics, they are closely related.

When a new test collection is developed, it is often the case that a new metric is also

proposed. The following section presents several traditional effectiveness metrics. Formally,

a SERP of length N (with respect to query Q) can be represented using the following

relevance vector :

−→rQ = 〈r1, r2, r3, r4, . . . , rN 〉 ,

where ri is the relevance of the document at rank i. Here, N is the number of retrieved

items. If the SERP is assumed to be in a full-depth form, N is the number of documents

in the collection. In the context of many metrics, we assume that the relevance is binary,

where ri = 1 if the corresponding document in the ranking is relevant and ri = 0 if

otherwise. (Other metrics that can handle graded or continuous relevance are considered

in Section 2.1.5.) A metric with a set of parameters Θ, M (−→r ; Θ), is defined as a function

that takes as input a relevance vector −→r and returns a real value (often 0 ≤ M (−→r ) ≤ 1)

quantifying the effectiveness of the ranking for query Q.

Precision and Recall. Kent et al. [120] gives an early description of the combined

use of Precision and Recall. At that time, they were employed to evaluate Boolean search

systems, which return an unordered set of documents [120], providing the answers for the

query. If N is the number of retrieved documents; R is the number of relevant documents

in the collection; and R′ is the number of retrieved documents that are relevant; then
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Precision and Recall are computed as follows.

Precision =
R′

N
(2.1)

Recall =
R′

R
. (2.2)

It is straightforward to compute Precision and Recall for a ranked list of length N :

Precision(−→r ) =

∑N
i=1 ri

N
, (2.3)

Recall(−→r ) =

∑N
i=1 ri

R
. (2.4)

In Equation 2.4, the knowledge of R for each query is assumed to be known. In practice,

R is usually not known and should be estimated [225].

There have been many proposals for unifying Precision and Recall [207, 221, 234]. Van

Rijsbergen [221] described a way to combine Precision and Recall into a single metric, called

the F metric,

F(−→r ) =

(

α ·

(

1

Precision(−→r )

)

+ (1− α) ·

(

1

Recall(−→r )

))−1

, (2.5)

and it is very common to use α = 0.5, leading to the F1 metric:

F1(−→r ) =
2 · Precision(−→r ) · Recall(−→r )

Precision(−→r ) + Recall(−→r )
. (2.6)

The traditional Precision and Recall serve as a basis for other effectiveness metrics used in

the earlier TREC evaluations. Some of them will be introduced in this section.

Precision at K. The user modelled by the traditional Precision metric is assumed to

examine all of the documents provided in the ranking. As an alternative, Precision can

also be parameterised with an integer K, modelling a user who only examines the first K

documents in the ranking. This is the idea of precision at K (Prec@K) computed as:

Prec@K(−→r ;K) =

∑K
i=1 ri

K
, (2.7)

where K ≤ N is the parameter of the model. The choice of K usually depends on the

characteristics of users and the search result presentation; K = 10 is common in the

context of Web search [184]. Note that Prec@K will ignore all documents beyond rank K,
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relevant or not. For example, consider the following relevance vector of size 10:

−→rQ1 = 〈1, 0, 1, 1, 0, 1, 0, 1, 1, 1〉 .

The precision values at ranks 5 and 8 are:

Prec@K(−→rQ1; 5) =
3

5
= 0.600 ,

Prec@K(−→rQ1; 8) =
5

8
= 0.625 .

Average Precision. Average precision (AP) combines recall and precision for the eval-

uation of a ranked list of documents, and is defined as:

AP(−→r ) =

∑

ri=1 Prec@K(−→r ; i)

R
. (2.8)

With this definition, AP is a top-heavy metric, and has R as its normalisation factor. When

only top-K documents are considered, a variant of AP, average precision at K (AP@K), is

employed for the assessment of a truncated ranking at depth K:

AP@K(−→r ;K) =

∑K
i=1 (Prec@K(−→r ; i) · ri)

R
, (2.9)

where K ≤ N , and R is assumed to be known. This version of AP is used by trec eval, an

evaluation software employed in the TREC evaluation2, but with the denominator being

replaced by R̂, the estimated value of R. Section 2.1.5 will introduce an approach for the

estimation of R.

When there are not enough judged documents to accurately estimate R, three alterna-

tive normalisation factors have emerged. Baeza-Yates and Ribeiro-Neto [23] replace R in

Equation 2.9 with
∑K
i=1 ri, the number of documents retrieved by the system. Baeza-Yates

and Ribeiro-Neto further refer to this metric as the “average precision at seen relevant

documents”. Hawking et al. [80] introduce another version of AP@K, where R is replaced

by K. This score of this metric is thus 0 ≤ AP@K(−→r ;K) ≤ min(R/K, 1). Voorhees and

Harman [227] employ min(K,R) as the normalisation factor. This version of AP@K has

been used in the TREC-7 Very Large Collection track [227]. As is noted by Craswell and

Robertson [58], the latter variant of AP@K has the property that replacing any non-relevant

document with a relevant one in the top-K position always increases the score.

2https://trec.nist.gov/trec_eval/ and https://github.com/usnistgov/trec_eval

https://trec.nist.gov/trec_eval/
https://github.com/usnistgov/trec_eval
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Average precision computes Prec@K at each ranking position where a relevant document

is found, and subsequently calculates the average value. There are two notable differences

between AP and Prec@K. First, AP depends on R, the total number of relevant documents

for a particular query, while Prec@K does not use such information. Frei and Schäuble [66]

note that it is not practical to obtain R from the whole document collection, especially

when the size of the collection exceeds tens of megabytes. Second, AP assumes that the

simulated users must scan all results in the ranking, while users simulated by Prec@K only

proceed to depth K.

Hull [93] points out that the choice between AP and Prec@K should be determined

according to the user’s search goal or the complexity of the search task. For example,

if the user is only interested in relevant documents presented in the first page, Prec@K

would be more suitable than AP. But, if the user’s goal is to find all documents about a

particular technology in the collection, AP would be the best one since Recall is important

in this case. In contrast, Zobel et al. [248] argue that AP (and thus, all metrics that depend

on Recall) lacks connection with the criteria of user satisfaction. They further argue that

“high-recall” users (such as, patent, legal, or medical search users) stop inspecting a SERP

based on their feeling that no further relevant items will appear. This should depend solely

on what they have seen, and thus this is not related to Recall. Long before that, Cooper

[55] already noted that unexamined documents should not contribute to what users have

experienced (either satisfaction or frustration) at the end of search.

Robertson [169] suggests that the user modelled by AP does not stop at non-relevant

documents, and is equally likely to stop at any relevant document position in the ranking

(each one with a stopping probability equals to 1/R). That is, the user first randomly

chooses one of the relevant documents in the ranking as their stopping position, and then

inspect the ranking from the top through to that chosen position. Robertson [169] further

argues that this user model is plausible under a certain condition.

Webber et al. [232] study the predictive power (that is, the extent to which the system

ranking generated from a set of experimental topics reliably predict the ranking from the

other set of topics) of simple metrics, such as Prec@10, alongside more complex metrics,

such as AP. The experiments were carried out using top 75% of TREC 2004 Terabyte and

TREC 8 AdHoc Tracks systems based on AP score. The experiment results show that the

more complex metrics are as good at predicting Prec@10 as Prec@10 is at predicting itself,

suggesting that reporting evaluation results from Prec@10 together with those from the

more complex metrics is redundant.
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R-Precision. The TREC-2 conference introduced the use of R-precision, which is Prec@K

with K = R, the total number of relevant document for a particular topic [73]. Aslam

et al. [16] point out that AP and R-precision can be used to approximate the area under a

line, recall-precision graph. In early IR papers, such graphs were widely used to report the

effectiveness of IR systems [222].

Reciprocal Rank. Reciprocal rank (RR) was proposed to evaluate IR systems where

the goal is to find a single relevant document [184], such as navigational or known-item

tasks [116, 226]. Reciprocal rank (RR) at depth K is computed as follows:

RR@K(−→r ;K) =







1/H i ≤ K

0 i > K .
(2.10)

where H ≤ K is the first ranking position at which relevant document appears. For

example, consider two further SERPs:

−→rQ2 = 〈0, 0, 0, 1, 0, 0, 0, 1, 0, 1〉 ,

−→rQ3 = 〈1, 0, 1, 1, 0, 1, 1, 1, 1, 1〉 .

The RR scores for −→rQ2 and −→rQ3 at depth 10 are:

RR@K(−→rQ2; 10) =
1

4
= 0.250 ,

RR@K(−→rQ3; 10) =
1

1
= 1.000 .

Webber et al. [232] demonstrate that RR is a poor self-predictor, suggesting that evaluation

reports from RR are somewhat unreliable, and is thus unnecessary if evaluation results from

more complex metrics, such as AP, are also reported.

2.1.5 Relaxations of the Assumptions

The effectiveness metrics, Precision, Recall, Prec@K, average precision, R-precision, and recip-

rocal rank mostly rely on several assumptions about the set of relevance judgements, as

follows [187]:

1. topical similarity – a document is relevant to a particular query if both of them are

from the same topic;
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2. binary relevance – the document is either relevant or non-relevant with respect to a

particular query;

3. independent – the relevance of a particular document is not affected by the informa-

tion from other documents;

4. static – the relevance of a document does not change over time;

5. consistent – the relevance judgements are consistent across all assessors; and

6. completeness – the judgements for a topic are complete (no missing judgements).

However, as is noted by Kelly [117], “the published research about how users make rel-

evance assessments and the actual metrics that researchers employ to collect relevance

assessments are not very aligned.” The following issues describe what the actual users

think about relevance [44]:

1. graded relevance – users naturally think about documents in a graded relevance

system. For example, a document might be partially relevant under a particular

query;

2. incomplete – unjudged documents in a test collection do exist since it is impractical

to judge all documents in the collection [66]; and

3. dependence and diversity – the user might ignore repetition of the same relevant

document in a ranking, and prefer a wide range of aspects (that is, diversity) in the

presentation of relevance documents.

Gain Mapping Functions. All fundamental metrics that have been described in Sec-

tion 2.1.4 are devised based on the binary relevance assumption, that is, ri ∈ {0, 1}. In this

case, the gain scores are just zero (non-relevant) or one (relevant). However, graded rele-

vance judgements are also available for laboratory test collections [198, 224]. To represent

different relevance levels, one typical approach is to use ascending integers starting with

zero [102, 220]. Let ri ∈ {0, 1, 2, . . . , rmax} denotes an ordinal relevance label derived from

a document at rank i, with the spectrum ranging from non-relevant document (ri = 0) to

highly relevant one (ri = rmax). A gain mapping function, g(ri), is required to convert ri

into a numeric gain score, with 0 ≤ g(ri) ≤ 1. This function can be regarded as assigning

“relevance weights at different relevance levels” [102, p .431].
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Several gain mapping functions have been proposed in the past. Lu et al. [141] describes

a binary mapping function, which maps ordinal relevance relevance label to a binary value:

g(ri) =







1 i ≥ θ

0 i < θ ,
(2.11)

where θ is a threshold value for binarising the ordinal relevance. For example, Thomas

et al. [213] used several threshold values (θ ∈ {1, 2}) when computing RR scores using

4-level graded relevance judgements (ri ∈ 0, 1, 2, 3). Lu et al. [141] also describe a linear

mapping function that provides equal weights for all relevance grades:

g(ri) =
ri

rmax
. (2.12)

For example, Zhang et al. [242] use this linear function to map 5-level usefulness labels into

g(ri) ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. Finally, an exponential gain mapping function can be

used to emphasize highly-relevant documents:

g(ri) =
2ri − 1

2rmax − 1
. (2.13)

This function is based on the unbounded exponential gain mapping function described

by Burges et al. [35]. Recently, Turpin et al. [220] demonstrated that the linear mapping

scheme is closer to the perception of user, compared to the exponential mapping scheme.

Graded Relevance Metrics. Järvelin and Kekäläinen [101] address the issue of graded

relevance by proposing discounted cumulative gain (DCG), where the relevance value of a

document is discounted based on its ranking position, and the discount function itself is a

monotonically decreasing with the ranking position, suggesting that simulated users value

relevant documents in higher ranking positions, compared to those in lower ranks.

DCG@K(−→r ;K, b) =
b−1
∑

i=1

g(ri) +
K
∑

i=b

g(ri)

logb(i)
, (2.14)

where 1/ logb(i) is the discount function, K is the evaluation depth, and b is the logarithm

base. The higher the base, the deeper the simulated user inspects the ranking. For example,

when b = 2, the user examines at least top-2 items in the ranking.

As an illustration, consider the following SERP of size 5 with 3-level graded relevance,
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ri ∈ {0, 1, 2}, where 0 is for non-relevant, 1 for partially relevant, and 2 for fully relevant.

−→rQ4 = 〈1, 0, 2, 1, 0〉 .

If the following gain mapping function is employed: g(ri) = ri/rmax, the resultant gain

vector is 〈0.5, 0.0, 1.0, 0.5, 0.0〉. The DCG@K(−→rQ4; 5, 2) is computed as follows:

DCG@K(−→rQ4; 5, 2) = 1.0× 0.5 +
1

1.00
× 0.0 +

1

1.58
× 1.0 +

1

2.00
× 0.5 +

1

2.32
× 0.0

= 1.383 .

Note that the value of DCG@K(−→r ;K, b) can be greater than 1. In 2008, when addressing an

extension of DCG for session-based offline evaluation, Järvelin et al. [103] describe another

version of discounted cumulative gain: DCG@K(−→r ;K, b) =
∑K
i=1 g(ri)/(1 + logb i).

Burges et al. [35] describe an alternative version of DCG with a different discount

computation that avoids the parameter b:

DCG@K(−→r ;K) =
K
∑

i=1

g(ri)

log2(i+ 1)
. (2.15)

The discount function 1/ log2(i+ 1) is also sometimes called the Microsoft version.

To limit the value of DCG to 1 for a given depth K, Moffat and Zobel [151] proposed

scaled discounted cumulative gain (SDCG), where the value of DCG@K of a given ranking is

divided by the value of DCG@K when all documents in the ranking are fully relevant:

SDCG@K(−→r ;K) =

(

K
∑

i=1

g(ri)

log2(i+ 1)

)

/

(

K
∑

i=1

1

log2(i+ 1)

)

. (2.16)

Järvelin and Kekäläinen [102] propose a second gain-based metric which accounts for

normalisation factor and the score of DCG can be limited to 1. Similar to AP, it is now

relative to the best that can be attained by a ranking of that length. Their proposed

metric is called normalised discounted cumulative gain (NDCG). The idea is to compute

the ratio between the DCG score of the ranking being evaluated and the DCG score of the

corresponding ideal ranking. Hence, the score of NDCG is between 0 and 1:

NDCG@K(−→r ;K, b) =
DCG@K(−→r ;K, b)

DCG@K(
−→
r∗ ;K, b)

, (2.17)

where
−→
r∗ is the ideal ranking that can be generated given the knowledge of the relevance
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grades for all documents, whether or not they were included in the original−→r . By assuming

that the ranking being evaluated −→r contains all relevant documents for a particular topic,

we can produce the ideal ranking
−→
r∗ by sorting the vector −→r in decreasing order. For

example, by assuming that there are only one fully relevant document and two partially

relevant documents in the collection, the ideal ranking of −→rQ4 (truncated at depth 5) is

−→
r∗
Q4 = 〈2, 1, 1, 0, 0〉 .

Thus, DCG@K(
−→
r∗
Q4; 5, 2) = 1.816; and

NDCG@K(−→rQ4; 5, 2) =
1.383

1.816
= 0.762 .

Q-Measure (QM), proposed by Sakai [175, 176], is also an effectiveness metric that

can deal with graded relevance. Let isrel(i) be a function that returns one if ri > 0 and

zero otherwise; cg(i) =
∑i
j=1 g(rj) denotes a cumulative gain from rank zero to rank i;

and cgI(i) =
∑i
j=1 g(r

∗
j ) denotes a cumulative gain from rank zero to rank i in an ideal

ranking. Q-Measure for the evaluation of a full-depth ranking is then defined as follows:

QM(−→r ;β) =
1

R
·
N
∑

i=1

{

isrel(i) ·

(

β · cg(i) +
∑i
j=1 isrel(j)

β · cgI(i) + i

)}

, (2.18)

where β ≥ 0 is the persistence parameter of QM. The larger the value of β, the smaller the

discount for relevant documents at lower ranking positions. Sakai [179] further suggests to

use β = 1 or β = 10. In the case of binary relevance, cgI(i) = min(i,R), and thus QM for

binary relevance (denoted as QM′) is computed as:

QM′(−→r ;β) =
1

R
·
N
∑

i=1

{

ri ·

(

(1 + β) ·
∑i
j=1 rj

β ·min(i,R) + i

)}

. (2.19)

As is also the case for AP, Q-Measure requires the knowledge of Recall. Indeed, binary

relevance-based QM′ reduces to AP when β = 0. Finally, Sakai and Zeng [182] also in-

troduce Q-Measure at K, denoted by QM@K(−→r ;β,K), where the normalisation factor R

in Equation 2.18 is replaced by the new term, min(K,R); and the summation runs from

1 to K ≤ N .

In 2008, Moffat and Zobel [151] propose a metric, rank-biased precision (RBP), which

employs a geometric discount function and also deals with graded relevance. In the context

of RBP, the characteristic of a user is modelled via the persistence parameter, φ, represent-
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ing the likelihood that the user progresses from rank i to rank i+ 1 in the SERP. A user

with high φ value is said to be “patient” since they are willing to scan many documents in

the ranking, while users with low φ are impatient, and focus primarily on the documents

at top-ranking positions. RBP is computed as follows:

RBP(−→r ;φ) = (1− φ) ·
N
∑

i=1

(

g(ri) · φ
i−1
)

. (2.20)

Here, the ranking is assumed to be in a full-depth form of length N . Later, Chapelle et al.

[44] and Zhang et al. [244] compared the discount function embodied in RBP and DCG with

the observed examination probability estimated from clickthrough logs, and find that the

discount function of RBP (with φ ≈ 0.7) is closer to the observed examination probability,

compared to that of DCG.

The idea to incorporate user persistence into a metric is not new. In 1968, Cooper [53]

proposed a similar idea, and stated that “most measures do not take into account a crucial

variable: the amount of material relevant to [the user’s] query which the user actually needs

. . . the importance of including user needs as a variable in a performance measure seems

to have been largely overlooked”. This idea inspired several modern effectiveness metrics,

including DCG and RBP.

In 2009, Chapelle et al. [44] introduce expected reciprocal rank (ERR) that works for

graded relevance. This metric is computed as follows:

ERR@K(−→r ;K) =
K
∑

i=1

1

i
·
i−1
∏

j=1

(1− g(rj)) · g(ri) , (2.21)

where K is the evaluation depth. In the original proposal, g(ri) can also be thought of as

the probability that the user is satisfied with the document at rank i [44]. Chapelle et al.

further suggest to use the following gain mapping function:

g(ri) =
2ri − 1

2rmax
, ri ∈ {0, . . . , rmax} . (2.22)

Yilmaz et al. [240] incorporate click model into a graded relevance metric, expected

browsing utility (EBU). This metric is defined as follows:

EBU@K(−→r ;K, E, C) =
K
∑

i=1

P (Ei) · P (Ci | Rel = ri) · g(ri) ,

where P (Ci | Rel = ri) is the probability that the user clicks at rank i given the relevance
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of the document, and P (Ei) is the probability of the user examining the document at

rank i. These two quantities need to be estimated from user observation data, such as

click logs.

Unjudged Documents. In the Cranfield paradigm, it is assumed that each topic has

a complete list of relevance judgements. In other words, each document in the collection

has been judged with respect to a particular query. However, this assumption becomes

impractical once the size of the test collection gets very large to the extent of tens of

megabytes [66]. The TREC evaluation, one of the evaluation models that adopts the

Cranfield paradigm, approximates the true number of relevant documents for a particular

query (R) using a pooling technique [225]. The organiser of TREC evaluation, NIST3,

provides a set of queries (or topics) and a set of documents to the participants. Each

participant then runs their retrieval algorithm for all given topics against all documents in

the collection, generating a ranked list of usually (but not always) 1000 documents. Using

the submitted runs, NIST then forms a pool containing all rankings from all systems

initiated from the participants, typically containing the top 100 documents. Once the pool

has been formed, all of the documents in it are judged; documents outside the pool are

not [73]. In other words, TREC approximates R, the number of relevant documents in

the collection for a particular query, with the number of relevant documents appearing in

the top 100 of all runs generated by the participating systems when evaluating that query

(denoted by R̂).

The pooling technique employed by TREC introduces the third category of document:

the unjudged documents, those outside the pool that never get judged [184]. The presence of

such documents can degrade the effectiveness scores for systems that did not contribute to

the pools, since the rankings generated by the non-contributing systems can have “highly

ranked unjudged documents that are assumed to be not relevant” [225]. Buckley and

Voorhees [33] demonstrate that several traditional effectiveness metrics, such as AP, R-

precision, and Prec@10, are not robust when the relevance judgements are incomplete.

Several approaches has been proposed to deal with unjudged documents. A simple

approach is just to ignore unjudged documents when computing effectiveness metrics [82]

or to regard them as being non-relevant [225].

Buckley and Voorhees [33] conjecture that the size of pools could possibly be reduced

relative to the size of collections when the number of documents in the collection grows

and no new judging is conducted. As the number of unjudged documents grows, there is

3See http://trec.nist.gov

http://trec.nist.gov
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a need to develop a new effectiveness metric that allows us to evaluate a ranking contain-

ing unjudged documents. One such metric is binary preference (BPref) [33]. Let
−→
r′ be a

condensed ranking constructed by removing unjudged documents in the original ranking
−→r . Then, BPref is computed as follows:

BPref(
−→
r′ ) =

1

R

∑

i:r′

i
=1

(

1−
min(R, |{j | r′

j = 0 and 1 ≤ j < i}|)

min(R, NR)

)

, (2.23)

where R is the number of identified relevant documents for a particular topic, and NR

is the number of non-relevant documents. This metric visits each position, i, where the

relevant document appears, and then count the number of non-relevant documents that are

ranked higher than i. This serves as a basis for binary preference, that approximates the

relevance score of a particular document. When the relevance judgements are complete.

Buckley and Voorhees [33] further argue that BPref is consistent with AP and is more

robust than R-precision and Prec@10. Sakai [178] shows inter-relationship between BPref,

AP, and QM, and further argues that BPref has some drawbacks, including that it is less

top-heavy than AP.

A similar idea to BPref can also be applied to AP. Yilmaz and Aslam [239] propose

Induced Average Precision (indAP) at which unjudged documents are removed from the

ranking:

indAP(
−→
r′ ) =

1

R

∑

i:r′

i
=1

(

1−
|{j | r′

j = 0 and 1 ≤ j < i}|

i

)

. (2.24)

In the presence of unjudged documents, Aslam et al. [17] and Yilmaz and Aslam [239]

also show that the expected precision at depth K can be computed by uniformly sampling

documents at top-K rank positions. The average of expected precision values across all

relevant document ranks forms a metric, called Inferred Average Precision (infAP) [239].

Büttcher et al. [36] employ a text classification method to determine whether any un-

judged document found in the ranking is relevant for a given query or not. Moffat and

Zobel [151] suggest reporting of residuals, uncertainty scores that represent the impreci-

sion of a weighted-precision metric. Suppose the upper bound (lower bound) value of a

particular weighted-precision metric can be computed by assuming that all unjudged doc-

uments are fully-relevant (non-relevant); the residual is the difference between the upper

and lower bounds values.
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Dependence and Diversity. The user might prefer novelty and diversity in the pre-

sentation of search results. A retrieval system that promotes novelty is expected to remove

all duplicates of relevant documents in the SERP [184]. Meanwhile, the notion of diversity

rewards an IR system that is able to present a wide range of aspects of relevant information

in the SERP [184]. The TREC Novelty Track [74] and the TREC Interactive Track [161]

were organised to address novelty and diversity in search results, as well as spark a new

research direction towards IR evaluation that is sensitive to novelty and diversity.

The effectiveness metrics described to this point, such as AP, Prec@K, RBP, and DCG

were developed under the assumption that the relevance of a document is not influenced

by the any other document. In other words, the assessors are assumed to “forget” all

documents that they have already seen when they are assessing a particular document. It

has been shown that a simple treatment of duplications when we calculate effectiveness

metrics may give unexpected results. Bernstein and Zobel [28] note that “near-duplicate”

documents decrease AP score by 20.2% when they are treated as being non-relevant; and

increase AP score by 16.0% when we simply ignore them. Hence, a new effectiveness metric

that incorporates novelty and diversity is needed.

Clarke et al. [48] propose a metric called α-NDCG, a modification of NDCG; and which

rewards diversity and novelty in the ranking. With NDCG, the relevance of a document

in a particular rank position is static and atomic, and denoted as ri. Meanwhile, in the

context of α-NDCG, the relevance of a document, ri, can be thought of as the composition

of the relevances across all nuggets that form the document. In this case, the gain mapping

function g(ri) is then replaced with the following relevance function, rel(i) [184]:

rel(i) =
m
∑

k=1

J(di, k) · (1− α)
ck,i−1 , (2.25)

where m is the number of nuggets (aspects or subtopics) that is relevant to a particular

topic; J(di, k) = 1 if the document di contains the k-th nugget or subtopic (according to

the assessor), and 0 if otherwise; and

ck,i−1 =
i−1
∑

j=1

J(dj , k) ,

that represents the number of documents that are ranked higher than dj and contain the

k-th nugget (and hence, the relevance of a particular document depends on the relevances

of other documents that have been seen by simulated users). In Equation 2.25, α is an
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empirical value representing the likelihood that a user is satisfied with the judged relevant

document; or alternatively 1− α be the tolerance of a particular user on the duplicates

[49]. That is, the simulated user is assumed to be unsatisfied with a relevant document,

if it has been previously seen. Note that when m = 1 and α = 0, α-NDCG reduces to the

original DCG.

2.1.6 The Problem of Recall and The Virtue of Precision

The Problem of Recall. As we previously noted, Recall is defined as the ratio between

the number of relevant documents retrieved and the total number of relevant documents

in the collection (R) for a particular query. This simple metric is, however, problematic;

and in general all effectiveness metrics that depend on the knowledge of R, such as AP,

R-precision and BPref, share one key shortcoming.

That shortcoming is that it is impractical to know R once the size of a test collection

gets large [66]. Furthermore, it is almost impossible for an assessor to judge millions,

let alone tens or hundreds of millions, of documents in the collection for a single query.

The TREC evaluation conference has been using the pooling approach to estimate the

knowledge of R for each query in the collection [225]. However, Zobel [247] argues that the

pooling approach is not suitable for measuring a high-recall retrieval system since there

is still a possibility that many relevant documents in the collection remain undetected.

Zobel [247] further conducted an experiment on a TREC data to support the argument

about the reliability of the pooling approach in estimating R, and concluded that while

the majority of the relevant documents have been successfully identified in the TREC

experiments, many more remain unidentified.

Given the relevance vector of a ranking and a reasonable value of K, Prec@K can be

exactly computed since it only depends on what was retrieved [188]. As a consequence,

the behaviour modelled by Precision reflects how users interact with what is presented by

the system, even though they most likely did not look at all results in the ranking. On

the other hand, the behaviour of users modelled by Recall is at odds with observed user

behaviour. It does not make sense to assume that users clairvoyantly know how many

relevant documents were not retrieved by the system. As stated by Saracevic [188], “Recall

is a metaphysical metric: how does one know what is missed when one does not know that

it is missed?” In addition, Cooper [55, p. 95] notes that “a document which the system

user has not been shown in any form . . . does that user neither harm nor good.”

The next problem with Recall is that it does not have a clear criteria of user satisfaction.
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Saracevic [188] notes that “the assessment of performance and value is related to the

question of how to provide a prospective user with useful information.” Saracevic and

Kantor [189] studies users working with online database search system, and found that

the user satisfaction is correlated with Precision, but not with Recall. On the other hand,

Su [205] reported the opposite results, concluding that Recall has a higher correlation with

system success, compared to Precision. However, the reason why Su [205] finds that Recall is

more important than Precision to users is that the experimental participants were doctoral

students and academic faculty members who are experts in using a database search system,

in particular for the tasks related to dissertation or research proposal; and that the result is

an unranked set of documents (Boolean retrieval). In a later study, Su [206] used the data

sampled from four Web search engines: AltaVista.com, Lycos.com, Infoseek.com, and

Excite.com, and employed participants from undergraduate students. The search goals of

the participants are related to class assignments, personal interests, travel, and jobs. Su

[206] then conclude that Precision is more important to users, compared to Recall.

Buckley and Voorhees [34] note that one of the debates in IR evaluation is about

the usefulness of Recall outside specific domains such as patent search domain. In another

view, the concept of recall is not applicable for navigational queries (or other types of

queries whereby users only expect a few relevant documents) since users are surely not

interested in all remaining relevant documents once they have found the answer that they

expected [151]. For example, when a user looks for the URL of person X’s homepage via

a Web search engine, they will most likely submit “X homepage” as a query. In the end,

users are only interested in the first relevant document (or the first answer) they found in

the ranked list of documents, even though the remaining part of the ranking may contain

many relevant documents.

Zobel et al. [248] provide thorough argumentations of why Recall is not a plausible

metric of the effectiveness of a ranking, even though some of their explanations are still

not substantiated. They argue that Recall is not related to several concepts influencing

user experience, such as cardinality (that is, the number of relevant items inspected so far)

and coverage (that is, the fraction of questions successfully answered from the ranking

being inspected), and thus has no relationship with search satisfaction itself. They further

contend that, while Recall may be of interest as a metric for medical, patent, and legal

search engines, the user should still have a criterion causing them to stop inspecting the

ranking. In this context, this criterion might be best described as a feeling that they have

found all relevant documents after they have gone through a number of search activities

(likely involving multiple queries, or even other search engines) all failing to provide further
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relevant items. For example, after finding the last relevant document at rank i, the user

then inspects say 100 documents beyond rank i, and then finds that none of them are

relevant. It is only then at this point, that the user may have confidence that all relevant

items has been examined. That is, the indication that a total recall may have been achieved

is still based on what have been observed, but not on documents that are not retrieved

by the system. Hence, this should not have connection with Recall. However, if Recall is a

requirement, it is not the Recall of a query that is important, but Recall of the session.

Precision-Based Effectiveness Metrics. In contrast to Recall, Precision is easier to

calculate since it only needs “what was retrieved” (the ranking), and does not need “what

was missed” [188]. Moreover, as noted previously, it has been shown that Precision has a

correlation with users’ satisfaction, which has been the main goal of IR system [5, 189, 206].

This is in agreement with what have been posited by Cooper [55] more than 40 years ago:

Instead of attempting to estimate recall in spite of all the difficulties what

should have been done was to find a way to overcome the deficiencies of the

precision metric without bringing a second metric into the picture.

Some efforts to realise Cooper’s vision [55] have been made. Moffat et al. [155] describe a

special family of weighted-precision metrics, whereby a metric from this family is defined as

a summation over the multiplication between the gain and the discount function. Average

precision (AP), Prec@K, SDCG, DCG, RBP, RR, and ERR are examples from this family

of metrics. Further, a weighted-precision metric has received attention since it can be

interpreted as having an association with a user model [151]. This issue is considered in

detail in Section 2.3.

2.2 User Search Behaviour

Knowing that incorporating user behaviour into search effectiveness metrics is critical,

understanding user search behaviour is thus one of the essential steps that need to be taken

in order to devise effectiveness metrics that reflect user experience. This process involves

analysing search interactions either from operational search engines or from lab-based user

studies. This section describes research that is concerned with understanding how users

interact with SERPs. Section 2.2.1 considers the use of interaction logs as resources for

exploring general search interaction patterns, while sub-section 2.2.2 specifically focuses
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on the use of logs for investigating in what order users scan the SERP (that is, browsing

behaviour). Finally, sub-section 2.2.3 discusses several issues related to stopping behaviour.

2.2.1 Interaction Log Study

Interaction logs serve as important resources for improving the effectiveness of SERPs

as well as the whole quality of an IR system. In the context of Web search, interaction

logs have been used for developing and calibrating search effectiveness metrics [20, 86,

195]; improving the presentation of search results [231]; tuning the ranking algorithms

[2, 109]; and increasing the accessibility and user-friendliness of the system either via

query suggestion [38] or query auto-completion [127].

Web Search Logs. Silverstein et al. [192] carried out an analysis using a sample of

query logs containing around 1 billion search requests collected from AltaVista.com, one

of the major Web search engines in late 1990s. Silverstein et al. [192] mostly explored

query-based patterns in the sessions, such as the composition of terms and operators per

query, the association across query terms in the logs, the characteristics of popular queries,

and the patterns of how users reformulate their initial queries in the sessions. They find

that typical Web search users submit short keywords as their queries; and that users most

likely only inspect the first page of the paginated SERPs. Prior to that, Jansen et al. [96]

had carried out studies on a smaller interaction log containing 51,473 queries from another

Web search engine, Excite.com. They also share the same findings in terms of the number

of viewed pages in the Web search results.

In the following years, work on query logs [96, 192] was undertaken by Lempel and

Moran [130] and Spink et al. [202], covering a larger volume of data as well as a new

perspective on using the data. Spink et al. [202] analysed a log of approximately 1 million

Web queries from Excite.com. Their findings reveal the same characteristics as the earlier

work: Web search users typically submit only a few query terms, inspect Web pages, and

almost never use additional features for advanced search. Moreover, Spink et al. used a

more principled methodology in collecting and grouping a sample of Web queries, gaining

more insights about what kind of topics people usually ask through Web search engines.

Lempel and Moran [130] used another sample of query logs from AltaVista.com to observe

the distribution of query popularities and to study the number of requests for individual

SERPs, mainly for addressing the task of caching search results. One of their notable

findings is that the popularity of topics and the number of Web page requests follow a
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power-law distribution, except for the most popular topics and the most popular Web

pages. In addition to AltaVista.com and Excite.com, a sample of query logs from other

Web search engines, such as BWIE, AlltheWeb.com, and Fireball, had been explored

by Cacheda and Vin̄a [37], Hölscher and Strube [88] and Spink et al. [203]. Jansen and

Spink [95] give an overview across all of those search engines. They reported character-

istics and trends, including session length, the number of terms in the queries, operator

usage, and results page viewed. One of the findings is that approximately half of the Web

search users submitted more than one query to address a single information need (53%

on AltaVista.com data collected in 2002), suggesting that Web search evaluation should

treat a session as a single unit with respect to a single information need.

Some authors explore temporal aspects of Web query logs, observing how the query-

or session-based characteristics change over time [27, 243]. Beitzel et al. [27] carried out

temporal and topical analysis on query logs containing billions of Web queries initiated

from AOL Web searches, reporting query traffic for a specific period, query categories, and

the tendency of how different topical categories shift at different times. For example, they

find that “personal finance”-related queries are popular between 7 AM and 10 AM, while

“music” queries are less popular at the same period of time. In general they observed that

some queries with certain topical categories can span both short (a few hours) and long

(several weeks or months) periods of time.

Zhang and Moffat [243] performed analysis on MSN interaction logs, containing not

only a collection of query terms but also chronologically-ordered clickthrough data, col-

lected during May 2006. While they confirmed some of the findings from past studies, such

as the frequent use of short Web queries, they also reported other observations, includ-

ing that “+1” clickthrough jump is very common suggesting that users tended to click

in a sequential manner; that the distribution of clickthrough across ranking positions is

top-weighted; that users are reluctant to click “next page”; that sessions with only one

query are the most common; that clickthrough volumes peak between 11 AM and 12 AM

every day; and that the time between any two consecutive clickthroughs is short. Smucker

and Clarke [195] used interaction logs from commercial Web search engines to estimate

the distribution of search duration between the initial query and the last click action.

This information is then incorporated into a time-based discount function for an offline

search effectiveness metric. Recently, Azzopardi et al. [20] employ observation data from

interaction logs to meta-evaluate how accurate a user model is, by means of its closeness

to observed behaviour.
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Domain-Specific Search Logs. While the previous interaction log studies have focused

on the Web search domain, several studies have explored interaction logs from domain-

specific search engines, such as music and job search services. Recently, Chandar et al. [43]

employed a mixed method to develop search effectiveness metrics for music search. This

method involves conducting user interviews to gain insights about their expectations, and

using interaction logs to verify the information obtained from the interviews. Chandar et al.

were particularly interested in understanding characteristics of user behaviour that can be

used as sensitive quality metrics. In the context of music search (Spotify.com), Chandar

et al. found that some behaviours, such as “add to playlist”, “save to collection”, and

“follow playlist”, indicate search success, and thus these behaviours should be incorporated

into an evaluation metrics for music search engine.

In the context of job search, Jansen et al. [97] carried out one of the earliest studies, but

with Web search engine data (Excite.com) that had been filtered to extract queries that

have relationship with job topics. Their studies suggest that job search users usually submit

only one query before they end the session; and that most of the job-related queries contain

of three terms. Kudlyak and Faberman [128] used the data from SnagAJob.com, an online

job search engine, to understand the relationship between the strength of labor market

and job search effort (measured in the number of applications). They found evidence for an

income effect, suggesting that the behaviour of job seekers is influenced by the power of the

labor market. For example, people with poor job-finding prospects tended to make more

job applications to increase the chance and have a longer job seeking duration. Spina et al.

[200] compared the behaviour of users from among job, talent, and Web search engines. Job

and talent search data was collected from Seek.com, while Web search logs were a sample

of Yandex.ru interaction logs. They suggest that Web search users might have different

SERP examination behaviours than job and talent search users. More recently, Mansouri

et al. [144] collected 500, 000 Web queries, based on job issues, from Parsijoo.ir, a

Persian search engine, and found that job search intensities peak in the beginning of the

week, and then slowly decrease until the end of the week.

2.2.2 User Browsing Behaviour

Desktop-Based Search. Klöckner et al. [123] addressed a question: in what order do

users scan the entries in a SERP? They propose two classes of search strategies: (1)

depth-first strategy, where users scan the entries one-by-one from top to bottom and

immediately decide whether to open the document, and (2) breadth-first strategy, where
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users first examine all entries from top to bottom, before then revisiting the most enticing

one and clicking the entry link to open the document. To support their arguments, they

recorded eye movements and mouse clicks of 41 subjects who were given 10 minutes to use

a Google search engine to obtain a particular information. In this experiment, they found

that 65% of subjects used a depth-first strategy, 15% used a fully breadth-first strategy,

and the remaining (20%) used a partially breadth-first strategy (mixed strategy). The

latter strategy refers to users who scan forward a few entries before deciding to revisit and

open the previously seen entries.

Teevan et al. [209] observed that when the user searches for specific information, such

as an email address or an office number, they often perform a directed search (visiting

someone’s homepage), instead of a keyword search (submitting the query “scott morrison,

email address” into a search engine). Teevan et al. then uncovered two types of search

strategies: (1) orienteering, and (2) teleporting. Users who perform orienteering tend to

follow a series of small steps to find a particular information, while those who perform

teleporting tend to follow a direct way to find the information. For example, to find an

answer for the question “what is the office number of Professor X?”, an orienteering user

will likely visit Professor X’s homepage and search an office number on that page, while a

teleporting user will go to a search engine website and enter “office number Professor X”

into the input box, expecting that the search engine will give the answer at the top of the

result page. Teevan et al. [209] argue that orienteering helps users to decrease the cognitive

burden of search activities by maintaining their sense of location, since they usually know

where to find the target, but do not know what the exact target is. Hence, their study

provides insights to accommodate this search behaviour into the development of search

engine interfaces.

Kim et al. [122] adopted the search strategy proposed by Klöckner et al. [123] in their

experiments to see whether they vary as to the size of the screen (1280 × 1024-pixel versus

320 × 480-pixel screen, or large versus small size respectively). The results showed that

the screen size does not really affect users’ search strategy. However, the mixed strategy

was the major search strategy observed for both types of screen size, while the proportion

of users who applied a fully breadth-first strategy was relatively small.

Another study has been conducted by Aula et al. [18] using an eye-tracker to observe

users’ viewing behaviours. Based on their observation, they classified the behaviours of

users into two major groups: (1) economic and (2) exhaustive, related to the depth-first

and breadth-first strategies respectively. Economic users examine a few documents before

deciding an action, such as clicking the entry link or reformulating a new query, while
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exhaustive users tend to scrutinize many entries before deciding their next action. White

and Drucker [233] conducted a log-based study by recording users’ interactions when

using a commercial Web search for a five-month period. They were particularly interested

in studying search trails, that is, a sequence of activities or navigations generated by

users after they posed a query to the search engine. Search trails proceed until some

predefined signs of termination, such as closing browser window, page timeout, or returning

to homepage, which indicate that users have already completed their search task. In their

analysis, White and Drucker address two extreme types of users: (1) navigators, and (2)

explorers. Navigators refer to a group of users who have consistent pattern of trails. They

tend to follow a direct or simple path from query submission to termination, revisit the

main Web domain, and sequentially tackle their search task. Explorers tend to frequently

branch in their trails, submit many queries in a session, and visit pages from many Web

domains. The explorers also appeared to be inconsistent, in the sense that they applied

several search strategies when seeking for information to complete a particular task.

Joachims et al. [110] asked several participants to complete both informational and

navigational tasks using the Google search engine in a laboratory setting. While the partic-

ipants were inspecting the SERPs, all search actions were recorded, including clickthroughs

and eye-fixations, with the help of an eye-tracker tool. The key findings are that the par-

ticipants tended to scan down the ranking in a sequential manner; that users viewed more

snippets beyond rank i before decided to click on item at rank i; and that the user clicking

behaviour is affected by at least two factors, the trust in search engine being used and the

overall quality of the SERPs being inspected. Cutrell and Guan [59] carried out similar

experiments using an eye-tracking tool, observing behaviours including the distribution of

viewed rank positions prior to a click action and mean arrival time at each rank position.

They suggest that increasing the length of snippets increases user search performance on

informational tasks, but decreases that on navigational tasks. Thomas et al. [211] recorded

viewing behaviours using an eye-tracking tool, and found that users were more likely to

examine documents at higher rank positions than those at lower rank positions (that is,

top-weightedness).

Mobile-Based Search. The narrow screen of mobile devices hampers users’ navigation

activities [42]. This condition may cause users to lose their global view of the task being

tackled and require them to remember the previously viewed content, and thus increase

their cognitive load [7, 158]. Hence, mobile-based search users may have different behaviour

from Web-based search users.
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Jones et al. [112] studied the behaviour of twenty participants while performing search

tasks using two different systems, one with large screen (desktop) and the other with small

screen (as a simulation of mobile device). The systems recorded a number of browsing

actions, such as the number of scroll up/down actions, and the number of backtrack

actions (that is, returning to previously seen items). The key findings are that the number

of scrolling actions observed from small screen users is higher than that observed from their

large screen counterparts; that down scrolling activities are more common than up scrolling

activities for small screen users, suggesting that they performed a few backtracking scroll

actions; and that path length for small screen users were shorter than that for their large

screen counterparts.

Lagun et al. [129] found that, on mobile phones, the second item in the ranking gets

more views than the first one, suggesting that the discount function of existing metrics,

such as DCG, has to be slightly corrected. They also observe that mobile-based users tend

to focus on the center and top half of the screen, while the desktop-based users pay more

attention on the top left side.

Ong et al. [160] compared the behaviour between mobile- and desktop-based users

by adopting the methodologies from Wu et al. [236], controlling the information scent

level (the number of relevant items on a SERP) and pattern (the distribution of a fixed

number of relevant items on a SERP) on the SERPs. Some of the differences were that

desktop-based users had a longer search duration and viewed into deeper ranking positions,

compared to the mobile-based users; and that information scent level affected desktop-

based search behaviours; and that mobile-based users more accurately selected relevant

documents on all information scent levels.

2.2.3 User Stopping Behaviour

Moffat et al. [155] argue that the probabilities governing a user model should be computed

based on the part of the ranking that has been inspected. Under the assumption that users

examine the document in a sequential-inspection manner from top to bottom, a good user

model should reflect how and when the user stops examining the SERP. Cooper [55]

proposed two stopping rules: (1) a frustration rule, whereby the user stops scanning the

ranking after they have inspected a fixed number of non-relevant documents; and (2) a

satisfaction rule, whereby the user stops scanning the ranking after they have inspected

a fixed number of relevant documents. Cooper [56] also developed a more complex rule,

where the user stops after they believe that the effort of inspecting the next item in the
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current ranking is greater than that of moving to a new ranking by submitting a new

query. This rule is similar to the information foraging theory posited Pirolli and Card

[164], and later on adopted by Azzopardi et al. [20].

Maxwell et al. [147] investigated three stopping strategies (a fixed-depth strategy and

the first two strategies proposed by Cooper [55]), and carried out experiments to see the

performance of each strategy using simulations, as an alternative to the actual user studies.

The simulations were based on the work by Baskaya et al. [26], with querying strategies

proposed by Keskustalo et al. [121]. They found that adaptive strategies such as the

frustration rule and the satisfaction rule outperformed a fixed-depth strategy such as the

one embodied in Prec@K user model, suggesting that the stopping behaviour of the user

is adaptive to the relevance of the documents inspected. Maxwell et al. [148] extended

their previous work, and still concluded that the frustration rule and the satisfaction

rule closely reflect the actual stopping behaviour. However, a fixed-depth strategy with

a carefully chosen depth value might also provide a close approximation to the actual

stopping behaviour.

Several authors have carried out experiments to see whether or not stopping behaviour

is predictable [214, 236]. Toms and Freund [214] analysed logs containing 288 search ses-

sions initiated from 96 participants. They found that in the final stage of a search session

users were more engaged in revisiting the pages they have previously viewed. They argued

that this might be a means to evaluate whether or not the satisfaction rule was met. Fi-

nally, they also found that users tended to spend considerable amount of time in viewing

additional pages in the last stage. This is an indication that users are assessing the benefits

and costs to either continue or stop searching [214]. Wu et al. [236] studied the correlation

between the stopping behaviours and two factors: (1) information scent level, the number

of relevant documents in the first SERP; and (2) need for cognition, a personality trait

describing to what extent a user enjoys activities that require cognitive effort and energy.

They found that the need for cognition and the probability of stopping have a positive,

but weak, correlation in a condition where the density of relevant documents in the first

SERP is high. Several authors have proposed models for user actions, including stopping

actions, using Bayesian decision model [126] and Markov chains [215, 216, 217].

2.3 Metrics and User Models

Incorporating user behaviour into precision-based metrics is a new direction that is worth

being explored in the field of IR evaluation. As noted by Saracevic [188], any IR evaluation
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should consider both system and user factors, including that an effectiveness metric should

be tightly coupled with what kind of user behaviour it embodies. Section 2.3.1 discusses

the urgency of the interaction between user models and effectiveness metrics.

Note that incorporating user behaviours into the measurement of search effectiveness

is not straightforward, as it requires us to operationalise the concept of user behaviour

itself. One way to do that is by employing the notion of continuation probability [155].

Nevertheless, it is still difficult to compare one precision-based metric with another in

the current setting, since all of them were developed under different assumptions and a

different understanding on what a good metric should be. Section 2.3.2 introduces the

C/W/L framework, a general structure that unites weighted-precision metrics under the

same assumptions of how a user interacts with a SERP.

2.3.1 User Model

The evaluation of search engine effectiveness thus must consider issues from broader con-

texts, not only the seeking context (algorithms) but also the using context (users) [188].

Therefore, modern IR systems should pay attention not only on how good the algorithm

is at generating the results ranking, but also on an evaluation aspect whereby it can be

ensured that the results ranking presented to the user are usable to them. Moffat et al.

[155] argue that incorporating users’ search goal and pattern of behaviour into an effec-

tiveness metric is crucial, in the sense that the scores yielded by a particular effectiveness

metric should have a straightforward explanation and interpretation that corresponds to

the user’s search experience.

However, current test collection-based IR evaluations mostly treat “systems” and “top-

ics” as the only two sources of variation, ignoring other aspects, such as behaviour of users

(particularly when users interact with a SERP). While this provides the ability to compare

the retrieval algorithm of one system with that of the others (due to its sensitivity to the

system changes), this makes it difficult to understand what changes happen to the system

if it is given to the actual users [155]. Bailey et al. [24] introduce a new test collection

that embodies two sources of user variability: (1) query formulation and (2) the expected

number of relevant documents for each query. One particular interest is how to incorporate

user behaviour into search effectiveness metrics. Note that an effectiveness metric that is

sensitive to the behaviour of users is also important in the case where a particular IR

system needs to be evaluated upon two different populations of users that in general have

different behaviours.
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The notion of user model, introduced by Moffat and Zobel [151], is an effort to bridge

the gap between effectiveness metrics and user variability by making metrics sensitive to

the variability of user behaviours. Moffat et al. [155] further explain a user model as a

formal description of how a population of users interacts with a SERP, from which three

characteristics are identified. One of those characteristics is the conditional probability

that a user moves to rank position i+ 1 in the SERP, given that they have examined the

one at rank i under the assumption that the user scans down the ranking one-by-one from

top to bottom. This has a special name, called continuation probability. Section 2.3.2 will

elaborate on continuation probability and the other two hypothetical behaviours.

2.3.2 C/W/L Framework

Different metrics tend to have different interpretations and score units, which makes them

difficult to compare, particularly in terms of the user model they embody. Moffat et al.

[153] develop a framework that generalises as well as unites the family of weighted-precision

metrics. By framing different metrics within the same framework and parameters, it is pos-

sible to get comparative value units (such as utility or effort) and compare the underlying

user model and characteristics between them. With this framework, weighted-precision

metrics can be generalised as follows:

M (−→r ) =
∞
∑

i=1

WM (i) · g(ri) , (2.26)

where WM (i) is a weighting scheme with
∑∞
i=1WM (i) = 1. Therefore, M (−→r ) can generally

be interpreted as the expected gain (utility) derived by users per document inspected.

Moffat et al. [153] suggest that there are two interpretations of WM (i) depending on

the assumption of how users examine the ranked list of documents. These are: (1) users

randomly select a document to be examined according to a probability distribution, or (2)

users sequentially scan down the ranking from top to bottom.

Random Examination. WM (i) can be regarded as the probability that users exam-

ine the document at rank i by random selection at any time, which means that a se-

quence of item inspections is a sequence of samples drawn from the probability distribution

WM (i) [153]. Consider RBP with persistence φ that has the following specification:

WRBP(i) = (1− φ) · φi−1 .
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For example, RBP with φ = 0.8 has the following weighting vector:

WRBP(φ = 0.8) = 〈0.20, 0.16, 0.13, 0.10, 0.08, 0.07, . . . 〉 ;

Assuming that users perform random selections, they have a 20% chance of examining the

document at rank 1 at any time, 16% chance of examining the document at rank 2, and

so on.

Sequential Examination. The most well-developed and widely-used browsing model

is the cascade browsing model, where users scan down the ranked list one-by-one, and then

stop at some point in the ranking [110]. Based on this examination model, Moffat et al.

[153] suggest the second interpretation of WM (i) via the notion of conditional continuation

probability, denoted by CM (i):

CM (i) =
WM (i+ 1)

WM (i)
, (2.27)

which represents the probability that the user continues to examine the document at rank

i+ 1 given that they have sequentially examined all documents from rank 1 to rank i. For

RBP with persistence φ, the continuation probability is simply:

CRBP(i) = φ .

Therefore, the notion of continuation probability is a generalisation of the notion of persis-

tence in the context of RBP user model of Moffat and Zobel [151], which allows persistence

to be variable and adaptive depending on the part of the ranking that the user has in-

spected so far before they decide to examine the next document.

Expected Search Length. The expected search length (ESL), or the expected number

of documents inspected, of any user model is given by the following formulation:

ESL =
∞
∑

i=1

i ·LM (i) =
1

WM (1)
= 1 +

∞
∑

i=1





i
∏

j=1

CM (j)



 . (2.28)

The latter equation indicates that the computation of 1/WM (1) should converge. Other-

wise, the modelled user never stops inspecting a hypothetical infinite ranking, and thus

W (i) ≈ 0. In this case, truncation at a finite depth is often necessary.
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Expected Total Gain (ETG). The metrics defined by Equation 2.26 are expected

rate of gain (ERG) metric, denoted by MERG(−→r ), since it measures the average gain (or

utility) per document inspected. The second type of metric that can be computed is an

expected total gain (ETG) metric, denoted by METG(−→r ), that measures the average total

volume of relevance derived by the end of a ranking inspection. It is computed as follows:

METG(−→r ) =
∞
∑

i=1



LM (i) ·
i
∑

j=1

g(rj)



 =
∞
∑

i=1

WM (i)

WM (1)
· g(ri) =

MERG(−→r )

WM (1)
. (2.29)

By connecting Equations 2.28 and 2.29, it can be shown thatMETG(−→r ) = ESL ·MERG(−→r ).

Therefore, ERG metrics yield scores in the units of “relevance (gain) per document”, while

ETG metrics gives score in the units of “relevance”.

Characteristics of a User Model. To complete a two-way relationship between CM (i)

and WM (i), Moffat et al. [153] show that WM (i) can be computed from CM (i) as follows:

WM (i) =
1

∑∞
k=1

∏k−1
l=1 CM (l)

i−1
∏

j=1

CM (j) . (2.30)

In addition, a further characteristic can be derived from CM (i) and WM (i): the probability

that the document at rank i is the last one examined by the user, denoted by LM (i):

LM (i) = CM (1) ·CM (2) . . . CM (i− 1) · (1−CM (i))

=
WM (2)

WM (1)
·
WM (3)

WM (2)
. . .

WM (i)

WM (i− 1)
· (1−

WM (i+ 1)

WM (i)
)

=
1

WM (1)
· (WM (i)−WM (i+ 1)) . (2.31)

The three-way relationship between CM (i), WM (i), and LM (i) is completed by the fol-

lowing equation:

CM (i) =

∑∞
j=i+1 LM (j)
∑∞
j=i LM (j)

. (2.32)

This three-way relationship forms a measurement framework, called C/W/L, which unites

most of the weighted-precision metrics by framing their underlying user models into three

characteristics that reflect how the user behaves when interacting with the ranked list of

results. Summarising the descriptions above, the components of C/W/L are:
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1. The conditional continuation probability, CM (i), that reflects the conditional per-

sistence of users at rank i, or the tendency of users to continue to the next item in

the ranking.

2. The weight, WM (i), that indirectly reflects the likelihood of viewing a particular

document at any time, assuming that a sequence of random selections happens.

3. The last probability, LM (i), reflecting that the item listed at rank i is the last one

inspected by the user.

Note that the aforementioned characteristics are related to each other, meaning that once

one of the three characteristics is specified, the other two characteristics can be computed

from it. For example, when CM (i) is specified, both WM (i) and LM (i) can be easily

determined using the Equations 2.30 and 2.31.

Describing User Models Using the C/W/L Framework. Moffat et al. [153] de-

scribe the notion of user model using the C/W/L framework and further argue that an

ideal user model possesses the following five properties:

1. The probabilities in regard to WM (i), CM (i), and LM (i) should be computed based

on the properties of the part of the ranking that have been examined by the simulated

users, without considering properties from the whole ranking.

2. WM (i) should be non-increasing and non-zero, WM (i) ≥WM (i+ 1) and WM (i) > 0;

As a consequence, CM (i) should be greater than zero.

3. All other factors being equal, CM (i) should be non-decreasing, that is, CM (i) ≤

CM (i+ 1). Moffat et al. [153] provide empirical support from a lab-based user study,

suggesting that CM (i) increases with rank position i.

4. All other factors being equal, CM (i) decreases, as relevance accumulates.

5. CM (i) should incorporate T , the anticipated number of relevant documents for un-

dertaking the search (or the search goal), as one of its factors; and all other factors

being equal, CM (i) tends to increase as T increases.

A later study by Azzopardi et al. [20] suggests addition of a sixth property, that CM (i)

should be affected by the anticipated minimum rate of gain; and CM (i) tends to decrease

as the current rate of gain drops below that minimum expectation. De Vries et al. [61]

and Moffat and Wicaksono [150] further suggest that CM (i) decreases if extremely poor

documents are encountered.
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Goal Sensitivity. A user-oriented metric should be goal sensitive, since search is a

goal-directed activity [53, 235]. For example, if a user performs a difficult search task that

involves more than five useful documents, shallow metrics, such as Prec@K with K = 1,

might be less useful than deeper metrics. In particular, Cooper [53] and Moffat et al. [155]

contend that a metric should take into account the number of relevant documents the user

wishes to examine in order to satisfy their information need. This quantity, denoted by

T , is one approach to operationalise the concept of user goal. Moffat et al. [155] further

demonstrate that T varies with task complexity, and that T is a key factor for predicting

observed C(i).

Mapping Into C/W/L. For several metrics, such as average precision (AP), reciprocal

rank (RR), and discounted cumulative gain (DCG), the mapping process is not trivial. We

now show a process of how an existing metric can be mapped into the C/W/L framework.

The majority of existing metrics can be described as follows:

N
∑

i=1

D(i) · g(ri) ,

where D(i) is a non-increasing discount function over rank i. The latter equation is a

general picture of metrics, instead of being a conceptual framework, since D(i) clearly

has multiple interpretations, and thus different D(i) may yield different scores with dif-

ferent units as well. Nevertheless, D(i) is typically related to either viewing or stopping

behaviour [39].

To standardise existing metrics through the lens of the C/W/L framework, the infinite

sum of D(i) over i should be computed. That is,

s = lim
m→∞

m
∑

i=1

D(i) .

The resultant value s is used to determine WM (i) (note that LM (i) and CM (i) can be

computed once WM (i) has been specified):

• if s = 1, then WM (i) = D(i).

• if s is a positive real number other than 1, then WM (i) = D(i)/s.
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• if s →∞, then truncation at a finite depth K is necessary:

WM (i) =







D(i)/
∑K
j=1 D(j) i ≤ K

0 i > K .

Note that these steps cannot be applied to every measure; nevertheless, they provide a

process for mapping metrics into the C/W/L framework. Section 2.4 will demonstrate

how these steps can be applied to several offline metrics, such as average precision (AP),

reciprocal rank (RR), and discounted cumulative gain (DCG).

2.4 Classification of User Models

As suggested by Moffat et al. [154], user models can be generally classified into two broad

categories. The first is of static or positional user models, for which the continuation

probability, CM (i), is defined solely as a function of ranking position i. The second one is

adaptive or cascade user models, for which the continuation probability CM (i) is affected

by not only the current inspected rank i, but also by the document relevance, particularly

by the part of the ranking −→r that has been inspected by the user.

2.4.1 Static User Models

In this category, CM (i) only depends on the ranking position currently being inspected by

the user, without considering factors that depend on the quality of the part of the ranking.

This section describes Prec@K, RBP, SDCG, and INSQ as examples from this category.

Precision at K. The user modelled by Prec@K always inspects the first K documents

in the ranking before stopping at rank K, in the sense that all documents from rank 1 to

K have the same chance of being examined by the user; and that they will not examine

the documents beyond rank K:

CPrec@K(i) =







1 1 ≤ i < K

0 otherwise ,
(2.33)

WPrec@K(i) =







1
K

i ≤ K

0 otherwise .
(2.34)
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Rank-Biased Precision. As is described previously, the user modelled by RBP always

inspects the documents one by one from the top, with probability of φ that they will

progress from rank i to rank i+ 1:

CRBP(i) = φ , (2.35)

WRBP(i) = (1− φ) · φi−1 . (2.36)

Scaled Discounted Cumulative Gain. As is described in Equation 2.15 (page 29),

Burges et al. [35] describe an alternative formulation of discounted cumulative gain with

DDCG(i) =
1

log2(i+ 1)
.

Here DDCG(i) is already a non-increasing function. However, the infinite sum of DDCG(i)

over rank position i is divergent. Therefore, truncation at depth K is necessary to avoid

W (i) ≈ 0. When that is done, what results is as scaled discounted cumulative gain at

depth K (SDCG@K) with scores bounded between 0 and 1 [153]:

WSDCG(i) =











1

log2(i+1)·
∑K

j=1
1/ log2(j+1)

i ≤ K

0 i > K ,
(2.37)

CSDCG(i) =







log2(i+1)
log2(i+2) i < K

0 i ≥ K .
(2.38)

Nevertheless, knowing that 1/WSDCG(1) =
∑K
j=1 1/ log2(j + 1), an expected total gain

version of this specification evaluates to:

∞
∑

i=1

WSDCG(i)

WSDCG(1)
· g(ri) =

K
∑

i=1

1

log2(i+ 1)
· g(ri) = DCG@K(−→r ;K, b) .

Therefore, DCG@K can be interpreted as an expected total gain, instead of expected rate of

gain, in the perspective of the C/W/L framework.

Inverse Square. Moffat et al. [152] propose inverse square (INSQ) shas a user model

that is sensitive to the user’s goal T . Recall that T is the expected number of relevant

documents the user wishes to examine in order to satisfy their information need (see five
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properties described on page 49):

CINSQ(i) =

(

i+ 2T − 1

i+ 2T

)2

, (2.39)

WINSQ(i) =
1

S(2T − 1)
·

1

(i+ 2T − 1)2
, (2.40)

where S(x) = (π2/6)− (
∑x
j=1 1/j2). The INSQ user model differs from RBP in two re-

spects. First, as opposed to RBP, which has a constant C(i), the C(i) of a user modelled by

INSQ increases as the user progresses in the ranking. Second, INSQ explicitly specifies the

user’s goal for undertaking the search via the parameter T , while RBP implicitly encodes

this via φ. Moffat et al. [155] further note that RBP can be “somewhat” goal sensitive by

setting φ = 1− 1/(2 · T ).

2.4.2 Adaptive User Models

In this category, CM (i) varies as the modelled users encounter relevance in the part of

the ranking seen so far. Note that it can be difficult to define WM (i) using a closed form

since it depends on the relevance vector −→r . This section describes AP, ERR, RR and INST

as examples from this category.

Average Precision. Average precision (AP) is defined as:

1

R

∞
∑

i=1

Prec@K(−→r ; i) · ri =
∞
∑

i=1





1

R

k
∑

j=1

rj

k



 · ri ,

where R is the number of relevant items in the collection. Recall that ri is binary in the

context of AP. Here it can be seen that DAP(i) = (1/R) · Prec@K(−→r ; i) is not a non-

increasing function, but a non-increasing version of AP’s discount function using algebraic

manipulation as follows:

∞
∑

i=1





1

R

k
∑

j=1

rj

k



 · ri =
1

R

∞
∑

i=1





k
∑

j=1

rj

k



 · ri

=
1

R















r1

1
r1+

r2

2
r1 +

r2

2
r2+

r3

3
r1 +

r3

3
r2 +

r3

3
r3+

· · ·

















54 Background

=
1

R

(

r1

∞
∑

i=1

ri

i
+ r2

∞
∑

i=2

ri

i
+ r3

∞
∑

i=3

ri

i
+ · · ·

)

=
∞
∑

i=1





1

R

∞
∑

j=i

rj

j



 · ri .

Hence, the alternative discount function for AP is:

D′
AP(i) =

1

R

∞
∑

j=i

rj

j
.

It can be seen that D′
AP(i) is a non-increasing function, and that limm→∞

∑m
i=1 D′

AP(i) = 1.

Therefore, mapping AP into the C/W/L framework leads to the following specification:

WAP(i) =
1

R

∞
∑

j=i

rj

j
, and thus CAP(i) =

∑∞
j=i+1 rj/j
∑∞
j=i rj/j

. (2.41)

This specification implies that the user modelled by AP is clairvoyant, with the decision

to continue from rank position i to (i+ 1) depending on what they will see in the future,

suggesting that CAP(i) is plausible only if it is assumed that the user has the ability to

understand the part of the ranking that has not yet been seen.

(Expected) Reciprocal Rank. Both reciprocal rank (RR) and expected reciprocal

rank (ERR) [44] can be described as follows:

∞
∑

i=1

1

i
·
i−1
∏

j=1

(1− g(rj)) · g(ri) .

For RR, g(ri) is binary: either 0 or 1. For ERR, g(ri) ∈ [0, 1] so as to handle graded relevance

(see Equation 2.22 on page 31).

In the case of RR, g(ri) can be directly replaced by ri since ri is binary. By assuming

that the first fully relevant document can be found at rank position H, that is rH = 1 and

ri = 0 for i < H, it can be shown that:

∞
∑

i=1

1

i
·
i−1
∏

j=1

(1− rj) · ri =
∞
∑

i=1

1

H
·
i−1
∏

j=1

(1− rj) · ri .
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Thus, the discount function can be decribed as follows:

DRR(i) =
1

H
·
i−1
∏

j=1

(1− rj) =







1/H i ≤ H

0 i > H ,

It is clear that DRR(i) is a non-increasing function with limm→∞
∑m
i=1DRR(i) = 1. There-

fore, WRR(i) = DRR(i), and thus:

CRR(i) =







1 i < H

0 i = H .
(2.42)

With ERR, the situation is more complex. In practice, a ranking is usually finite until

depth N , and thus the remaining items from rank position N + 1,N + 2, . . . are usually

assumed to be non-relevant, that is ri = 0 for i > N . In this situation, it can be seen that:

∞
∑

i=1

DERR(i) = lim
m→∞

m
∑

i=1

1

i
·
i−1
∏

j=1

(1− g(rj))

=
N
∑

i=1

1

i
·
i−1
∏

j=1

(1− g(rj)) + lim
m→∞

m
∑

i=N+1

1

i
.

It is clear that DERR(i) is already non-increasing. However, the rightmost term in the latter

equation is an infinite sum of harmonic series that is divergent. Therefore, truncation at

depth K is needed. One possible interpretation is as an instance of ETG metric with:

CERR(i) =







i
i+1
· (1− g(ri)) i < K

0 i ≥ K .
(2.43)

INST. Moffat et al. [155] propose a user model, INST, that has all five properties of a

user model described in Section 2.3 (page 49). In general, INST extends INSQ [152] so that

it now becomes adaptive to the volumes of relevance that accrue.

CINST(i) =

(

i+ T + Ti − 1

i+ T + Ti

)2

, (2.44)

where Ti = T −
∑i
j=1 g(ri) represents the expected remaining number of relevant doc-

uments that the user needs to identify. With this definition, it is clear that CINST(i)

increases with i (“sunk cost” property), has a positive correlation with T , and decreases

as Ti decreases (or as the relevant documents are accumulated).
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2.4.3 Incorporating Costs into Metrics

Many effectiveness metrics, such as Prec@K, average precision (AP), discounted cumulative

gain DCG (and its normalised version [102]), reciprocal rank (RR), rank-biased precision

(RBP) [151], expected reciprocal rank (ERR) [44], and INST [155], assume that the modelled

user views each document in the ranking at a constant rate; and that once they reach at a

particular document, they scan all words in the document, and thus either derive the utility

associated with the document, or derive nothing if it is non-relevant. However, some cost-

based factors, such as the length of documents, the number of documents that have been

inspected, and the time spent during the SERP examination process, have been shown to

affect user behaviour [19, 20, 195]. Other cost-based factors, such as the number of issued

queries, also have a relationship with user satisfaction [4, 108]. This section summarises

research that addresses such issues.

Time-Biased Gain. Smucker and Clarke [195] argue that the discount function D(i)

in any weighted-precision metric,
∑∞
i=1D(i) · g(ri), is a function of time, including the

amount of time spent by the user to reach the document at rank i and to start to read it.

Smucker and Clarke still employ the cascade browsing model, where the user sequentially

visits each document in the ranking, until they stop and reformulate, or commence some

other activity. A further development is that a model is incorporated to allow the metric to

be sensitive to cases where the user may take more time to examine the longer documents

than shorter ones, or the user may abandon the document if its summary seems to be not

relevant. Smucker and Clarke describe the resultant time-biased gain (TBG) user model,

whose metric can be defined as follows:

MTBG(
−→r ) =

1

Z

∞
∑

i=1

DTBG(T (i)) · g(ri) , (2.45)

where DTBG(t) is the discount function working as a response to time; T (i) is the expected

time required by the user to arrive at rank i and start reading the corresponding document,

with T (1) = 0 seconds; g(ri) is the gain mapping function; and Z is a normalisation factor.

Current search engine interfaces typically provide summaries or snippets, in addition

to the links to the full documents, which allow users to pre-judge the quality of the

corresponding document before deciding to click and see the full content of it. The user

often skips viewing the full document if its summary is not promising. Thus, Smucker and

Clarke [195] define T (i) as an accumulation of the total time spent to read the summaries,

TS(j), and the documents, TD(j), where 1 ≤ j < i. By assuming that summaries tend
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to be equal in length, the user most likely spends the same time to read each of the

summaries in the ranking, meaning that TS(i) = TS , where TS is simply the time spent

to read any summary. However, a similar assumption does not hold for documents, as

they vary in terms of the total number of words. This leads to the definition of TD(i) =

a · li + b, where li is the length of document at rank i measured in words, with a and b

being trainable parameters. Moreover, based on the observation that not all users click on

relevant documents, Smucker and Clarke [195] add a factor P (C = 1 | Rel) factor that

represents the probability that the user clicks on a particular document given its relevance

value Rel. This completes the definition of T (i) as follows:

T (i) =
i−1
∑

j=1

TS + TD(j) · P (C = 1 | Rel = rj) . (2.46)

Next, the discount function DTBG(t) is modelled using a decay exponential function:

DTBG(t) = exp

(

−t ·
ln 2

h

)

, (2.47)

where h is a trainable parameter denoting the time at which 50% of users in the population

stop examining the SERP. Finally, all trainable parameters that are involved in developing

the aforementioned metric were estimated using the data collected from a user study.

For example, based on their data, h = 224 seconds, TS = 4.4 seconds, and TD(i) =

0.018 · li + 7.8 seconds .

As noted by Smucker and Clarke [195], the ideal condition is when the collection is full

of zero-length relevant documents. Suppose tx is the expected time to read the summary

and the content of a zero-length relevant document. Thus,

∞
∑

i=1

DTBG(i) =
∞
∑

i=1

exp

(

−T (i) ·
ln 2

h

)

≤
∞
∑

i=1

exp

(

−tx · (i− 1) ·
ln 2

h

)

=
∞
∑

i=0

exp

(

−tx · i ·
ln 2

h

)

=
1

1− exp
(

−tx ·
ln 2
h

) .

According to the calibration values stated by Smucker and Clarke [195], the latter term

evaluates to 34.9. Therefore, DTBG(i) is a non-increasing function, and the infinite sum
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of DTBG(i) over rank position i converges to a positive real number ≤ 34.9. This leads to

the C/W/L specification of TBG via the following CTBG(i):

CTBG(i) =
exp

(

T (i) · ln 2
h

)

exp
(

T (i+ 1) · ln 2
h

) . (2.48)

With this specification, the expected rate of gain version of the metric represents the

normalised version of TBG, while the expected total gain version represents the TBG score

without normalisation. Note that, when the expected time to read an item (the summary

and content) is constant across all ranking position i, TBG reduces to RBP with

φ = exp

(

−
ln 2

h

)

= 2− 1
h .

A major problem raised from TBG is that its user stopping model relies solely on the

total number of words read by the user. As a result, it does not handle cases with different

task complexity. Time-biased gain assumes that all readers exhibit the same behaviour,

and do so in response to all queries.

U-Measure. Instead of defining cost in terms of the amount of time spent, Sakai and

Dou [181] propose a metric, U-measure (UM), whose weight function decays with the

amount of text read by the user. This metric can also be computed using Equation 2.45

in page 56, but with the following discount function:

DUM(i) = max

(

0, 1−
pos(i)

L

)

, (2.49)

where pos(i) is the amount of text (measured in characters) read by the user to reach the

document at rank i, with pos(1) = 0; and L is the largest number of characters that the

user may have to read in a session. Based on observation on Bing.com data collected in

2012, Sakai and Dou [181] suggest to use L = 132,000 characters. As demonstrated by

Azzopardi et al. [21], UM can be mapped into the C/W/L framework via

CUM(i) = DUM(i+ 1)/DUM(i) . (2.50)

Bejeweled Player Model. Zhang et al. [241] develop a user model, bejeweled player

model (BPM), arguing that the simulated user will not stop inspecting the SERP unless

one of the following conditions has been met: (1) the total gain accumulated so far exceeds
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T ; (2) or the total number of documents inspected exceeds K (that is, the anticipated cost,

or the number of documents the user wishes to see). Note that the first condition is similar

to that for INST, while the second one is similar to that for Prec@K. Azzopardi et al. [21]

show that BPM can be mapped into the C/W/L structure using the following specification:

CBPM(i) =







1
∑i
j=1 g(rj) < T and i < K

0 otherwise .
(2.51)

Zhang et al. [241] further propose two versions of BPM: static BPM (S-BPM) and dynamic

BPM (D-BPM). For the static version, T and K are fixed. For the dynamic version, both

T and K change as the user encounters relevance. When the user inspects a relevant

document, the user’s desire (T ) and their willingness to inspect more documents (K)

increase; and when they examines a non-relevant document, both T and K decrease.

Information Foraging-Based Metric. Azzopardi et al. [20] propose a new user model

based on information foraging theory (IFT) by exploiting the C/W/L structure [164]. The

idea behind the IFT-based user model is that, similar to the natural foraging behaviour

of typical people, the user will keep observing the current information patch when the

rate of gain experienced from the current patch can still be tolerated, but when they feel

that the rate of gain is decreasing, and think that other patches would most likely contain

more useful information, the user will likely leave the current patch and move to a new

information patch. In this case, an information patch can be thought as a SERP where

the user examines the ranked list of items to satisfy their information needs. Azzopardi

et al. [20] argue that the user’s information foraging behaviour depends on two factors:

(1) the anticipated number of relevant documents (goal-sensitive), and (2) the expected

minimum rate of gain (rate-sensitive). Both factors are directly modelled via conditional

continuation probability functions CIFT-C1(i) and CIFT-C2(i), respectively:

CIFT-C1(i) = 1−
(

1 + b1 · e
(T−γi)R1

)−1
, (2.52)

CIFT-C2(i) =

(

1 + b2 · e
(A−

γi
κi

)R2

)−1

, (2.53)

where T is the user’s desire, γi is the total number of relevant documents accumulated so

far, A is the anticipated rate of gain, κi is the time spent so far to reach the document at

rank i, and the remaining variables b1, b2, R1, R2 are empirical parameters. With these

definitions, both IFT-C1 and IFT-C2 are adaptive, since their C(i) functions are affected by
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the document relevance. Finally, the user behaviour encoding the two factors is modelled

as follows:

CIFT(i) = CIFT-C1(i) ·CIFT-C2(i) . (2.54)

Therefore, IFT is goal-sensitive, rate-sensitive, and adaptive. Further, Azzopardi et al. [20]

use b1 = b2 = 0.25, R1 = R2 = 10, T = 0.2, and A = 0.1 to model typical Web

search users.

To measure the accuracy of the proposed user model, Azzopardi et al. [20] use three

criteria: (1) the likelihood of stopping rank, (2) the estimated utility experienced by the

user, and (3) the estimated total time spent on the SERP. For data, they collected click-

through logs from a major web search engine containing 1,000 common head queries with

a set of relevance judgements. The first criteria assumes that the last click rank is the

stopping rank, which is not always true in reality. Moreover, in their evaluation process,

they did not group the queries based on the task complexity, such as those proposed by

Broder [31]. It is widely known that viewing patterns of typical Web search users are heav-

ily top-weighted, meaning that in the majority of users only look at the top links, click

one of them, and then stop. While the IFT approach is another important development,

their use of (only) head queries means it remains unclear whether more patient users and

more extensive information needs can be accurately explained.

Summary. To conclude this section, Table 2.1 (page 61) shows the categorisation of

metrics against several properties that have been proposed for defining C(i). Five prop-

erties are taken from Moffat et al. [155]; one property is related to the notion of “rate of

gain” used for defining IFT [20]; and others involve effort-based factors, such as the number

of characters read [181] and the amount of time spent [195].

2.5 User Satisfaction

User satisfaction, which is tightly coupled with the contentment experienced by human

beings when a specified need has been fulfilled [117], is an important goal of any search

activity [55]. This section explores the concept of user satisfaction in the context of IR

evaluation and discusses factors that affect this concept.
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Property for C(i) AP SDCG@K RBP ERR@K INSQ TBG INST BPM IFT

Prec@K RR@K UM

Properties from Moffat et al. [155]

C(i) is based on the part of the ranking that
has been inspected.

✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C(i) does not depend on R. ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C(i) is explicitly affected by T . ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

C(i) is non-decreasing with i. ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

C(i) is positively correlated with

T −
∑i

j=1 rj .

✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

“Rate of gain” [20]

C(i) decreases as the rate of gain,
∑i

j=1 rj/i, decreases.

✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

Other properties

C(i) > 0 for i ≥ 1. ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓

C(i) is affected by the amount of time spent
so far, or by the number of characters
scanned so far [181, 195].

✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Table 2.1: Categorisation of metrics against existing properties for C(i). Reciprocal rank (RR) and ERR are assumed to be evaluated
over a ranking of depth K.
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2.5.1 The Concept of User Satisfaction for IR Evaluation

Spärck Jones [199] argue that the concept of user satisfaction is central to the evaluation of

an IR system, and thus this concept cannot be simply dismissed in any evaluation exper-

iment. Su [204] further argues that considering the concept of user satisfaction has a key

advantage: it takes into account users’ subjective assessment in evaluating many aspects

of IR systems. Both arguments (by Spärck Jones [199] and Su [204]) are in agreement

with the spirit of integrating evaluation processes at system and user levels, posited by

Saracevic [188].

While some authors contend that the concept of user satisfaction should be considered

in any IR evaluation, others have also argued that a measurement that depends on this

concept alone may not be reliable [84, 138, 197]. Kelly [117] notes that the concept of

satisfaction is internal to the user, and thus it is not directly observable. Al-Maskari and

Sanderson [4] further argue that user satisfaction has ambiguous definitions; and that it

is difficult to develop instruments for assessing satisfaction. Liu et al. [140] show that

users vary greatly in terms of providing satisfaction ratings for the same SERP. Based

on the approach of Viswanathan [223], Kelly [117] suggests that satisfaction should be

assessed using multiple items, such as the quality of SERPs, system response time, or

system preference.

Soergel [197] argues that the ultimate goal of any IR system is not to make the user

happy (subjective satisfaction), but to make the user successful (improved performance).

Soergel [197] further observes that users could still be satisfied with non-relevant docu-

ments in the SERPs. This is called the user-distraction phenomenon. Recently, Liu et al.

[138] found a clear evidence of this phenomenon. Similarly, Hildreth [84] also argues that

user satisfaction can be easily influenced by non-performance factors, and hence there is

no clear relationship between user satisfaction and actual search effectiveness. Hildreth

further demonstrates that user satisfaction has weak correlation with user performance

(the number of relevant items found by the user), but strong relationship with ease of use

and system usefulness. This problem has also been investigated in recent study by Liu

et al. [138] who conclude that user satisfaction and other criteria, such as search success

(relevance, credibility, and readability on each landing page) [159], should be used together

in any IR evaluation.

Notwithstanding these concerns, the concept of user satisfaction has been widely used

in the field of IR evaluation [75]; and recent work has shown that system effectiveness has

a significant relationship with user satisfaction either via the general notion of relevance
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[5, 91, 108] or the notion of usefulness [145]. Al-Maskari and Sanderson [4] investigated

four factors that potentially influence user satisfaction: (1) system effectiveness, which

measures the objective of the IR system via the traditional precision or average preci-

sion; (2) user effectiveness, which can be assessed by the number of relevant documents

examined by users or the amount of time to complete the task; (3) user effort, such as

the number of queries or the ranking positions of relevant items; and (4) user character-

istics, such as experience with the topics and systems. They found that user satisfaction

is positively correlated with system effectiveness, but with a weak relationship; that user

satisfaction is strongly and positively correlated with user effectiveness, suggesting that

incorporating user behaviour into the measurement of search effectiveness is essential; that

user satisfaction is negatively correlated with user effort (and this is also in agreement with

the recent study by Jiang et al. [108]), suggesting that users are less satisfied when they are

obliged to exert themselves; and that no significant relationship was observed between user

satisfaction and user characteristics. In conclusion, all the aforementioned studies support

the argument that it is possible to measure user satisfaction in an operational setting.

2.5.2 User Feedback for Predicting Satisfaction

Self-reported users satisfaction ratings, however, cannot be observed at scale. In contrast,

implicit feedback, such as clicks and query reformulations, can be collected real time

from operational systems. A number of studies have proposed various surrogates for self-

reported satisfaction using online metrics or implicit feedback. Fox et al. [65] demonstrate

that clicks, reading time, and exit type (the way in which user stop reading the result

page, such as closing the browser window, or submitting a new query) are the three best

factors for predicting satisfaction at the level of individual result page. Similar implicit

online metrics again becomes important factors for predicting session-level satisfaction.

For example, the time taken to inspect a particular SERP is negatively correlated with

session satisfaction.

Feild et al. [63] address the problem of searcher’s frustration prediction, and found that

features based on query logs are important to this problem, including search duration, the

number of unique queries, and information from scrolling actions. Ageev et al. [1] show that

session success is linked to the user’s effort. They found that successful users issue more

queries, view more SERPs, scan SERPs to deeper rank positions, analyse SERP faster,

perform click actions faster, and use advanced query syntax more frequently compared

to those who are not success. Guo et al. [71] investigate factors that affect search engine
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switching, and propose a machine learning model to predict the switching behaviour.

They found that dissatisfaction and coverage are two main reasons for switching with

identical query. In other work, Guo et al. [72] employ information derived from cursor

movements before and after click actions to improve the performance of session success

prediction. These includes the speed and the coordinates of mouse cursor. In addition to

cursor movements, other behaviours are found to be correlated with session success, such

as the total number of queries in a session (Pearson’s r = −0.52), the total number of

clicks in a session (r = −0.36), the total number of clicks divided by the number of SERP

views in a session (r = 0.36), and search duration in a session (r = −0.47).

Hassan et al. [77] utilise a combination of DCG and Markov model to classify a search

goal as either successful or not. A search goal is defined as an action sequence performed

by users to address a single information need, and consists of several types of actions, such

as query and click actions. In a follow-up work, Hassan [76] proposes a semi-supervised

approach to predict whether a search goal leads to a successful goal or not. Hassan et al.

[78] show that combining reformulation and click information gives a better performance

for query satisfaction prediction, than using each of them individually.

Wang et al. [229] extend the work of Hassan et al. [78] by modelling action-level (query

or click) satisfaction to predict the overall session satisfaction. Jiang et al. [108] combine

utility metrics (such as, click dwelling time) and effort-based metrics (such as, the number

of queries in a session) to predict user-reported 5-point session satisfaction. Liu et al.

[140] propose a methodology to extract frequent cursor subsequences from mouse-based

action logs, and then use those subsequences to predict session satisfaction. Liu et al. [136]

investigate factors that can characterise the difficulty of a particular search tasks, and

found that several variables, such as number of viewed items in the first SERP, dwell time

on the first SERP, and number of saved documents per query, are significant factors.

2.6 Meta-Evaluation

Meta-evaluation aims at assessing the quality of an effectiveness metric. Cooper [55] argues

that user satisfaction is a staple metric of system performance. Based on this argument,

some authors have suggested that a good metric should produce scores that strongly

correlated with user satisfaction [5, 91, 104, 106, 137, 139, 241].

In addition to satisfaction, user performance and preference are also two key aspects for

meta-evaluation. Several studies have investigated the correlation between metrics and user

performance, such as the number of relevant documents found by the user [83, 219]. It is
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also desirable to investigate the extent to which metrics predict user preferences [182, 186].

Other authors contend that a metric should have an accurate user model, reflecting ac-

tual user behaviour [20, 39]. There are also comparison-based meta-evaluation approaches,

such as the notion of sensitivity, which measures how sensitive a metric is to small changes

in the ranking [167]. As opposed to the empirical-based approach, axiomatic-based meta-

evaluation employs mathematical techniques to decide whether an effectiveness metric

satisfies a predefined set of stipulated properties. This section describes existing meta-

evaluation approaches for offline search effectiveness metrics, including their classification

and the connection between them.

2.6.1 Meta-Evaluation Based on User Satisfaction

A good metric is the one that has a strong positive correlation with user satisfaction. There

have been at least two ways of evaluating how well a metric predicts the user satisfaction:

1. Direct computation of correlation coefficients, such as Pearson r, Spearman ρ, or

Kendall τ , between metric scores and satisfaction ratings given by users, which can

be carried out in both query- and session-levels; and

2. Evaluation of whether or not offline measurements correlate with online metrics that

are deemed to reflect user satisfaction.

The first approach is common and adopted by the recent developments of effectiveness

metrics for both query- and session-levels [5, 46, 91, 104, 106, 137, 139, 241]. While this

meta-evaluation approach is simple (given a set of user satisfaction ratings), it has two

drawbacks. First, user-reported satisfaction ratings cannot be obtained at scale. Second,

Hufnagel [92] argues that user satisfaction ratings only reflect individual performance,

rather than the overall performance of a system. Hufnagel then found that there is a

possibility that the user discounts the performance of the system even though it actually

performs well.

The second approach provides an alternative in the absence of user satisfaction ratings.

Previous work has shown that user satisfaction can be estimated using online indicators,

such as the number of clicks in a session and the reciprocal of clicked ranks [46, 167]; and

that a sequence of user actions can be used to predict search successfulness [77]; and that

there is a relationship between implicit metrics (for example, clickthrough patterns, the

total time spent on a SERP, and the patterns of how the user ends a query or a session)

and users’ explicit satisfaction ratings [65]. Chapelle et al. [44] used clickthrough metrics to
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evaluate their proposed metric, expected reciprocal rank (ERR). They argue that when the

score of a metric is highly correlated with that of clickthrough metrics, it is an indication

that the proposed metric captures user satisfaction. In their proposal, they used five click

metrics:

1. UCTR – A binary variable indicating whether or not a click was observed in a

session;

2. Max RR – The maximum reciprocal clicked ranking position. This metric returns

zero if no clicks were observed;

3. Mean RR – The mean reciprocal clicked ranking position. This metric returns zero

if no clicks were observed;

4. SS – A similar metric to UCTR, ignoring cases in which the click happened at

ranking positions where low-quality documents appeared;

5. PLC – Precision at lowest click. The ratio between the number of clicks and the

deepest clicked rank.

2.6.2 Meta-Evaluation Based on User Performance

A number of authors have investigated the relationship between scores generated by effec-

tiveness metrics and user performance. Hersh et al. [83] show that the performance of an

instance recall task, measured by the proportion of instances for a particular topic that are

identified within a set of documents saved by the user, lacks relationship with AP. Turpin

and Hersh [218] compare user performance on baseline and improved systems based on

AP, and demonstrate that users did not benefit from extra relevant documents appearing

on top-10 rank positions when performing a question-answering task.

Turpin and Scholer [219] used five search systems with five different AP levels (from

55% to 95%) and asked participants to solve a precision-based task (finding a relevant

item) and a recall-based task (finding as many relevant documents as possible in five

minutes) using those five systems. User performance for the former and the latter tasks

are measured by, respectively, the time taken to spot the first relevant document, and the

number of relevant documents identified in a five minute period. The results suggest that

user performance has a weak relationship with system performance when measured by AP

on these two tasks. For the former task, they also show that the relationship between user

performance and Prec@K (K ∈ {2, 3, 4, 10}) is weak.
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Allan et al. [8] investigate the relationship between user effectiveness (measured by

time on task, proportion of the correct facets found by users) and system effectiveness

(measured by BPref). In general they find that retrieval system effectiveness is aligned with

user effectiveness. However, for several specific cases, the relationships are not significant.

For example, when BPref improves from 70% to 90%, there is no evidence that the time

taken by the task decreases; and when BPref increases from 60% to 70%, there is no

significant difference in the proportion of correct facets.

Al-Maskari et al. [6] carry out user studies using two systems with different AP scores

(bad system with AP = 0.05 and good system with AP = 0.20), and observe user perfor-

mance when using these two systems. Five user performance factors are employed: time to

find the first relevant document; number of saved relevant documents; number of queries;

user satisfaction; and easiness. When users used the bad system, they spent more time

to save the first relevant document, saved fewer relevant documents, and issued more

queries in the session. With a good system, the same users were more satisfied (as indi-

cated by user-reported 4-point satisfaction ratings), and found that the tasks are easier

(as indicated by user-reported 4-point easiness ratings). Al-Maskari et al. also observe

that Prec@200 has a stronger relationship with each of the five user performance factors

than AP; and that AP has the weakest correlation with satisfaction (r ≈ 0.12) compared

to Prec@K with K ∈ 10, 20, 50, 200 (all with r ≈ 0.30). This once again suggests that AP

lacks correlation with user performance.

Smucker and Jethani [196] construct two different ranked lists with different levels of

precision, one with a uniform Precision level of 0.6 (good ranking) and the other with a uni-

form Precision level of 0.3 (bad ranking), and then observe the changes of user performances

on these two rankings. When inspecting the SERP with lower Precision, users tended to

spend more time viewing result snippets, and were less likely to click on non-relevant

documents. When examining the SERP with higher Precision, the maximum ranks that

were viewed by the same users were likely to be shallower. Smucker and Jethani finally

conclude that Precision and human performance have a strong relationship, and suggest

that when a metric effectively includes a model of user behaviour, the metric correlates

better with human performance. Indeed, they argue that the mismatch between existing

offline metrics and user performance is due to the assumption that users take a constant

time to inspect every document in the ranking. This observation leads to proposal of the

metric TBG [195].
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2.6.3 Meta-Evaluation Based on User Preference

Thomas and Hawking [210] report preference-based experiments where two rankings with

different quality are shown to the same user, side-by-side in the same window. One panel

presents top-10 results from Google.com, assumed to be a good set of answers; and the

other one displays Google.com’s list of results from rank 21 to rank 30, assumed to be a bad

set of answers. Even though no effectiveness metric is explicitly used for these rankings,

it can be assumed that good rankings have better Prec@10 compared to bad rankings.

They found evidence that users tend to prefer the good set of search results over the

bad counterpart, both when users were given pre-defined head queries from Google.com

(popular queries) and when they were encouraged to use their own topics (natural queries).

However, there is no evidence that users preferred the ranking in the left-hand or right-

hand panels in either of these two experiments. Similar results were also observed, when

the rankings overlapped (Google.com’s top-10 results in one panel and results from rank

6 to 15 in the other).

Sanderson et al. [186] investigate the extent to which offline metrics predict user pref-

erences, using sets of topics and subtopics from a diversity task for TREC 2009 Web track.

Inspired by the side-by-side presentation method of Thomas and Hawking [210], two sets of

top-10 results from a pair of runs are displayed to users (via a crowdsourcing service) who

are then asked to indicate which of the two they prefer, if either. They found a significant

result in the level of agreement between several diversity measures, such as α-NDCG, and

user preferences. Treating each subtopic as a distinct topic, several adhoc metrics (NDCG,

RR, ERR, and Prec@10) are also computed and compared with user preferences. The results

also suggest that these adhoc metrics are aligned with user preferences with a level of

agreement of around 65%.

Sakai and Zeng [182] argue that the work of Sanderson et al. [186] has a weak connec-

tion with intentwise graded relevance evaluation. By using a set of topics and intents from

NTCIR-9 INTENT-1 task, they compute the agreement level (measured by Kendall’s τ)

between user preferences and several adhoc measures based on graded relevance. In addi-

tion to several adhoc measures (Precision, QM, RBP, NDCG, and ERR), they also introduce

two new metrics. The first one is intentwise rank-biased utility (iRBU@K), a component of

rank biased utility [13], computed as:

iRBU@K(−→r ;φ,K) =
K
∑

i=1



g(ri) ·
i
∏

j=1

(1− g(rj))



 · φi ,
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where φ is the persistence parameter and g(ri) = (2ri − 1)/2rmax is the gain mapping

function used in ERR. The second new metric is a combination between ERR and QM,

called expected blended ratio [182, p. 597]. The results show that NDCG and iRBU@K have the

strongest agreement with user preferences among all adhoc metrics in their experiments.

Two metrics, NDCG and iRBU@K (φ = 0.99), predict user preferences with Kendall’s τ ≈

0.80. The other metrics, QM, RBP, and expected blended ratio, perform relatively well

(τ ≈ 0.76). However, ERR has the weakest relationship with user preferences (τ ≈ 0.60).

2.6.4 Meta-Evaluation Based on User Model Accuracy

This kind of meta-evaluation focuses on assessing how accurate the user model embed-

ded in a metric is. This generally can be done by computing a closeness score, such as

squared error or likelihood [20], between the model and actual user behaviour observed

from interaction logs. Furthermore, it is also necessary to operationalise the concept of user

behaviour, such as via the notion of continuation probability, CM (i), and last probability,

LM (i). Azzopardi et al. [20] adopted theory from the field of economics and argued that a

good metric should reflect the actual user behaviour. Based on the findings by Hassan et al.

[77], that user behaviour can be used to predict search successfulness, Azzopardi et al. [20]

proposed the following three approaches for meta-evaluation of an effectiveness metric.

This method requires clickthrough logs with the corresponding relevance judgements for

each query-document pair in each ranking.

1. Stopping rank likelihood – comparing the stopping probability of a user model em-

bodied in a metric with empirical distribution of stopping ranks estimated from

clickthrough logs (using mean likelihood). A similar meta-evaluation experiment

was also carried out by Carterette [39];

2. Estimating experienced utility – comparing the utility estimated using the proposed

user model and the actual utility experienced by the user, by assuming that the user

only derived utility from clicked ranking positions (using mean squared error); and

3. Estimating time spent on the SERP page – comparing the expected total time es-

timated by the proposed user model and the actual time spent observed from the

interaction logs.

A major concern is that it is still not clear that a metric that has an accurate user

model also correlates with user satisfaction. Use of a range of factors is thus appropriate,

anticipating that each will contribute to an overall assessment of any proposed relationship.
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2.6.5 Comparison-Based Meta-Evaluation

Other work quantifies the relative behaviour of a metric compared to the behaviour of a

reference metric [39, 151, 167, 177]. The main goal is to understand which one among

several metrics is preferable in terms of a specific property or criteria.

Carterette [39] proposed a method to evaluate robustness of an effectiveness metric:

the extent that the metric produces approximately the same decisions whether they are

conditioned on a few versus many topics, or shallow versus deep pools. Radlinski and

Craswell [165] compared interleaving-based evaluation [167] with traditional metrics, such

as Prec@K, NDCG, and AP, in terms of their sensitivity to the small changes in the ranking

quality. In terms of judgement cost, Moffat and Zobel [151] proposed the notion of residuals,

the extent of uncertainty due to unjudged documents, to compare judgement effort among

weighted-precision metrics.

Sakai [177] used the notion of discrimination power, which is defined as the probability

that a metric successfully concludes “System A is significantly better than System B (under

a certain statistical test)” in a shared task environment (TREC evaluation), to compare

the stability of several metrics (see Lu et al. [141] for another definition of discrimination

power). Hence, it is difficult to draw conclusions using a metric with a low discrimination

power in the experiments. Moreover, the notion of discrimination power has been used in

the recent developments of metrics, such as TBG [195] and UM [181]. Buckley and Voorhees

[32] used a similar notion when they concluded that AP@1000 is better than Precision.

2.6.6 Axiomatic-Based Meta-Evaluation

The aforementioned meta-evaluation methods are based on empirical experiment, often

with the help of statistical methods, to compare one metric with either a reference metric

or a gold standard, such as satisfaction ratings. On the other hand, axiomatic-based meta-

evaluation requires a set of predefined desirable axiomatic properties. The meta-evaluation

process thus involves using any mathematical proofing technique to decide whether or not

a particular metric satisfy the properties [10, 11, 12, 64, 149].

Moffat [149] proposed seven possible numerical properties of effectiveness metrics that

can be used to compare metrics; and to understand the advantages as well as the drawbacks

of metrics through the lens of such properties. For example, one of the seven properties is

the monotonicity property, which states that if an evaluation depth is extended from K

to (K + 1), the score should not decrease. Similarly, Ferrante et al. [64] introduced two

properties for utility-based metrics: replacement and swap. The former property states that
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replacing an item with a more relevant one at the same position in the ranking should not

decrease the score, while the latter asserts that swapping a more relevant item in a lower

rank position with the less relevant one in a higher position should not decrease the score.

2.7 Summary

We introduced the core concept for the evaluation of information retrieval system, specif-

ically focusing on the importance of incorporating user contexts into offline search effec-

tiveness measures. Section 2.1 provided an overview of test collection-based evaluation

paradigm, including its existing effectiveness measures which are mostly defined based

on two classic measures, Precision and Recall. We argued that a desirable measure should

be computed based on (only) the part of the ranking that has been examined; and that

recall-based measures face potential problems, including that they take into account un-

retrieved documents that have never been inspected by users. We further contended that

integrating an accurate user model into precision-based measures would be more useful,

rather than focusing on how to accurately estimate recall.

Section 2.2 provided an overview of methodologies for exploring user search behaviours

from search interaction logs, gaining insights regarding interaction patterns when users

inspect SERPs. Section 2.3 introduced several existing user models through the lens of the

C/W/L framework. With this framework, the concept of user behaviour is operationalised

via three interrelated hypothetical functions: conditional continuation probability function,

weight probability function, and last probability function. Furthermore, the notion of

continuation probability, denoted by C(·), is particularly of interest since most of the

offline measures can be explained using this function, rather than using the other two

functions. Several authors have postulated properties regarding how an ideal C(·) should

behave. A classification of existing user models was also introduced in Section 2.4.

Effectiveness metrics need to be assessed. Several aspects for meta-evaluation have

been proposed, including user satisfaction. Section 2.5 describes the notion of user satis-

faction and its relationship with implicit feedback. Section 2.6 introduced several meta-

evaluation strategies for offline effectiveness measures, grouped into six classes, ranging

from experimental-based approaches to axiomatic-based ones.

However, a number of issues need to be raised in the development of C/W/L-based

effectiveness metrics. First, it is necessary to connect the hypothetical properties regarding

C(·) with what is actually observed from the real search interaction logs. Therefore, we

develop a methodology for inferring C(·) from interaction logs in Chapter 3, with em-
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phasis on how to infer gaze distribution from clickthrough data and subsequently use the

inferred distribution for the computation of the observed C(·). Chapter 4 shows empirical

evidence for hypothetical properties of C(·) that have been postulated by Moffat et al.

[155]. Second, existing measures mostly focus on scoring a single query with respect to

a single information need. However, users often submit more than one query to fulfill a

need. Therefore, it is desirable to have a session-based measure that considers a multi-

query session as a single scoring unit. In Chapter 4, we introduce a session-based C/W/L

framework and develop a new session-based measure based upon it. Finally, we further

develop and demonstrate a C/W/L-based meta-evaluation framework in Chapter 5, mea-

suring the relationship between predicted C(·) and observed C(·); and between metric

scores and user satisfaction.



Chapter 3

Modelling User Actions

Typical search engine users interact with SERPs via at least two different actions: impres-

sions (views) and clicks. A collection of search actions is thus a key resource to understand-

ing what factors contribute to conditional continuation probability and to calibrating the

parameters of user-based search effectiveness metrics. This chapter investigates the rela-

tionship between these two kinds of action, particularly the extent to which impressions

can be predicted from clicks. The goal of this chapter is to construct tools for inferring

observed behaviour from interaction logs, including a framework for inferring impression

distributions from click-based logged behaviours and an approach to computation of em-

pirical estimates of continuation probability.

Section 3.1 introduces our motivation and problem statement. Section 3.2 describes

the interaction logs used in our analysis and experiments. The estimation of continuation

probabilities from interaction logs is critical to the development of an accurate user model.

Section 3.3 describes three alternatives for computing empirical conditional continuation

probabilities, denoted by Ĉ(i), from a collection of impression sequences. However, im-

pression data may not always be available from operational search logs. In the absence of

impression sequences, it is desirable to be able to infer the impression distributions from

clickthrough sequences. This process can be done via an impression model.

The material in Section 3.3 is based on the following published papers:

• Alfan F. Wicaksono and Alistair Moffat. Empirical Evidence for Search Effectiveness Models. In
Proc. CIKM, pages 1571–1574, 2018.

• Alfan F. Wicaksono. Measuring Job Search Effectiveness. In Proc. SIGIR, page 1453, 2019.

The material in Section 3.4 is based on the following published paper:

• Alfan F. Wicaksono and Alistair Moffat. Exploring Interaction Patterns in Job Search. In Proc.

Aust. Doc. Comp. Symp., pages 1–8, 2018.

The material in Sections 3.5 and 3.6 is based on the following published paper:

• Alfan F. Wicaksono, Alistair Moffat, and Justin Zobel. Modeling User Actions in Job Search. In
Proc. ECIR, pages 652–664, 2019.

73



74 Modelling User Actions

Section 3.4 explores several interaction patterns in regard to impressions and clicks. The

insights gained from that exploration are then employed for the development of impression

models in Section 3.5. Finally, Section 3.6 demonstrates how to compute empirical Ĉ(i)

using impression models and shows that the resultant Ĉ(i) is close to the “true” Ĉ(i)

computed using actual impression sequences.

3.1 Motivation and Research Question

Users’ viewing and clicking behaviours may exhibit a variety of search interaction patterns.

For example, users may click on the results in the ranking in turn; or they may inspect

many results below rank i before deciding to click at rank i; or they may examine a number

of results beyond the deepest click rank; or they may not click in a sequential order; or

they may perform “one-step jump, and then two-step jump”. Modelling of these interaction

patterns is a key step for the evaluation of a search engine, and thus can provide guidance

for improving its design or effectiveness.

After submitting a query and then obtaining a response from a search engine, users

exhibit a series of activities. There are at least two types of activity: viewing the result listed

at rank i (that is, an impression at rank i) and clicking at rank i. There may be additional

types of action in other domains, such as “apply for job” in job search, “download resume”

in talent search, “add to wishlist” in product search, and “follow playlist” in music search.

A collection of action sequences is then a useful resource for exploration of interaction

patterns and for gaining insights about how each of the actions relate to each other.

In particular, impression data is critical to the development of effectiveness metrics

based on user model, such as for understanding in what order the user would inspect the

ranking, and for investigating factors contributing to conditional continuation probabili-

ties. The first part of this chapter addresses the following research question:

RQ 3.1: How to infer empirical Ĉ(i) from a collection of impression sequences?

We propose a method for inferring conditional continuation probability from impression

sequences, and demonstrate the use of inferred Ĉ(i) for tuning the parameters of three

static user models: SDCG, RBP, and INSQ, and for comparing which among them provides

the most accurate C(i). The proposed method will also be used in Chapter 4 for exploring

factors that influence C(i).

However, impression sequences may not be observable, while clickthrough sequences

almost always are, particularly from commercial search engine logs. In the absence of
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1 4 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

Click sequence Inferred impression

Figure 3.1: Inferring impression distributions from clickthrough sequences. The spectrum
of red color on the right-hand side represents the inferred impression probabilities, denoted
by V̂ (i | u, q).

impression sequences, previous work has employed click-based signals, such as the last click

rank or the deepest click rank, to mark the end point examined by a user, usually with the

assumption that the user inspects the search results in turn from the top. Carterette [39]

used the collection of last click ranks over queries to compute a stopping rank distribution

across all rank positions. Azzopardi et al. [20, 22] also assumed that the last click rank

is the stopping rank, and then demonstrated how to use this assumption for inferring

conditional continuation probability from clickthrough logs. Lipani et al. [135] used the

deepest click rank, instead of the last click rank, for marking the last point inspected

by the user. As is shown by our analysis, below, users often examine results beyond the

deepest click rank; and that the last click is not necessarily the last action in the sequence.

The second part of this chapter describes a methodology for inferring the impres-

sion distributions from clickthrough actions (that is, an impression model). Let CR =

〈cr1, cr2, . . . , cr |CR|〉 be a chronologically-ordered sequence of click ranks observed from a

particular user and V (i | u, q) be the probability that the user u performed an impression

action at rank i for query q. An impression model then takes CR as an input and returns

an estimate V̂ (i | u, q) as an output. A possible way to do this is by assuming that the

user always inspects all items earlier than the deepest click rank (that is, V̂ (i | u, q) = 1

if i ≤ max(CR)) and by imposing probability distributions, 0 ≤ V̂ (i | u, q) ≤ 1, for

i > max(CR). Figure 3.1 illustrates this mechanism with CR = 〈1, 4, 6〉.

The approach proposed by Zhang et al. [244] is the only previous work that addresses

the development of impression model. They used the average gap between two consecutive

clickthroughs to extrapolate V (i | u, q) beyond the deepest click rank. However, they did

not have resources that would have allowed their models to be validated.

We have access to interaction logs from a popular Australasian job search engine,

Seek.com. The design of the Seek.com user interface (mobile- and desktop-based appli-

cations) allows recording of impression sequences from real search users. This impression
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data is a valuable resource for developing impression models as well as for validating their

effectiveness. Hence, the following research question is considered:

RQ 3.2: How to estimate V̂ (i | u, q) from click logs?

We develop regression-based impression models based on our analysis on a collection of

impression sequences. Finally, this new impression model is experimentally compared to

previous approaches, including the proposal by Zhang et al. [244], demonstrating that the

new model is more accurate than the previous approaches, and is useful for inferring Ĉ(i)

from click logs.

3.2 Action Sequences and Interaction Logs

This section begins by introducing the notion of an action sequence, an abstraction that

is applied to a sample of interaction logs used in our experiments, and then describe the

characteristics and statistics of the experimental interaction logs.

3.2.1 Action Sequences

This study uses a large and rich sample of search interaction logs from a popular job search

website, Seek.com, as a primary source of observations of user behaviour, providing a basis

to develop as well as calibrate a user model for a particular metric. The interaction logs

contain a collection of action sequences, where an action sequence is an ordered list of

post-query actions of a particular user that interacted with a ranking containing a list of

search results. Formally, an action sequence is defined as:

A = 〈(a1, r1), (a2, r2), (a3, r3) . . . 〉 ,

where (at, rt) is an action containing two elements: (1) an action type, at; and (2) a ranking

position at which the action at has occured, rt ≥ 1.

The behaviour of users is recorded in any of three action types. The first type is

impression (at = “I”), which is recorded when a particular search result is fully visible

on screen for 500 milliseconds or more. Note that a sequence of impressions is not the

same as a sequence of examinations, since the user might not read an item that is fully

visible on screen [245]. With Seek.com, a typical screen can show 3 to 4 search results for a

general desktop-based website at the same time (see Figure 3.2), and 1 to 2 search results
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Figure 3.2: A SERP containing a ranked list of job snippets, generated by Seek.com on
2020-05-27, for the query “programmer”. This screenshot was taken on a desktop-based
browser.

for a mobile-based application (see Figure 3.3). By looking at how Seek.com designed

its job search interface, a large set of impression sequences is then a precious resource

for exploring and modelling user behaviour, especially from the perspective of conditional

continuation probability [155].

The second type of action is clickthrough (at = “C”), which is associated with an

event where the user clicks at a particular search result in the ranking so as to reach the

corresponding job details page. The third one is application (at = “A”), which occurs when

the user presses the “apply for this job” button in the details page with the expectation

that they may lodge an application sometime in the future.

In the context of Web search, clickthrough data has served as a valuable feature for pre-

dicting relevance [167] and provides a reasonably good surrogate for user satisfaction [46];

while, in the context of job search, clickthroughs and applications together serve as useful
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Figure 3.3: A SERP containing a ranked list of job snippets, generated by Seek.com on
2020-05-27, for the query “programmer”. This screenshot was taken on an Android-based
Seek.com application.

proxies for measuring the quality of SERPs [134, 174, 183]. In addition to action sequences,

our interaction logs contain other useful information, such as user id, query terms, channel

(browser-based web application or mobile application), and device type (desktop, phone,

and tablet).

To give an illustration of an action sequence, consider the following example:

A1 = 〈(“I”, 1), (“I”, 2), (“I”, 3), (“I”, 4), (“I”, 3), (“C”, 3),

(“A”, 3), (“I”, 5), (“I”, 6), (“I”, 7), (“C”, 7),

(“I”, 6), (“I”, 5), (“I”, 7), (“I”, 8), (“C”, 8), (“A”, 8)〉 .
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1 2 3 4 3 5 6 7 6 5 7 8 3 7 8 3 8

1 2 3 4 3 3 3 5 6 7 7 6 5 7 8 8 8

Impressions Clicks Applications

Action sequence

Figure 3.4: An action sequence as the interleaving of impression, click, and application
sub-sequences.

In this action sequence A there are three clicks, at ranks 3, 7, and 8, as well as two job

application actions, at rank 3 and 8; and the user has viewed the results from rank 1 to

rank 4, and then gone backward to rank 3 before clicking it. The user finally ended the

query by viewing, clicking, and applying for the job listed at rank 8. Each action sequence

can also be thought of as the combination of three types of sequence: impression sequence,

clickthrough sequence, and application sequence, as illustrated in Figure 3.4.

3.2.2 Interaction Logs

Table 3.1 provides a summary of the two search interaction logs used in this study. The

desktop browser-based SERP is partitioned into several pages, where each consists of

20 results. Meanwhile, the mobile-based SERPs have no pagination, allowing users to

continuously scroll through results pages. Note that a pagination is associated with an

interface design, at which users need to click the “next” button usually located at the

bottom of any page in order to shift their attentions to the next result page. That is, moving

to the next page needs a clicking effort. Figure 3.5 (page 81) shows a page navigation

tool generated by the Seek.com browser-based Web application. Although the mobile-

based application does not have paginations, it has small page-boundary marks. However,

mobile-based application users can still smoothly scroll down to the next page.

We argue that these interaction logs, which capture footprints of user behaviour “from

the wild”, have potential use in IR evaluation. This study focuses on using the data: (1)

to understand the variability of user behaviours from the perspective of conditional con-

tinuation probability; and (2) to develop and calibrate a user model. The proposed user

model will then be incorporated into an effectiveness metric that calculates the usefulness

of search engine results pages. Note that the sample of interaction logs used in our ex-
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iOS/Android browser

Users 5, 003 5, 107
Queries, or Action Sequences 74, 475 54, 341
SERP size unlimited paginated, 20

Table 3.1: Dataset used in this study, consisting of representative samples drawn from
Seek.com search interaction logs for a 2-month period (30 July 2018 to 23 September
2018), with two modalities, iOS/Android-based vs desktop browser-based queries. Note
that SERPs containing “paid items” are excluded.

periments do not contain any personally identifiable information (PII). Two potentially

sensitive fields, query terms and document content, are also not considered in this study.

3.3 Inferring Continuation Probability

Recall that the concept of user behaviour can be operationalised by any of three inter-

related characteristics: continuation probability, C(i); weight probability function, W (i);

and last probability, L(i). The continuation probability is of particular interest because

of its use in the development of effectiveness metrics [20, 22, 155]. A computation of

empirical Ĉ(i) from observation data is key to modelling C(i) itself, since it is critical

for investigating factors that potentially affect predicted C(i) (such as the work carried

out by Moffat et al. [153]) and for measuring the accuracy of predicted C(i). Here we

address RQ 3.1 (page 74), and propose three operational definitions of continuation and

develop a method for computing empirical Ĉ(i) from impression sequences recorded from

real search users.

3.3.1 Computing Empirical C(i)

Notation. The interaction logs described in Table 3.1 contains a collection of user IDs

U = {u1,u2, . . . ,u|U |}, where each user ID corresponds to a set of impression sequences

P(ui) = {P1,P2, . . . ,P|P(ui)|}, the lists of search results they examined when conducting

search activities.

The Empirical Estimate of C(·). An empirical estimation of the conditional contin-

uation probability at rank i, denoted by Ĉ(i), is computed by accumulating a numerator,

N (i,P ), and a denominator, D(i,P ), on a per-impression sequence basis. Two options
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Figure 3.5: Page navigation buttons at the bottom of a browser-based search result page
generated by Seek.com on 2020-06-01, for the query “programmer”.

are then considered for aggregating the per-sequence numerator and denominator over all

impression sequences:

1. a micro-average value across users and queries,

Ĉ(i) =

∑

u∈U

∑

P∈P(u)N (i,P )
∑

u∈U

∑

P∈P(u)D(i,P )
, (3.1)

2. or a macro-average value across users,

Ĉ(i) =
1

|U ′(i)|

∑

u∈U ′(i)

∑

P∈P(u)N (i,P )
∑

P∈P(u)D(i,P )
, (3.2)

where U ′(i) is a collection of users who inspected rank i at least once, or U ′(i) =

{u ∈ U |
∑

P∈P(u)D(i,P ) > 0}.

We also propose three alternatives for defining a continuation, resulting in three rules for

computing the numerator and denominator, as shown in Table 3.2. Rule “L” states that all

impressions in the sequence are continuation, except the final one. The second alternative,

rule “M” records all occurrences of the maximum rank as being non-continuations. Finally,
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Rule N (i,P ) and D(i,P )

L NL(i,P ) =
∑n(P )
k=1 I(pk = i ∧ k < n(P ));

DL(i,P ) =
∑n(P )
k=1 I(pk = i).

M NM (i,P ) =
∑n(P )
k=1 I(pk = i ∧ pk < max1≤j≤n(P ) pj);

DM (i,P ) =
∑n(P )
k=1 I(pk = i).

G NG(i,P ) =
∑n(P )
k=1 I(pk = i ∧ pk < maxk<j≤n(P ) pj);

DG(i,P ) =
∑n(P )
k=1 I(pk = i).

Table 3.2: Three rules for the operational definition of continuation in the impression
sequence P = 〈p1, p2, . . . , pn(P )〉, with I(expr) being an indicator function that returns 1
if expr is true and 0 if not.

rule “G”, a combination of the first two, assigns continuation to any impression in the

sequence that is succeeded by one at a higher ranking position.

For instance, consider P1 = 〈1, 2, 1, 4, 5, 6, 1, 3, 4, 6, 5〉. Rule “L” assigns non-continuation

to the last instance of “impression at rank 5” in the sequence P1, resulting in:

NL(1,P1) = DL(1,P1) = 3 ,

NL(2,P1) = DL(2,P1) = 1 ,

NL(3,P1) = DL(3,P1) = 1 ,

NL(4,P1) = DL(4,P1) = 2 ,

NL(5,P1) = 1 and DL(5,P1) = 2 ,

NL(6,P1) = DL(6,P1) = 2 .

If rule “M” was applied, all instances of “impression at rank 6” are non-continuations.

Hence, rule “M” results in:

NM (1,P1) = DM (1,P1) = 3 ,

NM (2,P1) = DM (2,P1) = 1 ,

NM (3,P1) = DM (3,P1) = 1 ,

NM (4,P1) = DM (4,P1) = 2 ,

NM (5,P1) = DM (5,P1) = 2 ,

NM (6,P1) = 0 and DM (6,P1) = 2 .
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i N(.),D(.)
Sequence

Total
1 2 1 4 5 6 1 3 4 6 5

1
N (.) +1 +1 +1 3
D(.) +1 +1 +1 3

2
N (.) +1 1
D(.) +1 1

3
N (.) +1 1
D(.) +1 1

4
N (.) +1 +1 2
D(.) +1 +1 2

5
N (.) +1 1
D(.) +1 +1 2

6
N (.) 0
D(.) +1 +1 2

Table 3.3: Computations of both N (i,P ) and D(i,P ), accumulated by iterating over
impressions (from left to right) in the sequence P1 = 〈1, 2, 1, 4, 5, 6, 1, 3, 4, 6, 5〉 using the
rule “G”.

Finally, Table 3.3 shows an illustration for the computations of N (i,P1) and D(i,P1) if

rule “G” was employed.

To give an illustration of how to compute Ĉ(·), consider the following dummy dataset

containing two sets of impression sequences from two users u1 and u2:

P(u1) = {〈1, 2, 1, 4, 5, 6, 1, 3, 4, 6, 5〉, 〈1, 2〉, 〈1, 3, 5, 4〉} ,

P(u2) = {〈1, 2, 3, 4, 3, 2, 1〉, 〈1, 3, 1, 4, 2〉} .

Note that the first impression sequence from user u1 is the same instance as the sequence

P1 used in Table 3.3. If rule “G” was employed with the micro-averaging aggregation

method, the Ĉ(i) values for some rank positions are:

Ĉ(1) =
(3 + 1 + 1) + (1 + 2)

(3 + 1 + 1) + (2 + 2)
= 0.889 ,

Ĉ(2) =
(1 + 0 + 0) + (1 + 0)

(1 + 1 + 0) + (2 + 1)
= 0.400 , and

Ĉ(3) =
(1 + 0 + 1) + (1 + 1)

(1 + 0 + 1) + (2 + 1)
= 0.800 .

However, if the same five impression sequences were to be processed using the same rule,
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but with macro-averaging aggregation across two users, the results would be:

Ĉ(1) =
1

2

(

(3 + 1 + 1)

(3 + 1 + 1)
+

(1 + 2)

(2 + 2)

)

= 0.875 ,

Ĉ(2) =
1

2

(

(1 + 0 + 0)

(1 + 1 + 0)
+

(1 + 0)

(2 + 1)

)

= 0.417 , and

Ĉ(3) =
1

2

(

(1 + 0 + 1)

(1 + 0 + 1)
+

(1 + 1)

(2 + 1)

)

= 0.833 .

Recall that the dataset used in this study contains 74,475 mobile-based action se-

quences and 54,341 browser-based action sequences (see Table 3.1 on page 80). This

dataset was then employed to compute empirical Ĉ(i) for 1 ≤ i ≤ 50. Top-50 is par-

ticularly interesting, since user behaviours at top two page boundaries can be observed,

and the deepest impression rank positions of around 95% of mobile- and browser-based

action sequences are less than 50. Figures 3.6 and 3.7 show the plots of empirical Ĉ(i)

functions for iOS/Android and browser-based queries, respectively, across top-50 rank po-

sitions. For mobile-based search activities, it can be seen that Ĉ(i) generally increases

with rank i for all rules (Table 3.2) and all aggregation methods. The plots of Ĉ(i) for the

browser-based searchers also reveal a similar pattern, but with obvious significant drops

at page boundaries, suggesting that users are disinclined to click the “next page” button

at the end of each page. These results demonstrate that the three operational definitions

of continuation (rules “L”, “M”, and “G”) are consistent in the sense that they provide the

same general behavioural pattern. Note that this result provides empirical corroboration

for the “sunk cost” property proposed by Moffat et al. [153, 155].

The broad trend depicted in Figures 3.6 and 3.7 also serves as an empirical evidence

for a hypothesis postulated by Moffat et al. [153], which states that the continuation

function C(i) is positively correlated with rank position i. Several user models, such as

SDCG@K (a scaled version of DCG@K [102]) with i < K and INSQ [152] comply with this

hypothesis. While SDCG employs a log-harmonic sequence to model the increase of C(i)

with i (for i < K):

CSDCG =

{

log(2)

log(3)
,
log(3)

log(4)
,
log(4)

log(5)
,
log(5)

log(6)
, . . .

}

= {0.63, 0.79, 0.86, 0.90, . . . } ,

the definition of INSQ employs a quadratic version of hyper-harmonic sequence (T = 3):

CINSQ =

{

(

6

7

)2

,

(

7

8

)2

,

(

8

9

)2

,

(

9

10

)2

, . . .

}

= {0.73, 0.77, 0.79, 0.81, . . . } .
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Figure 3.6: Observed Ĉ(i) for iOS/Android-based queries across top-50 rank positions,
computed using three different rules, and then micro- (top) and macro-averaged (bottom)
from the Seek.com impression sequences. The plots of C(i) for two static user models,
SDCG@50 and INSQ with T = 3, are also shown for reference.
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Figure 3.7: Observed Ĉ(i) for desktop browser-based queries across top-50 rank positions,
computed using three different rules, and then micro- (top) and macro-averaged (bottom)
from the Seek.com impression sequences. C(i) plots for two static user models, SDCG@50

and INSQ with T = 3, are also shown for reference. Recall that C(i) relates to progressing
past rank i, and that the spikes at ranks 20 and 40 relate to page boundaries. For example,
C(20) is the probability of the user shifting from rank 20 (the last result on page 1) to
rank 21 (the first result on page 2).
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At the beginning, it is clear that CINSQ(1) > CSDCG(1). However, starting from rank

position 2, the C(i) of SDCG tends to increase with i faster than that of INSQ.

3.3.2 Predicted C(i) Versus Empirical Ĉ(i)

To measure the closeness of predicted C(i) for a particular user model and empirical Ĉ(i)

computed from the data, we propose to use weighted mean squared error (WMSE(., .)):

WMSE(Ĉ, C) =
N
∑

i=1

wi ·
[

C(i)− Ĉ(i)
]2

, (3.3)

where wi = fi/(
∑

j fj) is the weight associated with the relative frequency of the item at

rank position i being inspected by users computed from the observation data, and sums

to one,
∑

iwi = 1; and N is the evaluation depth. The weighting is required because

C(i) itself is not a distribution, and the errors generated from deeper rank positions,

which usually have low empirical support, should contribute less to the overall error score,

compared to those from earlier positions.

This study considers three offline metrics whose user models are non-adaptive (INSQ,

SDCG, and RBP), and optimise their parameters by minimising WMSE(., .). Both INSQ

and SDCG were chosen because one of their key assumptions is consistent with the general

trend observed in Seek.com data (Figures 3.6 and 3.7), while RBP was considered since

previous work demonstrated that its user model is closely aligned with clickthrough-based

observed behaviour [44, 244].

Tables 3.4 (page 88), 3.5 (page 89), and 3.6 (page 93) show the best-fit parameters with

their corresponding WMSE values using rules “L”, “M”, and “G”, respectively. As can be

seen, INSQ provides the best fit among these three static user models, with RBP also closer

to the observed Ĉ(i) than SDCG, with micro- and macro-average methods giving similar

estimation results, particularly for rule “G”. These experimental results also suggest that

users who inspect paginated SERPs tend to be less persistent than those who examine

result pages with infinite scrolling.

To conclude, our experiment results validate an important interaction pattern, sug-

gesting that C(i) should increase with rank position i. The next section (Section 3.4)

considers insight gained from other interaction patterns, such as impression and click or-

dering, positional distribution of clickthroughs, impressions prior to clickthroughs, and

actions beyond the deepest clickthrough.
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Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 0.76× 10−2 k = 51 0.46× 10−2

RBP φ = 0.94 0.10× 10−2 φ = 0.94 0.51× 10−2

INSQ T = 10.14 0.04× 10−2 T = 11.52 0.42× 10−2

Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 0.75× 10−2 k = 51 0.40× 10−2

RBP φ = 0.94 0.07× 10−2 φ = 0.94 0.50× 10−2

INSQ T = 10.70 0.03× 10−2 T = 9.85 0.39× 10−2

Table 3.4: Best-fit parameters for three static user models computed by minimising
WMSE(Ĉ, C) across top-50 rank positions. This computation employs Rule “L” with
micro- (top) and macro-averaging (bottom).

3.4 Exploring Interaction Patterns

A second contribution of this chapter is a method for computation of impression distri-

butions from clickthrough sequences. The development of this method requires insights

gained from a collection of action sequences. This section explores interaction patterns in

regard to impressions and clickthroughs with emphasis on the extent to which the former

can be inferred from the latter. This section also examines empirical evidence for several

assumptions in the development of existing metrics.

3.4.1 Impression and Clickthrough Orderings

One of the key assumptions underlying many effectiveness metrics is that users inspect

the ranking from top to bottom one by one, starting from the item at rank position 1,

then examining ranks 2, 3, and so on, until they stop searching. Joachims et al. [110], and

Cutrell and Guan [59] validated this cascade assumption using user studies based on eye

tracking in a lab-experiment setting. This study employs a large sample from commercial

interaction logs, as opposed to the lab-based eye tracking data, to re-examine the cascade

assumption. Recall that the notion of impression in Seek.com interaction logs (defined in

Section 3.2 on page 76) serves as a primary resource for understanding viewing behaviour.

As an initial step to explore viewing behaviour, it is desirable to compute the distribu-

tion of impression jumps across all impression sequences in the dataset for both mobile-
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Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 1.15× 10−2 k = 51 1.10× 10−2

RBP φ = 0.93 0.12× 10−2 φ = 0.94 0.21× 10−2

INSQ T = 8.30 0.08× 10−2 T = 10.01 0.18× 10−2

Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 1.09× 10−2 k = 51 0.99× 10−2

RBP φ = 0.93 0.05× 10−2 φ = 0.92 0.26× 10−2

INSQ T = 8.03 0.04× 10−2 T = 7.34 0.22× 10−2

Table 3.5: Best-fit parameters for three static user models computed by minimising
WMSE(Ĉ, C) across top-50 rank positions. This computation employs Rule “M” with
micro- (top) and macro-averaging (bottom).

and browser-based queries. Given an impression sequence P = 〈p1, p2, . . . , pn(P )〉, an im-

pression jump is defined as pk+1 − pk, with 1 ≤ k < n(P ). For example, consider the

impression sequence P2 = 〈1, 2, 3, 5, 4, 2, 4, 7, 6, 5〉. Table 3.7 (page 93) shows the compu-

tation of the distribution of impression jumps for P2.

Figure 3.8 (page 90) shows this distribution inferred from Seek.com data, with the y-

axis rendered in a logarithmic scale. The version with linear y-axis is depicted in Figure 3.9

(page 91). Each bar is divided into three components. First, “previously seen” is for an

impression jump to a rank that had been seen before. The jumps 〈4, 2〉, 〈2, 4〉, and 〈6, 5〉

extracted from the previous example impression sequence P2 = 〈1, 2, 3, 5, 4, 2, 4, 7, 6, 5〉

are two instances from this category since ranks 4 and 5 had been inspected previously.

Second, “non-sequential new” represents an impression jump to a rank that had not been

examined, and is not one greater than the previous maximum rank inspected. In the

example sequence P2, the jumps 〈3, 5〉, 〈5, 4〉, 〈4, 7〉, and 〈7, 6〉 are from this category.

Finally, “sequential new” is a movement to a rank position that follows the previous

maximum rank inspected. For this category, the jumps 〈1, 2〉 and 〈2, 3〉 are the examples

from P2.

In general, “+1” impression jumps dominate the distribution, suggesting that users

tend to scan down the ranking in a sequential manner. This justification is also reinforced

by the fact that the “sequential new” cases are the majority in the “+1” bar. That is,

when an item is inspected for the first time, it is most likely the next one in impression

sequence that has not been examined previously. The fact that “–1” jumps are the second
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Figure 3.8: Distribution of impression jumps, with the y-axis rendered in a logarithmic
scale. The top pane is for iOS/Android-based queries, and bottom pane for browser-based
queries.
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Figure 3.9: The same distribution of impression jumps as described in Figure 3.8, but with
the y-axis rendered in a linear scale. The top pane is for iOS/Android-based queries, and
bottom pane for browser-based queries.
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Figure 3.10: Probability of the next jump (y-axis) conditioned on the first jump (x-axis).
Note that each column adds up to 1. The top pane is for iOS/Android-based queries, and
bottom pane for browser-based queries. This graph is drawn based on the proposal of
Thomas et al. [211], but derived using a different data (Seek.com).
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Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 1.03× 10−2 k = 51 0.80× 10−2

RBP φ = 0.88 0.23× 10−2 φ = 0.85 0.39× 10−2

INSQ T = 4.36 0.13× 10−2 T = 3.29 0.18× 10−2

Model
iOS/Android browser

parameter WMSE parameter WMSE

SDCG k = 51 0.94× 10−2 k = 51 0.89× 10−2

RBP φ = 0.88 0.14× 10−2 φ = 0.85 0.44× 10−2

INSQ T = 4.47 0.07× 10−2 T = 3.18 0.21× 10−2

Table 3.6: Best-fit parameters for three static user models computed by minimising
WMSE(Ĉ, C) across top-50 rank positions. This computation employs Rule “G” with
micro- (top) and macro-averaging (bottom).

jump (pk+1 − pk) 〈pk, pk+1〉’s freq.

−2 〈4, 2〉 1
−1 〈5, 4〉, 〈7, 6〉, 〈6, 5〉 3
+1 〈1, 2〉, 〈2, 3〉 2
+2 〈3, 5〉, 〈2, 4〉 2
+3 〈4, 7〉 1

Table 3.7: Frequency distribution of impression jumps for the impression sequence P2 =
〈1, 2, 3, 5, 4, 2, 4, 7, 6, 5〉.

most common following “+1” jumps indicates that users also tend to perform “one step

backwards, and two step forwards”. This pattern of behaviour was first noted by Thomas

et al. [211] in the context of Web search, and appears to also occur in job search.

Investigating adjacent pairs of impression jumps give insights about three consecutive

impressions. For example, the impression sequence

〈1, 3, 2, 3, 4, 5, 3, 5, 6, 7, 5, 2, 1〉

would reduce to the “1-jump” sequence

〈+2,−1,+1,+1,+1,−2,+2,+1,+1,−2,−3,−1〉 ,
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and the latter can be further processed to generate the list of adjacent pairs of jumps

〈(+2,−1), (−1,+1), (+1,+1), (+1,+1), . . . , (−2,−3), (−3,−1)〉 .

Each cell in the Figure 3.10 (page 92) represents the probability of the second jump in

each pair conditioned on the first one. It can be seen that “+1” is the most common next

jump regardless of what magnitude and which direction (+ or −) occurred at the first

jump. This effect is stronger when the direction of the first jump is +. A “+2” jump that

is followed by the “–1” jump is also prevalent regardless of the modality of the query

(mobile or browser). A jump in one direction that is followed by one in the other direction

is quite common, an effect suggested by the fact that the level of shading around the

diagonal is noticeable. Thomas et al. [211] also demonstrate the same result. Note that

this effect is stronger for mobile-based queries. The other noticeable difference between

mobile- and browser-based queries is that a positive jump that is followed by the “–1”

jump is less common in mobile-based queries, suggesting that scrolling-down actions are

more common than scrolling-up actions for mobile-based queries. Jones et al. [112] also

suggest the same finding for search activities using a small screen device.

This study examined the extent to which the clickthrough actions are positionally or-

dered in the collection of action sequences. The queries are first stratified based on the

number of distinct clickthroughs in the sequences, and then compute Kendall’s τ for each

clickthrough subsequence against its sequence of step numbers. The details of the latter

process are described as follows. First, the intermediate sequence 〈(t, rt) | (“C”, rt) ∈ A〉

is formed. Second, Kendall’s τ coefficient is then used to measure the relationship between

t and rt, with repeated clicks being removed. To give an illustration, consider again the

example action sequence A1 described in Section 3.2. In this example, there are three

click actions at ranks 3, 7, and 8, which are also associated with step numbers, respec-

tively, 6, 11, and 16. Thus, the corresponding ready-to-compute intermediate sequence is

〈(6, 3), (11, 7), (16, 8)〉, with τ = 1.0.

The result of this Kendall’s τ analysis is shown in Table 3.8, with users mostly per-

forming clickthrough actions in increasing order. As can be seen, mobile-based users have a

stronger tendency to do this than browser-based users. Figure 3.11, which shows the distri-

bution of clickthrough jumps, portrays the same pattern but from a different perspective.

Positive clickthrough jumps, which correspond to concords when calculating Kendall’s τ ,

obviously dominate the distribution, suggesting that users tend to click the results from

top to bottom.
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Clicks
iOS/Android browser

mean τ τ > 0 mean τ τ > 0

2 0.77 88.4% 0.70 84.8%
3 0.78 86.2% 0.72 83.7%
4 0.83 93.4% 0.75 90.7%
5 0.85 94.4% 0.79 94.7%

Table 3.8: Mean value of Kendall’s τ for clickthrough sequences as a function of the number
of clickthroughs. All paired differences between iOS/Android- and browser-based users are
significant, with p < 0.05 using a t-test for all cases.
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Figure 3.11: Distribution of clickthrough jumps, with y-axis rendered in a logarithmic
scale. This graph only includes jumps 〈−6,−5, . . . ,−1,+1, . . . ,+5,+6〉.

It is also valuable to investigate how click actions are distributed across rank positions.

Figure 3.12 (page 96) shows graphs describing positional distributions of clickthroughs

stratified by the total number of clicks in the SERPs. The cell at index location (i,n)

represents an estimated conditional probability that users clicked on the result listed at

rank position i (vertical axis), given a prior condition that they clicked on a total of n

distinct items (horizontal axis). In general clickthrough actions are top-heavy, and results

listed on a higher ranking position are more likely to be clicked than those on a lower

position, regardless of the final number of clickthroughs.
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Figure 3.12: Positional distribution of clickthroughs as a function of the number of click-
throughs in the action sequence for both mobile- (left) and browser-based (right) queries.

3.4.2 A Prelude to Clickthroughs

It is also interesting to understand user viewing actions before they decide to click at

a particular rank. This is especially useful for gaining insights when building a model

for inferring impression distributions from clickthrough sequences. Figure 3.13 (page 97)

shows the mean number of distinct impressions prior to and including rank position rt, and

beyond the rank position rt, before clicks at rank rt. It can be seen that users tended to

examine all results before and including rank rt prior to a click action at rank rt, and they

also inspected a number of result beyond rt before the click happened. This outcome again

reinforces past observation suggesting that users progress via two steps forward and one

step back [211]. Further, the mean number of inspected items beyond rt for browser-based

queries is higher than that for mobile-based queries. This might be due to the fact that a

desktop screen is taller than mobile screen (see definition of impression in Section 3.2.1).

The assumption that users always inspect all items before rank rt prior to a click

action at rank rt has been employed for approximating user viewing behaviour [135, 244].

Lipani et al. [135] employ this assumption to estimate the fraction of user attentions across

ranking positions, and then use this statistic to measure how close a predicted session-

based user model to the observed behaviour. Zhang et al. [244] use the same assumption

to infer impression distributions from clickthrough sequences, but also compute the mean

length of gap between any two consecutive clicks to predict the distribution beyond the

deepest clickthrough position.
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Figure 3.13: Mean number of distinct results inspected (y-axis) prior to and including
rank rt (unshaded area), and beyond rank rt (green shaded area), with rt being the rank
position of a subsequent click. For example, this graph shows that mobile-based users
inspected on average 4.9 items below and including rank 5, and 2.2 items at ranks deeper
than 5, before they clicked at rank 5.

3.4.3 Last and Deepest Clickthroughs

It is also useful to be able to predict stopping ranks from clickthrough sequences since this

information provides a critical resource for meta-evaluation of a metric, specifically for

calculating the closeness between predicted behaviour underlying a metric and observed

behaviour. Ideally stopping ranks can be accurately observed from impression information.

Unfortunately, impressions are not always observable in real search interaction logs, but

clickthrough information often is. When impression sequences are not observable, stopping

ranks have been approximated using at least two signals: the last clicked ranks and the

deepest clicked ranks. The former had been employed by Smucker and Clarke [195] to

estimate the total time spent by user to scan down the SERP, by calculating the time

interval between the query and the last click observed. It had also been used to quantify

the extent to which a particular user stopping model matches observed stopping behaviour,

either by visually comparing both predicted and observed stopping ranks distributions [39];

or by calculating the likelihood [20]. Recently Lipani et al. [135] use the deepest click to

mark the last inspection point in the SERP, but also with the assumption that users

inspect all results below the deepest clicked point.
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iOS/Android browser

The last click in A at index lc is. . .
. . . the deepest click in A 94.8% 92.4%
. . . the last action in A 16.2% 21.3%
. . . the deepest action in A 13.2% 15.3%

The deepest click in A is. . .
. . . the deepest action in A 14.6% 16.7%

Table 3.9: Statistics regarding the deepest and last clickthroughs, with lc = max{t | at =
“C”} being the last click index in the sequence A. All paired differences are significant
(p < 0.05, two sided z-test).

Here we explore statistics in regard to the last click and the deepest click in the

action sequences, to verify whether observational data supports existing stopping rank

approximation methods, such as those employed by Azzopardi et al. [20] and Lipani et al.

[135]. Table 3.9 shows these statistics. The observation that the last click is usually the

deepest click in the sequence reinforces the supposition that users perform click actions

from top to bottom, as noted previously. However, the two presumptions, that the last

clicked document corresponds to the last impression and that the deepest clicked document

is associated with the deepest click rank, are at odds with our observational results. Users

examined results beyond the deepest clicked rank and after the last click action. Figure 3.14

shows the percentage of action sequences in which each rank position is viewed, stratified

by the rank position of the deepest click action. This suggests that users tend to inspect

all results below the deepest click rank and a number of documents beyond it.

Our observation further suggests that around 40% to 50% of last-click actions (50%

for mobile-based users, and 40% for browser-based ones) were followed by impressions to

new results being inspected for the first time. Another perspective in regard to this issue

can also be seen in Figure 3.15 (page 100). It is obvious that users still re-examined results

that have been previously viewed after the last click action, yet the deepest impression

most likely occurred for the first time after the last click.

By adhering to the assumption that users inspect the SERP sequentially from top

to bottom, the deepest impression rank can be thought of as an estimate for the actual

stopping rank. A critical question that then arises is to what extent the deepest click rank

differ from the deepest impression rank. Let di be the deepest impression rank, and dc

be the deepest click rank. The difference between the deepest impression rank and the

deepest click rank is defined as diff = di − dc. Note that diff is always greater than or

equal to zero (that is, diff ∈ {0, 1, 2, 3, . . . }) since a click action is always preceded by an
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Figure 3.14: Percentage of action sequences in which an impression at a particular rank
position is observed (y-axis), stratified by the rank position of the deepest click action
(x-axis). The upper graph is for iOS/Android-based queries, and lower for browser-based
ones.
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Figure 3.15: Distribution of the deepest impression rank prior to the last click (left box-
whisker element in each group of three); distribution of the deepest impression rank after
the last click action (middle box-whisker element in each group of three); and distribution
of the last impression after the last click (right box-whisker element in each group of three),
with distributions being stratified by the rank position of the last click. the green triangle
and black dots represent, respectively, the mean value of each distribution and the outliers.
Odd depths (only) are shown, with mobile-based queries above, and browser-based ones
below; and only action sequences in which impressions occur both before and after the
last click action are included.
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Deepest click 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iOS/Android 5.9 5.6 6.4 7.0 7.4 7.5 8.1 7.4 8.1 8.0 10.3 9.9 10.0 10.0 10.9
browser 4.5 5.5 6.4 6.5 7.2 6.8 7.4 7.9 7.3 7.3 7.5 8.7 7.7 7.4 8.1

Table 3.10: Mean number of distinct results inspected beyond the deepest clickthrough
rank position, stratified by the rank position of the deepest clickthrough.

impression at the same rank position. Figure 3.16 (page 102) shows the distribution of

diff for diff = 0, 1, . . . , 15. If no clickthroughs are observed, the deepest click rank is set

to zero. In this condition, we find that users examined one or more results beyond the

deepest click rank position around 93% to 94% of the time for both mobile- and browser-

based queries; and that the expected diff for both mobile- and browser-based queries are,

respectively, 8.8 and 7.9. This implies that mobile-based users (with infinite scrolling)

tended to inspect more results beyond the deepest click rank, compared to browser-based

users (with pagination). This is also consistent with what had been observed by Jones

et al. [112], where scrolling-down activities are more common than scrolling-up activities

for small screen users.

The distribution of diff described in Figure 3.16 (page 102) suggests that the deepest

click rank cannot be used as a surrogate for the deepest impression rank (d̂i = dc, with d̂i

being the estimated deepest impression rank). An adjustment process should be applied

to the deepest click rank in order to obtain an approximation [244]. Suppose diff is a

random variable that follows the probability distribution described in Figure 3.16; and di

is also a random variable that is associated with di. Then, a simple approximate solution

is to compute the expected value of di:

d̂i = E[di] = dc + E[diff ] , (3.4)

where E[diff ] = 8.8 (E[diff ] = 7.9) for mobile-based (browser-based) queries. However,

Equation 3.4 might be too näıve for at least one reason: diff is independent of dc. We

argue that it is possible to develop a more accurate approach by exploiting the relationship

between dc and diff .

As shown in Table 3.10, a further observation is that the number of distinct items

inspected beyond the deepest click rank tended to increase with dc itself. This might

indirectly imply that diff is positively correlated with dc. Section 3.5 discusses this issue

in detail, and introduces an accurate approach for inferring impression distributions from

clickthrough sequences.
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Figure 3.16: Distribution of diff , the difference between the deepest impression rank and
the deepest clickthrough rank, with the y-axis rendered in a logarithmic scale, and for
diff ≤ 15. Action sequences that have no impressions are not included.

3.5 Predicting Impression Distributions

We argue that clickthroughs are not directly representative of impressions, particularly

for computing empirical Ĉ(i). However, further analysis suggests that impressions can be

predicted from clickthroughs. This section addresses RQ 3.2 (page 76), introducing an

impression model framework, that is, a mechanism for the prediction of impression distri-

butions from clickthroughs. Interaction patterns described in Section 3.4 are incorporated

into the development of this model.

3.5.1 Can Clickthroughs Directly Substitute for Impressions?

Section 3.3 introduced our methodology for computing an empirical value Ĉ(i) using

impression sequences and described the use of Ĉ(i) for calibrating C/W/L-based user

models. Here, the same process is applied using clickthroughs and the micro-averaging

aggregation method, for the top 50 results. The goal of this section is to see whether

clickthrough sequences can be used as a direct surrogate for impression sequences.

Figure 3.17 (page 104) shows the resulting empirical Ĉ(i) computed using only click-

through sequences across the top 50 ranking positions, with two reference plots of C(i)

for SDCG and INSQ. Consider again the Ĉ(i) curve estimated using impression sequences
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Model
Impression Click

iOS/Android browser iOS/Android browser

RBP φ = 0.88 φ = 0.85 φ = 0.46 φ = 0.46
INSQ T = 4.36 T = 3.29 T = 1.86× 10−18 T = 1.14× 10−18

Table 3.11: Best-fit parameters for RBP and INSQ user models computed using impressions
and clickthroughs by minimising WMSE(Ĉ, C) across top-50 rank positions. Rule “G”
was employed for computing Ĉ(i).

depicted in Figures 3.6 and 3.7 (page 85). Conditional continuation probabilities computed

using clickthrough sequences are consistently lower than those estimated using impression

sequences for the top 50 rankings.

Table 3.11 further compares the best-fit parameters for the offline metrics RBP and

INSQ when they are optimised using impressions and clicks. The resultant best-fit param-

eter values derived from impressions can also be seen in Table 3.6 (page 93). In general,

the clickthrough-based parameter fitting process tends to underestimate the persistence

parameter of RBP, φ, and the expected volume-of-relevance parameter of INSQ, T .

Recently Liu et al. [139] employed a hierarchical linear regression analysis to find

the best-fit SERP-level weights, with query-level satisfaction ratings being the response

variable. Liu et al. [139] further show that the best-fit weights are very close to those

computed using RBP with φ = 0.80. In other words, RBP with φ ≈ 0.80 is expected to

produce a query score that correlates reasonably well with query-level satisfaction ratings.

Further analysis demonstrates that, when impression sequences are employed, the best-fit

values of φ are, respectively, 0.85 and 0.88, for browser- and mobile-based queries (see

Table 3.6). However, when clickthrough sequences are employed, the optimal persistence

parameter for RBP is φ = 0.46 for both modalities, which is notably different to 0.80. Note

that the expected viewing depth for the RBP user model with φ = 0.80 is 1/(1−0.80) = 5.0

items, while with φ = 0.46 it is 1.85 items. This underestimation problem suggests that

clickthroughs are not a direct surrogate for impressions. Thomas et al. [211] make the

same argument, suggesting that impression sequences from eye-tracking experiments reveal

more complex viewing behaviours than clickthrough sequences might suggest, and that the

absence of a click at rank i does not imply that the user did not register an impression at

rank i. Good abandonment is an example of this phenomenon when users are satisfied by

reading the list of snippets in the SERP, without clicking at any of them [133].
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Figure 3.17: Observed Ĉ(i) for mobile- (top) and browser-based (bottom) queries across
the top-50 rank positions, computed using only clickthrough information, and then micro-
averaged from the Seek.com impression sequences. Predicted C(i) plots for two static user
models, SDCG@50 and INSQ with T = 3, are shown for reference.
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3.5.2 Impression Model

Although impressions cannot be directly replaced by clicks, we argue that impressions can,

to some extent, be inferred from clickthrough information. This, however, requires three

assumptions:

1. the user scans down the ranked list of results from the top;

2. reads all results at ranks 1 to n, before they click at rank n; and

3. may also examine a number of results deeper than rank n before or after they click

at rank n.

Empirical evidence for these assumptions have been provided in Section 3.4 (see Figure 3.8

on page 90, Figure 3.13 on page 97, and Figure 3.16 on page 102). The first assumption

had also been validated by a range of eye-tracking experiments [59, 110].

Suppose dc, the deepest click rank, is the only input for the prediction model. Given

dc, Equation 3.4 (page 101) provides a simple solution for computing a point estimate of

the deepest impression rank. The main problem is then to find the best-fit probability

distribution that is followed by the random variable diff , denoted by P (diff = n). The

expectation of diff is simply determined by

E[diff ] =
∞
∑

i=1

i · P (diff = i) .

For a simple model described in Equation 3.4 (page 101), P (diff = n) depends only on

the modality that initiates the queries (that is, mobile or browser), but not on the other

potential factors, such as the dc itself.

Table 3.10 (page 101) already suggested that diff may depend on click-based factors,

including the deepest click rank. A linear regression analysis is employed to identify the

contributions of two click-based characteristics to diff , the difference between the deepest

impression rank and the deepest click rank. Besides the deepest click rank (dc), the number

of clicks, denoted by nc, is also considered as the second potential factor influencing diff .

The linear regression model is described as:

diff = f(dc, nc; w) = w0 +w1 · dc +w2 · nc , (3.5)

where w = {w0,w1,w2} is a set of coefficients that need to be optimised for the linear

combination function. Table 3.12 shows the best-fit set of coefficients w. With other factors
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Factor
iOS/Android browser

coef. p coef. p

intercept w0 = 7.67 0.000 w0 = 6.40 0.000
deepest click rank (dc) w1 = 0.17 0.000 w1 = 0.21 0.000
number of clicks (nc) w2 = −0.61 0.000 w2 = −0.72 0.000

Table 3.12: Linear regression analysis for computing the effect sizes of two factors, the
deepest click rank (dc) and the number of clicks (nc), in modelling diff , the difference
between the deepest impression rank and the deepest click rank (see Equation 3.5 on
page 105). Each of the best-fit coefficients is associated with a p-value.

being equal, a positive w1 indicates that diff tends to increase with dc, while a negative w2

suggests that diff is negatively correlated with nc. Very small p-values for all coefficients

suggest that the direction of those relationships is significant, with strong support from

the data. Note that this regression analysis did not consider cases with zero clicks (that

is, dc = 0) since this condition has a different type of interaction pattern.

Instead of a point estimation approach, we propose a more general approach by directly

modelling the distribution of impression. Let DC (u, q) be the deepest click rank observed

for user u after submitting query q, with DC (u, q) = 0 for the zero-click case; and V (i |

u, q) be the probability that user u registered an impression at rank i with respect to query

q. Note that the probability of the user not registering an impression action is denoted

as 1− V (i | u, q), hence the summation of V (i | u, q) over rank i is not necessarily equal

to 1. Based on the three assumptions regarding clicking and viewing actions, a general

framework for impression models is as follows:

V̂ (i | u, q) =







1 i ≤ DC (u, q)

P (diff ≥ (i−DC (u, q)) | u) otherwise ,







(3.6)

where the cumulative distribution P (diff ≥ n | u) represents the probability that the user

u inspects all results from rank DC (u, q) to rank DC (u, q) + n under the assumption that

the user sequentially reads the ranking from top downward. By definition, P (diff ≥ 0 |

u) = 1, meaning that if the deepest click action was observed at rank i for user u, the user

must have registered an impression action at rank i. The problem can also be simplified

by assuming that the distribution of diff does not depend on the user. That is, all users

have the same interaction patterns after the deepest click action takes place. This then

results in P (diff ≥ n | u) = P (diff ≥ n). Thus, the problem is to find a good model

approximating P (diff ≥ n).
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Figure 3.18: Cumulative distribution P̂ (diff ≥ n) computed from the Seek.com data.

Impression Model 1. We propose a heuristic method by estimating P (diff ≥ n) with

a simple mathematical function that provides a similar pattern, with parameters fitted as

needed. Figure 3.18 shows the estimated P̂ (diff ≥ n) computed from Seek.com action

sequences across all users and queries (see Table 3.1 on page 80). In this figure, the plot

of P̂ (diff ≥ n) indicates that an exponential decay function provides a good proxy. This

observation suggests that P̂ (diff ≥ n) be modelled as follows:

P̂ (diff ≥ n) = e−n/K , (3.7)

where K > 0 is a tunable variable controlling the decay rate. From a human perspective,

K can also be interpreted as the persistence beyond the deepest click. The higher the value

of K, the more documents that are examined by users beyond the deepest click rank. The

curve fitting to the two lines in Figure 3.18 yields the following two constants:

Kmobile = 7.94 , (3.8)

Kbrowser = 7.11 . (3.9)

The fact that Kmobile is higher than Kbrowser indicates that mobile-based users tend to be

more persistent beyond the deepest click rank, compared to browser-based users. This is

also related to Figure 3.16 (page 102) described in Section 3.4.
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Impression Model 2. Impression Model 1 assumes that diff only depends on the appli-

cation platform (browser or mobile applications). Both mobile- and browser-based search

activities may employ different constant K. However, Table 3.12 (page 106) has provided

evidence for the two click-based quantities, the number of clicks nc and the deepest click

rank dc, as being two important factors influencing the diff . Impression Model 2 incorpo-

rates these by considering K not as a constant, but as a linear combination of dc and nc.

A fitting process on Seek.com data results in two linear models:

Kmobile = 5.92 + dc · 0.31− nc · 0.61 , (3.10)

Kbrowser = 5.10 + dc · 0.29− nc · 0.14 . (3.11)

Impression Model 2 then approximates P̂ (diff ≥ n) as follows:

P̂ (diff ≥ n) = e−n/g(K) , (3.12)

where g(x) is a function that takes x ∈ R as an input, and returns zero as x goes to −∞,

while approximately acting as an identity function for x > 0. This criteria is approximately

held by the following “softplus” function:

g(x) = ln(1 + ex) .

The ZPM Impression Model. In contrast to the approaches described in this section,

Zhang et al. [244] contend that the distribution of diff should depend on the user u,

and thus the parameter tuning process should be on a per-user basis. They extrapolate

P (diff ≥ n | u) using the average length between two consecutive clickthrough rank

positions. Formally, they use the click gap distribution of a user u, denoted by P (gap =

n | u, q) with gap ≥ 1, or the probability that the user u inspects n− 1 consecutive results

without clicking on any of them after submitting query q. For example, if a user clicks at

ranks 1, 4, and 6, the corresponding gaps are 1 (1− 0), 3 (4− 1), and 2 (6− 4). The ZPM

Impression Model then defines P (diff ≥ n | u) as:

P̂ (diff ≥ n | u) = P̂ (gap ≥ n | u) , (3.13)

where P (gap ≥ n | u) is computed by averaging P (gap ≥ n | u, q) over all queries

submitted by user u; and P (gap ≥ 1 | u) = 1 by definition. Therefore, the ZPM Impression

Model requires an additional assumption, that the user always examines rank DC (u, q)+ 1
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after the deepest click action. Zhang et al. [244] also address the problem of smoothing

for P (gap ≥ n | u) since clickthrough data initiated from a single user is usually sparse:

P̂smooth(gap ≥ n | u) = αu · P̂ (gap ≥ n | u) + (1− αu) · P̂ (gap ≥ n) , (3.14)

where P (gap ≥ n) is the global click gap distribution estimated from the whole set of

users; and αu is the smoothing parameter associated with user u, and is calculated as

follows:

αu =
CT (u)

CT (u) + µ
, (3.15)

where CT (u) is the total number of clicks recorded for user u, and µ is an empirical value.

Zhang et al. [244] further employ µ = 5.

The AWTC Model. Recently, Azzopardi et al. [22] also propose a methodology to

compute Ĉ(i) from clickthrough data, using the following formula:

Ĉ(i) =

∑∞
j=i+1 n(u, j)
∑∞
j=i n(u, j)

,

where n(u, j) is the number of users who clicked at rank j and did not return to the SERP.

In this study, n(u, j) is replaced with q(j) (that is, the number queries for which the item

listed at rank j was the last one clicked by the user), since a user is associated with many

queries in the data.

This approach implies that users inspect the results in turn from rank 1 to rank j,

where j is the rank position of the last click in the action sequence. That is, the AWTC

method actually embodies an implicit impression model:

V̂ (i | u, q) =







1 i ≤ DC (u, q)

0 otherwise .







Azzopardi et al. [22] originally used the last click rank, instead of the deepest click rank,

for marking the stopping rank. However, Table 3.9 (page 98) already suggested that the

last click ranks tend to be the deepest click ranks. Lipani et al. [135] employ the same

impression model in their work.
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3.6 Impression Model Evaluation

This section describes an application of impression models for computing empirical Ĉ(i),

which is critical to the development of user model-based effectiveness metrics. This applica-

tion also serves as a tool for measuring the accuracy of impression models by quantifying a

similarity score between Ĉ(i) derived from impression models and the gold-standard Ĉ(i)

computed from actual impression sequences. In addition, a method is also proposed for

validation of impression models via the distribution of V̂ (i) itself, which is computed as

the aggregation of individual V̂ (i | u, q) across all users and queries.

3.6.1 Inferring C(i) from Impression Models

Section 3.3 already described the method for estimating conditional continuation proba-

bility from a collection of action sequences. This approach, however, requires impression

information in order to yield an accurate estimate. In the absence of impression sequences

(that is, only clicks are available), impression models can alternatively be used to infer

Ĉ(i). Recall that directly using clickthrough sequences for computation of Ĉ(i) is not

useful, and leads to an underestimation (see Figure 3.17 on page 104).

From the perspective of the C/W/L framework, the weighting function W (i) is a

normalised form of the impression probability V (i), so that W (i) sums to one:

W (i) =
V (i)

∑∞
i=1 V (i)

= W (1) · V (i) . (3.16)

Therefore, C(i) can theoretically be computed from V (i) using:

C(i) =
W (i+ 1)

W (i)
=
V (i+ 1)

V (i)
. (3.17)

This relationship serves as a basis for computing an empirical estimate of C(i) from

impression models by considering V̂ (i | u, q) as an expected count. Let N (i,u, q) and

D(i,u, q) respectively be the per-user-query numerator and denominator contributing to

C(i) for user u and query q,

N (i,u, q) = V̂ (i+ 1 | u, q) , and (3.18)

D(i,u, q) = V̂ (i | u, q) . (3.19)

One way to compute Ĉ(i) via an impression model is by micro-averaging across all users
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and queries:

Ĉ(i) =

∑

u∈U

∑

q∈Q(u)N (i,u, q)
∑

u∈U

∑

q∈Q(u)D(i,u, q)
, (3.20)

where U is a set of users and Q(u) is a set of queries observed from user u in the dataset.

For example, consider three queries q1, q2, q3 recorded from a mobile-based user u, in

which the deepest click rank positions are 1, 7, and 8, respectively. If Impression Model 1

is employed, the values of V̂ (i | u, q) for i = 1, 2, . . . , 10 are:

V̂ (i | u, q1) = 〈1.00, 0.87, 0.75, 0.65, 0.56, 0.48, 0.42, 0.36, 0.31, 0.27〉 ,

V̂ (i | u, q2) = 〈1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.87, 0.75, 0.65〉 ,

V̂ (i | u, q3) = 〈1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.87, 0.75〉 .

The estimated values Ĉ(i) for i ∈ {2, 7, 9} are then computed as follows:

Ĉ(2) =
0.75 + 1.00 + 1.00

0.87 + 1.00 + 1.00
= 0.96 ,

Ĉ(7) =
0.36 + 0.87 + 1.00

0.42 + 1.00 + 1.00
= 0.92 ,

Ĉ(9) =
0.27 + 0.65 + 0.75

0.31 + 0.75 + 0.87
= 0.87 .

3.6.2 Model Validation

A held-out dataset containing 100, 103 action sequences was drawn from iOS/Android-

based Seek.com interaction logs during the period between 15 October 2017 and 08 April

2018. As a result, this held-out data is mutually exclusive from the collection of action

sequences described in Table 3.1 (page 80). Note that three impression models introduced

previously in Section 3.5 assume that the SERPs are not paginated, and hence have infinite

scrolling. Therefore, only mobile-based queries are considered because they do not have

page boundary effects (see Figure 3.7).

The held-out set of mobile-based action sequences serves as a test set for evaluating

the quality of predicted impression distributions in two different ways:

1. by measuring the closeness between the “true” Ĉ(i) estimated from actual impression

sequences and the Ĉ(i) values computed via impression models; and

2. by computing the similarity between the “true” impression distribution vector V̂ (i)



112 Modelling User Actions

resulting from the use of impression sequences and that directly estimated from

impression models.

The held-out data is randomly split into ten folds. The similarity score (such as, mean

squared error) between predicted and observed behaviours is then computed for each fold.

Finally, the average of similarity scores across ten folds is reported. This mechanism also

allows the computation of several statistics, such as the Wilcoxon signed-rank test and

paired t-test, to see the significance of differences between any two impression models.

Continuation Probability. An empirical estimate of the conditional continuation prob-

ability is computed from the held-out set of clickthrough sequences using impression mod-

els, with parameters tuned using original action sequences described in Table 3.1. The

resulting values are then compared against the corresponding gold-standard Ĉ(i) derived

from the impression sequences in the held-out dataset, using the “weighted-by-frequency”

mean squared error (WMSE) as a distance function (see Equation 3.3 on page 87). Fig-

ure 3.19 visually shows the plots of Ĉ(i) estimated using four impression models (Model 1,

Model 2, ZPM, and AWTC) for 1 ≤ i ≤ 50, with the one observed from actual impression

sequences being a reference. The visual observation shows that the Ĉ(i) values computed

using Impression Model 2 are very close to the “true” Ĉ(i) values from impression se-

quences. Table 3.13 confirms this relationship by showing detail reports using average

WMSE across ten partitions of the held-out data for top-20 and top-50 results. Top-20 is

also included because a typical Seek.com result page contains 20 items (see Section 3.2.2

on page 79). The Ĉ(i) computed from Impression Model 2 provides the lowest error among

the others, with low p-value indicating its significant superiority. As already noted, com-

puting Ĉ(i) values directly using click sequences (without the use of the impression model)

is not useful.

Empirical Impression Distributions. Suppose V (i) is the probability of the user

inspecting rank i, and is directly proportional to the probability weight function associated

with rank i, W (i). An important property of V (i) is V (i) ≥ V (i+ 1), which implies that

the probability of a user registering an impression at lower rank positions is never greater

than the probability of inspecting results at higher rank positions. Note also that V (i)

does not necessarily sum to one. The operational computation of V̂ (i) is as follows:

V̂ (i) =

∑

u∈U

∑

q∈Q(u) v(i,u, q)
∑

u∈U |Q(u)|
, (3.21)
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Figure 3.19: Estimated Ĉ(i) across top 50 items for each query, computed using four
impression models (Model 1, Model 2, ZPM, and AWTC) derived from clickthrough se-
quences of the held-out queries. The gold standard Ĉ(i) computed using the true impres-
sion sequences is included as a reference point.

where v(i,u, q) is an impression binary indicator when using impression sequences; or a

click binary indicator when using click sequences; or an expected count V̂ (i | u, q) when

using impression models. Mean squared error (MSE) is employed to measure the close-

ness between V̂ (i) derived from impression models using held-out click sequences and

gold-standard weights computed from the held-out impression sequences. Weighted mean

squared errors were not used because the computation of V̂ (i) described in Equation 3.21

employs the same denominator (that is, the same weight) across all rank positions. Ta-

ble 3.14 (page 114) shows the results of this measurement for n = 20 and n = 50. Under

this evaluation process, Impression Model 2 once again outperformed the other models,

followed by the ZPM model. Figure 3.20 (page 115) visually shows the estimated V̂ (i)

computed using these impression models. Nevertheless, inferring V̂ (i) using impression

models results in predicted distributions that are better than those computed from only

clickthrough sequences.

Commercial Web Search. A sample of interaction logs containing around 105,000

Web queries is also available for experimentation. These logs were initiated from users in

the U.S. who performed search activities using Bing.com on desktop-based browsers, and

have been anonymised to hide personally identifiable information. In addition to Bing.com
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Model
WMSE (top-20) WMSE (top-50)

Micro Macro Micro Macro

Clicks 172.5× 10−3 179.1× 10−3 169.3× 10−3 175.4× 10−3

ZPM 5.7× 10−3 4.1× 10−3 4.5× 10−3 3.3× 10−3

AWTC 4.1× 10−3 2.5× 10−3 3.4× 10−3 2.1× 10−3

Model 1 4.0× 10−3 2.5× 10−3 3.1× 10−3 2.0× 10−3

Model 2 2.2× 10−3 1.2× 10−3 1.8× 10−3 1.0× 10−3

Table 3.13: Average frequency-based weighted mean squared error (WMSE) between es-
timated Ĉ(i) (micro- and macro-averaged method) and the Ĉ(i) computed using four
impression models (Model 1, Model 2, ZPM, and AWTC) running on ten partitions of
the held-out data. The Ĉ(i) directly inferred using clickthrough sequences is also shown
as a reference. Lower values are better. Model 2 significantly outperformed the other ap-
proaches (Wilcoxon signed-rank test, p < 0.01; and paired t-test, p < 0.01).

Model MSE (top-20) MSE (top-50)

Click distribution 11.53× 10−2 4.93× 10−2

ZPM 1.41× 10−2 0.28× 10−2

AWTC 4.88× 10−2 2.05× 10−2

Model 1 1.19× 10−2 0.50× 10−2

Model 2 0.37× 10−2 0.20× 10−2

Table 3.14: Average mean squared error (MSE) between the V̂ (i) estimated using impres-
sion models and the V̂ (i) estimated using actual impression sequences from held-out data.
Lower values are better. Model 2 significantly outperformed other approaches (Wilcoxon
signed-rank test, p < 0.01; and paired t-test, p < 0.01).

data, this study also employs two Web-based pre-existing datasets constructed from lab-

based user studies: J&A dataset [107] and THUIR3 dataset [139]. The J&A dataset consists

of 388 Web search queries collected by Jiang et al. [107] from an eye-tracking experiment.

In contrast to the other two Web search datasets, this data contains eye-fixations (that

is, impressions) collected using a Tobbi 1750 eye-tracker for a minimum duration of 100

milliseconds [107]. Liu et al. [139] employ the third dataset, THUIR3, to investigate fac-

tors affecting query- and session-level user satisfaction. Table 3.15 summarises Web-based

search interaction logs used in this study.

In the Bing.com data, click sequences are observable, but impression sequences are

not. Hence, impression models were applied to infer continuation probabilities from this

data. Figure 3.21 shows the empirical Ĉ(i) computed using Impression Model 2 for top-10

results. However, the parameters are not trained on Seek.com data (see Equation 3.10

on page 108) because Web search users may have different behaviour from job search
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Figure 3.20: Estimated V̂ (i) across top 50 items for each query, computed using four
impression models (Model 1, Model 2, ZPM, and AWTC) derived from clickthrough se-
quences of the held-out queries. The gold standard V̂ (i) computed using the true impres-
sion sequences is included as a reference.

Bing.com J&A [107] THUIR3 [139]

Source Commercial Lab. experiment Lab. experiment
Queries 105,000 388 1,548
SERP size paginated, 10 truncated, 9 paginated, 10
Impressions No Yes No
Clickthroughs Yes Yes Yes
Query-level Ratings No No Yes

Table 3.15: Web-based search interaction logs.

users, particularly in regard to diff distribution. Instead, the parameters were tuned on

J&A dataset. Although the size of this data is not large, this is particularly useful for

tuning impression models in the context of Web search, since it contains impression and

clickthrough sequences.

Figure 3.21 reveals that Ĉ(i) increases with i for 1 ≤ i ≤ 7, but then decreases

around the page boundary. Note that typical Bing.com result pages contain 10 snippets.

Further, Table 3.16 shows the best-fit parameters computed by minimising WMSE(Ĉ, C)

on Bing.com data. In contrast to the results on Seek.com job search data (see Table 3.6),

these results shows that RBP is more accurate than INSQ in the context of Bing.com Web

search. The fact that the parameters of both RBP and INSQ for Bing.com data are lower
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Figure 3.21: Estimated Ĉ(i) computed from a sample of interaction logs drawn from the
Bing.com Web search engine. The C(i) plots of two static user models, RBP and INSQ,
are also included with parameters optimised to minimise the weighted mean squared error
between Ĉ(i) and C(i) for top-10 results.

Model
Top-5 Top-10

parameter WMSE parameter WMSE

RBP φ = 0.78 0.35× 10−2 φ = 0.77 3.17× 10−2

INSQ T = 3.08 0.89× 10−2 T = 2.48 7.27× 10−2

Table 3.16: Best-fit parameters computed from a sample of Bing.com interaction logs.

than those for Seek.com data suggests that Web search users are less persistent than job

search users.

It is also desirable to investigate whether the resultant best-fit parameters (φ = 0.77

for RBP and T = 2.48 for INSQ) are also supported by evidence from the other Web search

datasets. In particular, this study examines whether they also lead to the best correlation

coefficients with query-level user satisfaction ratings, knowing that it is critical for a metric

score to have a strong relationship with user satisfaction. Further, this study uses another

lab-based dataset, namely THUIR3, which contains around 1,500 Web queries with user-

generated satisfaction ratings [139]. A grid search is used to find the best-fit parameters

for RBP and INSQ, where φ = 0, 0.01, 0.02, . . . , 1.0 and T = 0.5, 0.6, . . . , 5.0 were tested for,

respectively, RBP and INSQ. Figure 3.22 shows that the best correlation coefficients were

achieved when φ = 0.78 for RBP and T = 2.60 for INSQ. The expected search length (ESL)
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Figure 3.22: Correlation coefficients (Pearson’s r) as a function of parameter values of
two static user models, RBP (top) and INSQ (bottom), computed using 1,500 Web queries
from THUIR3 dataset [139]. The optimal parameters for RBP and INSQ are φ = 0.78 and
T = 2.60, respectively.

for RBP with φ = 0.78 and INSQ with T = 2.60 are, respectively, 4.54 and 5.70. These

resultant values are fairly consistent with those computed from Bing.com interaction logs

for top-10 results: φ = 0.77 for RBP (ESL = 4.35) and T = 2.48 for INSQ (ESL = 5.46).

3.7 Summary

Understanding of observed behaviours is critical to the development of user model-based

effectiveness metrics, since it provides guidelines of how the predicted behaviours should

be modelled. This chapter described tools for inferring observed behaviour from search in-

teractions logs. These tools include a mechanism for computing continuation probabilities

from impression sequences, and an impression model for inferring impression distributions

from click-based logged behaviours.
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In Section 3.3, we propose three heuristic rules for computing empirical estimates of

conditional continuation probabilities from impression sequences. The rule “L” states that

all impressions in the sequence are continuation, except the last one. The rule “M” consid-

ers all instances of maximum impression rank as being non-continuations. The rule “G” is

a combination between rules “L” and “M”, recording a continuation for an impression rank

that is still followed by one at a higher ranking position. Our experiment results show that

the three proposed rules are consistent in the sense that they all yield the same behavioural

pattern of empirical continuation probabilities. That is, the continuation probabilities of

users tend to increase as they proceed into deeper ranking positions. Note that Moffat

et al. [153, 155] also find the same interaction pattern on logged behaviours based on Web

search, and refer to this observed behaviour as “sunk cost recovery”. Existing static user

models, such as SDCG and INSQ, embody this observed behaviour, but RBP does not. We

further propose a method for computing the accuracy between these three user models

and the observed behaviour and found that INSQ is the most accurate among these three

static models.

Unfortunately, impression sequences may not always be observable from logged be-

haviours, while clickthrough sequences usually are. Figure 3.17 already suggested that

clickthrough sequences are not a direct surrogate for impression sequences, and thus are

not useful for inferring observed continuation probabilities. However, impressions can,

to some extent, be predicted from clickthrough sequences via impression models. This

chapter has demonstrated that impression models are critical, particularly for computing

continuation probabilities from click-based logged behaviours (see Figures 3.19 and 3.20).

In the absence of impression sequences, several studies used a simple impression model

which assumes that the deepest click rank is the last rank position inspected by users.

However, as described in Section 3.4, users examined items beyond the deepest click rank.

In addition, further observations reveal other interaction patterns that are useful for the

development of impression models and, in general, search effectiveness models: (1) users

tend to scan the SERP from the top; (2) users tend to inspect all results before rank i

before deciding to click at rank i; (3) the last click ranks in action sequences tend to be

the deepest click rank; (4) mobile-based users (with unlimited scrolling) tend to examine

more documents beyond the deepest click rank position, compared to desktop browser-

based users (with pagination); and (5) the number of items inspected beyond the deepest

click rank tends to increase with the rank position of the deepest click action.

Section 3.5 proposed a framework for impression models. The model generally assumes

that users always inspect all items from the top until the deepest click rank position. (The
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evidence for this assumption has been provided in Section 3.4.) Thus, the problem is to

model user viewing behaviour beyond the deepest click rank. One way to operationalise this

behaviour is via diff , the difference between the deepest impression rank and the deepest

click rank. Further analysis suggests that diff is affected by two factors: the number of clicks

and the rank position of the deepest click. Model validations reveal that incorporating these

factors into an impression model (Impression Model 2) yields better performance in terms

of predicting empirical continuation probabilities (see Figure 3.19) compared to the other

models, including the click gap-based impression model proposed by Zhang et al. [244]. We

have also demonstrated that impression models can be useful for computing correlation

between predicted behaviour and observed behaviour based on evidence from click logs.

Our findings suggest that the improvement of search engine effectiveness should be

guided by behavioural patterns derived from impression distributions. Having constructed

tools for inferring observed behaviour (particularly conditional continuation probabilities)

from interaction logs, the next step is to incorporate observed behaviours into the de-

velopment of session-based effectiveness metrics. This issue is elaborated in Chapter 4.

Chapter 5 introduces a framework for meta-evaluation of effectiveness metrics through

the lens of C/W/L paradigm, and demonstrates its use for investigating the connection

between observed behaviour and predicted behaviour, and between scores and user satis-

faction, at both query- and session- levels.





Chapter 4

Modelling Search Sessions

The evaluation metrics described in Chapters 2 and 3 have focused on assessing the quality

of search engine systems based on the assumption that users only submit a single query

to address an information need. However, in practice users often reformulate their queries,

or even refine their information needs during the course of the session. Hence, a search

session typically consists of a sequence of queries.

To allow for the evaluation of the success of multi-query sessions, the traditional query-

based test collections and evaluation metrics need to be generalised. This chapter proposes

a framework for session-based effectiveness metrics by extending the existing query-based

C/W/L framework, and then utilises the structure to instantiate an adaptive session met-

ric, incorporating behavioural analysis results on commercial search interaction logs. In

addition to the session-based effectiveness metric, this chapter also investigates what fac-

tors affecting session-level user satisfaction, building a fitted relationship between session

satisfaction and the individual query satisfaction ratings (or query scores) when user ob-

servation data is available.

While discussing the motivation and research questions, Section 4.1 also describes ses-

sion test collections, where each topic is assigned to a sequence of static queries, and the

simulated users always follow the same static sequence when reformulating queries. Sec-

tion 4.2 addresses previous work on session evaluation, including existing session-based

effectiveness metrics and recent studies that explore the connection between session satis-

faction and the individual queries.

Section 4.3 describes three sets of interaction logs drawn from two commercial search

engines, and three datasets collected from lab-based user studies. These datasets are all

utilised for exploring user behaviours and factors influencing session satisfaction.

Section 4.4 describes a session-based C/W/L framework, an extension to the existing

query-based C/W/L structure. This is done by introducing a session-level behaviour, con-

The material in this chapter (Sections 4.4, 4.5, and 4.6) is currently under review.
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ditional reformulation probability. With this extension, a session metric can be specified

using both conditional continuation probability (query-level behaviour) and conditional

reformulation probability. Section 4.5 establishes several factors that affect these two be-

haviours, using the commercial interaction logs described in Section 4.3. An adaptive

session-based effectiveness metric is then devised using the factors inferred from those

logged behaviours (Section 4.6).

When a set of sessions and their constituent queries, and set of corresponding per-

session user-reported satisfaction ratings are available, it is interesting to explore factors

influencing session satisfaction by establishing a fitted relationship between session-level

ratings and factors from individual queries. The final sections of this chapter discuss this

issue. Section 4.7 shows several factors that influence session satisfaction, employing the

three lab-based datasets described in Section 4.3. Finally, Section 4.8 proposes two session

satisfaction models, allowing position- and query-based factors to be combined.

4.1 Motivation and Research Question

After describing the research motivation and questions, this section discusses session ef-

fectiveness model at both SERP- and session levels from the perspective of the C/W/L

framework, and the problem of predicting session satisfaction ratings.

4.1.1 Motivation

In practice, a user with an information need to resolve typically submits an initial query

and examines results in the ranking. If they failed to find a sufficient number of relevant

documents or to fulfil their information need when inspecting the initial ranking, they

may repeatedly reformulate queries before they quit the session. For example, a sample of

Seek.com interaction logs collected between July and August 2018 reveals the following

two instances of query reformulation. One user commenced a job search using the initial

query “child care”, and then reformulated that query into “child care educator”. Another

user started with the query “underground surveyor”, before reformulating their initial

query into a more general query, “surveyor”. Hence, a session S can be regarded as a

chronologically-ordered sequence of queries:

S = 〈Q1,Q2,Q3, . . . Q|S|〉,
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where |S| is the number of queries submitted in the search session.

Jansen and Spink [95] study a sample of Excite.com Web search engine data collected

in 2001 and AltaVista.com search query logs from 2002, and find that 55% of Excite.com

users reformulated their initial queries, and that 47% of AltaVista.com queries were sub-

mitted in the context of similar queries. Jansen et al. [98] further define six classifications

of query reformulation, which include specialisation and generalisation. A specialisation

is when the reformulated query contains additional terms in order to seek more specific

information, while a generalisation is when the reformulated query consists of fewer terms

than the previous one [98]. Either type of reformulation occur with the assumption that

the original information need does not change during the course of the session. The other

four categories are “new”, “assistance”, “content change”, and “reformulation” [98].

Further experiments suggest that users tend to pose short queries several times, instead

of only one verbose query, in sessions with a single information goal [100, 121]. There are

several explanations of why users reformulate their queries. Turpin and Hersh [218] and

Smith and Kantor [194] demonstrate that users are able to compensate for the reduced

effectiveness of search engine systems by adapting their behaviours, and one such adapta-

tion is to submit more queries. Järvelin et al. [103] carry out a laboratory-based interactive

searching study, and find that in some cases initial queries do not give good results because

users submit query terms that do not accurately cover the topic description.

Knowing that in practice users may reformulate their queries during a search session, it

is valuable to generalise query-based effectiveness metrics to multi-query session evaluation

metrics that capture in a single number the quality of a whole search session. Session

evaluation is also identified as one of the long-range issues in IR (see, for example, the

report from SWIRL 2018 by Allan et al. [9]).

4.1.2 Session Effectiveness Model

There have been several approaches to measurement of the quality of a multi-query session

[103, 114, 115, 135]. Such mechanisms make use of session-based test collections, such as

the one used in the TREC 2010 Session Track [114, 115]. As with query-oriented test

collections, session-based ones consist of three components: a collection of documents; a

set of topics; and a set of relevance judgements. In addition, each topic in the session test

collection is associated with a fixed sequence of queries, with simulated users assumed to

follow that sequence when they reformulate queries, and allowed to stop before the end of

the sequence [103, 114, 115, 135].
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Figure 4.1: Illustration for a session test collection in which each of k topics is associated
with a fixed sequence of m queries. The simulated user is assumed to always commence
their search using the first query Ql,1 for each topic l, and, reformulating the query Ql,j
to Ql,j+1 with a certain probability. The spectrum of blue color represents the overall
probability that the simulated user enters query Ql,j in connection with topic l, where
1 ≤ j ≤ m and 1 ≤ l ≤ k.

Figure 4.1 depicts an illustration for a session test collection, and Figure 4.2b provides a

detail view for a particular topic. Note that, in Figures 4.1 and 4.2b, the number of queries

the simulated user submits is not known, and that the score for a topic can be interpreted

as the probability-weighted summation over all query scores in the static collection, with

the weight associated with query Qj related to the proportion of users in the population

that would submit the sequence of queries 〈Q1, · · · ,Qj〉 when addressing that topic. To

understand this model, note that most effectiveness metrics for single SERPs do not use

specific knowledge of which documents the user examined (which could be obtained, for

example, via an eye-tracking experiment). Instead, these query-based metrics usually make

use of a certain assumption as to how users pay attention to the ranking, such as top-

weightedness (as achieved via non-increasing discount function) [44, 102, 151, 195]. The

session evaluation model portrayed in Figure 4.1 and Figure 4.2b is a two-dimensional

equivalent of what happens when an effectiveness metric is applied to a single SERP in

one dimension. Figure 4.2a and Figure 4.2b visually compare the two models.

The first goal of this chapter is to build a predictive relationship for an adaptive session

effectiveness metrics. The resultant scores from this metric are intended to predict whole-

session user performance when the end of query sequence is not known, and in doing

so, extending the proposal of Moffat et al. [153, 155], who established the relationship

between metrics, user models, and user behaviours. This chapter begins by investigating

the empirical evidence for what had been postulated by Moffat et al. [153, 155] regarding
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Figure 4.2: User interaction model for a particular topic in both query- (left-hand) and
session-based test collections (right-hand). The depth of blue color represents the fraction
of users in the universe who inspect a particular document (di for cases with a single query,
or dj,i for cases with multiple queries and SERPs). Note that, in Figure 4.1 (page 124),
an additional subscript l is used to represent topic dimension. In this figure, the subscript
l is dropped, since a single topic is considered1.

query-level user behaviours, using three large search interaction logs obtained from two

commercial search engines, Seek.com and Yandex.ru. A model for session-level behaviours

(that is, for query reformulation behaviours) is then developed, and is incorporated into

session-based search effectiveness metrics, based on the user model framework described

in Figure 4.3. In this framework, a user commences a search session by submitting a first

query Qj , j = 1, into an IR system. The user then sequentially inspects the ranked list of

results from its top position i = 1, in effect, shown as the first vertical column depicted in

Figure 4.2b. At each rank position i a decision is made: to continue inspecting the next

item at rank i+ 1; or to exit this j th SERP. In the latter case, the user then makes

another choice: to issue a reformulated j + 1 th query; or to end the session entirely2. By

imposing a probabilistic nature into this model, there are two quantities to be estimated:

1The remainder of the chapter will consider single topics, and hence it is useful to drop one of the
subscripts, to avoid requiring triple subscripts on Q, d, or r.

2At the end of the session, the user can also choose to change the search engine system and start with
a new query once again [212]. This, however, is outside the scope of this chapter.



126 Modelling Search Sessions

start query j

rank i

exit query end
j = 1

i = 1

i← i+ 1
C(j, i)

j ← j + 1
F (j)

Figure 4.3: Search session model (adapted from the proposals by Moffat et al. [153] and
by Thomas et al. [212]).

1. C(j, i), the conditional continuation probability of the user inspecting the item at

rank i+ 1 in the j th SERP, given that they have examined the item at rank i.

2. F (j), the conditional probability of the user issuing a j+ 1 th query, given that they

have just abandoned the j th SERP.

The former is a query-level behaviour and the latter is a session-level behaviour . From the

perspective of the proposed framework, a range of interesting session-based metric can be

characterised via these two functions. The challenge for the first goal is thus to find models

for C(j, i) and F (j) that accurately predict observed behaviour. The following research

question is formulated:

RQ 4.1: In the context of Figure 4.3, what factors affect C(j, i) and F (j)?

Section 2.3.2 (page 49) described several desired properties for user-oriented metrics.

An ideal metric-based user model should be sensitive to the anticipated number of relevant

documents for undertaking the search, or to different types of search tasks (goal-sensitive).

Further, a metric should also be adaptive, meaning that the simulated user changes their

behaviour as they encounter relevance in the part of the ranking seen so far. Hence, both

C(j, i) and F (j) should be goal-sensitive and adaptive.

4.1.3 Observational Goal

Other researchers have also addressed a different goal in the context of session evaluation

– an observational goal [104, 137, 139, 242]. Given the sequence of queries submitted by

each individual user in a session, the challenge is to aggregate individual query scores (or
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query satisfaction ratings) via a weighting scheme that can be tuned to optimise a certain

aspect, such as the relationship with user satisfaction [104, 137, 139, 242]. When fitting the

relationship between session satisfaction ratings and the individual query scores, there is

no probability-weighted sum and reformulation probabilities, since what queries the user

posed and how they reformulated them are both known. For example, Zhang et al. [242]

relate the weight for each query with the notion of forgetfulness, where the user tends to

neglect the utility derived from earlier queries.

Figure 4.4 (page 128) provides an illustration of this fitted relationship, showing which

queries in the sessions that dominantly contribute to the session satisfaction ratings. In

Figure 4.4, five users (A, B, C, D, E) performed search activities under the same topic,

and then provided 5-point session satisfaction ratings at the end of the sessions. Each

SERP (or query) is associated with a score, which can be directly derived from a query-

level satisfaction rating, or be computed via a particular query-based effectiveness metric.

Suppose a session score is determined by linearly combining individual query scores in the

session. The depth of red color visually describes query weights obtained by maximising the

correlation between session scores generated by the linear combination model and session

satisfaction ratings3. In this context, it is useful to investigate variables that contribute to

the best-fit weights.

The second goal of this chapter is to address this challenge. The following research

question is then considered:

RQ 4.2: In the context of Figure 4.4, what factors influence session satisfac-

tion?

Existing proposals for query-to-session aggregation mostly employ a linear combination

approach, with the weights defined as a function of ordinal position of each query in the

sequence [104, 137, 139, 242]. By using publicly-available user study data containing user-

generated satisfaction ratings, this chapter explores the connection between SERP-level

and session-level user satisfaction, including how satisfaction at the level of individual

SERPs should be combined to predict satisfaction at session level. The insights gained

from this analysis are then incorporated into two novel session satisfaction models, taking

into account not only ordinal position of individual queries but also their qualities.

3Note that blue color is used to represent the fraction of user attention (see Figures 4.1 and 4.2), while
red color is used to represent a different interpretation of weight, that is, the influence of a particular query
on the session satisfaction (Figure 4.4).
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Figure 4.4: An illustration for a fitted relationship between individual query scores (de-
noted by 0 ≤ M ≤ 1) and observed session satisfaction ratings (SSAT ∈ {1, 2, 3, 4, 5}).
The j th query submitted by user X is denoted by QX,j . The depth of red color represents
the weight that corresponds to the influence of a particular query on the session satisfac-
tion. In this illustration, the best and the last queries dominantly contribute to the session
satisfaction.

4.2 Previous Work

This section presents existing session-based effectiveness metrics, such as session-based

DCG and RBP, in the context of session test collection described in Figure 4.1 (page 124).

Finally, this section describes recent work that builds a fitted relationship between indi-

vidual query scores (or query satisfaction ratings) and session satisfaction ratings.

4.2.1 Session-Based Effectiveness Metrics

Kanoulas et al. [115] describe a session test collection as having a set of topics, with

each topic associated with a sequence of static queries, as depicted in Figure 4.1. Let the

number of queries in this static sequence be denoted by m (that is, an initial query, plus

m− 1 reformulations). Several effectiveness metrics have been proposed for this kind of
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test collection, mostly based on ad-hoc assumptions about how users behave in a search

session [103, 115, 135, 237].

Session-Based Discounted Cumulative Gain. Järvelin et al. [103] propose session-

based discounted cumulative gain (sDCG), in which the DCG scores for the sequence of

SERPs are discounted by 1/(1+ logbq j), with j ≥ 1 the index of the SERP in the session:

sDCG(−→r ; bq, b,m,n) =
m
∑

j=1

1

(1 + logbq j)
·DCG@K(−→rj ;n, b)

=
m
∑

j=1

n
∑

i=1

1

(1 + logbq j) · (1 + logb i)
· rj,i , (4.1)

where −→r = 〈−→r1 ,−→r2 , . . . ,−→rm〉 is the sequence of gain vectors associated with the SERPs in a

session of length m; where −→rj = 〈rj,1, rj,2, . . . , rj,n〉 is the gain vector associated with the

j th SERP in the session; where n is the length of each SERP; where b is the log base of

DCG, with b = 2 the usual value; and where 1 < bq < 1000 is the parameter governing the

extent to which users reformulate their queries. With 1/(1+ logbq j) being the session-level

discount function, Järvelin et al. [103] argue that query reformulation involves additional

effort, and thus SERPs returned by reformulated queries are less valuable than the one

returned by the initial query. Järvelin et al. [103] further suggest using bq = 4. Note that

Equation 4.1 employs a version of DCG that is different to the original version described

by Järvelin and Kekäläinen [102].

Kanoulas et al. [115] propose a variant of sDCG using different discount functions at the

session- and the SERP-levels. This version of sDCG is referred to as KsDCG, and employs a

weaker penalisation for documents appearing in the later SERPs compared to the original

sDCG:

KsDCG(−→r ; bq, b,m,n) =
m
∑

j=1

n
∑

i=1

1

logbq(j + bq − 1) · logb(i+ b− 1)
· rj,i .

Figure 4.5 shows the difference between two session-level discount functions of sDCG and

KsDCG for 1 ≤ j ≤ 20.

As is also the case with DCG (see Section 2.1.5 on page 29), for these two variants of

sDCG, truncation at session length m and ranking depth n is necessary, since the infinite

sum of the discount function is divergent. Note that the use of m and n is not to signify

that the n th result of the m th SERP is the last point inspected by the user. The simulated
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Figure 4.5: Plots of two session-level discount functions for sDCG and KsDCG: 1/(1+ logbq j)
and 1/ logbq(j + bq− 1), computed using bq ∈ {2, 4, 6} and 1 ≤ j ≤ 20.

user is assumed to never proceed beyond that point, but they also could stop prior to that

point. The maximum scores of both sDCG and KsDCG increase as either ranking or session

depth also increases, and hence require a scaling mechanism, if they are to be in the range

from zero to 1.

As is shown later (see Section 4.4), continuation probabilities of these two session

metrics increase with rank position i (sunk-cost property); and at the session-level, their

conditional reformulation probabilities also comply with this property. However, neither

of them are adaptive.

Session-Based Rank-Biased Precision. Recently, Lipani et al. [135] suggest a session-

based RBP, derived from a probabilistic graphical model of user search activities:

LCYsRBP(−→r ; p, q) = (1− p) ·
∞
∑

j=1

∞
∑

i=1

[

(

p− q · p

1− q · p

)j−1

· (q · p)i−1 · rj,i

]

, (4.2)

where 0 ≤ p ≤ 1 is the user persistence parameter, and 0 ≤ q ≤ 1 controls the balance

between two actions: reformulation or keeping on inspecting items in the current SERP4.

With this definition, both reformulation and continuation probabilities are constant during

the course of the session, a concern that has also been raised in connection with RBP (see

Section 2.4.1 on page 51).

4Lipani et al. [135] use 00 = 1.
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When q = 1, the simulated user will never reformulate the initial query, and hence

LCYsRBP calculates an RBP score only for the first SERP, RBP(r1,∗; p). On the other hand,

when q = 0, the simulated user will always reformulate upon the inspection of the first

item in each SERP.

In contrast to both sDCG and KsDCG, the discount function of LCYsRBP gives a con-

vergent sum, meaning that truncation at session length m and ranking depth n is not

necessary. However, as with sDCG, LCYsRBP is not adaptive.

Other Session-Based Metrics. Kanoulas et al. [115] also propose a session-based

metric esM computed as an expected score over all possible browsing paths in a session.

Let this set of possible paths be denoted by Ψ. A path, ψ ∈ Ψ, is defined as a series of

inspected items in a session [115]. The simulated user is also assumed to start examining

from the top rank position of each SERP in the session. Consider the following path:

ψ1 = 〈r1,1, r1,2, r1,3, r2,1, r3,1, r3,2〉 .

In this example, the user submitted three queries in the session. They inspected the top

three items in the first SERP, then reformulated to the second query, then examined only

the first item in the second SERP, then issued the third query, then viewed at ranks 1

and 2 in the third SERP, and then ended the session. A path ψ also has a probability of

Pr(ψ) of being followed by a user, then

esM(Ψ) =
∑

ψ∈Ψ

Pr(ψ) ·M (ψ) ,

where M (ψ) is the score of metric M computed for the browsing path ψ. Two RBP-like

geometric distributions define Pr(ψ): pj−1
re (1− pre) denotes the probability that the j th

query is the last one before the user ended their session; and pi−1
down(1− pdown) denotes the

probability that the rank position i is the last one inspected by the user in a particular

SERP. Kanoulas et al. [115] further suggest to use pre = 0.5 and pdown = 0.8. Hence,

esM is essentially an expected total gain version of LCYsRBP when M (ψ) is a cumulative

gain over all items in the path ψ. Yang and Lad [237] propose a similar approach, but

without allowing the simulated users to abandon early queries. As is shown by our experi-

ments, below, user models with fixed reformulation and continuation probabilities are not

especially accurate.
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Sakai and Dou [181] demonstrate that UM can be used to evaluate multi-query sessions

when the knowledge of document length (that is, the number of characters) is available

(see Equation 2.49 on page 58). Finally, when the amount of time spent to a examine a

particular document is known, Cube Test (CT) metric can also be employed to measure the

effectiveness of a session [142]. Let D = 〈d1, d2, d3, . . . , d|D|〉 be a chronologically ordered

sequence of documents inspected by the user, and Dt be a prefix of the sequence D, such

that Dt = 〈d1, d2, . . . , dt〉. Luo et al. [142] then define CT as follows:

CT(D) =
1

|D|
·

|D|
∑

t=1

Gain(Dt)

Time(Dt)
,

where Gain(Dt) is the gain volume that had been accumulated as a result of inspecting

all documents in Dt, and Time(Dt) is the time spent to examine all documents in Dt.

Both UM and Cube Test do not have a parameter that accommodates the user’s initial

goal for commencing the search (such as, navigational or informational goals), and again

are not adaptive.

4.2.2 Query-to-Session Aggregation Functions

When the sequence of queries submitted by each individual user and the corresponding

satisfaction rating are observed, a fitted relationship between them can be established

(consider again Figure 4.4 on page 128). In this regard one underlying question is to define

a combination function over individual query scores in the sessions so that the aggregate

session scores best correlate with session-level satisfaction ratings [104, 137, 139, 242].

Suppose the user has submitted |S| queries in a session:

−→r = 〈−→r1 ,−→r2 ,−→r3 , . . . ,−→r|S|〉 ,

where −→rj is the relevance vector that corresponds to the j th SERP. One way to perform

an aggregation is by employing a linear combination, defined as:

sM (−→r ) =
|S|
∑

j=1

θ(j) ·M (−→rj ) , (4.3)

where 0 ≤ θ(j) ≤ 1 is a weight associated with the j th SERP, and M (.) is a query-based

effectiveness metric. For example, Jiang and Allan [104] consider aggregation functions

such as summation (that is, θ(j) = 1) and mean (that is, θ(j) = 1/|S|). These functions,
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however, depend only on query position, denoted by j, and do not take into account query

quality, denoted by M (−→rj ).

Exponential Smoothing Function. Liu et al. [137, 139] argue that recency has a

strong influence on session satisfaction, and suggest that an increasing weight function θ(j)

is more appropriate for combining query-level metric scores. They define sM (.) inductively

using an exponential smoothing technique:

sM (〈−→r1〉) = M (−→r1)

sM (〈−→r1 ,−→r2 . . . ,
−→r|S|〉) =

(

1−
1

|S|λ

)

· sM (〈−→r1 ,−→r2 . . . ,
−−−→r|S|−1〉) +

1

|S|λ
·M (−→r|S|) ,

where parameter 0 ≤ λ ≤ 1 models the decay of influence. When λ = 0, the session-level

score is the score of the last query; and when λ = 1, sM (.) simplifies to a mean aggregation

function. More generally, this leads to the following specification:

θLiu(j) =
1

jλ
·

|S|
∏

k=j+1

(

1−
1

kλ

)

. (4.4)

As with the proposal of Jiang and Allan [104], θLiu(j) does not consider query quality.

Decaying of Memories. Inspired by the work of Liu et al. [139], Zhang et al. [242]

propose a forgetting function, forget(j), that corresponds to the j th query in the session

with length |S|:

forget(j) = e−δ·(|S|−j) , (4.5)

where δ is the rate at which users forget previously issued queries. Zhang et al. [242]

then combine this forgetting function and two session-based metrics, sRBP and sDCG, to

develop two recency-aware aggregation functions. The proposed functions are referred to

as recency-aware session RBP (RSRBP) and recency-aware session DCG (RSDCG):

RSDCG(−→r ) =

|S|
∑

j=1

forget(j) ·
1

(1 + logbq j)
·

n
∑

i=1

1

(1 + logb i)
· rj,i

RSRBP(−→r ) =

|S|
∑

j=1

forget(j) ·

(

p− q · p

1− q · p

)j−1

·
n
∑

i=1

(q · p)i−1 · rj,i .
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Note that forget(j) depends on the knowledge of |S|, the number of queries submitted

in the session. Therefore, RSRBP and RSDCG are not principally intended for session test

collection described in Figure 4.1, since the query sequence end point is known. Using the

framework described in Equation 4.3 (page 132), both functions can also be specified as

follows:

θRSDCG(j) =
e−δ·(|S|−j)

(1 + logbq j)
, M RSDCG(

−→rj ) =
n
∑

i=1

rj,i

(1 + logb i)
;

θRSRBP(j) = e−δ·(|S|−j) ·

(

p− q · p

1− q · p

)j−1

, M RSRBP(
−→rj ) =

n
∑

i=1

(q · p)i−1 · rj,i .

Both M RSDCG(.) and M RSRBP(.) are SERP-based expected total gain (ETG) metrics.

Moreover, M RSRBP(.) is an ETG version of RBP with φ = q · p.

Like these examples, most composition functions are based on ordinal query position

alone. A key finding of this chapter is that shows that quality information – the spectrum

from best to worst queries – is also valuable, and that combining both position and quality

information leads to session scores that better correlate with session satisfaction.

4.3 Interaction Logs

We now describe the search interaction logs used in this study. Three datasets are drawn

from commercial search engines; three further datasets are pre-existing resources from

lab-based user studies [107, 139, 145].

4.3.1 Industrial-Based Datasets

Table 4.1 describes the three search interaction logs used in this study. The first two are

from the Australasian job search engine, Seek.com, sampled through an eight-week period

(30 July to 23 September 2018). Note that this is also the same period used to sample the

data described in Chapter 3 (see Table 3.1 on page 80). However, the data described in this

chapter was collected in the unit of “session”, instead of “action sequence”, since session-

level behaviours are the main focus in this chapter. Recall that the Seek.com data covers

two modalities: via a mobile application (iOS and Android) that has infinite scrolling

without pagination; and via a traditional browser-based Web application that has fixed

pages containing 20 results. In the browser-based modality, the first page in each SERP

might also contain up to two further paid items. The two modalities are based on different
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Seek.com
Yandex

mobile browser

Users 4,962 4,868 unknown
Sessions 56,737 19,269 1,000,000
Queries 121,840 75,401 1,362,421
SERP size unlimited unlimited truncated,10
Pagination no 20–22 no
Domain jobs jobs web
Clicks yes yes yes
Impressions yes yes no
Rel. judg. no no binary

Table 4.1: Interaction logs from three commercial search engines (mobile- and browser-
based Seek.com job search; and Yandex.ru Web search). Note that these logs are used to
investigate search interaction patterns, and not to address system performances of both
Seek.com and Yandex.ru.

J&A [107] THUIR2 [145] THUIR3 [139]

Sessions 80 223 450
Avg. queries per session 4.85 4.11 3.44
SERP size 9 5 10
Rel. judgements 3-level 4-level 4-level
Impressions eye gazes no no
Clicks yes yes yes
Query ratings no 5-level 5-level
Session ratings 5-level 5-level 5-level

Table 4.2: Data from three lab-based sessional Web search studies.

definitions of search session. On mobiles, a new session starts each time the application is

opened, whereas with browser-based search a session is associated with a long-lived cookie

that could last for months.

The third set of interaction data was obtained from a publicly-available Web search log

of a Russian search engine, Yandex.ru. This dataset, which was initially constructed for a

relevance prediction competition5, contains a collection of ordered clickthrough sequences

(rather than impressions or other actions), as well as a set of relevance judgements for a

subset of the queries, made a year after the logs had been collected. In general, Yandex.ru

Web search users are less inclined to reformulate than Seek.com job search users. Figure 4.6

shows the fraction of sessions, categorised by the session length, in these three datasets.

5https://academy.yandex.ru/events/data_analysis/relpred2011/

https://academy.yandex.ru/events/data_analysis/relpred2011/


136 Modelling Search Sessions

1 2 3 4 5 6 7 8 9 10
#queries

0.0

0.2

0.4

0.6

0.8

1.0
Mobile, Job Search
Browser, Job Search
Web Search

Figure 4.6: Fraction of sessions for job search and Web search, as a function of session
length.

4.3.2 Laboratory-Based Datasets

As shown in Table 4.2, three laboratory-based session search logs are also employed in

support of our analysis and experiments, and are particularly useful for investigating

factors affecting session satisfaction, since they contain user-reported satisfaction ratings.

Hence, these datasets are important for the development of query-to-session aggregation

methods. Two datasets, J&A and THUIR3 datasets, have been used already in Chapter 3

for inferring SERP-level conditional continuation functions in the context of Web search

(see Table 3.15 on page 115). In this chapter we are more interested in exploring the

session-level information available from these three datasets. Observations from the J&A

dataset are also useful for inferring user viewing behaviours for the Yandex.ru logs, relying

on the fact that both arise from typical web search scenarios.

In addition to the J&A and the THUIR3 datasets, the analysis carried out in this

chapter employs the THUIR2 dataset, developed by Mao et al. [145], which contains

223 multi-query sessions. Three features of the THUIR2 data are particularly useful: a

set of SERPs with four-level relevance judgements covering the top-5 rank positions for

each SERP; a set of five-level user-generated satisfaction ratings at the level of individual

SERPs; and a set of five-level whole-of-session satisfaction ratings that serve as an overall

evaluation of each session. The THUIR2 dataset has the same characteristics as THUIR3.

However, THUIR3 has more sessions compared to THUIR2, and also contains relevance

judgements for the top ten results in each SERP.
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Figure 4.7: Unrolling Figure 4.3 to obtain possible browsing paths.

4.3.3 Organic SERPS

It can be helpful to explore the query-level behaviour of users when they are engaged with

organic results and see no paid items, and to get a clear understanding of user activities

around page boundaries. These subsets of the two Seek.com logs contain 58,645 organic

SERPs derived from 3,970 mobile-based users, and 40,882 organic SERPs from 4,003

browser-based users.

4.4 A Session-Based C/W/L Framework

To obtain a session-based framework we add a second dimension to the query-level C/W/L

definitions, spanning not only all results in a SERP but also all items across all SERPs in

a session. Figure 4.7 (page 4.7) illustrates this idea by unrolling the processes described

in Figure 4.3 (page 4.3), showing the set of browsing paths a user might follow through a

complete search session. Two base cases are considered. First, the user is assumed to always

start the session by submitting an initial query Q1, and then inspecting the first item in

the corresponding SERP to derive the gain r1,1. Second, if the user has reformulated the

initial query j− 1 times, and is about to examine the j th SERP after submitting Qj , then

they always read the first result in that SERP to derive the gain rj,1.

Other than the two base cases, the general situation is that the user has just inspected
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the item at rank i in the j th SERP. At each such step they make a binary decision: to

continue inspecting the next item at rank i+ 1 in the same SERP, or to exit this SERP.

This choice is modelled by C(j, i), the conditional continuation probability of the user

shifting their attention from the i th to the i + 1 th item in the j th SERP. Note that

C(j, i) is a generalisation of the SERP-level C(i).

If the user chooses to abandon the SERP for query Qj , they might reformulate Qj

to a follow-up j + 1 th query Qj+1, with conditional probability F (j); or, might end the

entire search session with probability 1 − F (j). That is, C(j, i) and F (j) are the two

quantities required when computing the proportion of users in the population looking at

the i th document in the j th SERP, and thus determine a set of weights that can be used

to calculate a session effectiveness metric score.

As with the query-based C/W/L structure, it is also possible to compute the prob-

ability L(j, i) that the i th item in the j th SERP is the last one inspected by the user,

denoted by L(j, i); and the weight function W (j, i) that represents the fraction of user

attention paid to the i th item in the j th SERP. It is important to note that both W (j, i)

and L(j, i) are two-dimensional probability functions, and hence should sum to one:
∑

j

∑

iW (j, i) =
∑

j

∑

i L(j, i) = 1. Similarly, C(j, i), W (j, i), and L(j, i) for any sin-

gle SERP can be computed from each other. For example, C(j, i) can be computed from

W (j, i) using

C(j, i) = W (j, i+ 1)/W (j, i) . (4.6)

The conditional reformulation probability, F (j), also has a relationship to any of the

C(j, i), W (j, i), and L(j, i) functions. For example, F (j) and W (j, i) are connected via

F (j) = W (j + 1, 1)/W (j, 1) . (4.7)

As can be seen in Figure 4.7, W (j, 1) is proportional to the fraction of users who examine

the SERP for j th query, since users who arrive at the j th SERP must examine its first

document at the top.

Expected Number of Inspected Items. The expected number of inspected items

(ENI) for the session-based C/W/L structure is computed as follows:

ENI = 1/W (1, 1) . (4.8)
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To understand this relationship, consider the following sequence of observations:

• The per-SERP expected search length for j th SERP in the session, denoted by

ESL(j), is computed as

ESL(j) =

(

∞
∑

i=1

W (j, i)

)

/W (j, 1) .

• Knowing that W (j, i) is non-increasing with respect to query position j and the

infinite sum of W (j, i) over j ≥ 1 is convergent,
∑∞
j=1W (j, i) ≤ 1, the following

statement holds:

lim
j→∞

W (j, i) = 0 for all i ≥ 1 .

• Using Equation 4.7 (page 138), the probability that the user submits exactly k

queries before ending the search session, denoted by P (|S| = k), is computed as:

P (|S| = k) = (1− F (k)) ·
k−1
∏

j=1

F (j)

=
W (k, 1)−W (k+ 1, 1)

W (1, 1)
.

If the query sequence is observed and it is known that the user poses k queries, S =

〈Q1, · · · ,Qk〉, the expected number of documents inspected upon exit from k th SERP is

determined as
∑k
j=1 ESL(j). However, when the number of query reformulations is not

known, but its probability distribution is known, the expected value for the number of

inspected items in the session (that is, ENI) can be computed as:

ENI = ESL(1) · P (|S| = 1) +

[ESL(1) + ESL(2)] · P (|S| = 2) +

. . .

=

∑∞
i=1W (1, i)

W (1, 1)
·
W (1, 1)−W (2, 1)

W (1, 1)
+

[
∑∞
i=1W (1, i)

W (1, 1)
+

∑∞
i=1W (2, i)

W (2, 1)

]

·
W (2, 1)−W (3, 1)

W (1, 1)
+

. . .
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=

∑∞
i=1W (1, i)

W (1, 1)
·

[

W (1, 1)−W (2, 1)

W (1, 1)
+
W (2, 1)−W (3, 1)

W (1, 1)
+ . . .

]

+

∑∞
i=1W (2, i)

W (2, 1)
·

[

W (2, 1)−W (3, 1)

W (1, 1)
+
W (3, 1)−W (4, 1)

W (1, 1)
+ . . .

]

+

. . .

=

∑∞
i=1W (1, i)

W (1, 1)
·

[

W (1, 1)

W (1, 1)

]

+

∑∞
i=1W (2, i)

W (2, 1)
·

[

W (2, 1)

W (1, 1)

]

+

. . .

=

∑∞
i=1W (1, i) +

∑∞
i=1W (2, i) + . . .

W (1, 1)

=

∑∞
j=1

∑∞
i=1W (j, i)

W (1, 1)

= 1/W (1, 1) .

ERG and ETG Metrics. Given the definition of the session-based C/W/L framework,

the session-based expected rate of gain (ERG) metric is defined via:

sMERG(−→r ) =
∞
∑

j=1

∞
∑

i=1

W (j, i) · rj,i .

Further, using the expected number of inspected documents described in Equation 4.8,

the expected total gain (ETG) metric is computed as:

sMETG(−→r ) = sMERG(−→r )/W (1, 1) .

Computing W (j, i). To determine the W (j, i) values, let V (j, i) be the proportion of

users that examine the i th result in the SERP associated with the j th query. The user is

assumed to always look at the first item listed in the first SERP, and hence: V (1, 1) = 1. If

function F (j) is not affected by rj,i, and depends only on query position j and per-SERP

item position i, then the conservation of flow described in Figure 4.7 (page 137) suggests

that V (j, i) can be inductively computed as:

V (j, i) =



















1 j = 1, i = 1

F (j − 1) · V (j − 1, 1) j > 1, i = 1

V (j, i− 1) ·C(j − 1, i) i > 1 .

(4.9)
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The weight function W (j, i) is then a normalisation of V (j, i):

W (j, i) =
V (j, i)

∑∞
k

∑∞
l V (k, l)

. (4.10)

Here, the denominator
∑∞
k

∑∞
l V (k, l) should be precisely known in order to determine an

accurate W (j, i). In practice, this can be achieved by calculating many values of V (j, i).

Note that, with this definition, the ETG score (Equation 4.9) can also be computed as:
∑∞
j=1

∑∞
i=1 V (j, i) · rj,i.

However, if function F (j) depends on the gain values that have been encountered by

the user so far, and the metric is adaptive, Equations 4.9 and 4.10 cannot be applied, since

each random user in the population might have different total accumulated gain upon exit

from a particular SERP. In this case, a more general computation method, Monte Carlo

simulation, can be applied to calculate W (j, i), counting what happens through the course

of a large number of randomised trials using the automaton shown in Figure 4.3 (page 126).

Existing Session Metrics. Given these definitions, three existing session-based metrics

can be explained using the C/W/L framework: the original session-based DCG (sDCG) [103],

a variant of sDCG proposed by Kanoulas et al. [115] (KsDCG) , and LCYsRBP [135]. The

latter is an ERG metric with two parameters, and is defined as:

CLCYsRBP(j, i) = q · p and FLCYsRBP(j) =
p− q · p

1− q · p
.

For both sDCG and KsDCG, truncation at a defined evaluation depth is required, since the

infinite sum of the original discount function does not converge. Two additional parameters,

m and n, are employed to limit the computation over a sequence of m SERPs, and to

depth of n in each SERP. This is to ensure that the simulated user will end their search

activities at some point. Without this truncation, the user will never stop searching, and

thus W (j, i) ≈ 0 and the metric score becomes zero. Hence, sDCG and KsDCG are two

instances of an ETG metric with four parameters – bq and b, representing the session-

and query-level persistence, the session depth m, and the ranking depth n – and are

specified by:

CsDCG(j, i) =







1+logb(i)
1+logb(i+1) i < n

0 i ≥ n
, FsDCG(j) =











1+logbq (j)

1+logbq (j+1) j < m

0 j ≥ m .
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CKsDCG(j, i) =







log(i+b−1)
log(i+b) i < n

0 i ≥ n
, FKsDCG(j) =







log(j+bq−1)
log(j+bq) j < m

0 j ≥ m .

With this specification, the user modelled by LCYsRBP has a constant tendency to refor-

mulate their queries, regardless of how many queries they have submitted and how many

relevant items they have seen; whereas both sDCG and KsDCG assume that F (j) increases

with query position j. However, none of them are adaptive.

4.5 Search Behaviours

Having described the session-based C/W/L structure consisting of two key quantities,

conditional continuation probability (query-level behaviour) and conditional reformula-

tion probability (session-level behaviour), this section employs interaction logs from two

commercial search engines, Seek.com and Yandex.ru, to answer RQ 4.1 regarding factors

contributing to both levels of user behaviour.

4.5.1 Query-Level Behaviours

The interaction logs are used to explore query-level user behaviours through the lens of

C/W/L, focusing on how C(·, ·) varies with respect to: (1) the rank position currently

being inspected, i; (2) the anticipated number of relevant items to fulfill an information

need, T ; and (3) the unmet volume of relevance after i documents have been encountered.

These three factors were originally used by Moffat et al. [155] to define an adaptive query-

based metric, INST.

Inferring C(·, ·). To investigate the effect of those three factors on C(·, ·), it is necessary

to compute empirical estimates from the action sequences. Chapter 3 described a method-

ology for computing empirical C(·, ·) from search logs. With this estimation method, each

action in action sequence is associated with an indicator variable 0 ≤ ci ≤ 1, where ci = 1

if a continuation is observed at that position, and ci = 0 otherwise. Recall that three rules

were proposed for the operational definition of a continuation, specifying how to determine

the value of ci in each action in the action sequence (see Table 3.2 on page 82).

In contrast to the Seek.com data, the Yandex.ru data only contains clickthroughs and

no impression signals. As is noted in Section 3.5, this situation potentially underestimates

the notion of “examine rank i”. The phenomenon of good abandonment suggests that a
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Figure 4.8: Percentage of action sequences in which an impression at a particular rank
position is observed, stratified by the rank position of the deepest click action (J&A
dataset).

user should be considered to have examined the item at rank i when they read the snippet

at that point without clicking at it [133]. To address this underestimation issue, Section 3.5

described impression models that predict impression distribution using clickthrough infor-

mation, exploiting a behavioural pattern that users tend to examine the majority of the

items prior to the deepest click rank position, as well as results beyond that point (see

Figure 3.14 on page 99).

Figure 4.8 shows that this pattern is also supported by the J&A dataset. To infer gaze

distributions from clickthrough sequences, including beyond the deepest click, Impression

Model 1 (see Equation 3.7 on page 107) is employed to estimate impression distributions

for the Yandex.ru log using the J&A dataset as a basis for parameter estimation. Recall

that Impression Model 1 has one parameter, K, that represents user persistence beyond

the deepest click position. Using this model, the continuation variable, ci, is determined

as follows:

ci =
V̂ (i+ 1 | u, q)

V̂ (i | u, q)
=







1 if i ≤ DC (u, q)

e−1/K if i > DC (u, q) ,
(4.11)

where V̂ (i | u, q) is the probability that user u inspects the item at rank i for query q,

and DC (u, q) is the corresponding deepest click rank. A best-fit process using the J&A

dataset yields K = 1.4.

Inferring Relevance. To understand how Ti influences C(·, ·), the relevance informa-

tion for each item in each SERP needs to be available. However, the Yandex.ru dataset

(Table 4.1) only contains relevance judgements for clicked items. To infer the relevance of
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Θ P̂ (r = 0 | Θ) P̂ (r = 1 | Θ) P̂ (r = 2 | Θ) E[r]

1 0.263 0.301 0.436 1.173
2 0.518 0.211 0.271 0.753

Table 4.3: Estimated probability of three different relevance levels when the user clicked
on a particular item (Θ = 1), and when the user viewed an item but did not click on it
(Θ = 2), computed from J&A dataset with 3-level relevance judgements (r ∈ {0, 1, 2}).
The last column shows the expected relevance grade for both conditions. Note that the
sum in each of the two rows is 1.0. The difference between the two conditions is significant
(χ2

2 = 125.7, p < 0.01).

non-clicked items, this study makes use the assumption that documents that are viewed

but not clicked are not relevant. Table 4.3, which is generated from the J&A dataset, shows

that the expected relevance of a clicked item is significantly higher than that of an item

that is viewed but not clicked. This observation provides evidence for that assumption.

With the Seek.com data, the situation is more complex. The Seek.com dataset does

not contain editorial relevance judgements, and the relevance information needs to be

inferred from available implicit feedback, such as clickthroughs and job applications. While

clickthrough information, at least to some extent, can be used for modelling relevance

[41, 162], it is difficult to directly interpret clickthroughs as absolute relevance judgements

[110]. A clickthrough action on a particular item is an indication that the user was attracted

by that item, and perceived that it might be relevant. However, after clicking the item

and reading its content, the user might decide that it is non-relevant. Fortunately, in the

context of job search, the application action is more tightly coupled with relevance than

the clickthrough action.

To support that argument, a logistic regression analysis was carried out with a rele-

vance value (ri) as the response variable, and two binary indicators, did click and did app

associated with clickthrough and job application actions, as the explanatory variables.

This regression analysis employs a small set of relevance judgements (qrels) consisting of

5,145 〈query, document, ri〉 triples on a four-point relevance scale. These qrels were gath-

ered using the 205 most frequent queries, via a crowd-sourcing platform between June and

August 20176, before the introduction of the “impression tracking” system that generated

the data described in Table 4.1.

Using the Seek.com qrels, a sample of search logs containing around 7,000,000 tu-

ples 〈query, document, ri, did click, did app〉 were also collected for the duration between

6These qrels were collected by Damiano Spina (RMIT University) and Bahar Salehi (The University of
Melbourne) as part of the overall collaboration between the two institutions and Seek.com. The contribu-
tion of Damiano and Bahar in sharing the resource that they constructed is acknowledged.
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Factor coef. p

intercept (w0) 2.721 0.000
did click (w1) 0.527 0.000
did app (w2) 0.173 0.000

Table 4.4: Multiplicative effect sizes for did click and did app, optimised to fit the Seek.com

editorial relevance values using a logistic regression for a total of 5,970,120 tuples
〈query, document, ri, did click, did app〉.

February and November 2017. Let this collection of tuples be denoted by H. To estimate

the coefficients of the regression model, we only used a subset of the logs, H ′ ⊂ H that

contains 5,970,120 tuples, for which the query-document pairs are either fully-relevant or

non-relevant. Note that a logistic regression model requires a binary response variable.

The coefficients w of explanatory variables are then optimised according to the following

linear model:

ln(ri/(1− ri)) = w0 +w1 · did click +w2 · did app .

Table 4.4 shows the effect sizes for did click and did app, when optimised to fit the editorial

relevance values. Note that a job application is always preceded by a clickthrough, and

hence:

did app = 1 =⇒ did click = 1 .

The relatively large positive intercept value might be affected by the fact that the ma-

jority of the 〈query, document〉 pairs in the sample of search logs are fully relevant. The

corresponding odds ratios are exp(0.527) = 1.694 (a 69% increase in the odds of being

relevant when clicked) and exp(0.527 + 0.173) = 2.014 (a 101.4% increase in the odds of

being relevant (or double odds of being relevant) when also applied for.

To reinforce the finding described in Table 4.4, two quantities are also computed:

clickthrough rate (CTR) and application probability conditioned on click action, P (App |

Click), using the original collection of tuples H. The results are then stratified by the

relevance grade (ri). Both clickthrough rate and P (App | Click) for a query-document

pair are estimated as follows:

CTR(〈query, document〉) =
#Click(〈query, document〉)

#Count(〈query, document〉)
,
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Figure 4.9: Clickthrough rate (top row) and distribution of P (App | Click) (bottom row),
each as a function of relevance grade (ri), computed from the collection of tuples H. The
green triangle in each box-whisker is the mean. Mobile-based queries are shown in the
left-hand column, and browser-based queries in the right-hand column. The vertical scale
is linear; but for commercial-in-confidence reasons is not labeled.

P (App | Click, 〈query, document〉) =
#App(〈query, document〉)

#Click(〈query, document〉)
,

where #Count(.) is the frequency of the 〈query, document〉 pair in the set of tuples H, and

#Click(.) and #App(.) are the numbers of occurrences of the 〈query, document〉 pair that

corresponds to, respectively, did click = 1 and did app = 1. Figure 4.9 shows the resultant

distributions from this analysis. In general CTR and P (App | Click) tend to increase as a

function of document relevance (ri). Hence:

Assumption 1. For job search, the item at rank position i in sequence A is relevant if

and only if a job application action was observed at i:

(“A”, i) ∈ A ⇐⇒ ri = 1 .

Inferring T . To estimate the user’s anticipated number of relevant documents (that is,

the user’s target) T from interaction logs, the following assumption is made:



4.5 Search Behaviours 147

Assumption 2. Users complete their search session at some point after they have met

their expected volume of relevance, that is, at some point after Ti reaches 0.

Moffat et al. [153] conducted a user study that, to some extent, supports Assumption 2.

In connection with a laboratory-based search experiment, participants were asked about

the expected number of useful web pages they would expect to see to complete a search

task. Each answer to this question is an estimate of T . While not arguing that users only

exit their search once Ti = 0, Moffat et al. [153] show that the stopping probabilities do

tend to increase as Ti decreases.

With Assumptions 1 and 2, it can be inferred that T at the beginning of a session is

equal to the number of job applications observed in the session. However, this creates a

problem when T is inferred from sessions with no applications, since T > 0 would seem to

be implicit in the fact that the user has commenced a search. To smooth this discontinuity,

Tα > 0 is introduced as a background expectation, the minimal target that triggers the

user to perform a search task. In the absence of prior knowledge, Tα = 0.5 is assumed,

and all of the experiments reported in this chapter use this number.

It is also desirable to assign T to individual queries in the session. To allow that, this

study distinguishes between the session-level T , denoted by T0; and a per-query value Tj ,

representing the anticipated number of relevant documents still sought at the commence-

ment of the j th query. Other quantities are also defined: Tj,i, representing the remaining

anticipated volumes of relevance after the user inspected the i th item in the j th SERP

for query Qj , with Tj,0 ≡ Tj (useful as a notational convenience); and Tj,∗, remaining

anticipated relevant documents when the user exits from the j th SERP, with T0,∗ ≡ T0.

Furthermore, while Tj,i is allowed to be negative, it is not desirable for Tj to be zero or

less. To start a new query, Tj should be at least Tα. Based on these considerations, it is

proposed that Tj,i be computed as follows:

Tj,i =







max(Tj−1,∗,Tα) i = 0

Tj,i−1 − rj,i i > 0 .
(4.12)

Finally, if napp(A) is the number of jobs applied for in one of the Seek.com action se-

quences associated with that session, then T0 is estimated via

T̂0 = Tα +
∞
∑

k=1

napp(Ak) . (4.13)

For the Yandex.ru data, napp(A) is replaced by nrc(A), the number of distinct relevant
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items clicked in the action sequence.

For example, consider a session S1 = 〈Q1,Q2,Q3〉 , with three corresponding action

sequences:

A1 = 〈(“I”, 1), (“I”, 2), (“I”, 4), (“C”, 4), (“I”, 2), (“I”, 3)〉 ,

A2 = 〈(“I”, 1), (“I”, 2), (“C”, 2), (“A”, 2), (“I”, 3), (“I”, 5), (“I”, 6)〉 ,

A3 = 〈(“I”, 1), (“I”, 3), (“C”, 3), (“A”, 3), (“I”, 4), (“I”, 7), (“I”, 5)〉 . (4.14)

In the first query the user examined the items at ranks 1, 2, and 4, then clicked at rank

4, then viewed the items at rank 2 (again) and rank 3. In the third query, after a second

reformulation, the user viewed two items, clicked at rank 3 and started an application, and

then examined three further items before completing their session. Table 4.5 shows the

computation of various values, T0, Tj , Tj,i, and ci, for this three-query example session.

According to rule G, one of three rules for determining the value of ci (see Table 3.2

on page 82), there are three non-continuations observed at rank positions 3 and 4 in the

sequence A1, since neither of them are followed by an action that took place in a higher

rank positions. Complete assignments of ci for all actions in the three action sequences

are shown in the last column of Table 4.5. Note that click and job application actions are

not considered for inferring C(·, ·), since both of them always follow impressions anyway.

Hypotheses Regarding Factors Affecting C(·, ·). Recall that Moffat et al. [153, 155]

suggest that the conditional continuation probability:

1. increases with rank position i;

2. increases with T , the expected volume of relevance; and

3. decreases as relevant documents are accumulated (or as Tj,i decreases).

Moffat et al. [153, 155] go on to define INST, and adaptive metric based on these hypothe-

sised user behaviours. Next an experiment is carried out using commercial interaction logs

to see evidence for or against the hypothesised relationships.

Analysis. A set of independent one-variable logistic regression analyses was conducted

to obtain an overview of how these various factors, particularly rank i, T , and Tj,i con-

tribute to C(·, ·), using the continuation indicator ci as a response variable. An additional

binary factor “i%20 = 0” was also added into the experiment, to quantify the effect of
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T0 Tj Tj,i i at ci

A1, j = 1 2.5 2.5 2.5 1 “I” 1
2.5 2.5 2.5 2 “I” 1
2.5 2.5 2.5 4 “I” 0
2.5 2.5 2.5 4 “C” –
2.5 2.5 2.5 2 “I” 1
2.5 2.5 2.5 3 “I” 0

A2, j = 2 2.5 2.5 2.5 1 “I” 1
2.5 2.5 2.5 2 “I” 1
2.5 2.5 2.5 2 “C” –
2.5 2.5 1.5 2 “A” –
2.5 2.5 1.5 3 “I” 1
2.5 2.5 1.5 5 “I” 1
2.5 2.5 1.5 6 “I” 0

A3, j = 3 2.5 1.5 1.5 1 “I” 1
2.5 1.5 1.5 3 “I” 1
2.5 1.5 1.5 3 “C” –
2.5 1.5 0.5 3 “A” –
2.5 1.5 0.5 4 “I” 1
2.5 1.5 0.5 7 “I” 0
2.5 1.5 0.5 5 “I” 0

Table 4.5: Calculation of T0, Tj , Tj,i, and a continuation indicator ci, for a session of three
action sequences, and assuming Tα = 0.5. Note that ci is computed only for impression
actions, since a click and/or a job application imply an impression.

pagination, an issue with the browser-based queries in the Seek.com logs. This analysis

employs the subset of the Seek.com data that contains only organic results (without pro-

moted items). Note that the two alternatives of inferring T , namely T0 and Tj , were tested

in two separate regression models, since T0 and Tj are highly correlated (r > 0.8). Putting

them together in a generalised linear model would generate unreliable estimates of their

individual coefficients, since they largely explain the same variance.

Table 4.6 shows multiplicative effect sizes for i, T0 or Tj , and Tj,i, aggregated over

queries and all sessions. Intercepts are not meaningful in this context, and thus are not

shown. The indicator “i%20 = 0” was not included when modelling continuation proba-

bility on the continuous-scroll data. In these results the signs are of more interest than

the magnitudes, and show that all of the rank position i, the user goal T (both as T0 and

as Tj), and Tj,i are all positively correlated with ci, providing empirical corroboration for

the relationships proposed by Moffat et al. [153, 155]. Pagination has a strong negative re-

lationship with continuation behaviour, and in the browser-based Seek.com queries, users

are more likely to end their inspection on page boundaries than at other ranks, with 64%

decrease in the odds of continuing.
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Factor
iOS/Android browser yandex

coef. p coef. p coef. p

i 0.019 0.000 0.019 0.000 0.039 0.000
Tj 0.107 0.000 0.037 0.000 0.266 0.000
T0 0.062 0.000 0.018 0.000 0.199 0.000

i%20 = 0 – – −1.023 0.000 – –
Tj,i 0.105 0.000 0.029 0.000 0.934 0.000

Table 4.6: Effect sizes for factors in a fitted model of a binary continuation indicator, ci,
across all of the queries in the sessions, with each factor computed independently of all
other factors.

Table 4.7 stratifies the effects based on each query’s position in the session, covering

the first three queries in each session. The same general patterns arise for the first three

queries. It can also be seen that the effect of “i%20 = 0” slightly decreasing with query

position j, suggesting that each of the SERPs is treated broadly the same by the user

inspecting them. Figure 4.10 visually illustrates the effect of the factors i and “i%20 = 0”

for the first three query positions that are described in Table 4.7.

To conclude this sub-section, this study has found an empirical support that conditional

continuation probability (or query-level behaviour) has a positive correlation with all of

the rank position i, the user target T , and the progress towards goal Tj,i. These results

provide further evidence that INST provides a user model that is helpful when analysing

query-level behaviour.

4.5.2 Session-Level Behaviours

According to the user model depicted in Figure 4.3 (page 126), the probabilistic nature

of C(·, ·) allows users to end a query at any rank position. Once that happens, they have

two choices: to end the entire session, or to continue by reformulating their query. The

factors that drive that decision are also of interest, and this section focuses on modelling

the user’s propensity to reformulate to Qj+1, given that they have exited from the j th

SERP. This is the conditional reformulation probability, F (j).

Several plausible explanatory factors are considered: the query’s position in the session,

j; the initial target, T0; and the unmet volume of anticipated relevance upon exit from the

j th SERP, Tj,∗. Hypotheses in regard to these factors are as follows:

1. F (j) increases with query count j, so that the more the user reformulates their

queries, the more likely it is that they reformulate again in the future. Note that
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Query Factor iOS/Android browser yandex

j = 1 i 0.02 0.02 0.03
Tj 0.12 0.08 0.27
T0 0.12 0.08 0.27
i%20 – −1.05 –
Tj,i 0.14 0.07 1.06

j = 2 i 0.02 0.02 0.06
Tj 0.09 0.09 0.26
T0 0.07 0.07 0.16
i%20 – −1.03 –
Tj,i 0.08 0.08 0.76

j = 3 i 0.02 0.02 0.08
Tj 0.12 0.07 0.23
T0 0.08 0.06 0.12
i%20 – −0.94 –
Tj,i 0.11 0.07 0.51

Table 4.7: Effect sizes in a fitted model of the continuation indicator, ci, tabulated sepa-
rately for first three queries in each sessions, and again computed as a sequence of inde-
pendent regressions.

LCYsRBP does not comply with this hypothesis, because FLCYsRBP(j) is constant. In

contrast, sDCG and KsDCG are compliant with this hypothesis.

2. F (j) increases with T0, so that the likelihood of reformulation increases as the total

anticipated relevance increases. This hypothesis suggests that a user model should

provide parameters to allow different numbers of reformulations; and sDCG, KsDCG,

and LCYsRBP support this to some extent via their parameters.

3. F (j) decreases as Tj,∗ decreases, so that as the user accumulates answers toward

their goal, they are more likely to end their search session. None of these session

metrics, sDCG, KsDCG, and LCYsRBP, are compliant with this hypothesis.

Other explanatory variables are also possible, such as the proportion of relevant items

clicked in the j th query, and the rate at which gain has been accumulated upon exit

from j th SERP. Exploration of other factors, including the possibilities listed, will be

undertaken as future work.

Analysis. An experiment is carried out to see the effect sizes of factors described in the

previous numbered list in regard to F (j). Logistic regression is again employed, now to

model the query reformulation decision at the end of query j, denoted by fj , a dichotomous
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Figure 4.10: Empirical conditional continuation probabilities for ranks i ≤ 30, for the first
three queries in each session (j ≤ 3), for Seek.com app-based (top) and browser-based
(bottom) queries.

variable: whether to reformulate (fj = 1), or not (fj = 0). If a session with m queries was

observed, fj is determined as follows:

fj =







1 if j < m

0 if j = m .

The coefficients of explanatory variables are again trained independently via a set of logistic

regression models, and the sign of the resultant coefficient is of interest.

Table 4.8 summarises the effects of the three factors, j, T0, and Tj,∗, for the prediction

of fj . In the case of the Yandex.ru data, L1 regularisation is used, since a quasi-complete

separation with respect to Tj,∗ led to a very large coefficient value. In general, the three

hypotheses regarding F (j) are validated, with positive coefficients for all three factors.

Figure 4.11 shows the positional distribution of last application (Seek.com, left) and last

relevant click (Yandex.ru, right), as a function of query position in the session, stratified

by the number queries in the session. These “success” actions, which provide prima-facie

evidence of goal fulfillment, have a strong tendency to appear in the last query of the
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Factor
iOS/Android browser yandex

coef. p coef. p coef. p

j 0.140 0.000 0.079 0.000 0.333 0.000
T0 0.162 0.000 0.148 0.000 0.141 0.000
Tj,∗ 6.826 0.000 3.999 0.000 22.912 0.000

Table 4.8: Independent-regression effect sizes and corresponding p values for factors in a
fitted model for the binary reformulation indicator fj .
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Figure 4.11: Positional distribution of last application (Seek.com, left) and last relevant
click (Yandex.ru, right) as a function of query number in the session (x-axis), stratified
by the number of queries in the session (y-axis). The values across each row sum to one.
The Seek.com browser-based users have a similar trend.

session. This reinforces the finding that users have tendency to end the session as they

accumulate relevant documents (that is, Tj,∗ has a positive correlation with fj). Finally,

Figure 4.12 plots empirical conditional reformulation probabilities, F̂ (j), for 1 ≤ j ≤ 10,

computed as:

F̂ (j) =

∑

S I(Qj ∈ S ∧ fj = 1)
∑

S I(Qj ∈ S)
,

where I(P) is an indicator function that returns 1 if P holds, and 0 if otherwise. Note

that the denominator decreases with j (compare with Figure 4.6 on page 136).

The increasing trend of F̂ (j) is obvious, and matches the “sunk cost” within-query

continuation behaviour illustrated in Figure 4.10 (page 152). This trend is also consistent

with the fact that the factor j is positively correlated with fj , described in Table 4.8

(page 153). Note also how Yandex.ru Web search users are far less inclined to reformulate

queries than are job search users observed from the Seek.com dataset.
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Figure 4.12: Conditional reformulation probabilities, F̂ (j), for the first ten query positions,
1 ≤ j ≤ 10. Recall that F̂ (j) is the empirical probability of users reformulating the j th
query. The vertical scale is linear; but for commercial-in-confidence reasons is not labeled.

4.6 A Model-Based Session Metric

Modelling F (j). The previous section established factors explaining the variance of

user reformulation behaviour, F (j) (Table 4.8, Figure 4.12). This section now seeks to

incorporate those behavioural patterns into a model for session evaluation. The model

should depend only on relevance judgements, since the main goal is to devise an offline

effectiveness metric based on session collection. Nevertheless, additional parameters are

still allowed, so as to take into account user variability, including each user’s initial search

target T0. Recall that query count j, session target T0, and Tj,∗ (remaining volume after

the j − 1 th SERP is exited), are all positively correlated with F (j). With these findings,

and the inspiration from the formulation of INST [153, 155], captured as Equation 2.44 on

page 55, the following “idealised” model for F (j) is proposed:

F (j) =

(

j + T0 + Tj,∗

j + T0 + Tj,∗ + κ

)2

. (4.15)

Here κ > 0 is an constant that controls the rate at which the reformulation probability

increases with j.

Session-Based INST. New session-based effectiveness metrics can be proposed by tak-

ing Equation 4.15 and by adding a C(j, i) function for governing per-query conditional con-

tinuation probabilities. Again drawing on the proposal of INST (Equation 2.44 on page 55),
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a “session INST” (sINST) is specified via the following definition of C(j, i):

CsINST(j, i) =

(

i+ Tj + Tj,i − 1

i+ Tj + Tj,i

)2

. (4.16)

Although Tj depends on volumes of relevance that the user has encountered in the previous

queries, 〈Q1, . . . ,Qj−1〉, the j th query is treated independently within the session, in the

sense that the user is assumed to commence their inspection of the j th SERP according

to the target of gaining Tj units of relevance. The computation of W (j, i) involves an

aggregation over all SERPs in the session (Equations 4.9 and 4.10), and thus the metric

score calculated using W (j, i) indicates the effectiveness of the entire session.

Recall from Equation 4.9 (page 140) that W (j, i) is determined from V (j, i), the

fraction of the user population that commence the session and go through to view that

document, and thatW (j, i) is a normalisation of V (j, i). Figure 4.13 shows the distribution

of V (j, i) for sINST (T = 8 and κ = 3), categorised by four scenarios. As can be seen,

V (j, i), which is directly proportional to W (j, i), alters its value depending on what has

been inspected by users. When the SERP for the first query is full of relevant answers

(Figures 4.13a and 4.13c), users make good progress towards their expected target T0 in

that SERP, and are less motivated to reformulate the query, since the first SERP provides

the information they need (T1,∗ ≈ 0 and hence T2 is very small). However, when the

opposite happens (Figures 4.13b and 4.13d), users inspect the first SERP; and when they

abandon the first SERP, they have motivation to submit follow-up queries and to view

further SERPs, since T1,∗ ≈ T0 and hence T2 ≈ T0. These definitions make session INST

an adaptive metric, since the user behaviour (operationalised by C(j, i) and F (j)) varies

as a function of total volume of relevance accumulated by the user.

With these specifications, Tj and Tj,i adapt as the user examines items in a SERP and

as they reformulate their queries. From the perspective of a single user, Tj,i is completely

defined by Equation 4.12 on page 147. However, the probabilistic nature of the user model

proposed in this chapter (Figure 4.3) emerges because a metric represents a population

of users. As a consequence, the last rank position inspected in each SERP is a random

variable that has a distribution, implying that Tj,∗ also has a distribution that should be

allowed for when Tj+1,0 is being computed (Equation 4.12). That is, users making up the

population can have different Tj values at the beginning of the same j th query. Hence, even

though the metric score might be deterministic in principle, it seems difficult to compute

its value, a case which means that a Monte Carlo simulation can serve as a solution. Note

that this is not the issue for query-based C/W/L metrics, such as INST, since the browsing
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Figure 4.13: Distribution of V (j, i) (the proportion of users that examine the i th result in
the SERP associated with the j th query) for sINST (T = 8 and κ = 3), for four scenarios.

path within a single SERP is simply linear.

A Monte Carlo approach requires a large number of randomised trials so as to yield

an accurate approximation. To avoid the expense of such computations, we propose that

in practice the evolution of Tj be computed using expectations:

Tj = max(Tj−1 −METG(SERPj−1), Tα) , (4.17)

where METG(SERPj−1) is the expected total gain computed from the j− 1 th SERP when

a probabilistic user modelled by INST inspects that SERP with the expectation of needing

Tj−1 relevant items. That is, the proposal is that Tj,∗, essentially a random variable, be

condensed to a representative “point” value in order to compute both Tj (Equation 4.12 on

page 147) and F (j) (Equation 4.15 on page 154). This also allows for the same computation

for the next SERP (j + 1 th query) using a single value of Tj+1.
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Meta-Evaluation Via Held-Out Data. Section 3.3 (page 87) described a method

to measure the accuracy of continuation probabilities through the lens of the C/W/L

framework, making use of the weighted mean squared error to compute the fit between

the function C(·) associated with a query-based metric and its empirical value, Ĉ(·),

observed via logged behaviours. The weights on the mean squared error, which correspond

to the relative frequency of the i th item being examined, are required since C(·) is not

a probability distribution that sums to one. The next experiment extends this approach

to evaluate the accuracy of C(j, i) and F (j) in the context of session-based user models.

Note that optimal values of both C(j, i) and F (j) are determined with respect to a single

error function, since they might have shared parameters:

WMSE(ω) =
∑

j

∑

i

wc(j, i) · (C(j, i;ω)− Ĉ(j, i))
2 +

∑

j

wf (j) · (F (j;ω)− F̂ (j))
2 ,

where ω is a set of parameters of a particular user model; wc(j, i) is the relative frequency

of the item at rank i being viewed in the j th query; and wf (j) is the weight associated

with the fraction of sessions that contains at least j queries.

Held-out datasets containing sessions initiated by 1,000 users for both browser- and

mobile-based Seek.com data, and 100,000 search sessions for Yandex.ru data, were em-

ployed to compute the WMSE(ω) function. Table 4.9 shows the parameter combinations

providing the best fit for four session-based metrics (that is, minimising the WMSE(ω)

function), across the first five queries in each session, and the first 50 results in each

SERP. Further, the metric best-fit parameters are found using grid search method with

the following space of search:

• for sDCG and KsDCG: bq ∈ {1.5, 2.0, 2.5, · · · , 10}, b ∈ {1.5, 2.0, 2.5, · · · , 10}, M ∈

{1, 2, 3, · · · , 10}, and N ∈ {1, 2, 3, · · · , 60};

• for LCYsRBP: q ∈ {0.01, 0.02, 0.03, · · · , 1.0} and p ∈ {0.01, 0.02, 0.03, · · · , 1.0};

• for sINST: T ∈ {1, 1.5, 2.0, · · · , 5.0} and κ ∈ {1, 1.5, 2.0, · · · , 5.0}.

As can be seen, among the three session-based user models, sINST provides the closest fit

with the empirical observations, once suitable parameters have been identified.

We have demonstrated that sINST has a more accurate user model than sDCG, KsDCG,

and LCYsRBP. However, it remains unclear whether scores generated by sINST are also well

correlated with user satisfaction. Hence, one clear direction is to investigate this correlation

using a session test collection, together with a non-trivial number of participants in a lab-

based environment. Three pre-existing lab-based datasets (J&A, THUIR2, and THUIR3)
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User Model Best-fit ω WMSE(ω)

Seek.com, mobile app-based
sDCG bq, b,M ,N = 2.0, 10.0, 6, 51 4.63

KsDCG bq, b,M ,N = 1.5, 3.0, 6, 51 3.75
LCYsRBP q, p = 0.93, 0.94 0.40

sINST T ,κ = 4.5, 4.0 0.19

Seek.com, browser-based
sDCG bq, b,M ,N = 3.0, 4.5, 6, 51 2.76

KsDCG bq, b,M ,N = 2.0, 2.5, 6, 51 2.12
LCYsRBP q, p = 0.88, 0.95 0.59

sINST T ,κ = 4.0, 2.0 0.28

Yandex.ru

sDCG bq, b,M ,N = 1.5, 2.5, 2, 10 7.56
KsDCG bq, b,M ,N = 1.5, 2.0, 1, 10 8.96

LCYsRBP q, p = 0.88, 0.74 0.78
sINST T ,κ = 2.0, 4.5 0.43

Table 4.9: Best-fit parameters, found by minimising WMSE(ω) (×10−2) for three session-
based user models, across the first 5 queries in each session and 50 results in each query.
Note that small numbers indicate better fit to the observed data.

that contain satisfaction ratings cannot be used for this investigation, since these datasets

were not constructed based on static sequences of queries per topic. These datasets are

(only) useful for modelling session satisfaction when sequences of queries are observed.

This issue will be discussed in the next section (Section 4.7).

Computation of sINST. Figure 4.14 (page 159) compares the sINST computed by the

“expectation” method (Equation 4.17) and the sINST scores computed via a Monte Carlo

simulation over 100,000 random “users”. The fact that the correlation between two sets

of scores in each dataset is very high (r ≈ 1.0) provides a clear support for the proposed

sINST computation using the more efficent “expectation” method.

4.7 Factors Affecting Session Satisfaction

Sections 4.4, 4.5, 4.6 have addressed the first goal of this chapter, the development of a

session-based user model for an adaptive offline session metric. This section and the rest

of this chapter discuss the second goal (see RQ 4.2 on page 127), an investigation of the

fitted relationship between session satisfaction ratings and individual query satisfaction

ratings (or query scores). The insights gained from this study will then be incorporated
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Figure 4.14: Monte Carlo simulation method (y-axis) versus “expectation” method (Equa-
tion 4.17, x-axis) for computing sINST score (ERG version, T = 8 and κ = 3). The two
plots show 80 sessions from the J&A dataset (top-left), 223 sessions from the THUIR2
dataset [145] (top-right), and 450 sessions from the THUIR3 dataset [139] (bottom).

into the development of novel session satisfaction models (Section 4.8), which are useful

for scoring sessions for which the query sequence is known. Here the THUIR3 dataset is

used for model exploration; and THUIR2 and J&A are employed as held-out datasets only

for model validation. These three datasets contain session-level satisfaction ratings.

Last Query vs. Best Query. Analysis of the THUIR3 data led by Liu et al. [137, 139]

suggests that the last query is the most important factor for modelling session-level user

satisfaction. However, as shown in Figure 4.15, the last query is also likely to be the best

query in the session. This sparks a critical question: which is more important, the last query

or the best query? To explore this issue, a linear regression model is employed to observe

the influence of a range of positional and quality factors, including the first, last, best, and

worst query, seeking to predict the corresponding session-level satisfaction rating. Query-

level satisfaction ratings were taken as representing the individual query scores, since they

provide a ground-truth that reflects what the user experienced when interacting with the

SERPs. Sessions with one query were not considered, since the correlation between query-

and session-level ratings is very strong with r = 0.93, suggesting that an aggregation task

for sessions with one query (|S| = 1) is more trivial than an aggregation task for those
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Figure 4.15: Query-level satisfaction ratings (y-axis) across positions in the session (x-axis)
for |S| ∈ {2, 3, 4, 5} in the THUIR3 dataset. The diamond in each bar is the mean.

with at least two queries (|S| ≥ 2). This filtering leaves 360 sessions with |S| ≥ 2.

Table 4.10 describes the regression analysis result, categorised into three cases: using

all 360 sessions; using sessions where the last query is the best one (239 sessions); and using

sessions where the last query is not the best one (121 sessions). In general four factors are

significant: the best, last, and second best queries, which have strong positive relationships

with session ratings, together with the number of queries in the session, which is slightly

negatively correlated with session-level satisfaction; and that the best query seems to be

more meaningful than the last one, with the difference most notable in the cases where

the last query is not the best one.

When those four significant features (best, last, secondbest, and |S|) are used to build

the full model, the Akaike information criterion (AIC) is 665.4. Removing the best factor

leads to AIC = 711.6 (∆AIC = 46.2), while filtering out the last factor yields AIC = 707.3

(∆AIC = 41.9). This AIC-based analysis provides further evidence that the best query is

more valuable than the last one. In addition, analysis of Pearson’s r correlation coefficients

between the predicted final scores based on various linear combinations of these features (as

suggested by the coefficients in Table 4.10) and overall user-generated session satisfaction

ratings was carried out. As can be seen in Table 4.11, a linear model built upon the

best-only factor gives a slightly better performance than one based on only the last factor.
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Factor
All Last = Best Last 6= Best

coef. p coef. p coef. p

intercept 0.70 0.00 0.85 0.00 0.62 0.21
|S| −0.09 0.00 −0.15 0.00 −0.02 0.65
first −0.02 0.69 0.07 0.23 −0.04 0.56
second 0.01 0.88 0.08 0.14 −0.06 0.34
prevlast −0.04 0.40 0.10 0.14 −0.08 0.24
last 0.23 0.00 0.35 0.00 0.10 0.28
best 0.42 0.00 0.35 0.00 0.34 0.02
secondbest 0.20 0.00 0.08 0.30 0.31 0.01
secondworst 0.10 0.05 −0.01 0.89 0.20 0.05
worst −0.02 0.71 −0.14 0.06 0.09 0.39

Table 4.10: Effect sizes and p values for positional and quality factors in a fitted linear
regression model for session-level satisfaction ratings in THUIR3. Sessions with only one
query were not considered. Low p values (< 0.05) indicates that the factor is meaningful
for the model.

Combining Positional and Quality Information. Past aggregation function pro-

posals mostly presuppose that θ(j) varies as a function of (only) query position in the

sequence [104, 137, 139, 242]. However, as is demonstrated in Table 4.11, a simple linear

model including both last and best factors performs significantly better than using either

of them individually (two-sided Hotelling’s t test with p < 0.05). This finding is also in

agreement with a well-known cognitive bias, called peak-end rule, in which people tend to

remember “the best” and “the final” moments of an experience, suggesting that those two

critical moments should receive more attention than the others [113]. The best correlation

coefficient in Table 4.11 was achieved when all four significant factors (Table 4.10) were

employed, including |S|, the number of queries in the session. These outcomes provide

further evidence that combining positional and quality information might yield session

scores that better capture the user’s experience with the entire session.

To reinforce that finding, a second AIC-based analysis was carried out, to see whether

a joint model using positional and quality information is better than using only one of

them individually. For a session with |S| queries, there are 2 · |S| features in total, one set

based on positions and one set based on quality. For example, a session with three queries

is associated with three positional features, the first, second, and third queries; and three

quality features, the best, second-best, and third-best queries. Table 4.12 shows the results

of this analysis. Here AIC scores are computed using fitted regression models with session

satisfaction rating being the response variable, for sessions with two, three, four, and
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Linear Model r p

0.23 · last 0.66 –
0.42 · best 0.67 0.75
0.42 · best + 0.23 · last 0.74 0.00
0.42 · best + 0.23 · last + 0.20 · sndbest 0.74 0.83
0.42 · best + 0.23 · last + 0.20 · sndbest − 0.09 · |S| 0.78 0.00

Table 4.11: Correlation coefficients (Pearson’s r) between session satisfaction ratings and
session scores as computed via five linear models based on the four most significant factors
identified by the THUIR3 regressions in Table 4.10. The p values relate to the difference
between each row and its predecessor, computed using Hotelling’s t test for comparing
two Pearson coefficients with overlapping variables [90]. Only sessions with at least two
queries are included.

# Queries # Sessions Pos. Qual. Pos. + Qual.

2 79 128.5 136.9 127.3
3 110 206.3 215.3 201.7
4 60 103.1 106.7 96.1
5 45 97.4 89.9 96.6

Table 4.12: AIC scores for a joint positional-quality model and two individual models when
predicting session-level user satisfaction ratings, using THUIR3. Lower numbers are better.

five queries independently. (Sessions with more than five queries were not considered.) In

general the joint positional and quality-based model performs better than either of the

individual models. Here the individual positional-based model is generally better than the

individual quality-based model. However, this does not contradict the previous finding,

suggesting that the best factor is more important than the last factor. Note that the

term “positional” does not correspond only to a single “last” one, but refers to a linear

combination of all queries in a session, a spectrum from the first to the last one. Similarly,

the term “quality” refers to a combination of all queries, from the best to the worst one.

In the next experiment, the whole THUIR3 dataset (360 sessions with |S| ≥ 2) was used

to find a set of weights with which each sessions’ query satisfaction ratings are aggregated

into a session score, allowing both position and quality factors to exert influence. Each

session length |S| is associated with a different weight vector, with the weights summing

to one for each session length. For a quality-based vector, the weights correspond to the

spectrum from the best to the worst queries. The maximum session length in THUIR3 is

|S| = 12, and thus there are 12 vectors and 1 + 2 + · · ·+ 12 = 78 parameters (weights)
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#Param. Pearson r

Positional 78 0.830
Quality 78 0.818

Pos. + Qual. 156 0.854

Table 4.13: Best correlation coefficients between predicted session scores and observed
session ratings using optimal query weights for three different models, for THUIR3. Higher
numbers are better.

in total to be used for models based on quality or position alone. In the case where both

quality and position are employed to influence the predicted session score, each session

length |S| corresponds to a weight vector of length 2 · |S| and there are 156 trainable

parameters in total.

Table 4.13 shows the Pearson’s correlation coefficients arising from this arrangement,

calculating the correlation between predicted session scores and session satisfaction rat-

ings. The joint positional- and quality-based optimisation gives a better outcome than

an optimisation based on an individual model. Figure 4.16 shows the best-fit weights that

were generated for |S| ≤ 5, and confirms that the last and the best queries are the two most

important factors in both the two individual models (top row) and the combined model

(bottom row). The patterns of weight values in the top-left and bottom-left heatmaps

confirm the findings of Liu et al. [139], that recency has a strong influence, and hence that

an increasing weight function is appropriate. When quality-based influence is allowed for,

a decreasing function over the quality spectrum from the best to the worst queries better

fits the observations (top-right, bottom-right).

4.8 Modelling Session Satisfaction

Recall that, starting from Section 4.7, this chapter has explored the connection between

session satisfaction ratings and individual query satisfaction ratings (or query scores).

Further, Section 4.7 has explored several factors influencing session satisfaction, and has

found that session satisfaction ratings are more accurately predicted when positional- and

quality-based factors are both combined than when an individual model is used.

This section makes use of findings from Section 4.7 to develop two session satisfaction

models, which are useful for scoring a session when user observation data is available. The

first model is based on a weighted mean approach, where the positional- and quality-based

factors are merged using a combination method with the weights summing to one. The
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Figure 4.16: Query weights, stratified by the number of queries in the session, for sessions of
length |S| ∈ {1, 2, 3, 4, 5}. There are three cases: an optimisation based on query position
in the sequence (top-left); based on query-level satisfaction (top-right); and on a joint
positional- and quality-based optimisation (bottom pair). These three cases correspond
respectively to the three rows in Table 4.13.

second model relies on the notion of forgetfulness [242], and is based on the rationale

that the user to some extent forgets bad early queries, but still remembers the good ones.

Results comparing our proposed models and baseline models are also reported.

4.8.1 Query Aggregation Using Weighted Mean Method

Recall from Equation 4.3 (page 132) that establishing a fitted relationship between individ-

ual queries in the session and session-level satisfaction can be done via a linear combination

over individual query scores. With this definition, each SERP (or query) in the session has

an association with a weight 0 ≤ θ(j) ≤ 1, where 1 ≤ j ≤ |S|.

Existing definitions of θ(j) are only affected by query positions in the session [139, 242].

The analysis in Section 4.7 suggests that combinations of positional- and quality-based

factors yields better models compared to positional-only approaches. Hence, we propose
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the following generalisation:

θ(j) = (1− γ) · θpos(j) + γ · θqty(j) , (4.18)

where θpos(j) and θqty(j) represent the positional- and quality-based contributions, and

0 ≤ γ ≤ 1 is a balance parameter, with γ > 0.5 preferring the quality-based factor, and

γ < 0.5 preferring the positional-based counterpart. Figure 4.16 confirms that positional-

based weighting regimes that emphasize recent queries, such as θLiu(j) [139], θRSDCG(j)

[242], and θRSRBP(j) [242] should be employed for θpos(j). To emphasize queries with good

scores, the following formulation is introduced:

θqty(j) = (M (−→rj )
µ) /





|S|
∑

k=1

M (−→rk)
µ



 , (4.19)

where µ determines the extent to which the user emphasizes good queries, with µ > 0

favouring good queries, and µ < 0 preferring low-scoring queries. The normalising denom-

inator is needed since some query-based effectiveness measures, such as DCG, allow the

scores to be greater than one. This specification now includes (at least) two parameters

that must be tuned.

Baseline Approaches. In addition to the proposals of Liu et al. [139] and Zhang et al.

[242], two baseline aggregation functions are also used. The first function is a “mean”

function, θ(j) = 1/|S|. Jiang and Allan [104] show that the mean function performs better

than other simple methods, such as “sum”, “max”, and “min”. While arguing that the last

query is valuable, Liu et al. [139] also suggest that middle queries have less contribution

to the session satisfaction. Based on their findings, we propose a second baseline function,

an asymmetric U-shape weighting function, which is defined as follows:

θU(j) =
(j − |S|/2)2 + 1

∑|S|
k=1(k− |S|/2)2 + 1

. (4.20)

This function assumes that session middle queries are relatively less important than early

and late queries, and that late queries are slightly preferred to early queries.

Tuning and Evaluation. Parameters for these various weighting schemes were de-

veloped using sequential least squares programming [125], optimising Pearson’s correlation

coefficients between user-generated session satisfaction ratings and session scores computed
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using the aggregation functions. Two query-level score options were used: five-level query

satisfaction scores assessed by users, mapped to 〈0.00, 0.25, 0.50, 0.75, 1.00〉; and query ef-

fectiveness scores computed using RBP (parameter φ = 0.8), and derived from the SERPs

and relevance judgements using the gain mapping function g(ri) = (2ri − 1)/(2rmax − 1).

Rank-biased precision (φ = 0.8) was chosen because it has reasonable correlation with

query-level satisfaction ratings compared to other offline effectiveness metrics, ERR and

DCG, according to the recent study conducted by Liu et al. [139] (but still relatively low,

at Pearson’s r ≈ 0.38).

Table 4.14 (page 167) shows the resultant coefficients from this experiment. Red coeffi-

cients are the results from “self-tuned” arrangement (upper-bound correlation coefficient),

whereas blue values indicates non-self-tuned column maxima. Several patterns are ob-

served:

• When the tuning involves aggregation methods that employ query satisfaction scores

(the benchmark for query effectiveness scores), weighted mean models outperform

other aggregation models;

• When query scores are computed via query effectiveness scores (RBP) in the tuning

process, all composition functions yield low correlation coefficients (Pearson’s r ≤

0.45), regardless of tuning scenario, but the weighted mean methods are still better

than previous aggregation approaches; and

• When the tuning makes use of query effectiveness scores, the weighted mean methods

are generally better than previous approaches when combining query effectiveness

scores, but are worse than those when combining query satisfaction scores.

In the latter case, note that the correlation between query effectiveness scores and query

satisfaction scores is low (Pearson’s r ≈ 0.38) [139].

Amongst the self-tuned arrangements, the weighted mean model with θpos(j) = θLiu(j)

gives the highest correlation coefficients among all aggregation models on three different

datasets. Hotteling’s t test [90], a statistical tool for comparing correlation coefficients with

overlapping variables, was then employed to see whether this improvement is significant.

The test result suggests that the weighted mean model with θpos(j) = θLiu(j) significantly

outperforms baseline approaches on both THUIR2 and THUIR3, but not on the J&A

dataset. Table 4.15 shows the p values of this test for three datasets.

Experiment results using two recently proposed aggregation methods, RSDCG and

RSRBP [242], are also reported in Table 4.16 (page 169). Self-tuned results show that the
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Aggregation method
THUIR3 THUIR2 J&A

QSat RBP QSat RBP RBP

Baseline approaches
Mean, θ(j) = 1/|S| 0.72 0.27 0.71 0.36 0.41
Asymmetric U-shaped, θU(j) 0.78 0.28 0.71 0.34 0.42

Tuned on THUIR3 (QSat)
Liu [139], with λ = 0.40 0.78 0.25 0.67 0.32 0.41
Comp. Model, θpos(j) = θLiu(j), 0.83 0.26 0.76 0.29 0.41

λ = 0.00, γ = 0.79, µ = 1.27
Comp. Model, θpos(j) = θU(j), 0.82 0.25 0.76 0.28 0.39

γ = 0.69, µ = 1.72

Tuned on THUIR3 (RBP φ = 0.8)
Liu [139], with λ = 1.00 0.72 0.27 0.71 0.36 0.41
Comp. Model, θpos(j) = θLiu(j), 0.53 0.35 0.51 0.42 0.40

λ = 0.72, γ = 1.00, µ = −2.07
Comp. Model, θpos(j) = θU(j), 0.52 0.35 0.51 0.42 0.40

γ = 1.00, µ = −2.07

Tuned on THUIR2 (QSat)
Liu [139], with λ = 0.94 0.73 0.27 0.71 0.36 0.41
Comp. Model, θpos(j) = θLiu(j), 0.81 0.27 0.77 0.28 0.37

λ = 0.53, γ = 1.00, µ = 0.95
Comp. Model, θpos(j) = θU(j), 0.81 0.27 0.77 0.28 0.38

γ = 0.86, µ = 1.08

Tuned on THUIR2 (RBP φ = 0.8)
Liu [139], with λ = 0.98 0.73 0.27 0.71 0.36 0.41
Comp. Model, θpos(j) = θLiu(j), 0.50 0.35 0.48 0.43 0.40

λ = 1.00, γ = 1.00, µ = −5.00
Comp. Model, θpos(j) = θU(j), 0.50 0.35 0.48 0.43 0.40

γ = 1.00, µ = −5.00

Tuned on J&A (RBP φ = 0.8)
Liu [139], with λ = 0.69 0.76 0.26 0.70 0.35 0.42
Comp. Model, θpos(j) = θLiu(j), 0.74 0.30 0.66 0.37 0.45

λ = 0.00, γ = 0.44, µ = −1.00
Comp. Model, θpos(j) = θU(j), 0.70 0.32 0.65 0.39 0.43

γ = 0.31, µ = −5.00

Table 4.14: Correlation between session satisfaction ratings and computed session scores
using either query satisfaction (QSat) or query scores (RBP), for a range of score ag-
gregation options, and with tuning based on a variety of resources. Values in red are
self-optimised, with parameter tuning and selection based on the reported quantity.
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Other method
Comp. Model, θpos(j) = θLiu(j)

THUIR3 THUIR2 J&A
(QSat) (QSat) (RBP)

Comp. Model, θpos(j) = θU(j) 0.012 0.606 0.538
Liu [139] 0.000 0.001 0.302
Asymmetric U-shaped, θU(j) 0.000 0.003 0.397
Mean, θ(j) = 1/|S| 0.000 0.001 0.377

Table 4.15: The p values of two-sided Hotteling’s t test [90] for comparing Pearson’s cor-
relation coefficients between the weighted mean model with θpos(j) = θLiu(j) and any
of other four aggregation models, computed upon self-tuned arrangements on THUIR3
(only QSat), THUIR2 (only QSat), and J&A (RBP). A significance level of 0.05 is used to
test the null hypothesis that the correlation coefficients between any two models are not
different.

weighted mean approach has higher correlation for both of the recency-aware aggregation

methods. However, none of these improvements are significant by Hotteling’s t test [90].

4.8.2 Memory-Based Query Aggregation

Memory-Based Aggregation Framework. Section 4.8.1 proposed a method for com-

bining query scores using a weighted mean approach. Although this query-to-session ag-

gregation method empirically performs better than the previous approaches, it lacks con-

nection to an obvious user model. Zhang et al. [242] recently suggest that users, to some

extent, forget the utility derived from early queries. Inspired by their work, we propose a

memory-based aggregation framework that generalises two recent methods by Zhang et al.

[242] and Liu et al. [139]. This framework consists of two key quantities:

1. σ(j, k), the memory of the j th query upon exit from the k th SERP, with j ≤ k,

0 ≤ σ(j, k) ≤ 1.

2. β(j, k), the instantaneous forget factor for the j th query, given that the user has

just started inspecting the k th SERP, with j < k and 0 ≤ β(j, k) ≤ 1.

Suppose the user inspects each SERP in turn, always starting at the first document of each.

With this model, σ(j, k) = 1 denotes that the user still fully remembers the utility derived

from the j th SERP upon exit from the k th SERP, while σ(j, k) = 0 represents that the

user has completely forgotten the j th SERP. Other assumptions regarding σ(j, k) are that

the forgotten memory will never be recovered (that is, σ(j, k+ 1) ≤ σ(j, k)), and that the

user will have a fresh memory of what they have just inspected (that is, σ(j, j) = 1).
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Aggregation method THUIR3 THUIR2 J&A

Tuned on THUIR3
RSDCG bq = 1.42, b = 2.34, δ = 0.46 0.34 0.39 0.37
RSRBP p = 0.90, q = 0.89, δ = 0.44 0.35 0.40 0.34
Comp. Model, θpos(j) = θRSDCG(j), M (.) = MRSDCG(.) 0.36 0.40 0.39
bq = 1.10, b = 1.86, δ = 0.28, γ = 0.59,µ = −2.03

Comp. Model, θpos(j) = θRSRBP(j), M (.) = MRSRBP(.) 0.38 0.42 0.39
p = 0.85, q = 0.88, δ = 0.37, γ = 0.55,µ = −2.12

Tuned on THUIR2
RSDCG bq = 1.83, b = 2.86, δ = 1.15 0.31 0.41 0.38
RSRBP p = 0.95, q = 0.79, δ = 3.70 0.33 0.44 0.38
Comp. Model, θpos(j) = θRSDCG(j), M (.) = MRSDCG(.) 0.33 0.44 0.41
bq = 2.33, b = 5.00, δ = 5.00, γ = 0.62,µ = −4.62

Comp. Model, θpos(j) = θRSRBP(j), M (.) = MRSRBP(.) 0.36 0.46 0.41
p = 0.97, q = 0.87, δ = 5.00, γ = 0.52,µ = −3.80

Tuned on J&A
RSDCG bq = 5.00, b = 3.01, δ = 1.34 0.32 0.38 0.41
RSRBP p = 0.99, q = 0.75, δ = 5.00 0.28 0.35 0.44
Comp. Model, θpos(j) = θRSDCG(j), M (.) = MRSDCG(.) 0.34 0.41 0.42
bq = 5.00, b = 2.25, δ = 4.61, γ = 0.50,µ = −0.79

Comp. Model, θpos(j) = θRSRBP(j), M (.) = MRSRBP(.) 0.31 0.38 0.46
p = 0.99, q = 0.72, δ = 5.00, γ = 0.42,µ = −0.54

Table 4.16: Correlation between session satisfaction ratings and computed session scores
using RSDCG, RSRBP, and two weighted mean models with θpos = θRSDCG and θpos =
θRSRBP. Values in red are “self-optimised”, with parameter tuning and selection based on
the reported quantity.

Figure 4.17 shows how the memory-based user model works for a session with five

queries. After the user exited from the k th SERP, a new memory of information about

that SERP is then created. That is, σ(k, k) = 1. If the user submits the k + 1 th query

and inspects the corresponding SERP, all memories of previous SERPs are updated at the

end of inspection using the following formula:

σ(j, k+ 1) = σ(j, k)× β(j, k+ 1) for j ≤ k .

When the user exits from a session with a total of |S| queries, the quality of that session

can be measured by a metric score, sM (.), computed using Equation 4.3 (page 132),

sM (−→r ) =
∑|S|
j=1 θ(j) ·M (−→rj ), with the following θ(j):

θ(j) = σ(j, |S|)/





|S|
∑

k=1

σ(j, k)



 ,
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Q1 After 1st Query

σ(1, 1)

Q1 Q2 After 2nd Query

σ(1, 2) σ(2, 2)

Q1 Q2 Q3 After 3rd Query

σ(1, 3) σ(2, 3) σ(3, 3)

Q1 Q2 Q3 Q4 After 4th Query

σ(1, 4) σ(2, 4) σ(3, 4) σ(4, 4)

Q1 Q2 Q3 Q4 Q5 After 5th Query

σ(1, 5) σ(2, 5) σ(3, 5) σ(4, 5) σ(5, 5)

×β(1, 2)

×β(1, 3)

×β(1, 4)

×β(1, 5)

×β(2, 3)

×β(2, 4)

×β(2, 5)

×β(3, 4)

×β(3, 5) ×β(4, 5)

Figure 4.17: Illustration of how memories of past SERPs decay as the user reformulates
their queries. This illustration shows an instance for a session with a total of five queries.

where σ(j, |S|) =
∏|S|
k=j+1 β(j, k). Note that the normalisation factor (or the denominator)

is needed because |S|, the number of queries carried out, is one of the determinants for

session satisfaction (see Table 4.10 on page 161). Suppose M (.) is bounded to lie between

zero and one, and represents query utility, the information gain derived from the SERP of

the query with respect to the user’s goal [246]. In this case, sM (.) can be interpreted as

the rate of remembered query utility per SERP inspected.

The challenge of this framework is to find a good model for β(j, k), so that sM (.) cor-

relates with session satisfaction. Recall that Liu et al. [139] use an exponential smoothing

technique to compute θLiu(j) (see Equation 4.4). Hence:

βLiu(j, k) =
kλ − 1

(k− 1)λ
,

where 0 ≤ λ < 1 is the parameter that controls how fast each memory decays as the user

reformulates their queries. This definition also implies that the forget factor βLiu(j, k) is

the same for each query (that is, βLiu(j, k) does not depend on j), and also increases as a

function of k, the number of queries that have been submitted by the user so far.

Zhang et al. [242] propose that the remaining memory of the j th query at the end of a
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session is computed by e−δ·(|S|−j), where δ > 0 controls the rate at which the user forgets

(see Equation 4.5 on page 133). This suggests that each memory σ(j, .) decays by factor

of e−δ at each step of k:

βZhg(j, k) = e−δ .

Hence, βZhg(j, k) is constant across all queries, and also does not depend on the query

submission step k.

Quality-Sensitive β(j, k). Analysis and experimental results described in Sections 4.7

and 4.8.1 suggested that the query-level quality information should be incorporated into

the forget factor β(j, k) in order to improve the correlation strength between sM (.) and

session satisfaction. This is also related to the famous psychological heuristic, peak-end

rule [113]. Hence, we propose the following definition:

βQty(j, k) = M (−→rj )
ν ,

where ν ≥ 0 is the parameter controlling how the user will forget the query based on its

quality. Hence, the rationale of this model is that the user will gradually forget SERPs

generated using past queries, but they will not easily forget good queries.

Tuning and Evaluation. With the same experiment setting as is used to generate

Table 4.14, three proposals for β(j, k) were validated on three datasets. Table 4.17 shows

these results. For self-optimised cases, the use of βQty(j, k) provides superior results, partic-

ularly when the aggregation is based on query satisfaction scores (QSat) for both THUIR2

and THUIR3, and on query effectiveness scores (RBP) for the J&A dataset. However, as

shown in Table 4.18, this superiority is only significant on THUIR3 data.

Consider again Table 4.14 on page 167. Even though the memory-based aggregation

method (particularly with βQty(j, k)) is no better than the weighted mean approach, the

former has at least three key points. First, it is still significantly better than baseline

approaches described in Table 4.14. Second, it corresponds to an obvious user model

(that is, the notion of forgetfulness), and is easy to interpret the scores. Third, it is

simpler than the latter method, and has only a single parameter that need to be fitted or

otherwise selected.
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β(j, k)
THUIR3 THUIR2 J&A

QSat RBP QSat RBP RBP

Tuned on THUIR3 (QSat)
βLiu(j, k), λ = 0.40 0.78 0.25 0.67 0.32 0.41
βZhg(j, k), δ = 0.73 0.77 0.25 0.67 0.32 0.41
βQty(j, k), ν = 0.88 0.80 0.25 0.72 0.28 0.42

Tuned on THUIR3 (RBP φ = 0.8)
βLiu(j, k), λ = 1.00 0.72 0.27 0.71 0.36 0.41
βZhg(j, k), δ = 5.55× 10−17 0.72 0.27 0.71 0.36 0.41
βQty(j, k), ν = 2.30× 10−15 0.72 0.32 0.71 0.35 0.42

Tuned on THUIR2 (QSat)
βLiu(j, k), λ = 0.94 0.73 0.27 0.71 0.36 0.41
βZhg(j, k), δ = 5.55× 10−17 0.72 0.27 0.71 0.36 0.41
βQty(j, k), ν = 0.32 0.78 0.27 0.73 0.29 0.41

Tuned on THUIR2 (RBP φ = 0.8)
βLiu(j, k), λ = 0.98 0.73 0.27 0.71 0.36 0.41
βZhg(j, k), δ = 0.00 0.72 0.27 0.71 0.36 0.41
βQty(j, k), ν = 0.00 0.72 0.27 0.71 0.36 0.41

Tuned on J&A (RBP φ = 0.8)
βLiu(j, k), λ = 0.69 0.76 0.26 0.70 0.35 0.42
βZhg(j, k), δ = 0.20 0.75 0.27 0.70 0.35 0.41
βQty(j, k), ν = 3.22 0.77 0.25 0.68 0.29 0.45

Table 4.17: Correlation between session satisfaction ratings and computed session scores
using either query satisfaction (QSat) or query scores (RBP), for three definitions of β(j, k),
and with tuning based on a variety of resources. Values in red are self-optimised, with
parameter tuning and selection based on the reported quantity. This table can be compared
with Table 4.14 on page 167 and Table 4.16 on page 169.

4.9 Summary

Users typically interact with search engines by submitting multiple queries when address-

ing an information need. This behaviour requires extending traditional query-based IR

evaluation, so that a multi-query session can be assessed as a single unit. This chapter

has addressed two goals for session evaluation. The first goal is the development of a user

model for an adaptive session metric in the context of a session test collection, where each

topic is assigned to a sequence of static queries (Sections 4.4, 4.5, and 4.6). The second

goal is an investigation of the fitted relationship between session satisfaction ratings and

individual query satisfaction ratings (or query scores), which is critical for the development

of query-to-session aggregation functions when user observation data (such as the query

sequence exit point) is known (Sections 4.7 and 4.8).
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Other method
βQty(j, k)

THUIR3 THUIR2 J&A
(QSat) (QSat) (RBP)

βLiu(j, k) 0.024 0.165 0.448
βZhg(j, k) 0.001 0.169 0.464

Table 4.18: The p values of two-sided Hotteling’s t test [90] for comparing Pearson’s cor-
relation coefficients between the aggregation method that uses βQty(j, k) and any of other
two methods, computed upon self-tuned arrangements on THUIR3 (only QSat), THUIR2
(only QSat), and J&A (RBP). A significance level of 0.05 is used to test the null hypothesis
that the correlation coefficients between any two models are not different.

User Model and Adaptive Session Metric. In Section 4.4, we extended the C/W/L

framework to session-based effectiveness evaluation, and demonstrated that existing session-

based user models can be explained by this generalised evaluation framework. In the

session-based C/W/L framework a user model (describing a population of users) is char-

acterised by two behaviours: their conditional continuation probability at rank i when

examining the j th SERP, C(j, i); and their conditional reformulation probability, F (j).

These two quantities are sufficient to specify a session-based effectiveness metric.

Section 4.5 identified factors that contribute to C(j, i) and to F (j) using three com-

mercial search interaction logs. Our results support the observations of Moffat et al. [155] in

regard to the conditional continuation probability within each query. The findings derived

from the logged behaviours also confirm that at least three factors affect the conditional

reformulation probability F (j): the query position j in the session; the user’s expected

number of relevant documents T at the beginning of search; and the unmet number of

relevant items to date, Tj,∗. Further, this study has confirmed that these three factors are

all positively correlated with F (j).

Section 4.6 proposed a new session-based metric, session INST (sINST), by crystalising

the relationships in regard to both C(j, i) and F (j) described in Section 4.5. In contrast to

existing session-based metrics, such as LCYsRBP, sDCG, and KsDCG; sINST is adaptive, and

provides a better fit to observed user behaviour than do those previous metrics. Further,

we also propose a less-expensive “expectation” method for computing sINST, providing an

alternative to the Monte Carlo approach that requires a large number of randomised trials.

Session Satisfaction Model. When the knowledge of how many times the user re-

formulated, what queries they submitted, and what satisfaction ratings they provided is

available, a connection between session satisfaction and factors from the individual queries

can be established. Section 4.7 has shown that models based on the combination of both
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quality and positional variables provide a better correlation with user session satisfac-

tion than those based on query position alone. This confirms the effect of the peak-end

rule [113] on search session experience.

With the findings established in Section 4.7 in regard to factors affecting session satis-

faction, Section 4.8 proposed two session satisfaction models, which are useful for scoring

a session when user observation data is available. The first model (Section 4.8.1) is based

on a weighted mean approach, where the positional- and quality-based factors are merged

using a linear combination method. Further experiment results demonstrated that this

method outperforms previous approaches for self-tuned arrangements on three different

search datasets.

The weighted mean approach, however, lacks an obvious user model, and it is difficult

to explain its rationale from a human perspective, though our experiments showed that it is

better than the baseline approaches. In Section 4.8.2, we generalised two recent aggregation

approaches [139, 242], and proposed a memory-based aggregation framework, which has

a clear connection with a user model. With this framework, one important quantity that

needs to be estimated is the forget factor, denoted by β(.). Our experiment suggested that

β(.) is sensitive to query quality, indicating that the user tends to remember good queries,

and that there is a clear gap between the use of query effectiveness score and the use of

query satisfaction score for the aggregation mechanism. An important direction for future

work is to undertake a more detailed exploration into the difference between satisfaction-

and effectiveness-based aggregations.



Chapter 5

Metrics, User Models, and Satisfaction

A good metric should give rise to scores that have a strong positive correlation with user

satisfaction ratings. A metric should also correspond to a plausible user model, and hence

provide a tangible manifestation of how users interact with search rankings. Recent work

has focused on metrics whose user models accurately portray the behaviour of search

engine users. In this regard, Chapter 3 introduced several tools for inferring continua-

tion probabilities and gaze distributions from user observation data, which are useful for

the development of user-centric metrics. Further, Chapter 4 presented an approach that

makes use of the tools described in Chapter 3 to develop a metric-based user model for

session evaluation through the lens of continuation and reformulation probabilities, and

also reported an investigation of factors affecting session-level satisfaction.

This chapter concerns the issue of meta-evaluation. Section 5.1 describes an integrated

view of the C/W/L meta-evaluation framework, connecting several concepts, including

metrics, users, user model accuracy, and satisfaction. The research motivation and ques-

tions are also presented in Section 5.1.

After reviewing previous work for the relationship between offline metrics and user

satisfaction in Section 5.2, and describing datasets used in this study (Section 5.3), Sec-

tion 5.4 then presents correlation coefficients between the scores of a wide range of metrics

and user-reported satisfaction ratings at both query- and session-levels. Section 5.5 then

describes our approach for measuring the accuracy of a user model from the perspective of

the C/W/L framework. Finally, Section 5.6 considers the question of whether the accuracy

of a metric is connected with its correlation with user satisfaction. This study develops an

important new framework for metric meta-evaluation, and at the same time demonstrates

The material in this chapter (except Sections 5.5.4 and 5.6.2) is based on the following published paper:

• Alfan F. Wicaksono and Alistair Moffat. Metrics, User Models, and Satisfaction. In Proc. WSDM,
pages 654–662, 2020.

175



176 Metrics, User Models, and Satisfaction

that the metrics and parameter settings that correlate well with user satisfaction closely

match the user models and parameter settings that best fit observed user behaviours.

5.1 Motivation and Research Question

Meta-evaluation of search effectiveness metrics depends on which aspects of the mea-

sures are being evaluated. Historically, the focus has been on the relationship between

metric scores and user satisfaction, measuring how accurately metric scores predict the

satisfaction or performance of users as they carry out particular search tasks. However,

satisfaction is an indirect observable, meaning that the ground-truth of this concept lies

in the user’s mental state [117]. Kelly [117] further suggests that dealing with satisfaction

for the evaluation of IR systems requires two important instruments: indirect measures

that approximate the ground-truth of satisfaction, and a method for how the approxima-

tion should be elicited from users. In regard to the latter, Likert scale survey questions

are typically employed to capture user satisfaction, with a five-point style (ranging from

unsatisfied to very satisfied) being particularly popular [46, 84, 106, 107, 139, 145, 242].

In addition to the Likert-style satisfaction item, experiments can consider questions that

address system preference [89] and system response time [117].

Even though the use of user satisfaction as an indicator of search success has provided

conflicting results [84] (see Section 2.5.1 on page 62), user satisfaction is nevertheless tightly

coupled with the effectiveness of an IR system [199]. Cooper [55] argues that subjective

user satisfaction is a primary measure of system performance, and should be a basis for

the development of any effectiveness metric. Recent developments in effectiveness metrics

have made use of user-reported satisfaction ratings (an approximation to the ground-

truth satisfaction) to meta-evaluate the extent to which metric scores are aligned with

satisfaction [106, 139, 241, 242]. This set of ratings is typically collected by asking users

how satisfied were you with the set of results returned by the system?

The connection between metric scores and user satisfaction is just one desirable aspect

of an effectiveness metric. A good metric should also correspond to an obvious user model,

and that this model should have a strong relationship with observed user behaviours,

with the benefit that the metric can explain the visible activities engaged in by the user

as they interact with the ranked list of results. Chapters 3 and 4 have described our

efforts to realise this idea by incorporating user behaviours into two hypothetical functions:

the continuation probability, C(·), at the SERP level; and the reformulation probability,

F (.), at the session level. The interrelated links among metric, satisfaction, and user
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Figure 5.1: Proposed meta-evaluation framework. The C/W/L framework is illustrated
using three entities on the left-hand side (metrics, scores, and user models).

behaviour form a C/W/L-based meta-evaluation framework for effectiveness metrics. This

framework is visually described in Figure 5.1. There are six entities, and at least eight

useful relationships in this framework.

The C/W/L framework resides in three entities (metrics, scores, and user models) and

two links (links 1 and 2). The link between a metric and its score is deterministic (link

1), where a score can be computed from a gain vector, −→r , and the W (·) function. Other

types of scores can also be computed using the L(·) function. Link 2 describes the duality

between metrics and user models via three functions: C(·), W (·), L(·), plus F (.) at the

session level.

Both links 3 and 4 require several methodologies for eliciting direct and indirect ob-

servables from users. Lab-based user studies, living lab [25], and online experimentations

(such as A/B testing) are examples of those methodologies. Link 3 is established by two

components: an operational definition of satisfaction, and instruments for the approx-

imation of the ground-truth of satisfaction [117]. In this study, link 3 is specified by

Likert-style satisfaction ratings reported by users when they exit a SERP or complete a

search session. Link 4 deals with direct observables from users, such as eye fixations, clicks,

mouse-hovers, mouse-scrolls, and dwell-time, and may require a specific technology, such

as an eye-tracker.

In general both links 5 and 6 measure to what extent a metric reflects the quality of user

experience, a fundamental question for any user-based metric. Link 5 calculates the extent

to which metric scores predict satisfaction ratings, a qualitative measure of search success.

Computing correlation coefficients, such as Pearson’s r, Spearman’s ρ, and Kendall’s τ , is

very popular in this regard [5, 46, 104, 139, 145, 213, 241]. Link 6 calculates the extent



178 Metrics, User Models, and Satisfaction

to which predicted user behaviour correlates with observed user behaviour. Azzopardi

et al. [20] propose a method for comparing a metric’s stopping probability with observed

last-click positions. Link 5 and link 6 can both be used to gain insights or corroboration.

Satisfaction ratings cannot be observed at scale, particularly for online experiments.

In the absence of such ratings, online experiments usually make use of other observed

behaviours that predict satisfaction, such as clicks [65] or query reformulations [78, 213].

In contrast to satisfaction ratings, observed behaviours, such as clicks, can be collected

at scale, and can be available in real time. However, such implicit feedback must have a

proper interpretation in regard to the criteria of user satisfaction [167]. For example, when

a user clicks on multiple items in the SERP, two opposing interpretations are possible:

unsatisfied or satisfied [117]. Link 7 addresses the signals users exhibit when they are

satisfied, and how those signals should be interpreted.

Saracevic [188] and Moffat and Zobel [151] argue that user experience is the primary

aspect for measuring search utility. It follows that user experience should be quantified

based on the set of results that has been inspected by the user, and not on part of the

ranking that has not been viewed, or on items that were not retrieved by the system. In

this chapter we also ask whether the metrics with user models that fit typical observed

behaviours tend to be the metrics that correlate well with user satisfaction ratings. This

is particularly critical because collection of satisfaction ratings is usually limited as they

require user studies in a laboratory, while logged behaviours can be collected at scale from

an operational system. Link 8 in Figure 5.1 depicts that relationship.

Research Questions. This chapter emphasizes links 5, 6, and 8, and addresses the

following research questions:

RQ 5.1: To what extent do metric scores correlate with user satisfaction, at

both query- and session- levels?

RQ 5.2: To what extent do user models predict observed behaviours?

To answer these questions, this chapter investigates the relationship between various user-

based metrics and satisfaction ratings for both query- and session-level evaluation, explor-

ing possible aspects that affects this relationship. Next, this chapter presents our proposed

method for measuring the accuracy of a user model (that is, the extent to which the user

model predicts user behaviour) from the perspective of the C/W/L framework. Finally,

this chapter addresses the question of whether a correlation between metric score and user

satisfaction is, to some extent, connected with the user model accuracy.
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5.2 Previous Work

Similar to the study described in this chapter, several authors have computed correlation

coefficients between effectiveness metric scores and user-reported satisfaction ratings. Note

that different work might use different datasets and experiment settings. Hence, the re-

ported correlation coefficients (such as Pearson’s r, Spearman’s ρ, or Kendall’s τ) cannot

be compared.

In 2007, Al-Maskari et al. [5] collected a sample of 104 queries from Google.com,

and compute correlation coefficients between three-point user-reported SERP satisfaction

with each of four effectiveness metrics: precision, cumulative gain, discounted cumulative

gain (DCG), and normalised discounted cumulative gain (NDCG), and find that satisfaction

has relatively low correlation with NDCG (Pearson’s r ≈ 0.20), but moderate correlation

with the other three metrics (0.50 ≤ r ≤ 0.79). In the same year, Huffman and Hochster

[91] randomly draw 200 queries from Google.com in the middle of 2006, and then ask

raters to provide relevance and satisfaction ratings. They find that the relevance of the

first query in a session, measured by a DCG-like metric, has a strong positive relationship

with session satisfaction ratings (r ≈ 0.72), and that the correlation becomes stronger

when the taxonomy information (navigational or non-navigational) is incorporated into

the model (r ≈ 0.80).

In 2016, Jiang and Allan [105], and Jiang and Allan [104] employ a lab-based search

log containing 80 sessions with user-reported 5-point session performance ratings to ob-

serve the relationship between session satisfaction and several metrics. Session scores are

computed by taking the mean over the individual query-level metric scores. Several query-

level metrics are used: Prec@K, AP, RR, graded average precision [171], RBP, ERR, DCG,

NDCG, TBG, and U-measure (UM). The resultant coefficients show that the session metric

sDCG has a negligible correlation with session satisfaction (r ≈ 0.01). However, when ef-

fort information is incorporated (sDCG divided by the number of queries in the session),

the correlation dramatically increases (r ≈ 0.40). Other session metrics such as expected

NDCG [115], gives r ≈ 0.35. When session scores are inferred by averaging query scores,

two effort-based query-level metrics, TBG and U-measure, give the highest correlation co-

efficients (r ≈ 0.44); graded average precision, AP, and RR result in very low correlation

coefficients (r ≤ 0.21); and the remaining metrics lead to 0.30 < r < 0.40.

Mao et al. [145] investigate the difference between relevance and usefulness and their

relationship to satisfaction. They compute correlation coefficients between several metrics

(including those based on click sequence) and both SERP- and session-level satisfaction
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ratings. At SERP-level, they show that metrics based on click sequence achieve better

correlation coefficients when the gain function is defined based on the document usefulness

(r ≈ 0.75) than when it is defined as a function of the document relevance (r ≈ 0.56).

Other relevance-based metrics are also used: AP with r = 0.19, DCG with r = 0.30, and

ERR with r = 0.26. At the session level, session metrics utilising the document usefulness

also correlate with session satisfaction (r ≈ 0.52) better than those defined based on the

document relevance (r ≈ 0.33).

Following the work of Mao et al. [145], Liu et al. [139] recently compute correlation

coefficients between user-generated satisfaction ratings and two types of metrics: those

based on click sequence and those based on ranked list. They suggest that metrics based

on ranked list should have a decreasing weight function, while those based on click sequence

do not need to consider top-weightedness.

Zhang et al. [241] use a dataset consisting of 2,685 single-query sessions to compute

correlation coefficients between 5-point satisfaction ratings and each of both S-BPM and

D-BPM. The results show that both metrics achieve r ≈ 0.55 for informational queries, an

outcome that is better than any of RBP with φ = 0.8, DCG, AP, and ERR (0.39 < r < 0.50);

and that incorporating adaptivity into BPM (that is, D-BPM) increases the correlation

with satisfaction.

Chen et al. [46] compare four offline metrics (cumulative gain, DCG, RBP, and err) and

various online metrics based on clicks, mouse-scrolls, mouse-hovers, and dwell-time, com-

puting correlation coefficients with query-level satisfaction ratings. In their experiments,

RBP with φ = 0.8 provides the highest positive correlation coefficient (r = 0.45); and some

online metrics (maximum scroll distance, minimum reciprocal click rank, the number of

clicks, and query dwell time) are useful surrogates for satisfaction; ERR provides better

correlation with satisfaction on navigational queries, rather than on either informational or

transactional queries; and incorporation of mouse-hover information into click-based online

metric, such as minimum reciprocal click rank, improves the relationship with satisfaction.

In 2018, Thomas et al. [213] use a sample set of 994 (mostly) navigational queries

derived from Bing.com to compute correlation correlation between several effectiveness

metrics (Prec@K, RR, ERR, RBP, SDCG@K, and INST) and query non-reformulation rates,

a surrogate for user-reported satisfaction ratings. After tuning the metric parameters,

shallow metrics such as RBP with φ = 0.1, Prec@1, and RR provide reasonable prediction

of success (Spearman’s ρ ≈ 0.20) when all items on the SERP are presented, including

organic items and advertisements. More importantly, when user behaviours related to

various types of results (such as, advertisements and images) are incorporated into C(i),
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J&A THUIR1 THUIR2 THUIR3 MS [213]

Source lab lab lab lab Bing.com

Sessions 80 2,435 223 450 –
SERPs 388 291 933 1,548 994
SERP size 9 10 10 ≥ 10 10 – 12
Rel. judgement 3-level 4-level 4-level 4-level 4-level
Usefulness judg. no no 4-level 4-level no
Impression eye gazes no no no no
Clicks yes yes yes yes no
Mouse-hover no yes no yes no
Query ratings no 5-level 5-level 5-level no
Non-reform. rate no no no no yes
Session ratings 5-level no 5-level 5-level no

Table 5.1: Collection of datasets from four lab-based Web search user studies, and one
commercial search engine.

the correlation coefficients increase for all metrics (ρ ≈ 0.23).

This chapter utilises some of the datasets from these past studies [46, 104, 105, 139,

145, 213] and re-runs some of their experiments, but with different scenarios, and with

the use of a wide range of model-based metrics. This chapter also concerns the interaction

between metric scores, user model accuracy, and satisfaction, which were not addressed in

these past studies. Recall that we regard a metric as not only generating scores, but also

as describing user behaviour. The latter can then be compared with observed behaviour,

to yield a second and equally important set of correlation scores.

5.3 Datasets

The study described in this chapter employs five pre-existing datasets. Four are from

past lab-based user studies [46, 104, 139, 145], and one from a commercial search engine,

Bing.com [213]. The four lab-based datasets have also been used in Chapters 3 and 4.

Table 5.1 summarises these five datasets.

The J&A dataset contains logged behaviours from 80 sessions (388 queries) on 20 tasks,

relevance judgements for the top-9 results in each SERP, user-reported 5-point session-

level satisfaction ratings, and 5-point task difficulty ratings [107]. During a search session,

two sources of user behaviours were recorded: clicks and eye-fixations. An eye-fixation

is recorded using a Tobbi 1750 eye-tracker, and is for a minimum of 100 milliseconds.

On a per-session basis, users on average submitted 4.9 queries, clicked on 9.3 unique
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Figure 5.2: Total number of judged documents per session in the J&A dataset for 20
sessions with the highest number judged documents. The set of judged documents is
further divided based on the relevance level.

items, and viewed 16.1 unique snippets [107]. Jiang and Allan [104] further show that

satisfaction ratings have a strong negative correlation with task difficulty ratings (Pearson’s

r = −0.79). The relevance of a document is judged by the participant who runs the search

session with respect to a topic, not with respect to a query. Figure 5.2 shows the number of

judged documents per session in the J&A dataset for 20 sessions with the highest number

of judged documents.

Chen et al. [46] employ THUIR1 to meta-evaluate several offline and online metrics.

This dataset contains 291 static queries (and their corresponding SERPs), and user be-

haviours from 98 users. In contrast to other datasets, THUIR1 contains taxonomy infor-

mation (navigational, transactional, or informational) and cognitive level (remember or

understand) for each task. Participants were not permitted to submit their own queries

or to reformulate the queries. At the beginning of a session, the participant was asked to

read a pre-defined query and a task description. After that, they were directed to a SERP

containing 10 items, where they interacted with the list of documents to complete the task.

After they exited the SERP, they were asked to provide a satisfaction rating, reflecting

their search experiences. With this scenario, there are 2,435 single-SERP sessions, each a

combination between SERP ID and User ID. Hence, a SERP can be evaluated by a group

of users, enabling insights about general behaviours from a group of users, as opposed to

just a single user, on a single SERP.
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Mao et al. [145] construct THUIR2 for investigating the difference between docu-

ment usefulness and document relevance, and their connection with satisfaction ratings.

Each SERP contains 10 items, but only the top-5 results plus those clicked were judged.

Usefulness-based judgements are also included, but only for clicked items in each SERP.

This dataset originally contains 225 sessions and 935 queries. There are 933 SERPs for

which at least the top-5 items were judged, and there are 223 sessions with all correspond-

ing SERPs that have been judged on their top-5 positions.

The THUIR3 dataset, constructed by Liu et al. [139], has the same properties as the

THUIR2 dataset. However, THUIR3 contains more sessions than THUIR2, and the rele-

vance judgements for the former dataset covers most items in each SERP. There are 1,259

SERPs for which at least top-10 items have been judged. Similar to THUIR2, THUIR3

provides usefulness judgements only for items that were clicked in each SERP.

The fifth dataset (MS) was constructed by Thomas et al. [213]; and contains 994 head

queries drawn from Bing.com, four-point relevance judgements, and a set of query non-

reformulation rates as a proxy for user satisfactions. However, there are only 876 queries

that are associated with the query non-reformulation rates. Thomas et al. [213] further

define a query reformulation as a situation where a query is followed by a second one in

the same session that has at least 1/3 of the query terms in common (such as, “restaurant

near me” → “pizza near me”).

In addition to the five datasets described in Table 5.1, this study also utilises a sample

of 1, 060, 216 queries from Yandex.ru, for which the corresponding SERPs are fully judged.

Note that this collection of queries does not contain user-reported ratings or query non-

reformulation rates, and is also a subset of the Yandex.ru dataset that has been used in

Chapter 4 to find empirical evidence for several hypothetical behaviours regarding C(·)

and F (.). In this chapter, this dataset will be primarily employed in Section 5.5 to measure

the extent to which user models of several static metrics predict observed behaviours in

terms of three functions C(·), W (·), and L(·).

5.4 Metric Scores and Satisfaction

We now address RQ 5.1, exploring correlation coefficients between metric scores and

satisfaction ratings at both query- and session-levels (link 5 in Figure 5.1 on page 177). A

range of metrics are tested, including static and adaptive ones. This study also investigates

the difference between the expected total gain (ETG) and expected rate of gain (ERG)

versions of several adaptive metrics (see Equation 2.26 on page 2.26 and Equation 2.29 on
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page 48), and computes a distribution of correlation coefficients for a set of SERPs that is

evaluated by a group of users. Before addressing those issues, residual measurements are

discussed, and computed for the five datasets used in this study.

5.4.1 Query-Level Satisfaction

Residual Measurement. Moffat and Zobel [151] introduce the notion of residuals, the

uncertainty in a metric score as a result of unjudged items. This is a critical issue for

unbounded effectiveness metrics, such as RBP, INST, and IFT. In practice, the length of

a ranking for an offline evaluation is finite at depth d. Hence, two sources of uncertainty

arises: unjudged documents prior to rank d, and unknown items beyond rank d. With a

weighted-precision metric, the residual is just the difference between a lower bound and

an upper bound score. The former is computed by assuming that all unjudged documents

are nonrelevant, and the latter by assuming that they are all fully relevant.

Residuals for some metrics, such as RBP, can be formulaically computed using a closed

form. When the items prior to rank d are all judged, the uncertainty value of RBP raised

by the unknown documents from depth d+ 1 is computed as φd. Adaptive metrics, how-

ever, require a more complex computation, because their W (i) functions are affected by

relevance information.

The judgement pooling depths for the J&A, THUIR1, THUIR2, THUIR3, and MS

datasets were 9, 10, 5, 10, and 12, respectively. With RBP φ = 0.8, the corresponding

residuals raised by unjudged documents are 0.13, 0.11, 0.33, 0.11, and 0.07, for the ERG

versions. The residuals associated with φ = 0.1 are much lower than those values (10−9,

10−10, 10−5, 10−10, and 10−12). Figure 5.3 shows the residuals for two adaptive metrics:

INST and IFT with T ∈ {2, 3} computed using all five datasets. Residuals on THUIR2

are the highest, since the judgements are only for top-5 documents. Meanwhile, datasets

that contain deeper judgements, such as THUIR3, have much lower residuals. All datasets

except THUIR2 on average yield moderate residuals. Hence, the metric scores generated

from the judgements in the J&A, THUIR1, THUIR3, and MS datasets, can be used with

confidence to compute correlation coefficients with satisfaction ratings in this study.

Query-Level Correlations. This section calculates correlation coefficients (Pearson’s

r) between the query-level satisfaction ratings and the scores computed using various

effectiveness metrics, including several model-based metrics that are not addressed in the

initial explorations [46, 104, 139, 145, 213]. For example, INSQ and IFT were not considered
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Figure 5.3: Residuals of INST and IFT using the J&A (first row), THUIR1 (second row,
left), THUIR2 (second row, right), THUIR3 (third row, left), and MS (third row right).
The queries (x-axis) are sorted by residual value (y-axis).

in the original experimentation that originally created the five datasets. The THUIR1,

THUIR2, THUIR3, and MS datasets are employed; for THUIR2, all SERPs are truncated

at K = 5, since relevance judgements are only available for the top-5 results in the SERP;

the J&A dataset is not considered, since it does not contain query-level satisfaction ratings

(see Table 5.1 on page 181).

In the first experiment, three metrics that depend on knowledge of R (that is, the

number of relevant documents for a query) are considered: AP@K, QM@K, and NDCG@K

(see Equation 2.9 on page 24, Equation 2.17 on page 29, and Equation 2.18 on page 30).

For all datasets except J&A relevance judgements were on a per-SERP basis with respect
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to the issued queries. Note also that rankings are all truncated at depth K (that is, K = 10

for THUIR1, THUIR3, and MS; and K = 5 for THUIR2). Hence the normalisation factor

R is based only on items in the truncated SERP, since the remaining documents beyond

depth K are not available.

Two alternative normalisation factors for both AP@K and QM@K are considered (see

three alternatives for defining AP@K on page 24). Let Z be the normalisation term for

these two metrics, as a generalisation for R. For example, the definition of AP@K described

in Equation 2.9 (page 24) can be generalised as follows:

AP@K(−→r ;K) =
1

Z
·
K
∑

i=1

[Prec@K(−→r ; i) · ri] .

The first alternative is to utilise Z =
∑K
i=1 ri, where ri ∈ {0, 1} [23]; the second is to

use Z = K [80]. When the former (latter) normalisation is employed, the two metrics are

denoted by AP1@K and QM1@K (AP2@K and QM2@K). For NDCG@K, an ideal ranking should

ideally be from all documents in the collection that have been judged for a particular query.

However, in the case of the four datasets (THUIR1, THUIR2, THUIR3, and MS), an ideal

ranking is constructed based on what has been displayed on the SERP. That is, an ideal

gain vector is obtained by sorting the original gain vector in a decreasing order.

Table 5.2 shows correlation coefficients between query-level satisfaction ratings and

SERP scores using the three metrics: average precision, Q-Measure, and NDCG. Two binary

gain mapping functions are considered for the average precision, since it requires the

assumption that the relevance is binary (see Section 2.1.5 on page 27). The first gain

mapping function, g1(ri), returns 1 if ri > 0 and 0 if ri = 0. The second, g2(ri), gives

1 if ri = rmax and 0 if ri < rmax. For NDCG, an exponential gain mapping function is

employed: g3(ri) = (2ri − 1)/(2rmax − 1). In the case of ERR, the denominator of g3(.) is

replaced by 2rmax .

Note that average precision, Q-Measure, and NDCG, were not tested in the previous

experiments carried out by Thomas et al. [213] and Liu et al. [139]. Chen et al. [46] and

Mao et al. [145] did not employ Q-Measure and NDCG; but they used average precision,

although they did not explicitly state how they implemented it. Nevertheless, the corre-

lation coefficient computed using AP2@K with g1(ri) is close to the coefficient reported by

Mao et al. [145] when AP was used; and the coefficient for AP reported by Chen et al.

[46] is close to the coefficient computed using AP1@K with g2(ri) in our experiment. Re-

call that all four datasets used in this experiment contain 4-point relevance judgements,
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Metric THUIR1 THUIR2 THUIR3 MS

AP1@K, with g1(.) 0.274 0.060 0.193 0.094
AP1@K, with g2(.) 0.409 0.263 0.322 0.152
AP2@K, with g1(.) 0.258 0.164 0.226 0.027
AP2@K, with g2(.) 0.284 0.241 0.296 −0.041
QM1@K, β = 1 0.334 0.080 0.209 0.103
QM1@K, β = 10 0.326 0.043 0.185 0.125
QM2@K, β = 1 0.331 0.132 0.257 0.028
QM2@K, β = 10 0.345 0.128 0.265 0.032
NDCG@K 0.364 0.055 0.261 0.097

Table 5.2: Correlation coefficients (Pearson’s r) between SERP-level satisfaction ratings
and scores from three metrics: average precision, Q-Measure, and NDCG. This experiment
uses K = 10 for THUIR1, THUIR3, and MS; and K = 5 for THUIR2. Note that Q-
Measure has the persistence parameter β (see Equation 2.18 on page 30). Blue color
represents the three largest coefficients in each column.

ri ∈ {0, 1, 2, 3}. In general AP1@K with g2(.) provides the highest correlation coefficient

for all four datasets. The correlation coefficients are r = 0.41 in THUIR1, r = 0.26 in

THUIR2, r = 0.32 in THUIR3, and r = 0.15 in MS. Correlation coefficients in the MS

column tend to be the lowest compared to values on other columns, indicating that all

metrics lack a relationship with the query non-reformulation rates.

In the second experiment, three ad-hoc metrics that do not have R are considered:

DCG@K, RR, and ERR. Correlation coefficients are also computed for two recently pro-

posed metrics, iRBU@K (see Equation 2.55 on page 68) and both versions of BPM: static

(S-BPM) and dynamic (D-BPM) [241]. The correlation coefficient between iRBU@K scores

and satisfaction ratings has not been reported in the previous work. Both S-BPM and

D-BPM involve multiple parameters; and this study makes use of default parameters rec-

ommended by their developers [241]. Table 5.3 show the resultant coefficients from the

second experiment. The metrics in Table 5.3 tend to have higher correlation coefficients

than the metrics that depend on R that are described in Table 5.2. The iRBU@K provides

the best correlation with query satisfaction ratings in all datasets, except in the THUIR2

dataset, regardless of its parameter value. Pearson’s r ≈ 0.50 is attainable in the THUIR1

dataset for iRBU@K with φ = 0.99; while shallow metrics, such as RR with the gain map-

ping g2(.) and iRBU@K with φ = 0.10 perform the best in the MS dataset, where most of

the queries are navigational. Dynamic BPM (D-BPM), an adaptive metric, gives the highest

correlation coefficient for the THUIR2 dataset (r = 0.37); and DCG correlates relatively

well with query satisfaction in the THUIR3 dataset (the dataset with the largest number
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Metric THUIR1 THUIR2 THUIR3 MS

iRBU@K φ = 0.10 0.404 0.202 0.265 0.153
iRBU@K φ = 0.50 0.435 0.257 0.321 0.133
iRBU@K φ = 0.80 0.473 0.322 0.373 0.073
iRBU@K φ = 0.99 0.502 0.337 0.333 −0.020
RR@K, with g1(.) 0.199 0.050 0.104 0.125
RR@K, with g2(.) 0.394 0.266 0.318 0.151
ERR@K 0.443 0.271 0.318 0.128
S-BPM 0.427 0.302 0.266 −0.137
D-BPM 0.307 0.365 0.292 −0.083
DCG@K 0.431 0.301 0.363 −0.080

Table 5.3: Correlation coefficients (Pearson’s r) between SERP-level satisfaction ratings
and scores from six metrics: iRBU@K, RR, ERR, S-BPM, D-BPM, and DCG. This experiment
usesK = 10 for THUIR1, THUIR3, and MS; andK = 5 for THUIR2. Blue color represents
the three largest coefficients in each column.

of queries used in this study) compared to other metrics in the same table.

The first and second experiments use metrics employing the original definitions pro-

vided by the proposers of the metrics. Some of them can be mapped into the C/W/L

framework (such as average precision, RR, and DCG), but the others might not be. The

third experiment makes use of various metrics that fit the C/W/L framework. Most of

them are originally developed by modelling the C(·) functions that are intended to predict

observed behaviours. Three foraging-based metrics, IFT-C1, IFT-C2, IFT are employed using

default parameters suggested by Azzopardi et al. [20], unless explicitly noted as variations,

such as the parameter T (the user’s anticipated volume of relevance). Table 5.4 (page 189)

shows the results for the third experiment using the exponential gain mapping function:

g3(ri) = (2ri − 1)/(2rmax − 1), and Table 5.5 (page 190) displays the resultant correlation

coefficients using the linear gain mapping function: g4(ri) = ri/rmax. In order to draw

some general patterns across metrics, all columns except the MS columns are associated

with the overall geometric mean (gmean) values in the last row. The gmean scores for

the MS columns are not computed, since the correlation coefficients are very low, and are

mostly negative.

For static metrics, the ERG formulations result in the same correlation coefficients

as the corresponding ETG versions, since W (1) is constant across SERPs, and since

METG(
−→r ) = MERG(

−→r )/W (1) (Equation 2.29 on page 48). The overall gmean scores in-

dicate that it is difficult to conclude which of these two metric versions is more correlated

with query satisfaction ratings. However, in the case of adaptive metrics, the difference
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Metric
THUIR1 THUIR2 THUIR3 MS

ERG ETG ERG ETG ERG ETG ERG ETG

Prec, K = 1 0.397 0.397 0.191 0.191 0.252 0.252 0.153 0.153
Prec, K = 5 0.407 0.407 0.307 0.307 0.362 0.362 −0.057 −0.057
Prec, K = 9 0.387 0.387 – – 0.352 0.352 −0.185 −0.185
Prec, K = 10 0.351 0.351 – – 0.341 0.341 −0.215 −0.215
SDCG, K = 1 0.397 0.397 0.191 0.191 0.252 0.252 0.153 0.153
SDCG, K = 5 0.441 0.441 0.298 0.298 0.365 0.365 0.036 0.036
SDCG, K = 9 0.448 0.448 – – 0.373 0.373 −0.057 −0.057
SDCG, K = 10 0.431 0.431 – – 0.367 0.367 −0.077 −0.077
RBP, φ = 0.1 0.406 0.406 0.206 0.206 0.269 0.269 0.151 0.151
RBP, φ = 0.8 0.435 0.435 0.313 0.313 0.372 0.372 −0.071 −0.071
INSQ, T = 1 0.455 0.455 0.279 0.279 0.355 0.355 0.080 0.080
INSQ, T = 2 0.451 0.451 0.302 0.302 0.371 0.371 −0.006 −0.006
INSQ, T = 3 0.439 0.439 0.309 0.309 0.371 0.371 −0.060 −0.060
INST, T = 1 0.451 0.469 0.266 0.277 0.332 0.353 0.112 0.103
INST, T = 2 0.444 0.484 0.292 0.308 0.358 0.387 0.012 0.014
INST, T = 3 0.421 0.466 0.299 0.314 0.356 0.386 −0.054 −0.046
IFT-C1, T = 1 0.437 0.132 0.296 0.297 0.338 0.155 0.117 −0.051
IFT-C1, T = 2 0.448 0.342 0.305 0.335 0.358 0.289 −0.128 −0.090
IFT-C1, T = 3 0.408 0.399 0.201 0.273 0.359 0.340 −0.221 −0.173
IFT-C2 0.420 0.400 0.297 0.268 0.369 0.339 −0.097 −0.073
IFT, T = 1 0.433 0.355 0.283 0.261 0.328 0.269 0.135 0.093
IFT, T = 2 0.443 0.456 0.302 0.299 0.348 0.334 −0.088 0.054
IFT, T = 3 0.404 0.474 0.228 0.264 0.352 0.357 −0.183 −0.017

gmean 0.423 0.399 0.268 0.275 0.341 0.325 – –

Table 5.4: Correlation coefficients (Pearson’s r) between SERP-level satisfaction ratings
and C/W/L-based metric scores. Metric scores are computed using the gain mapping
function g3(ri) = (2ri − 1)/(2rmax − 1). Blue color represents the three largest coefficients
in each column.

between ERG and ETG seems to be affected by the search depth of the corresponding user

model, as governed by the T parameter for goal-sensitive metrics. Figure 5.4 (page 191)

shows correlation coefficients between query satisfaction ratings and both ERG and ETG

versions of INST and IFT, described as a function of T . Here it can be observed that the

ETG scores tend to be better correlated, as T becomes larger.

Consider all results from Tables 5.2 (page 187), 5.3 (page 188), 5.4 (page 189), and 5.5

(page 190). The recently proposed adaptive metrics, INST, IFT, and iRBU@K have higher

correlations than the traditional ad-hoc metrics Prec@10, AP1@K, and RR in three datasets

containing queries with a diverse task complexity (THUIR1, THUIR2, and THUIR3). Two
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Metric
THUIR1 THUIR2 THUIR3 MS

ERG ETG ERG ETG ERG ETG ERG ETG

Prec, K = 1 0.378 0.378 0.167 0.167 0.239 0.239 0.147 0.147
Prec, K = 5 0.427 0.427 0.306 0.306 0.359 0.359 −0.037 −0.037
Prec, K = 9 0.391 0.391 – – 0.348 0.348 −0.156 −0.156
Prec, K = 10 0.353 0.353 – – 0.336 0.336 −0.189 −0.189
SDCG, K = 1 0.378 0.378 0.167 0.167 0.239 0.239 0.147 0.147
SDCG, K = 5 0.452 0.452 0.291 0.291 0.361 0.361 0.043 0.043
SDCG, K = 9 0.454 0.454 – – 0.370 0.370 −0.046 −0.046
SDCG, K = 10 0.436 0.436 – – 0.364 0.364 −0.068 −0.068
RBP, φ = 0.1 0.388 0.388 0.183 0.183 0.256 0.256 0.145 0.145
RBP, φ = 0.8 0.445 0.445 0.301 0.301 0.370 0.370 −0.058 −0.058
INSQ, T = 1 0.454 0.454 0.266 0.266 0.349 0.349 0.079 0.079
INSQ, T = 2 0.458 0.458 0.291 0.291 0.368 0.368 −0.000 −0.000
INSQ, T = 3 0.448 0.448 0.296 0.296 0.369 0.369 −0.049 −0.049
INST, T = 1 0.445 0.445 0.255 0.254 0.325 0.332 0.111 0.101
INST, T = 2 0.459 0.479 0.288 0.296 0.361 0.379 0.019 0.019
INST, T = 3 0.441 0.469 0.293 0.303 0.361 0.381 −0.043 −0.036
IFT-C1, T = 1 0.431 0.045 0.263 0.191 0.325 0.066 0.114 −0.073
IFT-C1, T = 2 0.447 0.173 0.319 0.324 0.338 0.217 −0.059 −0.042
IFT-C1, T = 3 0.414 0.188 0.260 0.309 0.364 0.257 −0.144 −0.111
IFT-C2 0.335 0.393 0.267 0.226 0.333 0.316 −0.082 −0.044
IFT, T = 1 0.422 0.211 0.252 0.156 0.309 0.149 0.129 0.093
IFT, T = 2 0.443 0.312 0.308 0.264 0.328 0.237 −0.018 0.100
IFT, T = 3 0.420 0.319 0.265 0.273 0.358 0.257 −0.114 0.044

gmean 0.421 0.338 0.261 0.249 0.333 0.284 – –

Table 5.5: Correlation coefficients (Pearson’s r) between SERP-level satisfaction ratings
and C/W/L-based metric scores. Metric scores are computed using the gain mapping
function g4(ri) = ri/rmax. Blue color represents the three largest coefficients in each
column.

static metrics RBP with φ = 0.80, SDCG@K with K ∈ {5, 9}, and INSQ with T ∈ {2, 3} also

provide comparable coefficients with those adaptive metrics. However, when the majority

of queries are navigational, such in the MS dataset, shallow adaptive metrics, INST, IFT

(both with T = 1), and iRBU@K with φ = 0.1 are no better than Prec@1, SDCG@1, AP1@K,

and RR. Similar behaviour was observed when the non-navigational queries were excluded

from the THUIR1 dataset. In this case RBP with φ = 0.1 gives a higher coefficient than

RBP with φ = 0.8. When the overall gmean scores are considered (see the last row in both

Tables 5.4 and 5.5), the exponential gain mapping function g3(.) tends to yield metric

scores that are more correlated with query ratings than the scores generated using the
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Figure 5.4: Correlation coefficients (y-axis) as a function of T ∈ {1, 1.5, · · · , 5} (x-axis),
and between query-level satisfaction ratings and both ERG and ETG versions of two
adaptive metrics: IFT (left column) and INST (right column) for THUIR2 (second row),
and THUIR3 (third row).

linear gain mapping function g4(.).

Particular attention has to be given to the iRBU@K. This adaptive metric is one of the

three metrics with the highest correlation coefficients with query satisfaction ratings for

all four datasets, and yields the highest coefficient in the THUIR1 dataset with r ≈ 0.50.

Interestingly, Sakai and Zeng [182] demonstrate that iRBU@K with φ = 0.99 also has

strong agreement with user preferences (Kendall’s τ ≈ 0.80). An investigation of why

iRBU@K correlates relatively well with query satisfaction and user preferences is left for

future work.
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Comparing Correlation Coefficients. Hotteling’s t test [90] is employed to compare

two correlation coefficients with one variable in common, and is computed as follows:

t =
(rjk − rjh) ·

√

(n− 3) · (1 + rkh)
√

2 · (1 + 2rjkrjhrkh − r
2
jk − r

2
jh − r

2
kh)

,

where t follows a Student’s t distribution with n− 3 degrees of freedom; n is the number of

points in the data for computing a correlation coefficient; rjk is the correlation coefficient

between user-reported ratings and scores from metric k; rjh is the correlation coefficient

between user ratings and scores from metric h; and rkh is the correlation coefficient between

both metric scores. A tool implemented by Diedenhofen and Musch [62] is used to compare

the coefficents in Tables 5.2, 5.3, 5.4, and 5.5. 1.

Consider a significance level (α) of 0.01 with Bonferroni correction and a two-sided

Hotelling’s t test. In Tables 5.2, 5.3, and 5.4, the highest correlation for the THUIR1

dataset is iRBU@K with φ = 0.99, which is significantly better than Prec@10 (p = 0.0013),

but not significant relative to RR (p = 0.0386), Prec@1 (p = 0.0636), ERR (p = 0.2328), and

AP1@K (p = 0.0707); and an adaptive metric, INST (ETG) with T = 2, also significantly

outperforms Prec@1 (p = 0.0161), Prec@10 (p = 0.0003), but is not significantly better than

RR (p = 0.0181), ERR (p = 0.1333) and AP1@K (p = 0.0537); and the highest correlation

for the THUIR2 dataset is D-BPM, which significantly outperforms all of Prec@1, RR, and

AP1@K (p < 0.01 in all three cases). Table 5.6 summarises several p values computed

from THUIR3 – the dataset with the lowest residual values and the highest number of

points among the others. The INST (ETG) with T = 2, RBP with φ = 0.80, and SDCG@9

are all significantly better than the five conventional metrics: Prec@1, Prec@10, ERR, RR,

and AP1@K. We see strong evidence from two datasets that adaptive metric INST (ETG)

with T = 2 is significantly better correlated with query-level satisfaction ratings than the

traditional Prec@10.

Surrogates for Satisfaction Ratings. The fact that negative coefficients dominate

the MS columns in Tables 5.4 and 5.5 suggests that query non-reformulation rates are a

poor surrogate for query-level satisfaction ratings. The THUIR2 and THUIR3 datasets are

employed to evaluate the use of observable query-level user actions for the approximation

of the satisfaction ratings. The query non-reformulation rate can be represented as a binary

indicator metric nreform which is 1 if the corresponding query is the last one in the session

1The package for R programming language is available at http://comparingcorrelations.org/

http://comparingcorrelations.org/
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iRBU@K INST(ETG) RBP SDCG@9

(φ = 0.99) (T = 2) (φ = 0.80)

Prec@1 0.003 0.000 0.000 0.000
Prec@10 0.729 0.001 0.000 0.000

ERR 0.518 0.000 0.003 0.002
RR 0.523 0.000 0.004 0.003

AP1@K 0.628 0.000 0.003 0.003

Table 5.6: Resultant p values computed using Hotelling’s t test for comparing correlation
coefficients between each of four metrics (column header) and five conventional ad-hoc
metrics (first column in each row) in the THUIR3 dataset. A significance level (α) of 0.01
is employed with Bonferroni correction. Blue color represents a significant difference.

and 0 if not. Other click-based signals are also tested. Suppose −→c = 〈c1, c2, c3, · · · , cn(−→c )〉

denotes a sequence of clicked ranks observed for a SERP. The first click-based signal tested

is the number of distinct items clicked (numclick = |{c | c ∈ −→c }|). The second signal is

the precision at lowest click (PLC), computed as:

PLC(−→c ) =







n(−→c )/cn(−→c ) if n(−→c ) > 0

0 if n(−→c ) = 0 .

The other signals are the maximum, minimum, and mean reciprocal ranks of clicked items

(minRC, maxRC, meanRC). For example, maxRC is computed as:

maxRC(−→c ) =







max({1/c | c ∈ −→c }) if n(−→c ) > 0

0 if n(−→c ) = 0 .

These click-based signals were originally proposed by Radlinski et al. [167], and then

employed by Chapelle et al. [44] to meta-evaluate ERR. Table 5.7 shows the correlation

between these action-based signals and query-level satisfaction ratings, and suggests that

the three click-based metrics PLC, maxRC, and meanRC are better than nreform in the two

datasets. These differences are significant in the THUIR2 dataset (Hotelling’s t test, p <

0.01), but not significant in the THUIR3 dataset (Hotelling’s t test, p > 0.10).

Consistency Across Users. It is also possible to treat each user differently and com-

pute distributions of correlation coefficients. In the THUIR1 dataset, a group of 25 users

(user IDs 71–80, 82–95, and 97) inspected and evaluated the same set of 21 SERPs. The

graphs in Figures 5.5 (page 195) and 5.6 (page 196) represent distributions of correlation

coefficients (computed using kernel density estimation) between metric scores (ERG) and
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nreform numclick PLC minRC maxRC meanRC

THUIR2 0.246 0.377 0.392 0.261 0.397 0.358
THUIR3 0.298 0.220 0.317 0.235 0.339 0.327

Table 5.7: Correlation between signals based on user actions (clicks and reformulations)
and query-level satisfaction ratings. The values listed are Pearson’s correlation coefficients
between the signals and query-level satisfaction ratings.

satisfaction ratings across those 25 users, in each case computing the correlation coefficient

for a user from their 21 data pairs. The distributions for IFT with T = 2, INST (ETG)

with T = 2, and iRBU@K with φ = 0.99 are more skewed toward the high end than the

other three traditional metrics: Prec@10, RR, and ERR (paired t test, p < 0.01 in all cases).

This indicates that user are more inclined to agree with the adaptive metrics than with

the traditional ones. The other metrics whose distributions are more skewed to the right

compared to those three traditional metrics are IFT-C2 and RBP with φ = 0.80 (paired t

test, p < 0.025 in all cases). On the other hand, the distributions for Prec@1 and SDCG@1

are skewed to the left (paired t test, p < 0.01 in all cases except the relative difference to

Prec@10 with p ≈ 0.10).

To conclude, this section has shown evidence that scores from adaptive metrics, INST

(ETG) with T = 2 and iRBU@K with φ = 0.99, have a better correlation with query-level

satisfaction ratings than those from metrics that depend on R (AP1@K, AP2@K, QM1@K,

QM2@K, and NDCG@K) and those from two traditional metrics, Prec@10 and RR. Other static

metrics, RBP with φ = 0.80, SDCG@9, DCG@9, and INSQ, are comparable with those two

adaptive metrics in terms of correlation with query-level satisfaction. The correlation also

tended to be confounded by the query taxonomy (navigational or non-navigational). When

queries are mostly navigational, such as those in the MS dataset, shallow metrics, such as

RBP with φ = 0.10, Prec@1, and SDCG@1 have a better correlation with satisfaction than

their deeper versions. Other key findings are that the exponential gain mapping function

leads to a better correlation with user satisfaction ratings than the linear function, and

that the adaptive ETG metrics tended to be better correlated than the ERG metrics for

a high-T search.

5.4.2 Session-Level Satisfaction

Three of the datasets (J&A, THUIR2, and THUIR3) contain sequences of query reformu-

lations observed from users as well as their corresponding session-level satisfaction ratings.
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Figure 5.5: Distributions of correlation coefficients (as computed using kernel density esti-
mator) between satisfaction ratings and query scores generated from eight static metrics,
computed across 25 users, each of which evaluated the same set of 21 SERPs. Correlation
coefficient (Pearson’s r) is denoted on x-axis, while density is on y-axis.
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Figure 5.6: Distributions of correlation coefficients (as computed using kernel density
estimator) between satisfaction ratings and query scores generated from eight adaptive
metrics, computed across 25 users, each of which evaluated the same set of 21 SERPs.
Correlation coefficient (Pearson’s r) is denoted on x-axis, while density is on y-axis.
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Chapter 4 has explored various query-to-session aggregation methods, investigating the re-

lationship between session satisfaction ratings and individual query scores in the session.

This section utilises several aggregation functions described in Chapter 4 to meta-evaluate

session scores generated from a wide range of SERP-level metrics. In addition to the simple

aggregation functions, such as mean, max, and last, the method based on a weighted mean of

positional- and quality-based factors (denoted as wam) is also employed (see Equation 4.18

on page 165). Section 4.8.1 has shown that wam is better than the other three aggregation

methods, u-shaped function (see Equation 4.20 on page 165), the exponential weighting

method [139] (denoted as Liu), and memory model [242] (denoted as Zhang).

In the case of the J&A dataset, the relevance of a document is judged with respect to

a task description, not with respect to a query. Even though each SERP is truncated at

depth 9, the set of documents beyond depth 9 that was not displayed on that SERP is still

available (see Figure 5.2 on page 182). This allows for a third alternative of computing

the normalisation factor for average precision at depth K: Z = min(K, R̂), where R̂ is

the total number of relevant documents for the task, whether or not they were included

in the SERP [227]. Sakai and Zeng [182] also use the same normalisation factor for Q-

Measure at depth K. Let these two versions of average precision and Q-Measure be denoted

by, respectively, AP3@K and QM3@K. Time-biased gain (TBG) is also computed using the

implementation of Jiang and Allan [105], which is different from the original version [195].

Jiang and Allan suggest that the time to read a document be defined by a function of the

relevance of the document; while the original version by Smucker and Clarke [195] computes

this quantity using the length of the document, measured in the number of words.

Table 5.8 (page 198), Table 5.9 (page 199), and Table 5.10 (page 200) show corre-

lation coefficients between session-level satisfaction ratings and aggregated metric scores

using sessions in the J&A, THUIR2, and THUIR3 datasets, with blue color represent-

ing five metrics with the greatest geometric mean values on the rightmost column. For

THUIR2 and THUIR3, the max column is excluded from the tables because the ma-

jority of the coefficients in this column are very low, and some of them are negative.

Gains are computed from relevance grades using the exponential gain mapping function

g3(ri) = (2ri − 1)/(2rmax − 1) for all metrics except AP1@K, AP3@K, RR, and ERR. Sec-

tion 5.4.1 has provided an empirical evidence that the exponential gain function is better

than the linear counterpart. For AP1@K, AP3@K, and RR, this experiment applies the bi-

nary gain mapping g2(.), which returns 1 if the corresponding document is fully relevant,

or otherwise yields 0.
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mean max min first last u-shape Liu Zhang wam gmean

Prec, K = 1 0.263 0.077 0.266 0.110 0.225 0.235 0.247 0.241 0.231 0.196
Prec, K = 5 0.429 0.308 0.391 0.312 0.443 0.445 0.438 0.437 0.454 0.402
SDCG, K = 1 0.263 0.077 0.266 0.110 0.225 0.235 0.247 0.241 0.231 0.196
SDCG, K = 5 0.423 0.318 0.381 0.291 0.435 0.433 0.427 0.425 0.449 0.394
RBP, φ = 0.10 0.290 0.113 0.278 0.137 0.255 0.268 0.276 0.271 0.293 0.231
RBP, φ = 0.80 0.409 0.315 0.391 0.297 0.427 0.422 0.415 0.413 0.451 0.390
INSQ, T = 2 0.409 0.319 0.382 0.286 0.422 0.419 0.413 0.410 0.449 0.386
INSQ, T = 3 0.408 0.315 0.388 0.295 0.424 0.419 0.413 0.411 0.448 0.388
INST, T = 3 0.396 0.313 0.373 0.291 0.414 0.409 0.403 0.401 0.430 0.378
INST (ETG), T = 3 0.414 0.320 0.389 0.291 0.426 0.422 0.416 0.414 0.458 0.391
IFT-C1, T = 3 0.327 0.265 0.326 0.262 0.333 0.336 0.332 0.332 0.348 0.316
IFT-C1 (ETG), T = 3 0.324 0.219 0.336 0.204 0.294 0.293 0.308 0.309 0.347 0.289
IFT-C2 0.398 0.285 0.380 0.230 0.358 0.373 0.385 0.383 0.443 0.353
IFT-C2 (ETG) 0.348 0.240 0.349 0.254 0.372 0.370 0.358 0.354 0.388 0.333
IFT, T = 3 0.334 0.242 0.344 0.253 0.344 0.343 0.338 0.338 0.362 0.319
IFT (ETG), T = 3 0.313 0.161 0.315 0.184 0.324 0.317 0.311 0.305 0.362 0.279
AP1@K, K = 9 0.487 0.268 0.387 0.296 0.430 0.460 0.471 0.471 0.491 0.409
AP3@K, K = 9 0.329 0.268 0.303 0.267 0.359 0.344 0.337 0.336 0.355 0.320
QM3@K, K = 9, β = 10 0.348 0.286 0.335 0.261 0.361 0.364 0.357 0.355 0.376 0.336
NDCG 0.353 0.269 0.346 0.265 0.372 0.362 0.355 0.353 0.388 0.338
S-BPM 0.316 0.220 0.347 0.267 0.321 0.320 0.312 0.313 0.352 0.305
D-BPM 0.347 0.273 0.352 0.240 0.323 0.331 0.337 0.340 0.370 0.321
ERR 0.385 0.186 0.357 0.197 0.339 0.358 0.366 0.362 0.400 0.317
RR 0.392 0.169 0.345 0.240 0.334 0.358 0.367 0.369 0.368 0.318
iRBU, φ = 0.99 0.337 0.306 0.329 0.140 0.217 0.256 0.301 0.298 0.317 0.269
TBG 0.363 0.290 0.370 0.270 0.349 0.362 0.364 0.363 0.371 0.343

gmean 0.358 0.232 0.345 0.231 0.344 0.350 0.353 0.351 0.376

Table 5.8: Correlation coefficients (Pearson’s r) between session-level satisfaction ratings and metric scores for set of sessions in
the J&A dataset. Blue color is based on the row gmean, representing five metrics with the highest geometric mean values on the
last column.
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mean min first last u-shape Liu Zhang wam gmean

Prec, K = 1 0.228 0.262 0.116 0.099 0.194 0.227 0.228 0.296 0.194
Prec, K = 5 0.354 0.440 0.230 0.296 0.341 0.354 0.354 0.432 0.344
SDCG, K = 1 0.228 0.262 0.116 0.099 0.194 0.227 0.228 0.296 0.194
SDCG, K = 5 0.335 0.411 0.194 0.277 0.324 0.335 0.335 0.397 0.319
RBP, φ = 0.10 0.236 0.285 0.114 0.122 0.207 0.235 0.236 0.269 0.203
RBP, φ = 0.80 0.358 0.440 0.185 0.288 0.341 0.358 0.358 0.434 0.335
INSQ, T = 2 0.340 0.422 0.166 0.271 0.324 0.340 0.340 0.411 0.316
INSQ, T = 3 0.351 0.435 0.169 0.280 0.333 0.351 0.351 0.428 0.326
INST, T = 3 0.338 0.422 0.181 0.282 0.327 0.338 0.338 0.414 0.321
INST (ETG), T = 3 0.356 0.438 0.177 0.279 0.337 0.356 0.356 0.430 0.330
IFT-C1, T = 3 0.265 0.272 0.037 0.261 0.264 0.266 0.265 0.269 0.208
IFT-C1 (ETG), T = 3 0.346 0.441 0.023 0.232 0.299 0.346 0.346 0.433 0.244
IFT-C2 0.375 0.458 0.050 0.221 0.310 0.375 0.375 0.446 0.279
IFT-C2 (ETG) 0.330 0.422 0.053 0.276 0.312 0.331 0.330 0.415 0.271
IFT, T = 3 0.292 0.337 0.099 0.266 0.285 0.292 0.292 0.323 0.259
IFT (ETG), T = 3 0.338 0.425 0.019 0.265 0.309 0.339 0.338 0.418 0.239
AP1@K, K = 10 0.237 0.278 0.218 0.131 0.210 0.235 0.237 0.175 0.210
S-BPM 0.386 0.460 0.180 0.238 0.330 0.384 0.386 0.453 0.338
D-BPM 0.434 0.481 0.340 0.200 0.363 0.432 0.434 0.474 0.383
ERR 0.296 0.382 0.134 0.171 0.258 0.296 0.296 0.362 0.260
RR 0.245 0.268 0.220 0.130 0.214 0.244 0.245 0.181 0.214
iRBU, φ = 0.99 0.385 0.441 0.183 0.167 0.295 0.384 0.385 0.442 0.316

gmean 0.315 0.377 0.117 0.208 0.284 0.315 0.315 0.360

Table 5.9: Correlation coefficients (Pearson’s r) between session-level satisfaction ratings and metric scores for set of sessions in
the THUIR2 dataset. Blue color is based on the row gmean, representing five metrics with the highest geometric mean values on
the last column. The max column is not included, since it contains negative coefficients.
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Prec, K = 1 0.188 0.262 0.154 0.143 0.178 0.188 0.188 0.257 0.191
Prec, K = 5 0.260 0.266 0.247 0.205 0.259 0.260 0.260 0.344 0.260
SDCG, K = 1 0.188 0.262 0.154 0.143 0.178 0.188 0.188 0.257 0.191
SDCG, K = 5 0.257 0.283 0.237 0.213 0.258 0.257 0.257 0.351 0.261
RBP, φ = 0.10 0.199 0.271 0.162 0.156 0.191 0.199 0.199 0.268 0.202
RBP, φ = 0.80 0.270 0.278 0.248 0.235 0.278 0.270 0.270 0.351 0.273
INSQ, T = 2 0.267 0.286 0.243 0.233 0.274 0.267 0.267 0.354 0.272
INSQ, T = 3 0.271 0.280 0.249 0.235 0.279 0.271 0.271 0.351 0.274
INST, T = 3 0.263 0.278 0.251 0.223 0.267 0.263 0.263 0.339 0.267
INST (ETG), T = 3 0.271 0.284 0.238 0.248 0.285 0.271 0.271 0.365 0.277
IFT-C1, T = 3 0.277 0.278 0.268 0.231 0.278 0.277 0.277 0.324 0.275
IFT-C1 (ETG), T = 3 0.242 0.264 0.155 0.264 0.292 0.242 0.242 0.359 0.251
IFT-C2 0.222 0.214 0.160 0.250 0.268 0.222 0.222 0.344 0.233
IFT-C2 (ETG) 0.281 0.264 0.255 0.223 0.281 0.281 0.281 0.308 0.270
IFT, T = 3 0.258 0.252 0.249 0.224 0.262 0.258 0.258 0.302 0.257
IFT (ETG), T = 3 0.283 0.298 0.195 0.270 0.302 0.283 0.283 0.369 0.282
AP1@K, K = 10 0.216 0.334 0.199 0.165 0.209 0.216 0.216 0.246 0.221
S-BPM 0.165 0.230 0.119 0.198 0.202 0.165 0.165 0.318 0.188
D-BPM 0.164 0.223 0.113 0.168 0.191 0.164 0.164 0.335 0.182
ERR 0.216 0.276 0.163 0.191 0.220 0.216 0.216 0.322 0.223
RR 0.237 0.323 0.198 0.187 0.231 0.237 0.237 0.244 0.234
iRBU, φ = 0.99 0.072 0.141 0.063 0.189 0.119 0.072 0.072 0.253 0.108

gmean 0.222 0.262 0.187 0.205 0.235 0.222 0.222 0.313

Table 5.10: Correlation coefficients (Pearson’s r) between session-level satisfaction ratings and metric scores for set of sessions in
the THUIR3 dataset. Blue color is based on the row gmean, representing five metrics with the highest geometric mean values on
the last column. The max column is not included, since it contains negative coefficients.
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To draw some general patterns across metrics and across the aggregation techniques,

each row and column in Tables 5.8, 5.9, and 5.10 has a geometric mean (gmean) associated

with it to provide an overall perspective on that row or column. This is particularly useful

for the J&A datasets, since the differences between pairs of coefficients are not significant

under the Hotelling’s t test. Recall that the J&A dataset only has 80 data points, which

is the lowest among all datasets used in this study. Looking down the final columns in

all three tables indicate that RBP with φ = 0.8 and INST (ETG version) with T = 3 are

consistently in the list of five best metrics across all datasets, providing better correlations

when combined across the suite of aggregation columns compared to metrics such as ERR,

RR, iRBU@K with φ = 0.99, Prec@K with K = 1, and SDCG@K with K = 1.

In the J&A dataset, metrics that depends on R̂ (the estimated number of relevant

documents for a task) such as NDCG, QM3@K and AP3@K (both with Z = max(K, R̂))

are no better than INST (ETG version) with T = 3, TBG, INSQ with T = 3, Prec@K with

K = 5, and SDCG@K with K = 5. However, when the normalisation factor Z =
∑K
i=1 ri is

employed, average precision at depth K performs the best among the other metrics. In the

case of the THUIR2 dataset, D-BPM provides the highest gmean score. A simple metric,

Prec@K with K = 5, has better correlations than more complex ones such as, ERR, IFT,

and iRBU@K with φ = 0.99. Finally, IFT (ETG) with T = 3 performs poorly on THUIR2,

but gives the highest correlation coefficient on THUIR3.

The final rows in the three tables, each of which records the geometric means computed

over the values in the columns above them provide several further observations: that the

aggregation method based on a weighted mean of position- and quality-based factors (wam)

is better than two recently proposed techniques, Zhang [242] and Liu [139], and provides

the highest correlation coefficients with session ratings in the J&A and THUIR3 datasets;

that taking the average across the query scores in a session appears to be comparable with

the two methods, Zhang and Liu; that min appears to be better than max; and that the last

query in each session seems to be more influential than the first one.

Section Summary. This section has explored correlations between various types of

offline metrics and satisfaction ratings using four datasets constructed from lab-based

experiments and one dataset from a commercial search engine. It has been shown that the

correlation between metric and user satisfaction is confounded by the query taxonomy,

such as navigational or non-navigational. In the MS dataset, where most of the queries

are navigational, shallow metrics, such as RR, Prec@K with K = 1, SDCG@K with K = 1,

RBP with φ = 0.1, and iRBU@K with φ = 0.10 correlate better with satisfaction than their
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deeper versions. A similar phenomenon is also observed in the subset of THUIR1, in which

all queries are navigational. In a collection of data with a diverse task complexity, adaptive

metrics, such as INST (ETG version with T = 2) and iRBU@K with φ = 0.99 tend to be

better than the other metrics, such as Prec@10, RR, QM1@K, AP1@K, and NDCG@K. Static

metrics, such as RBP with φ = 0.80, SDCG@9, DCG@9, and INSQ also correlate relatively well

with query-level satisfaction ratings. This suggests that metrics should be parameterised

in accordance with the query taxonomy, or with the user’s goal, controlling the expected

number of items that are inspected by the user. That is, the argument of Moffat et al.

[153, 155] in regard to parameterisation of metrics according to the complexity of the

information need can be seen to have empirical support.

At the session-level, we use several aggregation functions described in Chapter 4 to

compute correlation coefficients between session scores and session ratings. The results

again show that RBP with φ = 0.80 and adaptive metrics, such as INST, perform relatively

well. In the J&A dataset, the metrics that depend on the knowledge of R, such as QM3@K

and NDCG do not perform any better than R-agnostic metrics, such as INSQ and INST.

Other key observations in this section are that the exponential gain mapping func-

tion yields metric scores that have a better relationship with satisfaction than the scores

generated using the linear gain mapping function; that scores generated by the ETG ver-

sions of adaptive metrics tend to be better correlated, as T becomes larger; and that

click-based actions, such as precision at lowest click and maximum reciprocal clicked rank,

provide a better surrogate for query-level satisfaction ratings than the query reformulation

binary indicator.

5.5 User Models and User Behaviour

Section 5.4 explored correlation coefficients between scores from a wide range of metrics

and both query- and session- satisfaction ratings (link 5 in Figure 5.1 on page 177). This

section investigates the dual of that relationship – the relationship between user models

(corresponding to metrics in the C/W/L framework), and observed user behaviour (link

6 in Figure 5.1). Here, we propose a method for measuring user model accuracy from the

perspective of the C/W/L framework, and investigate the effect of adaptivity for improving

metric accuracy.
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5.5.1 Measuring User Model Accuracy

Model accuracy is measured by calculating the extent to which the observed user behaviour

matches the behaviour predicted by the model. With the C/W/L framework, this is done

by computing the distances between distributions C(·), W (·), and L(·) for each given

metric, and their corresponding observed distributions, denoted by Ĉ(·), Ŵ (·), and L̂(·).

In the model, C(·), W (·), and L(·) are interrelated, and can be computed from each other

under the assumption that the user sequentially examines search results in each SERP.

In the user observation data, that interrelationship cannot be assumed for Ĉ(·), Ŵ (·),

and L̂(·), since inspection traces observed from users might not be sequential. Hence, it

make sense for each of them to be independently estimated from interaction logs.

Suppose a dataset covers a set of user IDs U = {u1,u2, . . . ,u|U |}, and each user ui is

associated with a set of view sequences V(ui) = {−→v1 ,−→v2 , . . . ,−→v |V(ui)|}, where each view

sequence −→vi is an ordered sequence of rank positions inspected for a particular SERP, and

is a sub-sequence of an action sequence (see Section 3.2.1 on page 76). Ideally, the view

sequences are eye-fixation sequences obtained from an eye-tracking experiment, or are

recorded from a particular Web interface, such as impression sequences in the Seek.com

dataset used in Chapters 3 and 42.

Evaluating W. The observed Ŵ (i) is estimated by maximising the data likelihood.

That is, Ŵ (i) is computed as:

Ŵ (i) =

∑

u∈U

∑

−→v ∈V(u) I(i ∈ −→v )
∑

u∈U

∑

−→v ∈V(u)D(−→v )
,

where D(−→v ) is the number of distinct elements in −→v , and I(A) is an indicator function

that returns 1 if event A occurs, and 0 otherwise. To give an illustration, consider the

following sets of view sequences observed from three different users, U = {u1,u2,u3}:

V(u1) = {〈1, 2, 1, 3〉, 〈1, 3〉, 〈1〉, 〈1, 2, 1〉} ,

V(u2) = {〈1, 4, 2〉, 〈1, 2, 3, 4〉} ,

V(u3) = {〈1, 2, 1, 4, 6〉, 〈2, 3, 5〉, 〈1〉, 〈1〉} . (5.1)

Using these collection of view sequences, the summation over all numbers of distinct items

across all view sequences is
∑

u∈U

∑

−→v ∈V(u)D(−→v ) = 24. Hence, Ŵ (i) values for i > 0

2The “view sequence” is a more general term than the “impression sequence” in the Seek.com data and
than the “eye-fixation sequence” captured by an eye-tracking tool.
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are computed as follows: Ŵ (1) = 9/24, Ŵ (2) = 6/24, Ŵ (3) = 4/24, Ŵ (4) = 3/24,

Ŵ (5) = 1/24, Ŵ (6) = 1/24, and Ŵ (i) = 0 for i > 6.

To measure the closeness between the W (·) generated from a model of a particular

metric and the observed Ŵ (·) estimated from a dataset, this study employs a mean squared

error (MSE) function:

MSE(Ŵ, W) =
1

N
·
N
∑

i=1

[

W (i)− Ŵ (i)
]2

,

where N is the SERP length. The closer the MSE(Ŵ, W) value is to zero, the stronger

the empirical evidence for that W (·) formulation.

Evaluating L. Assuming that users sequentially scan down the ranking, the position of

the last item inspected is also the deepest rank position examined. A maximum likelihood

estimator for L̂(i) is then:

L̂(i) =

∑

u∈U

∑

−→v ∈V(u) I(i = max{−→v })
∑

u∈U |V(u)|
.

Considering again the example described in Equation 5.1, values of L̂(i) for i > 0 are

determined as follows: L̂(1) = 3/10, L̂(2) = 1/10, L̂(3) = 2/10, L̂(4) = 2/10, L̂(5) =

1/10, L̂(6) = 1/10, and L̂(i) = 0 for i > 6. To compute the distance between the model

L(·) and the observed distribution L̂(·), use is again made of MSE(L̂, L).

Evaluating C. In contrast to W (·) and L(·), which are both probability distributions

(that is,
∑∞
i=1W (i) =

∑∞
i=1 L(i) = 1), the continuation function C(·) is a set of inde-

pendent values between zero and one. Chapter 3 describes three heuristics for computing

empirical Ĉ(·) from view sequences across all users and queries. One of those heuristics is

the rule G, which states that a continuation is deemed to occur at rank i if an examination

at rank i is followed by another at a higher ranking postion. An empirical Ĉ(i) function

is then determined by aggregating the continuation indicators over all view sequences.

The distance between C(·) and Ĉ(·) is measured using a weighted mean squared error

WMSE(Ĉ, C), where the value at rank i is weighted by the relative frequency with which

documents at rank i were inspected. This weighting scheme is required, since C(·) itself

is not a probability distribution.
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Model-Generated C(·) for Adaptive Metrics. Recall that in adaptive user models

C(·) is affected by the gain vector, which means that different gain vectors lead to different

distributions for C(i), W (i), and L(i). To allow for comparison between C(·), W (·),

and L(·) and their observed distributions in a dataset with a diverse set of gain vectors,

representative model-generated distributions are necessary. Of the available choices, it was

felt appropriate to average their values across all gain vectors, Γ = {−→r1 ,−→r2 , . . . }, in the

dataset. As an instance, representative values of C(i) for INST, an adaptive metric, are

computed as follows:

CINST(i) =
1

|Γ|
·
∑

−→r ∈Γ

CINST(i,
−→r ) ,

where CINST(i,
−→r ) is the INST continuation probability at rank i with respect to the

relevance vector −→r .

5.5.2 Measuring Accuracy Using View Distributions

The J&A dataset (see Table 5.1 on page 181) contains view sequences captured by an

eye-tracking tool, but the other four datasets do not. In the absence of view sequences,

Chapter 3 (Section 3.5 on page 3.5) has proposed a model for inferring view distributions

from click sequences by assuming that the user inspects the ranking one-by-one from top

to bottom, and that if they click the document at rank i, they have seen ranks 1 to i

previously. Suppose that V (i | u, q) is the probability that user u views the item listed at

rank i for query q. Using click data, V (i | u, q) is estimated as follows:

V̂ (i | u, q) =







1 if i ≤ DC (u, q)

exp [(DC(u, q)− i)/ω] if i > DC (u, q) ,
(5.2)

where ω is the persistence beyond the deepest click, and needs to be estimated from the

data; DC (u, q) is the deepest rank position clicked; and NC (u, q) is the number of distinct

items clicked. Let empirical distributions of C(·), W (·), and L(·) that are estimated using

view distributions be denoted by Ĉ(i; V̂), Ŵ (i; V̂), and L̂(i; V̂).

Suppose that each user ui can also be thought of as having an association with a

set of queries Q(ui) = {q1, q2, . . . , q|Q(ui)|}. Considering V (i | u, q) as an expected count,
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empirical continuation probabilities can be computed as follows:

Ĉ(i; V̂) =

∑

u∈U

∑

q∈Q(u) V̂ (i+ 1 | u, q)
∑

u∈U

∑

q∈Q(u) V̂ (i | u, q)
.

Similarly, Ŵ (i) is the fraction of attention paid to rank i, and is determined as follows:

Ŵ (i; V̂) =

∑

u∈U

∑

q∈Q(u) V̂ (i | u, q)
∑

u∈U

∑

q∈Q(u)

∑N
j=1 V̂ (j | u, q)

.

Finally, to estimate L̂(i), we make use of the assumption that users sequentially inspect

the ranking, and thus the following relationship holds: L(i) = V (i) − V (i+ 1). Recall

that V (i) =
∏i−1
j=1C(j) is the examination probability at rank i. For example, if 50% of

users in the population examine rank 2 and only 20% of users from the same population

view rank 3, a random user in that universe has a probability of 0.30 to stop at rank 2.

Hence, L̂(i) can be estimated via:

L̂(i; V̂) =

∑

u∈U

∑

q∈Q(u)

[

V̂ (i | u, q)− V̂ (i+ 1 | u, q)
]

∑

u∈U

∑

q∈Q(u)

∑N
j=1

[

V̂ (j | u, q)− V̂ (j + 1 | u, q)
] .

These alternatives for computing Ĉ(i), Ŵ (i) and L̂(i) can be utilised if gaze information

is not available, but click information is (the THUIR1, THUIR2, and THUIR3 datasets).

5.5.3 User Model Evaluation

The accuracy of a range of C/W/L user models is now assessed using the J&A, THUIR1,

and THUIR3 datasets. The THUIR2 dataset is not used because the relevance judgements

are shallow, with only top 5 documents annotated. The THUIR1 and THUIR3 datasets

do not include view sequences, and hence the alternative formulations based on estimated

view distributions V̂ (i | u, q) for Ĉ(·), Ŵ (·), and L̂(·) are employed.

Fitting The Parameter. The computation of view distributions (as described in Equa-

tion 5.2) employs a parameter ω fitted using view sequences and click sequences associated

with the J&A dataset. This is a choice being made, not a compulsory action. Recall that

J&A is the only dataset used in this study that contains view sequences. One way to fit

the parameters is by minimising the distance between Ĉ(i) (empirical C(·) computed from

view sequences) and Ĉ(i; V̂) (empirical C(·) computed using view distributions). That is,
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the following problem needs to be solved:

argmin
ω

1

N
·
N
∑

i=1

wi ·
[

Ĉ(i)− Ĉ(i; V̂,ω)
]2

,

where N = 9 in the case of the J&A dataset (that is, SERP length); wi is the weight

that is proportional to the frequency of user attentions at rank i; and Ĉ(i; V̂,ω) is the

observed Ĉ(i; V̂) calculated using the parameter ω. This fitting process results in ω = 1.4,

which means that V̂ (i | u, q) = exp [(DC(u, q)− i)/1.4] when i is beyond the deepest

click rank.

Evaluation Results. Table 5.11 (page 208) shows the results of measuring user model

accuracy for several metrics. The three datasets exhibit the same general pattern, in the

sense that the accuracy of a particular metric in one dataset is also reflected in the other

two datasets. In general, RBP with φ = 0.80, INSQ with T = 3, and the three adaptive

metrics INST with T = 3, IFT-C1 with T = 3, and IFT with T = 3 are more accurate than

several shallower metrics, such as RBP with φ ≤ 0.65, Prec@K with K ∈ {1, 5}, SDCG@K

with K ∈ {1, 5}, and RR, for all of C(i), W (i), and L(i). In the case of RBP, increasing φ

beyond 0.80 again decreases its accuracy.

Table 5.13 (page 211) shows the accuracy of several static and adaptive user models,

computed using 1,060,216 queries drawn from Yandex.ru, a Russian Web search engine.

It can be seen that shallower metrics, such as RBP with φ = 0.65 and INSQ with T = 1.5

better predict observed W (·) and C(·) than their deeper versions, RBP with φ = 0.80 and

INSQ with T = 3. In particular, Prec@K with K = 5 and SDCG with K = 7 are more

accurate than Prec@K with K = 10 and SDCG with K = 10 in terms of W (·). This result

indicates that user behaviours on Yandex.ru are more top-weighted than those recorded

in the lab-based datasets with a diverse task complexity (J&A, THUIR1, and THUIR3).

For RBP, the most accurate W (i) on Yandex.ru was achieved when φ = 0.70. This result

is a confirmation of what other authors have measured. Chapelle et al. [44] carried out

experiments using commercial click logs, and found that the examination probabilities of

RBP with φ = 0.70 is close to the observed examination probabilities. Using an impression

model based on click-gap distributions (see Section 3.5.2 on page 108), Zhang et al. [244]

reported that the best fit parameter for RBP observed from MSN click logs is φ = 0.73.

Using maximum likelihood estimation on last probability, L(i), Park and Zhang [163]

demonstrated that the best fit parameter for RBP is φ = 0.78. Table 5.12 summarises the

previous comparisons between user behaviour as modelled by RBP and observed behaviour.
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Metric
WMSE(Ĉ,C) MSE(Ŵ ,W ) MSE(L̂,L)

(×10−3) (×10−3) (×10−3)

J&A TH1 TH3 J&A TH1 TH3 J&A TH1 TH3

Prec, K = 1 674.2 689.4 718.0 790.1 750.2 788.2 1089.3 827.7 985.3
Prec, K = 5 243.1 266.2 231.2 59.5 43.4 38.8 1113.7 959.0 883.2
Prec, K = 9 24.2 46.0 36.4 6.2 18.1 16.7 347.7 963.2 915.9
Prec, K = 10 24.2 24.1 27.4 7.3 21.2 22.3 347.7 726.2 808.1

SDCG, K = 1 674.2 689.4 718.0 790.1 750.2 788.2 1089.3 827.7 985.3
SDCG, K = 5 242.0 263.8 244.4 71.6 49.9 54.1 419.2 203.6 242.7
SDCG, K = 9 16.6 38.9 42.3 6.1 5.1 8.5 129.7 149.7 196.0
SDCG, K = 10 16.6 15.8 32.1 5.2 3.9 8.7 129.7 74.3 157.9

RBP, φ = 0.10 524.5 536.1 561.2 612.9 574.3 608.6 912.2 649.8 799.4
RBP, φ = 0.50 113.9 115.8 128.9 158.6 130.8 146.2 439.6 195.9 290.0
RBP, φ = 0.65 37.5 37.7 47.3 61.3 42.2 49.9 300.3 92.9 153.3
RBP, φ = 0.80 3.6 2.9 9.5 8.9 2.3 4.5 118.7 11.0 40.7
RBP, φ = 0.95 12.0 11.6 15.6 48.2 52.0 53.0 57.2 215.0 261.6

INSQ, T = 1 57.3 56.9 77.8 75.6 57.5 69.1 434.8 215.4 314.7
INSQ, T = 2 18.3 17.1 31.8 20.2 11.8 16.8 229.9 69.1 135.2
INSQ, T = 3 7.4 6.1 17.5 17.5 13.7 16.6 133.2 22.9 73.2

RR 244.7 213.5 396.8 210.2 145.9 307.3 218.2 75.5 285.9

INST, T = 1 117.3 126.4 165.7 205.5 197.2 244.0 563.2 327.7 469.1
INST, T = 2 32.3 33.6 51.9 42.0 31.7 45.6 298.2 108.4 188.9
INST, T = 3 11.1 10.6 22.5 16.3 8.1 12.8 180.3 40.0 93.7

IFT-C1, T = 1 250.3 395.5 458.0 160.0 176.2 252.2 211.9 123.7 256.0
IFT-C1, T = 2 90.3 175.9 206.6 36.3 27.1 49.2 74.1 66.5 87.1
IFT-C1, T = 3 27.8 66.3 74.7 21.8 7.0 8.9 21.8 61.4 34.7

IFT-C2 5.5 14.0 22.0 22.6 44.4 51.9 60.3 374.5 535.0

IFT, T = 1 333.2 423.7 481.2 232.1 207.1 276.8 431.6 178.4 314.7
IFT, T = 2 131.2 186.1 218.0 63.7 36.8 57.8 230.2 67.6 100.9
IFT, T = 3 40.8 67.7 79.8 19.3 5.3 10.2 112.5 37.5 34.1

Table 5.11: User model accuracy using the J&A, THUIR1 (TH1), and THUIR3 (TH3)
datasets. In the case of the THUIR1 and THUIR3 datasets, view sequences are inferred
from click data. Lower values are more accurate. Blue color represents the best value from
each group of values as a metric parameter is altered.
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Author Methodology Best fit φ

Park and Zhang [163] Using maximum likelihood
estimation and click logs to
find the best fit parameter
for predicted L(i).

φ = 0.78

Chapelle et al. [44] Visually comparing
predicted view probabilities,
W (i)/W (1), with observed
view probabilities computed
from click logs.

φ = 0.70

Yilmaz et al. [240] Computing mean squared
error between predicted view
probabilities and observed
view probabilities computed
from click logs.

No parameter value was
reported. However, RBP is
more accurate than DCG,
but is less accurate than
EBU.

Zhang et al. [244] Computing KL-Divergence
between predicted view
probabilities and observed
view probabilities computed
from click logs via an
impression model.

φ = 0.73

Carterette [39] Visually comparing predicted
L(i) with observed L̂(i)
computed from click logs.

No parameter value was
reported. However, RBP is
less accurate than DCG and
RR.

Table 5.12: Comparisons between RBP user model and observed behaviour reported by
other authors.

Note also that being accurate in one characteristic tends to correspond to accuracy

in the other two characteristics. That is, the relationship between C(i), W (i), and L(i)

is reflected in their observed versions Ĉ(i), Ŵ (i), and L̂(i). The interrelationship among

these three observed functions is stronger for unbounded effectiveness metrics, such as RBP

and INSQ.

5.5.4 Empirical Evidence for Adaptive Models

Several metrics used in this study are adaptive, such as AP, RR, ERR, iRBU@K, INST, and

IFT-C2, which means that the viewing behaviours of their simulated users are affected

by the relevance of the documents. Reciprocal rank, ERR, and iRBU@K assume that the

user’s decision to shift their attention from rank i to rank i+ 1 is influenced only by the
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relevance of the document at rank i; the total gain accumulated so far,
∑i
j=1 rj , influences

the continuation function of INST; the rate of gain to date, (
∑i
j=1 rj)/i, affects the viewing

behaviours of users modelled by IFT-C2; finally, continuation function of AP depends on

part of the gain vector beyond rank i that has not yet been examined by the user.

Moffat et al. [153] hypothesise that, all other things being equal, C(i) decreases as the

user encounters part of the ranking that is information-heavy. If this is correct, adaptivity

is then a key to the development of a more accurate metric-based user model. Chap-

ter 4 already provided an empirical support for this hypothesis using a logistic regression

analysis, demonstrating that the odds of continuing decrease as the user gathers relevant

documents to achieve their target (see Table 4.6 on page 150). This section revisits this

hypothesis and seeks empirical support using a different experiment.

In the J&A, THUIR1, THUIR2, and THUIR3 datasets, a SERP is associated with

relevance judgements, and with behaviours (click or view sequences) recorded from one or

more users who viewed that SERP. This experiment builds two bins of SERPs, so that

two rankings from different bins have a constrasting quality in their top-5 positions. First,

SERPs are sorted by their total gains over their top-5 results, denoted by S5 =
∑5
i=1 g(ri)

with 0 ≤ g(ri) ≤ 1 being the gain mapping function. The 50 highest-scoring SERPs are

placed in a good bin; and 50 SERPs with the lowest S5 are placed in a poor bin. The size

of the J&A dataset is small in terms of the number of (SERP ID, User ID) pairs. Instead,

top-25 and bottom-25 are employed for J&A. Second, click or view sequences on these two

bins are then examined to investigate whether there is a notable difference in the viewing

behaviours. The expected outcome suggested by the hypothesis from Moffat et al. [153] is

that expected search lengths (ESL) observed from the set of good SERPs are lower than

those inferred from the set of poor ones.

In the case of the J&A dataset, empirical ESL is computed as the deepest viewed

rank, since view sequences are available. For the other three datasets, empirical ESL is

estimated using view distributions as ESL =
∑K
i=1 V̂ (i | u, q), where K is the SERP size.

Recall that SERPs on THUIR1 are evaluated independently from each other; while those

from the other datasets are grouped based on session IDs, and are evaluated with respect

to the sessions. Chapter 4 has suggested that the viewing behaviour of the user when they

examine the j th SERP is affected by the quality of the previously seen SERPs in the same

session. To reduce the effect of this bias, a subset of SERPs for the first queries in the

sessions are also considered, in which each SERP is deemed to be assessed independently

of the others.
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WMSE(Ĉ,C) MSE(Ŵ ,W ) MSE(L̂,L)
(×10−3) (×10−3) (×10−3)

Prec, K = 1 475.2 551.8 517.9
Prec, K = 3 299.6 73.6 931.1
Prec, K = 5 197.9 49.7 1077.8
Prec, K = 7 136.4 61.9 1132.9
Prec, K = 9 101.7 77.6 1151.8
Prec, K = 10 93.3 85.3 1098.7

SDCG, K = 1 475.2 551.8 517.9
SDCG, K = 3 244.3 60.6 160.4
SDCG, K = 5 129.1 13.1 127.5
SDCG, K = 7 63.6 10.9 109.6
SDCG, K = 9 27.4 18.3 95.5
SDCG, K = 10 18.4 23.1 73.2

RBP, φ = 0.10 348.4 392.9 362.7
RBP, φ = 0.50 38.1 42.3 32.9
RBP, φ = 0.65 2.9 2.3 1.6
RBP, φ = 0.80 12.1 17.1 31.8
RBP, φ = 0.95 65.6 111.1 460.0

INSQ, T = 1 18.8 11.9 53.0
INSQ, T = 1.5 4.4 5.8 11.7
INSQ, T = 2 2.0 14.5 3.4
INSQ, T = 3 7.8 36.0 20.0

RR 440.4 490.2 414.8

INST, T = 1 107.5 159.4 179.7
INST, T = 2 6.7 5.6 10.5
INST, T = 3 1.0 6.0 2.4

IFT-C1, T = 1 330.7 261.3 193.9
IFT-C1, T = 2 150.1 21.0 172.9
IFT-C1, T = 3 117.4 17.1 247.9

IFT-C2 82.7 118.0 853.9

IFT, T = 1 342.4 272.3 218.5
IFT, T = 2 151.3 22.7 156.9
IFT, T = 3 115.9 15.6 228.4

Table 5.13: User model accuracy using the Yandex.ru dataset. View sequences are inferred
from click data. Lower values are more accurate. Blue color represents the best value from
each group of values as a metric parameter is altered.
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Dataset
Good Poor Difference

S̄5 ESL S̄5 ESL p value Cohen’s d

THUIR1 (Navigational) 2.55 4.49 0.64 6.53 0.00 −0.74
THUIR1 (Non-Nav.) 5.00 6.59 0.22 8.56 0.00 −0.80
THUIR1 (Remember) 5.00 6.09 0.32 7.99 0.00 −0.76
THUIR1 (Understand) 4.79 6.33 0.41 8.25 0.00 −0.63
J&A (All) 4.97 4.16 0.00 3.96 0.85 0.05
J&A (First Query) 4.45 6.00 0.96 6.84 0.39 −0.24
THUIR2 (All) 4.00 3.46 0.41 3.41 0.93 0.02
THUIR2 (First Query) 3.29 3.45 1.00 5.43 0.00 −0.67
THUIR3 (All) 5.00 4.53 0.52 3.61 0.12 0.31
THUIR3 (First Query) 4.57 5.18 1.07 4.56 0.29 0.21

Table 5.14: Expected search length (ESL) differences in good and poor bins of SERPs.
Effect sizes (Cohen’s d) and p values (independent two-sample t test) are also reported. A
significance level (α) of 0.005 is employed with Bonferroni correction.

The results of this experiment are shown in Table 5.14. Assuming a null hypothesis

that there is no difference between the two bins, and expected search lengths are just due

to chance. Using an independent two-sample t test, it can be seen that p < 0.005 (with

Bonferroni correction) for all subsets of THUIR1, and for a subset of THUIR2 which

contains SERPs from the first queries. The effect sizes for cases where p < 0.005 are

all above the medium level (|d| > 0.50). However, no evidence is found in the J&A and

THUIR3 datasets. Figure 5.7 further shows the distributions of ESL for all four subsets of

THUIR1. Two general patterns emerge. First, the median and mean ESL computed from

good SERPs are lower than those computed from poor ones. Second, users who performed

navigational search tasks have a lower expected search length than those who performed

non-navigational counterparts.

The difference in ESL between good and poor SERPs in the THUIR1 dataset is also

reflected in the behaviour of empirical Ĉ(i) and Ŵ (i). Figure 5.8 shows Ĉ(i) values com-

puted from the two bins of SERPs for 1 ≤ i ≤ 5. The values for 5 < i ≤ 10 are not

of interest. As can be seen, users who examined good SERPs have a more reduced Ĉ(i)

than those who inspected poor ones; and Ĉ(i) values observed from users who performed

navigational tasks tend to be lower than those inferred from users who carried out infor-

mational or transactional tasks. In addition, Figure 5.9 presents empirical Ŵ (i) values

for all rank positions in the SERP. It is clear that the Ŵ (i) function inferred from the

collection of good SERPs is top-heavier than that inferred from the bin of poor ones.
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Figure 5.7: Distributions of expected search lengths for the good and poor SERPs ob-
served from the THUIR1 dataset, stratified by query taxonomy (non-navigational and
navigational) and by task cognitive level (understand and remember).
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Figure 5.8: Empirical Ĉ(i) computed from the two groups of SERPs in the THUIR1
dataset for 1 ≤ i ≤ 5, stratified by query taxonomy (non-navigational and navigational)
and by task cognitive level (understand and remember).
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Ŵ
(i)

Understand
Good
Poor

1 2 3 4 5 6 7 8 9 10
Rank, i

0.00
0.05
0.10
0.15
0.20
0.25

Ŵ
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Figure 5.9: Empirical Ŵ (i) computed from the two groups of SERPs in the THUIR1
dataset, again stratified by query taxonomy (non-navigational and navigational) and by
task cognitive level (understand and remember). Note that

∑10
i=1 Ŵ (i) = 1.

Evidence from Web Search. The Yandex.ru dataset which contains 1,060,216 fully-

judged SERPs is also used to see the difference in ESL between good and poor rankings.

Two opposing extreme cases are considered for defining good and poor SERPs, since the

Yandex.ru dataset contains many more queries compared to other datasets. SERPs with

all items being relevant (ri = 1, 1 ≤ i ≤ 10) are placed in a good bin; and SERPs with all

items being non-relevant (ri = 0, 1 ≤ i ≤ 10) are placed in a poor bin. As with THUIR2

and THUIR3, queries in the Yandex.ru dataset are also grouped based on session IDs.

Hence, a subset of SERPs for the first queries in the sessions is also considered. As with

the observations from THUIR1, Table 5.15 shows evidence from the Yandex.ru dataset

that users tend to stop earlier when inspecting good SERPs than when inspecting poor

SERPs. The function Ŵ (i) computed from good SERPs is also more top-weighted than

that computed from poor SERPs.

To conclude, this section has found evidence that user behaviour is influenced by

the relevance of the documents, and that users tends to stop earlier when inspecting an

information-heavy ranking than when inspecting a poor ranking. This further suggests

that adaptivity is a critical aspect for an accurate user model. However, the issue of how
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Subset
Good Poor Difference

#SERPs ESL #SERPs ESL p value Cohen’s d

All 104, 040 2.78 4, 083 4.39 0.00 −0.62
First Query 51, 018 3.03 1, 780 4.30 0.00 −0.48

Table 5.15: Expected search length (ESL) differences in good and poor bins of SERPs in
the Yandex.ru dataset. The number of SERPs in each bin, effect sizes (Cohen’s d), and p
values (independent two-sample t test) are also reported. A significance level (α) of 0.025
is employed with Bonferroni correction.

the adaptivity itself should be realised (such as, INST versus IFT-C1) has not yet been

investigated, and will be addressed from the next paragraph.

Comparing Adaptive Factors. We now investigate which version of adaptivity best

predicts continuation probability among AP, ERR, RR, iRBU, INST, IFT-C1, IFT-C2, IFT.

First, a logistic regression is employed by optimising the following linear model:

ln(ci/(1− ci)) = w0 +w1 ·C
∗(i) , (5.3)

where w = {w0,w1} is the set of coefficients that need to be estimated, ci is a continuation

variable computed from a view distribution (see Equation 4.11 on page 143), and C∗(i)

is a continuation probability function that only considers adaptive factors. For AP, IFT-

C1, IFT-C2, and IFT, C∗(i) functions are the same as their original C(i) functions (see

Equation 2.41 on page 54, Equation 2.52 on page 59, Equation 2.53 on page 59, and

Equation 2.54 on page 60). Note that CIFT(i) = CIFT-C1(i) · CIFT-C2(i). In the case of

INST, non-adaptive factors also exist. For example, all other factors being equal, CINST(i)

increases with rank position i. To exclude non-adaptive factors on CINST(i), the following

specification is considered: C∗
INST(i) = [Ti/(Ti + 1)]2 , where Ti = max(0,T −

∑i
j=1 rj).

For RR, ERR, and iRBU, this study uses C∗(i) = 1− ri. Second, the log-likelihood value

computed from the best fit model is used to measure the goodness of fit of C∗(i) to the

observed behaviour given the best fit values for w0 and w1.

Note that the value of log-likelihood is negative, and that the closer the log-likelihood

is to zero, the more accurate the model is. To decide whether any two adaptive models

have a significant difference in the log-likelihood value, Vuong’s z test is employed. This

statistical test is a model selection tool based on likelihood ratio for making probabilistic

statement about two non-nested models [228].
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Model, C∗(i)
w0 w1 log-L

p

value p value p (Vuong’s z)

INST 0.462 0.000 6.575 0.000 −1.182× 104 0.001
IFT-C1 0.401 0.000 1.435 0.000 −1.184× 104 0.000
IFT 0.514 0.000 1.577 0.000 −1.211× 104 0.000
AP 0.191 0.000 0.887 0.000 −1.249× 104 0.000
RR, ERR, iRBU 0.689 0.000 0.200 0.000 −1.256× 104 0.000
IFT-C2 0.729 0.000 0.095 0.000 −1.257× 104 –

Table 5.16: Log-likelihood values (log-L) computed using six linear models (Equation 5.3
on page 215) based on the six C∗(i) functions, and identified by the THUIR1 regressions.
The p values on the right-most column relate to the difference between each row and its
successor, computed using Vuong’s z test for comparing two log-likelihood values from two
non-nested models [228]. Note that the rows are sorted based on the log-likelihood values
in decreasing order.

The THUIR1 and Yandex.ru datasets are employed for fitting the models and com-

puting the log-likelihood values. In contrast to the THUIR2 and THUIR3 datasets, each

query in both THUIR1 and Yandex.ru corresponds to more than one user, allowing for

estimating two important quantities: the expected volume of relevance for undertaking

the search, T ; and the expected minimum rate of gain that keeps the user inspecting the

SERP, A. Three metrics, INST, IFT-C1, and IFT have T as their parameter, while IFT-C2

and IFT are two metrics that depends on A.

To estimate T for a particular query, this experiment uses the approach described

in Chapter 4 (see Equation 4.13 on page 147) by taking the average number of distinct

relevant items clicked across all users that submitted that query. Suppose U (q) is the

set of user IDs that correspond to the query q. The expected minimum rate of gain A is

estimated as follows:

Â =
N
∑

i=i

[V (i | q)− V (i+ 1 | q)] · rate(i) , (5.4)

where N is the length of SERP; V (i | q) is determined by averaging V (i | u, q) across all

users u ∈ U(q), and is defined as V (i | q) = 0 for i > N ; and rate(i) =
(

∑i
j=1 rj

)

/i, the

rate of gain at rank i.

Tables 5.16 and 5.17 show the result of this experiment using, respectively, the THUIR1

and Yandex.ru datasets. The magnitudes of log-likelihood observed from Yandex.ru are

much larger than those observed from THUIR1, since Yandex.ru is larger than THUIR1.

In general, the p values for w1 (the coefficient that corresponds to C∗(i)) are all near zero,
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Model, C∗(i)
w0 w1 log-L

p

value p value p (Vuong’s z)

IFT-C2 −0.028 0.000 0.372 0.000 −6.476× 106 0.000
IFT 0.153 0.000 0.447 0.000 −6.482× 106 0.000
RR, ERR, iRBU 0.282 0.000 −0.196 0.000 −6.495× 106 0.000
INST 0.159 0.000 1.419 0.000 −6.496× 106 0.000
IFT-C1 0.179 0.000 0.121 0.000 −6.508× 106 0.000
AP 0.130 0.000 0.128 0.000 −6.510× 106 –

Table 5.17: Log-likelihood values (log-L) computed using six linear models (Equation 5.3
on page 215) based on the six C∗(i) functions, and identified by the Yandex.ru regressions.
The p values on the right-most column relate to the difference between each row and its
successor, computed using Vuong’s z test for comparing two log-likelihood values from two
non-nested models [228]. Note that the rows are sorted based on the log-likelihood values
in decreasing order.

indicating that any adaptive factor is significant for predicting the user behaviour. As can

be seen, INST has the best fit adaptive factor among the six models in the THUIR1 dataset,

and is better than AP and IFT-C1 in both datasets (Vuong’s z test, p < 0.001 in all cases).

Adaptive factor in IFT-C2, which is affected by the minimum rate of gain A, exhibits two

opposing results. Among the six adaptive models, IFT-C2 has the worst fit in the THUIR1

dataset with a diverse task complexity, but has the closest fit in the Yandex.ru dataset

whose observed behaviour tends to be top-heavy compared to the behaviour observed from

the THUIR1 dataset (see Table 5.11 on page 208 and Table 5.13 on page 211).

5.6 Model Accuracy and Satisfaction

After exploring correlation coefficients between scores generated from metrics with various

user models and satisfaction ratings at both query- and session-level in Section 5.4 (link 5 in

Figure 5.1 on page 177), and after measuring the extent to which those user models predict

observed behaviour in Section 5.5 (link 6 in Figure 5.1), we ask whether this dualism has a

connection at least to some extent (link 8 in Figure 5.1), and further hypothesise that the

metrics with user models that fit observed user behaviour also tend to be the metrics that

correlate well with user satisfaction ratings. The goal of this section is to develop evidence

for or against this hypothesis.
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5.6.1 Tuning Parameters via Model Accuracy and Satisfaction

This section examines whether improvements in model accuracy tend to be followed

by increases in correlation between metric scores and satisfaction ratings. Figure 5.10

shows joint plots between correlation with satisfaction ratings (query-level ratings for

both THUIR1 and THUIR3, and session-level ratings for the J&A datasets) and user

model accuracy on the two vertical scales, as the parameters for those metrics are varied

on the horizontal scale, for RBP and INST. In the case of the J&A dataset, query scores are

aggregated using the weighted mean approach described in Chapter 4 (see Equation 4.18

on page 165).

As a general pattern, the accuracy of the user model (via either C(i), W (i), or L(i))

closely reflects the correlation between metric score and satisfaction ratings. That is, in-

creased accuracy of any of C(i), W (i), or L(i) tends to correspond to an increased corre-

lation between metric score and user satisfaction. Other metrics, such as Prec@K, SDCG@K,

and INSQ, also exhibit the same general pattern. In regard to model accuracy, it is clear

that Ĉ(i), Ŵ (i), or L̂(i) each tend to define the others. This observation signals a clear

relationship between a metric fit in terms of its ability to predict user behaviour (via the

corresponding user model), and metric fit in terms of its ability to act as a surrogate for

explicit user satisfaction ratings (via the assessed score of the SERP).

Note that collection of user-reported satisfaction ratings can be expensive, since it re-

quires laboratory-based user studies (such as those logged in the J&A, THUIR1, THUIR2,

and THUIR3 datasets), and involves a non-trivial number of participants. The results in

Figure 5.10 suggest an alternative for estimating parameters, such as K for SDCG@K, φ for

RBP, and T for INST. The tuning process for those model-based metrics can be done via a

set of click sequences, as opposed to the set of satisfaction ratings, which can be collected

in real time from an operational search engine.

5.6.2 Metrics Based on What Users Have Seen

In the previous section, it has been shown that tuning the parameter of a particular metric

with the goal of increasing the correlation between scores and satisfaction ratings can, to

some extent, be done using logged behaviours, such as click data. This section addresses a

more general issue, asking whether building a more accurate user model will be rewarded

by a metric whose scores are more correlated with satisfaction ratings.

We carry out an experiment to see whether metrics that utilise what information users

have looked at, such as clicks, mouse-hovers, or the view distributions V̂ (i | u, q) have a
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Figure 5.10: Joint plots between correlation with session satisfaction ratings and user
model accuracy for several parameter values. The plots are for RBP (parameter φ) and
INST (parameter T ), respectively, using the J&A (first row), THUIR1 (second row), and
THUIR3 (third row) datasets. Blue dotted line represents Pearson’s correlation coefficients
that are associated with the right-hand y-axis.
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better correlation with satisfaction than conventional metrics that do not directly have this

knowledge. Recall that the distributions V̂ (i | u, q) serve as gold standards for computing

user model accuracy in the THUIR1, THUIR2, and THUIR3 datasets.

Metrics that use view distributions are computed as
∑K
i=1 ri ·

(

V̂ (i | u, q)/Z
)

, where

Z =
∑K
j=1 V̂ (j | u, q) is the normalisation factor. Note that V̂ (i | u, q) has the parameter

ω that represents user persistence beyond the deepest click rank, and this experiment

uses ω ∈ {0.5, 1.0, 1.5, 2.0}. The other metrics used in this experiment are based on rank

sequences generated from click and mouse-hover actions. These metrics are the mean, max,

and min values from the corresponding gain vectors; and are denoted by cMEAN, cMAX,

and cMIN for click-based ones, and by hMEAN, hMAX, and hMIN for mouse-based ones. In

regard to the use of mouse-hover information, Guo and Agichtein [70] have demonstrated

that mouse positions can be used to infer gaze positions. They propose a machine learning

approach to predict when eye and mouse movements are closely coordinated in the screen.

This experiment uses all SERPs in the THUIR1 dataset (291 SERPs). For THUIR2

and THUIR3, cases in which the deepest click rank positions are beyond the relevance

judgement pool depths are excluded. These result in 666 SERPs for THUIR2, and 1,259

SERPs for THUIR3. Table 5.18 shows the resultant correlation coefficients. The coefficients

computed from five ad-hoc metrics that perform relatively well on these three datasets

(SDCG@K with K = 9, RBP with φ = 0.80, iRBU@K with φ = 0.99, D-BPM, and INST (ETG)

with T = 2) are also reported for comparisons (see Tables 5.2, 5.3, 5.4 on pages 187,

188, 189, respectively). It can be seen that ideal metrics defined based on clicks and

view distributions perform better than the five offline metrics. Metrics based on view

distributions provide the highest correlation coefficients on the THUIR1 dataset, but not

on the other datasets. Similarly, click-based metrics are superior compared to the others

on THUIR2 and THUIR3. This provides further evidence that user satisfaction should

be modelled as a function of based on seen items; and increasing the accuracy of a user

model so that it reflects what the user examines would also lead to an increased correlation

between its scores and satisfaction ratings.

5.7 Summary

Many effectiveness metrics have dual aspects: numeric scores for SERPs, used in evaluation

as a surrogate for user satisfaction; and models that (should) reflect how users interact

with SERPs. This chapter has used five pre-existing resources, and the C/W/L approach

to metric definition, to shed fresh light on that duality.
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THUIR1 THUIR2 THUIR3

View Distribution, ω = 0.5 0.515 0.372 0.330
View Distribution, ω = 1.0 0.508 0.367 0.354
View Distribution, ω = 1.5 0.494 0.360 0.366
View Distribution, ω = 2.0 0.480 0.356 0.372
cMEAN 0.362 0.569 0.434
cMAX 0.253 0.576 0.423
cMIN 0.361 0.513 0.321
hMEAN 0.484 – 0.333
hMAX 0.304 – 0.299
hMIN 0.450 – 0.239

SDCG, K = 9 0.448 0.351 0.376
RBP, φ = 0.80 0.435 0.348 0.371
iRBU@K φ = 0.99 0.502 0.370 0.340
D-BPM 0.307 0.390 0.294
INST (ETG), T = 2 0.484 0.354 0.386

Table 5.18: Correlation coefficients between query scores and query-level satisfaction rat-
ings, with the query scores computed from view distributions V̂ (i | u, q), from click-
and hover-based metrics, and from five conventional metrics. Blue values represent three
highest Pearson’s correlation coefficients in each column. A horizontal line in the middle
separates the ideal metrics that are based on what users have seen (based on V̂ (i | u, q),
click, and hover) from those that are not.

Section 5.4 has calculated correlation coefficients between metric scores and satisfaction

ratings, and found that the relationship between score and satisfaction is confounded by

the query taxonomy, that is, by the user’s initial rationale for performing their search

activity. When queries are mostly navigational, shallow metrics, such as RR, Prec@K with

K = 1, SDCG@K with K = 1, RBP with φ = 0.1, and iRBU@K with φ = 0.10 correlate better

with user satisfaction than their deeper versions. On the other hand, when datasets with a

diverse task complexity are utilised, adaptive metrics, such as iRBU@K with φ = 0.99 and

INST (ETG version with T = 2) appear to be better correlated with query satisfaction

than Prec@10, RR, and AP1@K. Other metrics, RBP, SDCG, DCG, and INSQ, also correlate

relatively well with satisfaction ratings at both query- and session-levels.

Several key findings have emerged from Section 5.4. First, scores generated by the

ETG versions of adaptive metrics tend to be better correlated than those generated by

their ERG versions, as the user’s goal T increases. Second, mapping the relevance vector

using an exponential gain mapping function leads to scores that are better correlated with

satisfaction ratings, compared to scores calculated using the linear version. Third, click-

based actions, such as precision at lowest click and maximum reciprocal clicked rank, have
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a better relationship with query-level satisfaction ratings than the query reformulation

binary indicator.

After exploring the relationship between metric scores and satisfaction in Section 5.4,

Section 5.5 then investigated the dual of that relationship – the correlation between pre-

dicted behaviour (user model) and observed behaviour. This section proposed a method-

ology for inferring observed behaviour from the perspective of the C/W/L structure, and

then used that method to measure to the extent to which user models predicted three

empirical behaviours, Ĉ(·), Ŵ (·), and L̂(·). The results show that metrics that have been

shown to be better correlated with satisfaction (as described in Section 5.4), such as RBP

with φ = 0.80, INSQ, and INST, also appear to be the metrics that better predict Ĉ(·),

Ŵ (·), and L̂(·). Further, the last part of Section 5.5 also found evidence that the user’s

expected search depth is affected by the query taxonomy and the relevance of the doc-

uments inspected. These findings create a clear connection between the two sides of the

dual relationship shown in Figure 5.1 (page 177).

Section 5.6 then investigated whether the metrics with user models that fit observed

user behaviour also tend to be the metrics that correlate well with user satisfaction ratings.

The results show that increased accuracy of any of C(i), W (i), or L(i) tends to be followed

by an increased correlation between metric score and user satisfaction. Moreover, this

section also demonstrated that ideal metrics defined using what users have looked at (that

are deemed to be the most accurate ones), such as clicks and gaze distributions, are indeed

better correlated with satisfaction ratings. Hence, the effort of making a metric more

accurate would be, to some extent, rewarded by an increased correlation with satisfaction.

To conclude, we have constructed and demonstrated a new framework for meta-evaluation

of metrics, based on comparing predicted user behaviour with measured user actions, and,

using that framework, have shown that metrics that correlate well with user satisfaction

have as their duals user models that correlate well with observed user actions. This is

an important new way of thinking about meta-evaluation of metrics. Note also that the

relationship works in both directions – metrics that have accurate user models (in terms of

C(i), W (i), and L(i) being good fits to observed behaviour) can then be argued as being

the ones that should be used as the most appropriate surrogates for user satisfaction.



Chapter 6

Conclusion and Future Work

Users typically submit multiple queries during the course of each search session. Hence,

it is useful to extend the traditional query-based IR evaluation in order to assess a multi-

query session as a single unit. By arguing that metric scores should reflect what users have

experienced during the course of the session, we used search interaction logs to model user

behaviour and satisfaction, and to derive evidence that allows metric comparisons. This

chapter summarises those findings, and in Section 6.2, considers directions for possible

future work.

6.1 Conclusion

Chapters 3, 4, and 5 have presented and explored the following ideas.

Empirical C(i) and Impression Models. A critical step in the development of user-

based metrics is to understand user search behaviour. A way of operationalising observa-

tions of behaviour is via the notion of conditional continuation probability, C(i). Chap-

ter 3 addressed the question: is it possible to use search interaction logs to model user

behaviours? We propose three heuristic rules for computing observed continuation prob-

ability using user logged viewing behaviours, such as a collection of impression or gaze

sequences. Our experiment showed that these three rules all result in the same behavioural

patterns in regard to C(i), namely that it increases with rank i, confirming the “sunk cost”

property hypothesised by Moffat et al. [153]. We also demonstrated the use of observed

C(i) to fit the parameters of three metrics, SDCG, RBP, and INSQ, and found that INSQ

has a more accurate user model, compared to the other two metrics.

When impression sequences are not available but click sequences are, observed C(i)

can still be estimated via an impression model, a tool that is useful for inferring impression

distributions from click logs. We proposed a new impression model, arguing that the user

223
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tends to examine all items prior to the deepest clicked rank (dc), and tends to view a

number of items beyond dc. Next, our analysis of user observation data found that the

number of items inspected beyond dc is negatively correlated with the number of clicks

performed by the user, and increases with dc itself. Finally, our experiments demonstrated

that an impression model that considers these behaviours is more accurate than previous

approaches, such as the model based on click gaps by Zhang et al. [244].

These two tools, impression models and methods for inferring C(i), were then used in

Chapter 4 to investigate factors affecting user behaviours in the development of session-

based metrics. As described in Chapter 5, impression models are also useful for measuring

the accuracy of metric-based user models based on evidence derived from click logs.

Session-Based Metric and Query-to-Session Aggregation Framework. Chap-

ter 4 then presented a second major contribution, the development of methods for scoring

sessions. Two goals for session evaluation were considered: (1) the first goal was to develop

a session-based effectiveness metrics for session test collections, where a particular topic

is associated with a fixed sequence of queries; and (2) the second one was to build a fitted

relationship between session satisfaction ratings and individual query scores.

In regard to the first goal, we proposed the session-based C/W/L framework by ex-

tending its query-based version. In the new approach the user model is characterised by

two behaviours: conditional continuation probability at rank i when inspecting the j th

SERP, C(j, i) (query-level behaviour); and conditional reformulation probability, F (j)

(session-level behaviour). We then employed search interaction logs from two commercial

search engines to investigate factors that affect both query- and session-level behaviours.

This analysis required the impression models and methods for computing empirical C(i)

described in Chapter 3. Two main findings emerged. First, we confirmed that the INST user

model is appropriate for modelling query-level behaviour. Second, the query position j in

the session, the user’s goal T at the beginning of search, and the unmet number of relevant

items to date, are all positively correlated with F (j).

By incorporating those factors affecting both C(j, i) and F (j), we developed sINST,

a new metric for session evaluation, the first session-based metric that is adaptive and

goal-sensitive. Although three existing session metrics, LCYsRBP, sDCG, and KsDCG, can

be made goal-sensitive by setting their parameters to fit a certain value of T (anticipated

number of useful documents), they are not adaptive. Further, our experiment showed that

sINST gives a closer fit to observed user behaviour than do those previous metrics. Finally,

we described a method for approximating sINST that is less expensive than the Monte
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Carlo, which requires a large number of randomised trials.

To address the second goal for session evaluation, we utilised several pre-existing

datasets from lab-based user studies to explore factors influencing session-level satisfaction

ratings. Previous work has suggested that session satisfaction is only affected by individual

query positions with the last query being the most useful factor. Our study found that a

quality-based factor (the spectrum from the best to the worst queries) is also significant,

and that combining both positional- and quality-based factors provides a better correlation

with session satisfaction than do positional-based factors alone.

Based on these findings, we proposed two novel query-to-session aggregation frame-

works. The first one merges query weights derived from positional- and quality-based

factors using a linear combination scheme. The second one is based on the notion of for-

getfulness, where the aggregate score can be interpreted as the rate of remembered query

utility per SERP inspected. When query-level satisfaction ratings are used to represent

query scores, our proposed aggregation functions provide a better fit with session-level

satisfaction than do previous aggregation approaches. The proposed query-to-session ag-

gregation functions were then employed in Chapter 5 for meta-evaluation of metrics at the

level of sessions.

Meta-Evaluation Framework. As with IR systems, evaluation metrics also need to

be evaluated. In Chapter 5 we proposed a meta-evaluation framework, arguing that met-

rics have dual aspects: metric scores that are intended to have a relationship with user

satisfaction; and user models that are correlated with observed user behaviour.

We calculated correlation coefficients between metric scores and satisfaction ratings

at both query- and session-levels. For scoring sessions, we used methods for combining

individual query scores described in Chapter 4, since user observation data was available in

connection with some of the public datasets that were employed. Several findings emerged.

First, the resultant correlation coefficients are confounded by the query taxonomy. When

queries are mostly navigational, shallow metrics are better correlated with satisfaction than

are deeper metrics. The opposite results are observed, when datasets with a diverse task

complexity are employed. Second, the ETG versions of adaptive metrics tend to be better

correlated with satisfaction than those computed by their expected rate of gain (ERG)

versions, as the user’s desire T increases. Third, the exponential gain values provide scores

that have a better relationship with satisfaction, compared to scores computed from the

linear gain values.
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After exploring the correlation between metric scores and satisfaction, we also ex-

plored the dual of that relationship – the connection between user models and observed

behaviours. We proposed a method for measuring the extent to which a user model fits

observed behaviour via three functions, C(·), W (·), and L(·), building on the impression

model developed in Chapter 3. We found that several metrics that have been shown to

be better correlated with satisfaction also tend to be the metrics that better predict C(·),

W (·), and L(·). We also suggested that adaptivity, where C(·) changes as the user en-

counters relevance in the ranking, is a key to the development of an accurate user model,

and showed that INST has a better fit adaptive factor than do AP and IFT-C1.

Finally, we found that the metrics with accurate user models tend to be the metrics

that correlate relatively well with user satisfaction. We demonstrated that tuning the

parameters of several unbounded metrics, such as RBP and INST, can be done via recorded

user behaviours (such as click logs), providing (at least to a limited extent) the same

benefit as the tuning process via datasets with user satisfaction ratings. Note that, in

contrast to click logs, user-reported satisfaction ratings are difficult to collect at scale.

6.2 Future Work

This section presents possible future work based on the findings described in Section 6.1.

Other Factors Affecting F (j). The experiments reported in Section 4.5 suggests that

F (j) is influenced by three factors: the query position in the session, the expected number

of useful documents, and the total number of useful documents accumulated to date. One

clear future direction is to seek other possible factors that influence F (j). It has been

conjectured that user behaviour is affected by rate of gain [20]. In the session-level be-

haviour, the rate at which gain has been accrued in query j (rather than through the whole

session so far) provides more precise estimation of F (j). Other factors are also possible.

For example, De Vries et al. [61] introduce the notion of tolerance to irrelevance. That is,

the user exits from the current SERP and submits a new query when the total number of

non-relevant items inspected by the user has reached their tolerance to irrelevance.

Both rate of gain and tolerance to irrelevance might be useful for improving the es-

timation of F (j). However, their interaction with current suggested behaviours (such as

the sunk cost property) also needs to be investigated. For example, consider a case when

the ranking contains non-relevant items throughout. The sunk cost property states that

the continuation probability always increases with i. However, if the user has a tolerated
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number of non-relevant items in their mental state, their continuation probability should

decrease after some time. Hence, the tension raised between sunk cost and tolerance to

irrelevance should be carefully handled to better predict user search behaviour.

New Session Test Collection. Despite the need for session-based evaluation, session

test collections are limited. Test collections from the TREC Session Track 2010 – 2014

are the primary existing resources for offline session assessment. However, none of them

considers user variations, such as query and expectation variations. Moffat et al. [155] show

that the source of variability caused by users’ initial queries is more significant than other

sources of variability, such as topics and systems. Therefore, another future direction is to

develop a new session test collection that also considers user variations. Fortunately, this

can be done by extending UQV100 – an existing query-based test collection that considers

query and expectation variations, and that contains backstories (that is, “information need

statements”) [24]. Query variations have also been collected in connection with the recent

CC-News-En collection [143].

Note that a session test collection requires a topic to be associated with a sequence

of queries. With UQV100, the sequences of queries per backstory could be constructed or

simulated in many ways. One way is to group queries based on the likelihood that a query

would be in a certain position in the session: the first group contains queries that most

likely would serve as initial queries; the second one contains those that most likely appear

as the second queries; and so on. This grouping process can be done using an automatic

clustering mechanism, considering several reformulation rules, such as generalisation and

specialisation [114]. Thomas et al. [213] also propose a useful rule that query Q2 is consid-

ered as the reformulation for query Q1 when Q2 has at least 1/3 of its terms in common.

Another option would be to hire crowd-workers to manually group them, or to collect

query sequences from crowd-workers.

A Few Final Words. We have constructed a methodology for computing empirical

continuation probability (query-level behaviour) and reformulation probability (session-

level behaviour) using logged behaviours (impressions, eye-fixations, or clickthroughs).

This suggests that it is possible to compare effectiveness metrics based on evidence de-

rived from logged behaviours, and provides a foundation for future directions in regard to

the investigation of other possible factors that affect user behaviour. Further, we found

evidence that query- and session-level behaviours are goal directed, and are affected by

the progress towards goal. These findings suggest that search effectiveness metrics should
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be goal sensitive, adaptive, and session-oriented. The development of new metrics should

also be supported by the development of new session test collections that accommodate

user variations.

Conversational and interactive search systems are the future in the field of IR [9].

In order to improve interactive IR systems, appropriate evaluation methods should be

developed. In contrast to the classical IR effectiveness model that is based on a single-

query response, actual interactions between users and systems involve search sessions,

each of which consists of multiple queries. In this thesis, we have addressed this challenge,

and using a wide range of data and modelling techniques have demonstrated that user

behaviour and user satisfaction are critical ingredients of good session evaluation strategies.
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[123] K. Klöckner, N. Wirschum, and A. Jameson. Depth- and breadth-first processing of

search result lists. In Proc. CHI, pages 1539–1539, 2004.

[124] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled ex-

periments on the web: Survey and practical guide. Data Mining and Knowledge

Discovery, 18(1):140–181, Feb 2009.

[125] D. Kraft. A software package for sequential quadratic programming. Tech. Rep.

DFVLR-FB 88-28, DLR German Aerospace Cent. Inst. Flight Mech., Koln, 1988.

[126] D. H. Kraft and D. A. Buell. Advances in a Bayesian decision model of user stopping

behavior for scanning the output of an information retrieval system. In Proc. SIGIR,

pages 421–433, 1984.

[127] U. Krishnan, A. Moffat, and J. Zobel. A taxonomy of query auto completion modes.

In Proc. Aust. Doc. Comp. Symp., pages 1–8, 2017.

[128] M. Kudlyak and J. Faberman. The intensity of job search and search duration, 2014.

Working Paper 14-12, Federal Reserve Bank of Richmond, https://papers.ssrn.

com/sol3/papers.cfm?abstract_id=2442910.

[129] D. Lagun, C. Hsieh, D. Webster, and V. Navalpakkam. Towards better measurement

of attention and satisfaction in mobile search. In Proc. SIGIR, pages 113–122, 2014.

[130] R. Lempel and S. Moran. Predictive caching and prefetching of query results in

search engines. In Proc. WWW, pages 19–28, 2003.

[131] M. E. Lesk and G. Salton. Relevance assessments and retrieval system evaluation.

Inf. Stor. & Retr., 4(4):343–359, 1968.

[132] A. Leuski and J. Allan. Improving interactive retrieval by combining ranked lists

and clustering. In Content-Based Multimedia Information Access - Volume 1, pages

665–681, 2000.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2442910
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2442910


240 BIBLIOGRAPHY

[133] J. Li, S. Huffman, and A. Tokuda. Good abandonment in mobile and PC internet

search. In Proc. SIGIR, pages 43–50, 2009.

[134] J. Li, D. Arya, V. Ha-Thuc, and S. Sinha. How to get them a dream job? Entity-

aware features for personalized job search ranking. In Proc. KDD, pages 501–510,

2016.

[135] A. Lipani, B. Carterette, and E. Yilmaz. From a user model for query sessions to

session rank biased precision (sRBP). In Proc. ICTIR, pages 109–116, 2019.

[136] J. Liu, C. Liu, M. Cole, N. J. Belkin, and X. Zhang. Exploring and predicting search

task difficulty. In Proc. CIKM, pages 1313–1322, 2012.

[137] M. Liu, Y. Liu, J. Mao, C. Luo, and S. Ma. Towards designing better session search

evaluation metrics. In Proc. SIGIR, pages 1121–1124, 2018.

[138] M. Liu, Y. Liu, J. Mao, C. Luo, M. Zhang, and S. Ma. Satisfaction with failure or

unsatisfied success: Investigating the relationship between search success and user

satisfaction. In Proc. WWW, pages 1533–1542, 2018.

[139] M. Liu, J. Mao, Y. Liu, M. Zhang, and S. Ma. Investigating cognitive effects in

session-level search user satisfaction. In Proc. KDD, pages 923–931, 2019.

[140] Y. Liu, Y. Chen, J. Tang, J. Sun, M. Zhang, S. Ma, and X. Zhu. Different users,

different opinions: Predicting search satisfaction with mouse movement information.

In Proc. SIGIR, pages 493–502, 2015.

[141] X. Lu, A. Moffat, and J. S. Culpepper. The effect of pooling and evaluation depth

on IR metrics. Inf. Retr., 19(4):416–445, 2016.

[142] J. Luo, C. Wing, H. Yang, and M. Hearst. The water filling model and the cube

test: Multi-dimensional evaluation for professional search. In Proc. CIKM, pages

709–714, 2013.

[143] J. Mackenzie, R. Benham, M. Petri, J. R. Trippas, J. S. Culpepper, and A. Moffat.

CC-News-En: A large English news corpus. In Proc. CIKM, pages 3077–3084, 2020.

[144] B. Mansouri, M. S. Zahedi, R. Campos, and M. Farhoodi. Online job search: Study

of users’ search behavior using search engine query logs. In Proc. SIGIR, pages

1185–1188, 2018.



BIBLIOGRAPHY 241

[145] J. Mao, Y. Liu, K. Zhou, J. Nie, J. Song, M. Zhang, S. Ma, J. Sun, and H. Luo.

When does relevance mean usefulness and user satisfaction in web search? In Proc.

SIGIR, pages 463–472, 2016.

[146] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and information

retrieval. J. ACM, 7(3):216–244, July 1960.

[147] D. Maxwell, L. Azzopardi, K. Järvelin, and H. Keskustalo. An initial investigation

into fixed and adaptive stopping strategies. In Proc. SIGIR, pages 903–906, 2015.

[148] D. Maxwell, L. Azzopardi, K. Järvelin, and H. Keskustalo. Searching and stopping:

An analysis of stopping rules and strategies. In Proc. CIKM, pages 313–322, 2015.

[149] A. Moffat. Seven numeric properties of effectiveness metrics. In Proc. Asia Info.

Retri. Soc. Conf., pages 1–12. Springer Berlin Heidelberg, 2013.

[150] A. Moffat and A. F. Wicaksono. Users, adaptivity, and bad abandonment. In Proc.

SIGIR, pages 897–900, 2018.

[151] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effec-

tiveness. ACM Trans. Inf. Sys., 27(1):2.1–2.27, 2008.

[152] A. Moffat, F. Scholer, and P. Thomas. Models and metrics: IR evaluation as a user

process. In Proc. Aust. Doc. Comp. Symp., pages 47–54, 2012.

[153] A. Moffat, P. Thomas, and F. Scholer. Users versus models: What observation tells

us about effectiveness metrics. In Proc. CIKM, pages 659–668, 2013.

[154] A. Moffat, P. Bailey, F. Scholer, and P. Thomas. INST: An adaptive metric for

information retrieval evaluation. In Proc. Aust. Doc. Comp. Symp., pages 5:1–5:4,

2015.

[155] A. Moffat, P. Bailey, F. Scholer, and P. Thomas. Incorporating user expectations

and behavior into the measurement of search effectiveness. ACM Trans. Inf. Sys.,

35(3):24:1–24:38, 2017.

[156] C. N. Mooers. Zatocoding applied to mechanical organization of knowledge. Amer-

ican Documentation, 2(1):20–32, 1951.

[157] R. Navarro-Prieto, M. Scaife, and Y. Rogers. Cognitive strategies in web searching.

In Proc. Conf. on Human Factors and the Web, pages 1–12, 1999.



242 BIBLIOGRAPHY

[158] J. F. Nunamaker, L. M. Applegate, and B. R. Konsynski. Facilitating group cre-

ativity: Experience with a group decision support system. J. Manage. Inf. Syst., 3

(4):5–19, Apr. 1987.

[159] D. Odijk, R. W. White, A. H. Awadallah, and S. T. Dumais. Struggling and success

in web search. In Proc. CIKM, pages 1551–1560, 2015.

[160] K. Ong, K. Järvelin, M. Sanderson, and F. Scholer. Using information scent to

understand mobile and desktop web search behavior. In Proc. SIGIR, pages 295–

304, 2017.

[161] P. Over. TREC-7 interactive track report. In Proc. of the Seventh TREC, pages

57–64, 1999.

[162] U. Ozertem, R. Jones, and B. Dumoulin. Evaluating new search engine configu-

rations with pre-existing judgments and clicks. In Proc. WWW, pages 397–406,

2011.

[163] L. A. F. Park and Y. Zhang. On the distribution of user persistence for rank-biased

precision. In Proc. Aust. Doc. Comp. Symp., pages 1:1–1:8, 2007.

[164] P. Pirolli and S. Card. Information foraging. Psychological Review, 4(106):643–675,

1999.

[165] F. Radlinski and N. Craswell. Comparing the sensitivity of information retrieval

metrics. In Proc. SIGIR, pages 667–674, 2010.

[166] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-

armed bandits. In Proc. ICML, pages 784–791, 2008.

[167] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect re-

trieval quality? In Proc. CIKM, pages 43–52, 2008.

[168] S. E. Robertson. The probability ranking principle in IR. J. Documentation, 33(4):

294–304, 1977.

[169] S. E. Robertson. A new interpretation of average precision. In Proc. SIGIR, pages

689–690, 2008.

[170] S. E. Robertson. A brief history of search results ranking. IEEE Annals of the

History of Computing, 41(02):22–28, apr 2019.



BIBLIOGRAPHY 243

[171] S. E. Robertson, E. Kanoulas, and E. Yilmaz. Extending average precision to graded

relevance judgments. In Proc. SIGIR, pages 603–610, 2010.

[172] K. Roitero, E. Maddalena, G. Demartini, and S. Mizzaro. On fine-grained relevance

scales. In Proc. SIGIR, pages 675–684, 2018.

[173] D. E. Rose and D. Levinson. Understanding user goals in web search. In Proc.

WWW, pages 13–19, 2004.

[174] A. Saha and D. Arya. Generalized mixed effect models for personalizing job search.

In Proc. SIGIR, pages 1129–1132, 2017.

[175] T. Sakai. Ranking the NTCIR systems based on multigrade relevance. In Proc. Asia

Info. Retri. Soc. Conf., pages 251–262, 2004.

[176] T. Sakai. New performance metrics based on multigrade relevance: Their application

to question answering. In Proc. NTCIR, 2004.

[177] T. Sakai. Evaluating evaluation metrics based on the bootstrap. In Proc. SIGIR,

pages 525–532, 2006.

[178] T. Sakai. Alternatives to Bpref. In Proc. SIGIR, pages 71–78, 2007.

[179] T. Sakai. On penalising late arrival of relevant documents in information retrieval

evaluation with graded relevance. In Proc. Workshop on Eval. Inf. Acc., pages 32–43,

2007.

[180] T. Sakai. Modelling a user population for designing information retrieval metrics.

In Proc. Workshop on Eval. Inf. Acc., pages 30–41, 2008.

[181] T. Sakai and Z. Dou. Summaries, ranked retrieval and sessions: A unified framework

for information access evaluation. In Proc. SIGIR, pages 473–482, 2013.

[182] T. Sakai and Z. Zeng. Which diversity evaluation measures are “good”? In Proc.

SIGIR, pages 595–604, 2019.

[183] B. Salehi, D. Spina, A. Moffat, S. Sadeghi, F. Scholer, T. Baldwin, L. Cavedon,

M. Sanderson, W. Wong, and J. Zobel. A living lab study of query amendment in

job search. In Proc. SIGIR, pages 905–908, 2018.

[184] M. Sanderson. Test collection based evaluation of information retrieval systems.

Foundation and Trends in IR, 4(4):247–375, 2010.



244 BIBLIOGRAPHY

[185] M. Sanderson and J. Zobel. Information retrieval system evaluation: Effort, sensi-

tivity, and reliability. In Proc. SIGIR, pages 162–169, 2005.

[186] M. Sanderson, M. L. Paramita, P. Clough, and E. Kanoulas. Do user preferences

and evaluation measures line up? In Proc. SIGIR, pages 555–562, 2010.

[187] T. Saracevic. Relevance: A review of and a framework for the thinking on the notion

in information science. J. Amer. Soc. Inf. Sci., 26(6):321–343, 1975.

[188] T. Saracevic. Evaluation of evaluation in information retrieval. In Proc. SIGIR,

pages 138–146, 1995.

[189] T. Saracevic and P. B. Kantor. A study of information seeking and retrieving. ii.

users, questions, and effectiveness. J. Amer. Soc. Inf. Sci., 39:177–196, 1988.

[190] R. Savolainen. Information need as trigger and driver of information seeking: a

conceptual analysis. Aslib J. Inf. Manag., 69:2–21, 2017.

[191] L. Schamber, M. Eisenberg, and M. S. Nilan. A re-examination of relevance: Toward

a dynamic, situational definition. Inf. Process. Manage., 26(6):755–776, 1990.

[192] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very large

web search engine query log. SIGIR Forum, 33(1):6–12, 1999.

[193] M. Sloan and J. Wang. Dynamic information retrieval: Theoretical framework and

application. In Proc. ICTIR, pages 61–70, 2015.

[194] C. L. Smith and P. B. Kantor. User adaptation: Good results from poor systems.

In Proc. SIGIR, pages 147–154, 2008.

[195] M. D. Smucker and C. L. A. Clarke. Time-based calibration of effectiveness measures.

In Proc. SIGIR, pages 95–104, 2012.

[196] M. D. Smucker and C. P. Jethani. Human performance and retrieval precision

revisited. In Proc. SIGIR, pages 595–602, 2010.

[197] D. Soergel. Is user satisfaction a hobgoblin? J. Amer. Soc. Inf. Sci., 27(4):256–259,

1976.

[198] E. Sormunen. Liberal relevance criteria of TREC: Counting on negligible documents?

In Proc. SIGIR, pages 324–330, 2002.



BIBLIOGRAPHY 245

[199] K. Spärck Jones. Information Retrieval Experiment. Butterworths, 1981.

[200] D. Spina, M. Maistro, Y. Ren, S. Sadeghi, W. Wong, T. Baldwin, L. Cavedon,

A. Moffat, M. Sanderson, F. Scholer, and J. Zobel. Understanding user behavior in

job and talent search: An initial investigation. In SIGIR Wrkshp. eCommerce, 2017.

[201] A. Spink. A user-centered approach to evaluating human interaction with web search

engines: An exploratory study. Inf. Proc. & Man., 38(3):401–426, 2002.

[202] A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Searching the web: The public

and their queries. J. Amer. Soc. Inf. Sc. Tech., 52(3):226–234, 2001.

[203] A. Spink, S. Ozmutlu, H. C. Ozmutlu, and B. J. Jansen. U.S. versus European web

searching trends. SIGIR Forum, 36(2):32–38, 2002.

[204] L. T. Su. Evaluation measures for interactive information retrieval. Inf. Proc. &

Man., 28(4):503–516, 1992.

[205] L. T. Su. The relevance of recall and precision in user evaluation. J. Amer. Soc. Inf.

Sci., 45(3):207–217, 1994.

[206] L. T. Su. A comprehensive and systematic model of user evaluation of web search

engines: I. theory and background. J. Amer. Soc. Inf. Sc. Tech., 54(13):1175–1192,

2003.

[207] J. A. Swets. Information retrieval systems. Science, 141:245–250, 1963.

[208] J. M. Tague-Sutcliffe. Some perspectives on the evaluation of information retrieval

systems. J. Amer. Soc. Inf. Sci., 47(1):1–3, Jan. 1996.

[209] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. The perfect search

engine is not enough: A study of orienteering behavior in directed search. In Proc.

CHI, pages 415–422, 2004.

[210] P. Thomas and D. Hawking. Evaluation by comparing result sets in context. In

Proc. CIKM, pages 94–101, 2006.

[211] P. Thomas, F. Scholer, and A. Moffat. What users do: The eyes have it. In Proc.

Asia Info. Retri. Soc. Conf., pages 416–427, 2013.

[212] P. Thomas, A. Moffat, P. Bailey, and F. Scholer. Modeling decision points in user

search behavior. In Proc. IIiX, pages 239–242, 2014.



246 BIBLIOGRAPHY

[213] P. Thomas, A. Moffat, P. Bailey, F. Scholer, and N. Craswell. Better effectiveness

metrics for SERPs, cards, and rankings. In Proc. Aust. Doc. Comp. Symp., pages

1:1–1:8, 2018.

[214] E. G. Toms and L. Freund. Predicting stopping behaviour: A preliminary analysis.

In Proc. SIGIR, pages 750–751, 2009.

[215] V. T. Tran and N. Fuhr. Using eye-tracking with dynamic areas of interest for

analyzing interactive information retrieval. In Proc. SIGIR, pages 1165–1166, 2012.

[216] V. T. Tran and N. Fuhr. Markov modeling for user interaction in retrieval. In SIGIR

2013 Wrkshp. Model. User Beh. Inf. Retr. Eval., 2013.

[217] V. T. Tran, D. Maxwell, N. Fuhr, and L. Azzopardi. Personalised search time

prediction using Markov chains. In Proc. ICTIR, pages 237–240, 2017.

[218] A. Turpin and W. Hersh. Why batch and user evaluations do not give the same

results. In Proc. SIGIR, pages 225–231, 2001.

[219] A. Turpin and F. Scholer. User performance versus precision measures for simple

search tasks. In Proc. SIGIR, pages 11–18, 2006.

[220] A. Turpin, F. Scholer, S. Mizzaro, and E. Maddalena. The benefits of magnitude es-

timation relevance assessments for information retrieval evaluation. In Proc. SIGIR,

pages 565–574, 2015.

[221] C. J. Van Rijsbergen. Foundation of evaluation. J. Documentation, 30(4):365–373,

1974.

[222] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,

MA, USA, 2nd edition, 1979. ISBN 0408709294.

[223] M. Viswanathan. Measurement Error and Research Design. Thousand Oaks, CA:

SAGE Publications, 2005.

[224] E. M. Voorhees. Evaluation by highly relevant documents. In Proc. SIGIR, pages

74–82, 2001.

[225] E. M. Voorhees. The philosophy of information retrieval evaluation. In Proc. CLEF,

pages 355–370, 2002.



BIBLIOGRAPHY 247

[226] E. M. Voorhees. Overview of the TREC 2004 robust retrieval track. Thirteenth Text

Retrieval Conference (TREC 2004), 2005.

[227] E. M. Voorhees and D. K. Harman. TREC: Experiment and Evaluation in Informa-

tion Retrieval (Digital Libraries and Electronic Publishing). The MIT Press, 2005.

[228] Q. H. Vuong. Likelihood ratio tests for model selection and non-nested hypotheses.

Econometrica, 57(2):307–333, 1989.

[229] H. Wang, Y. Song, M. Chang, X. He, A. Hassan, and R. W. White. Modeling

action-level satisfaction for search task satisfaction prediction. In Proc. SIGIR,

pages 123–132, 2014.

[230] J. Wang and J. Zhu. Portfolio theory of information retrieval. In Proc. SIGIR, pages

115–122, 2009.

[231] Y. Wang, D. Yin, L. Jie, P. Wang, M. Yamada, Y. Chang, and Q. Mei. Beyond

ranking: Optimizing whole-page presentation. In Proc. WSDM, pages 103–112, 2016.

[232] W. Webber, A. Moffat, J. Zobel, and T. Sakai. Precision-at-ten considered redun-

dant. In Proc. SIGIR, pages 695–696, 2008.

[233] R. W. White and S. M. Drucker. Investigating behavioral variability in web search.

In Proc. WWW, pages 21–30, 2007.

[234] W. J. Wilbur. An information measure of retrieval performance. Information Sys-

tems, 17(4):283–298, 1992.

[235] B. Wildemuth, L. Freund, and E. Toms. Untangling search task complexity and dif-

ficulty in the context of interactive information retrieval studies. J. Documentation,

70:1118–1140, 2014.

[236] W. C. Wu, D. Kelly, and A. Sud. Using information scent and need for cognition to

understand online search behavior. In Proc. SIGIR, pages 557–566, 2014.

[237] Y. Yang and A. Lad. Modeling expected utility of multi-session information distil-

lation. In Proc. ICTIR, pages 164–175, 2009.

[238] Z. Yang, A. Moffat, and A. Turpin. Pairwise crowd judgments: Preference, absolute,

and ratio. In Proc. Aust. Doc. Comp. Symp., pages 1–8, 2018.



248 BIBLIOGRAPHY

[239] E. Yilmaz and J. A. Aslam. Estimating average precision with incomplete and

imperfect judgments. In Proc. CIKM, pages 102–111, 2006.

[240] E. Yilmaz, M. Shokouhi, N. Craswell, and S. E. Robertson. Expected browsing

utility for web search evaluation. In Proc. CIKM, pages 1561–1564, 2010.

[241] F. Zhang, Y. Liu, X. Li, M. Zhang, Y. Xu, and S. Ma. Evaluating web search with

a bejeweled player model. In Proc. SIGIR, pages 425–434, 2017.

[242] F. Zhang, J. Mao, Y. Liu, W. Ma, M. Zhang, and S. Ma. Cascade or recency:

Constructing better evaluation metrics for session search. In Proc. SIGIR, pages

389–398, 2020.

[243] Y. Zhang and A. Moffat. Some observations on user search behavior. In Proc. Aust.

Doc. Comp. Symp., pages 1–8, 2006.

[244] Y. Zhang, L. A. F. Park, and A. Moffat. Click-based evidence for decaying weight

distributions in search effectiveness metrics. Inf. Retr., 13(1):46–69, 2010.

[245] Y. Zheng, J. Mao, Y. Liu, M. Sanderson, M. Zhang, and S. Ma. Investigating

examination behavior in mobile search. In Proc. WSDM, pages 771–779. Association

for Computing Machinery, 2020.

[246] X. Zhu, J. Guo, X. Cheng, Y. Lan, and W. Nejdl. Recommending high utility query

via session-flow graph. In Proc. ECIR, pages 642–655, 2013.

[247] J. Zobel. How reliable are the results of large-scale information retrieval experiments?

In Proc. SIGIR, pages 307–314, 1998.

[248] J. Zobel, A. Moffat, and L. A. F. Park. Against recall: Is it persistence, cardinality,

density, coverage, or totality? SIGIR Forum, 43(1):3–8, June 2009.



 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Wicaksono, Alfan Farizki

 

Title: 

Modelling search and session effectiveness

 

Date: 

2020

 

Persistent Link: 

http://hdl.handle.net/11343/258806

 

File Description:

Final thesis file - Compressed file

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Background
	Information Retrieval Evaluation
	The Use of Ranking, Search Success, and Evaluation
	User-Based and Test Collection-Based Evaluation
	Search Task Classification
	Fundamental Effectiveness Metrics
	Relaxations of the Assumptions
	The Problem of Recall and The Virtue of Precision

	User Search Behaviour
	Interaction Log Study
	User Browsing Behaviour
	User Stopping Behaviour

	Metrics and User Models
	User Model
	C/W/L Framework

	Classification of User Models
	Static User Models
	Adaptive User Models
	Incorporating Costs into Metrics

	User Satisfaction
	The Concept of User Satisfaction for IR Evaluation
	User Feedback for Predicting Satisfaction

	Meta-Evaluation
	Meta-Evaluation Based on User Satisfaction
	Meta-Evaluation Based on User Performance
	Meta-Evaluation Based on User Preference
	Meta-Evaluation Based on User Model Accuracy
	Comparison-Based Meta-Evaluation
	Axiomatic-Based Meta-Evaluation

	Summary

	Modelling User Actions
	Motivation and Research Question
	Action Sequences and Interaction Logs
	Action Sequences
	Interaction Logs

	Inferring Continuation Probability
	Computing Empirical C(i)
	Predicted C(i) Versus Empirical (i)

	Exploring Interaction Patterns
	Impression and Clickthrough Orderings
	A Prelude to Clickthroughs
	Last and Deepest Clickthroughs

	Predicting Impression Distributions
	Can Clickthroughs Directly Substitute for Impressions?
	Impression Model

	Impression Model Evaluation
	Inferring C(i) from Impression Models
	Model Validation

	Summary

	Modelling Search Sessions
	Motivation and Research Question
	Motivation
	Session Effectiveness Model
	Observational Goal

	Previous Work
	Session-Based Effectiveness Metrics
	Query-to-Session Aggregation Functions

	Interaction Logs
	Industrial-Based Datasets
	Laboratory-Based Datasets
	Organic SERPS

	A Session-Based C/W/L Framework
	Search Behaviours
	Query-Level Behaviours
	Session-Level Behaviours

	A Model-Based Session Metric
	Factors Affecting Session Satisfaction
	Modelling Session Satisfaction
	Query Aggregation Using Weighted Mean Method
	Memory-Based Query Aggregation

	Summary

	Metrics, User Models, and Satisfaction
	Motivation and Research Question
	Previous Work
	Datasets
	Metric Scores and Satisfaction
	Query-Level Satisfaction
	Session-Level Satisfaction

	User Models and User Behaviour
	Measuring User Model Accuracy
	Measuring Accuracy Using View Distributions
	User Model Evaluation
	Empirical Evidence for Adaptive Models

	Model Accuracy and Satisfaction
	Tuning Parameters via Model Accuracy and Satisfaction
	Metrics Based on What Users Have Seen

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work


