
Knowledge base enrichment via deep
neural networks

Bayu Distiawan Trisedya
orcid.org/0000-0002-1672-9483

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

School of Computing and Information System
THE UNIVERSITY OF MELBOURNE

August 2020

Copyright c© 2020 Bayu Distiawan Trisedya

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm, or any other means without written permission from the author.

Abstract

AKnowledge base is a large repository that typically stores information about real-

world entities. Several efforts have been made to develop knowledge bases in

general and specific domains such as DBpedia, YAGO, LinkedGeoData, and Wikidata.

These knowledge bases contain millions of facts about entities. However, these knowl-

edge bases are far from complete and mandate continuous enrichment and curation.

In this thesis, we study three common methods to enrich a knowledge base. The first

is a Knowledge Bases Alignment method that aims to find entities in two knowledge bases

that represent the same real-world entity, and then integrates these knowledge bases

based on the aligned entities. Many knowledge bases have been created separately for

particular purposes with overlapping entity coverage. These knowledge bases are com-

plementary to each other in terms of completeness. We may integrate such knowledge

bases to form a more extensive knowledge base for knowledge inferences. The second is

a Relation Extraction method that aims to extract entities and their relationships from sen-

tences of a corpus and map them to an existing knowledge base. With a large amount of

unstructured data sources (i.e., sentences), the relation extraction is an essential method

to extract facts from any data source for enriching a knowledge base. The third is a De-

scription Generation method that aims to generate a sentence to describe a target entity

from its properties in a knowledge base. The generated description can be used to enrich

the presentation of the knowledge in a knowledge base, which later can be used in many

downstream applications. For example, in question answering, the generated sentence

can be used to describe the entity in the answer.

For knowledge bases alignment, we propose an embedding-based entity alignment

model. Our model exploits attribute embeddings that capture the similarity between en-

iii

tities in different knowledge bases. We also propose an end-to-end relation extraction

model for knowledge base enrichment. The proposed model integrates the extraction

and canonicalization tasks. This integration helps the model reduces the error propa-

gation between relation extraction and named entity disambiguation that existing ap-

proaches are prone to. For description generation, we propose a content plan based at-

tention model to generate sentences from knowledge base triples in the form of a star-

shaped graph. We further propose a graph-based encoder to handle arbitrary-shaped

graph for generating entity description. Extensive experiment results show that the pro-

posed methods outperform the state-of-the-art methods in the knowledge base enrich-

ment problems studied.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the Ph.D.,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies, and appendices.

Bayu Distiawan Trisedya, August 2020

v

This page intentionally left blank.

Acknowledgements

I am incredibly grateful to my supervisors, Rui Zhang and Jianzhong Qi, for their guid-

ance, knowledge, feedback, and patience throughout my studies. This thesis would have

been possible without their support. I would also like to express my special thanks to my

advisory committee chair Dr. Sherah Kurnia. Her suggestions have also given me much

help in my research projects.

Next, I would like to thank all the co-authors of my papers, especially Prof. Wei Wang

and Prof. Gerhard Weikum. Discussions and collaborations with them give me ideas and

inspirations toward my research. I am also grateful to have been given the opportunity

to visit the Max Planck Institute of Informatics and to conduct research under the super-

vision of Prof. Weikum.

Furthermore, I would like to thank my colleagues, particularly Yunxiang Zhao, Xi-

aojie Wang, Yiqing Zhang, Yimeng Dai, Wenkai Jiang, Chuandong Yin, Ang Li, Xinting

Huang, Yixin Su, Shiquan Yang, Shuo Zhou, Florin Schimbinschi, Xingjun Ma, Sobia Am-

jad, Yunzhe Jia, Donia Malekian, Anam Khan, and Sadia Nawaz for the support during

my research life in campus.

I would like to acknowledge the financial assistance from the Indonesian Endowment

Fund for Education (LPDP), allowing me to explore my research interests, which also

contribute to the thesis.

I would like to thank my parents and my sister for their loving support. I also want

to thank my family-in-law for being supportive. Lastly, I thank my wife, Yenni, for her

endless love and support to me. For my kids, Hasan and Uma, thank you for making me

stronger with your laugh and smile.

vii

This page intentionally left blank.

Preface

Portions of this thesis are based on manuscripts:

• Part of the content in Chapter 3 has been published in AAAI 2019: Bayu Distiawan

Trisedya, Jianzhong Qi, Rui Zhang (2019). Entity Alignment between Knowledge

Graphs Using Attribute Embeddings. In the 2019 Conference on Artificial Intelli-

gence.

• Part of the content in Chapter 4 has been published in ACL 2019: Bayu Distiawan

Trisedya, Gerhard Weikum, Jianzhong Qi, Rui Zhang (2019). Neural Relation Ex-

traction for Knowledge Base Enrichment. In the 2019 Annual Meeting of the Asso-

ciation for Computational Linguistics.

• Part of the content in Chapter 5 has been published in AAAI 2020: Bayu Distiawan

Trisedya, Jianzhong Qi, Rui Zhang (2020). Sentence Generation for Entity Descrip-

tion with Content-plan Attention. In the 2020 Conference on Artificial Intelligence.

• Part of the content in Chapter 6 has been published in ACL 2018: Bayu Distiawan

Trisedya, Jianzhong Qi, Rui Zhang, Wei Wang (2018). GTR-LSTM: A Triple En-

coder for Sentence Generation from RDF Data. In the 2018 Annual Meeting of the

Association for Computational Linguistics.

I declare that I am the primary author and have contributed > 50% in the papers

mentioned above.

ix

This page intentionally left blank.

To my beloved mother.

xi

This page intentionally left blank.

Contents

1 Introduction 1
1.1 Approaches and Contributions . 4

1.1.1 Knowledge Bases Alignment . 4
1.1.2 Relation Extraction for Knowledge Base Enrichment 6
1.1.3 Description Generation . 6
1.1.4 Summary of Contributions . 8

1.2 Thesis Outline . 10

2 Literature Review 13
2.1 Knowledge Base Development . 13
2.2 Knowledge Base Enrichment . 15

2.2.1 Traditional Methods of Knowledge Base Enrichment 15
2.2.2 Neural Networks for Knowledge Base Enrichment 16

2.3 Knowledge Bases Alignment . 26
2.3.1 String-Similarity-based Entity Alignment 27
2.3.2 Embedding-based Entity Alignment 28

2.4 Relation Extraction . 33
2.4.1 Open Information Extraction . 33
2.4.2 Entity-aware Relation Extraction . 35

2.5 Description Generation . 39
2.5.1 Traditional Text Generation . 40
2.5.2 Neural Text Generation . 41

2.6 Summary . 44

3 Fully Automatic and Effective Embedding-Based Entity Alignment 47
3.1 Introduction . 47
3.2 Preliminary . 51

3.2.1 TransE . 52
3.3 Proposed Model . 53

3.3.1 TransAlign Overview . 54
3.3.2 Predicate Embedding . 57
3.3.3 Structure Embedding . 58
3.3.4 Attribute Character Embedding . 59
3.3.5 Joint Learning Embedding Model 61
3.3.6 Entity Alignment . 62

xiii

3.3.7 Triple Enrichment via Transitivity Rule 63
3.4 Experiments . 63

3.4.1 Dataset . 64
3.4.2 Hyperparameters . 64
3.4.3 Compared Models . 65
3.4.4 Entity Alignment Results . 65
3.4.5 Predicate Alignment Methods Comparison 68
3.4.6 Discussion . 68

3.5 Summary . 70

4 An End-to-end Relation Extraction and Canonicalization Model for Knowledge
Base Enrichment 73
4.1 Introduction . 73
4.2 Proposed Model . 77

4.2.1 Solution Framework . 77
4.2.2 Dataset Collection . 79
4.2.3 Joint Learning of Word and Entity Embeddings 82
4.2.4 N-gram Based Attention Model . 84
4.2.5 Triple Generation . 86

4.3 Experiments . 87
4.3.1 Hyperparameters . 87
4.3.2 Baseline Models . 88
4.3.3 Results . 88

4.4 Summary . 90

5 Description Generation for Star-Shaped Graphs 91
5.1 Introduction . 91
5.2 Preliminary . 95

5.2.1 Encoder-Decoder Framework . 95
5.3 Proposed Model . 96

5.3.1 Solution Framework . 96
5.3.2 Dataset Collection . 98
5.3.3 Content-plan Generation . 99
5.3.4 Description Generation . 102

5.4 Experiments . 104
5.4.1 Hyperparameters . 104
5.4.2 Baseline Models . 105
5.4.3 Results . 106

5.5 Summary . 107

6 Description Generation for Arbitrary-Shaped Graphs 109
6.1 Introduction . 109
6.2 Proposed Model . 114

6.2.1 Solution Framework . 114
6.2.2 Entity Masking . 116
6.2.3 Entity-order Aware Embedding Model 117

xiv

6.2.4 Adapted BLSTM Encoder . 120
6.2.5 Adapted Triple Encoder . 121
6.2.6 GTR-LSTM Triple Encoder . 121
6.2.7 Decoder . 127

6.3 Experiments . 128
6.3.1 Baseline Models . 129
6.3.2 Hyperparameters . 130
6.3.3 Effect of Entity Masking . 130
6.3.4 Effect of Models . 131
6.3.5 Human Evaluation . 132
6.3.6 Ablation Tests . 134
6.3.7 Discussions . 135

6.4 Summary . 136

7 Conclusions 137
7.1 Summary . 137
7.2 Future Work . 139

7.2.1 Future Work for Knowledge Bases Alignment 139
7.2.2 Future Work for Relation Extraction 140
7.2.3 Future Work for Description Generation 140

xv

This page intentionally left blank.

List of Figures

1.1 Graph representation of a knowledge base triple 2

3.1 Embedding-based knowledge bases alignment 50
3.2 Overview of our proposed solution for entity alignment 54
3.3 Graph representation of predicate triples 56
3.4 The effect of seed alignment size on the existing embedding-based entity

alignment models. 67
3.5 The effect of predicate alignment models. 67

4.1 Relation extraction for knowledge base enrichment 74
4.2 Proposed solution for relation extraction to enrich a knowledge base . . . 78
4.3 Dataset collection for relation extraction . 80
4.4 Joint learning of word and entity embeddings for neural relation extraction 83
4.5 N-gram attention model . 86

5.1 Star-shaped graph example . 93
5.2 Overview of our proposed solution for entity description generation . . . 97

6.1 Different shapes of graphs . 110
6.2 Triple-to-text generation based on an encoder-decoder architecture 115
6.3 Construction of a word-entity graph . 118
6.4 Adapted BLSTM encoder . 120
6.5 Adapted Triple encoders . 122
6.6 A small knowledge graph formed by a set of triples 122
6.7 GTR-LSTM triple encoder . 123
6.8 GTR-LSTM attention mechanism . 126

xvii

This page intentionally left blank.

List of Tables

3.1 Knowledge graphs alignment example . 48
3.2 Example of predicate triples . 56
3.3 Statistics of the dataset for entity alignment 64
3.4 Performance comparisons of entity alignment models 66
3.5 Rule-based entity alignment results . 69
3.6 Knowledge Graph Completion Results . 70

4.1 Example of relation extraction from a sentence 75
4.2 Statistics of the dataset for relation extraction 82
4.3 Performance comparisons of relation extraction models 89

5.1 Data-to-text generation example . 92
5.2 Input representation of the proposed description generation model 100
5.3 Performance comparisons of description generation models 105
5.4 Human evaluation results . 107

6.1 Data-to-text generation from an arbitrary-shaped graph 111
6.2 Performance comparisons of sentence generation models for generating

sentences from an arbitrary-shaped graph 131
6.3 Sample output of the sentence generation models 133
6.4 Human evaluation of sentence generation model for generating sentences

from an arbitrary-shaped graph . 133
6.5 Ablation test results of the proposed model 135

xix

This page intentionally left blank.

Chapter 1

Introduction

Aknowledge base (KB) is a large repository of facts that are mainly represented as

triples. A triple consists of a subject, a predicate, and an object where the pred-

icate indicates the relationship between an entity as the subject and the other entity (or

literal) as the object. Here, if the object is an entity, we call the triple a relationship triple;

if the object is a literal (e.g., geographic coordinate, address, telephone number, etc.),

we call the triple an attribute triple. A simple fact, "Melbourne is the capital of

Victoria", can be represented as a graph, as illustrated in Figure 1.1, where the pred-

icate CapitalOfRegion connects the entity Melbourne as the subject and the entity

Victoria as the object. The collections of triples in a knowledge base form a graph, i.e.,

a knowledge graph (KG)1. A Uniform Resource Identifier (URI) is assigned to each entity

as an identifier. Since this form offers simple representations that can be easily inter-

preted by machines, knowledge bases become essential resources for many applications.

For example, Google’s Hummingbird algorithm uses a knowledge base to improve its

search engine [65]. Meanwhile, IBM created IBM Watson that beats human champions at

Jeopardy quiz by exploiting knowledge bases [40].

In recent years, many general and specific domain knowledge bases have been de-

veloped. Among them, the most popular general domain knowledge base is DBpedia

[3]. DBpedia mainly contains triples extracted from structured data in Wikipedia, such

as infobox. Another popular general domain knowledge base is YAGO [57, 139] that in-

cludes temporal and spatial information for each real-world entity in it. Besides general

domain knowledge bases, there are also efforts in the development of domain-specific

1In this thesis, we use the term knowledge base and knowledge graph interchangeably

1

2 Introduction

Melbourne

Victoria

subject

predicate

object

CapitalOfRegion

URI: http://dbpedia.org/resource/Melbourne

URI: http://dbpedia.org/ontology/CapitalOfRegion

URI: http://dbpedia.org/resource/Victoria_(Australia)

Figure 1.1: Graph representation of a knowledge base triple

knowledge bases such as in geographic domain. Chaves et al. [16] initiated the devel-

opment of a geographic knowledge base. The follow-up work in the development of a

geographic knowledge base is LinkedGeoData (LGD) [136]. LGD extracts geographic data

from OpenStreetMap (OSM), which is an open-source digital map of the whole world

built via crowdsourcing. These knowledge bases contain millions of facts about entities.

However, these knowledge bases are far from complete since the information about real-

world entities is continuously updated. Hence, knowledge base enrichment methods are

essential to achieve a comprehensive knowledge base.

In this thesis, we study three common methods to enrich a knowledge base. The first

is a Knowledge Bases Alignment method that aims to find entities in two KBs that represent

the same real-world entity, and then integrates these KBs based on the aligned entities.

Many KBs have been created separately for particular purposes with overlapping entity

coverage. These KBs are complementary to each other in terms of completeness. We may

integrate such KBs to form a larger KB for knowledge inferences. The second is a Relation

Extraction method that aims to extract entities and their relationships from sentences in

the form of triples and map the elements of the extracted triples to an existing KB. With

a large amount of unstructured data sources (i.e., sentences), the relation extraction is an

essential method to extract facts from any data source for enriching a KB. We study an

end-to-end neural relation extraction technique to extract facts from any website. The

third is a Description Generation method that aims to generate a sentence to describe a

target entity from its records (i.e., a set triples that contain the target entity as the subject).

The generated descriptions are used to enrich information about entities in a knowledge

base, which later can be used in many downstream applications. For example, in ques-

3

tion answering systems, the generated sentence can be used to describe the entity in the

answer. These three common methods for KB enrichment come with different challenges

as follows.

In knowledge bases alignment, the main problem to integrate KBs is identifying the

entities in different KBs that denote the same real-world entity. We follow current ap-

proaches that use graph similarity. In these approaches, a knowledge base is considered

as a graph (i.e., a knowledge graph (KG)). The similarity between entities in different

knowledge graphs is captured by computing a vector representation (i.e., embeddings)

of each entity based on its neighbor in the graph. Existing approaches only consider re-

lationship triples. We observe that many KBs contain large numbers of attribute triples,

which have not been explored for entity alignment so far. For example, DBpedia, YAGO,

LinkedGeoData, and Geonames contain 47.62%, 62.78%, 94.66%, and 76.78% of attribute

triples, respectively. The challenges that need to be handled here are: (i) how to integrate

the relationship triples and attribute triples to compute embeddings of an entity; (ii) how

to deal with different types of attribute triples such as integer, float, string, etc.

In relation extraction for knowledge base enrichment, there are three main challenges.

The first is finding the entity mention, which may appear in multi-word forms. Moreover,

the implicit entity mention in a sentence (e.g., pronoun) makes this task even harder. The

second is finding the relationship between the extracted entities. There could be multi-

ple extracted entities, and between these entities, there could be multiple relationships,

which makes this task non-trivial. The third is mapping the extracted entities and rela-

tionships (i.e., triples) to the existing KB. Entity disambiguation is essential to this task

since there are entities that share the same name.

Description generation is essentially a reverse problem of the relation extraction task.

However, the challenges are different. In description generation, given a target entity that

is associated with a set of properties in the form of triples, we aim to generate a sentence

to describe the target entity. This task has challenges as follows. The first is selecting

salient properties to be mentioned in the sentence. Some properties may not be descrip-

tive, such as latitude and longitude. The second is arranging the order of properties

in the generated sentence. Consider the following two sentences, "Flinders Street

4 Introduction

Station is located in Australia, Melbourne" and "Flinders Street

Station is located in Melbourne, Australia". The latter has a more natu-

ral order of entity, which is a City followed by a Country. The third is generating

a concise description. We may want to avoid repetition in the generated sentences, e.g.,

"Flinders Street Station is located in Melbourne. Flinders Street

Station is located in Australia".

The three KB enrichment methods above have a high correlation. Recent KB align-

ment methods are based on the KB embedding model, where these models help the re-

lation extraction methods ensure the validity of the extracted triples. The relation extrac-

tion methods and the description generation methods are dual tasks that work in oppo-

site directions. Relation extraction methods aim to extract triples from a text, while de-

scription generation methods work in the opposite direction, generating text given a set

of triples. The state-of-the-art of these two problems is exploiting end-to-end sequence-

to-sequence models such as the encoder-decoder framework. However, these problems

possess different challenges.

In this thesis, we overcome the above challenges with novel techniques and make

contributions as summarized below.

1.1 Approaches and Contributions

1.1.1 Knowledge Bases Alignment

Earlier studies in knowledge bases alignment use string similarity between properties

(i.e., relationship and attribute triples) of entities. For example, RDF-AI [123] implements

an alignment framework that consists of pre-processing, matching, fusion, interlink, and

post-processing modules, among which the matching module uses fuzzy string match-

ing based on sequence alignment [119], word relation [39], and taxonomic similarity al-

gorithms. However, the string similarity approaches rely on user-defined rules to deter-

mine the properties to be compared between the entities. The manually defined rules are

error-prone because different entity types may contain a different set of properties. For

example, properties such as latitude and longitude may available for LOCATION

1.1 Approaches and Contributions 5

type entities but not for PERSON type entities.

Recently, graph similarity (i.e., embedding) approaches are proposed for this task.

Such models are built on top of a graph embedding model, such as TransE [11], that

learns entity embeddings that capture the similarity between entities in a knowledge

graph based on the relationship triples in a KG. To adapt the KG embedding for entity

alignment between two KGs, the embedding-based models require both predicate and

entity embeddings of two KGs to fall in the same vector space. To address this problem,

Chen et al. [19, 20] and Zhu et al. [186] proposed embedding-based alignment models

that learn an embedding space for each KG separately and use a transition matrix to map

the embedding space from one KG to the other. Their models rely on large numbers of

seed alignments (i.e., a seed set of aligned triples from two KGs) to compute the transition

matrix. However, the seed alignments between two KGs are rarely available, and hence

are difficult to obtain due to expensive human efforts required.

To address the above problems, we propose a fully automatic and effective embedding-

based entity alignment embedding model that does not require human intervention ei-

ther in predicate alignment or in seed entity alignment. Our proposed model includes

joint learning of entity, predicate, and attribute embeddings to ensure the resulting em-

beddings fall in the same vector space. To ensure that the predicate embeddings from

two KGs fall into the same vector space, in our model, the predicate embeddings are

computed over a predicate proximity graph, which represents a relationship between

entity types. Hence, the similarity of predicate embeddings in different KGs can be com-

puted via the relationships between entity types. To yield a unified entity embedding

space for two KGs, our model first generates attribute character embeddings from the at-

tribute triples and then use this attribute embeddings to shift the entity embeddings of

two KGs to the same vector space. We observe that many KGs contain large numbers of

attribute triples, which have not been explored for entity alignment so far. The attribute

similarity between two KGs helps the attribute embedding to yield a unified embedding

space for two KGs. This enables us to use the attribute embeddings to shift the entity em-

beddings of two KGs into the same vector space and hence allows the entity embeddings

to capture the similarity between entities from two KGs.

6 Introduction

1.1.2 Relation Extraction for Knowledge Base Enrichment

Relation extraction for knowledge base enrichment includes two subtasks. The first is

extracting facts in the form of triples from sentences (i.e., extraction subtask). The second

is mapping the extracted triples into the existing knowledge base (i.e., canonicalization

subtask). Previous studies handle these subtasks separately. In the extraction subtask, ex-

isting methods employ either unsupervised approaches or supervised approaches. Un-

supervised approaches [5, 27, 47] use manually defined rules to extract entities and their

relationships in a sentence. Here, the extracted entities and relationships are captured

in their surface form without canonicalization. Meanwhile, the supervised approaches

[78,97,117,176,179] require a pre-processing step to recognize entities in a sentence. Thus,

both approaches rely on Name Entity Disambiguation (NED) [130] for the canonicalization

subtask to map entities and their relationships to the existing KB. This two-stages archi-

tecture is prone to error propagation across its two subtasks.

We tackle the problem above by integrating the extraction and the canonicalization

subtasks. We propose an end-to-end neural learning model to jointly extract triples

from sentences and map them into an existing KB. Our method is based on the encoder-

decoder framework [21] by treating the task as a translation of a sentence into a sequence

of elements of triples. To capture the multi-word entity names and verbal or noun phrases

that denote predicates, we propose a novel form of n-gram based attention. Our atten-

tion model computes the n-gram combination of attention weight to capture the verbal

or noun phrase context that complements the word level attention of the standard atten-

tion model. Thus, our model can better capture the multi-word context of entities and

relationships.

1.1.3 Description Generation

In description generation, given a target entity that is associated with a set of properties

in the form of triples, we aim to generate a sentence to describe the target entity. This task

belongs to the data-to-text generation problem that aims to generate text, e.g., sentences,

from structured data, e.g., triples. Here, the triples may form a star-shaped graph with

1.1 Approaches and Contributions 7

the target entity (i.e., subject) as the center of the star-shaped graph, the property values

(i.e., object in the form of entity or literal) as the points of the star, and the property

keys (i.e., relationships) as the edges. Recent studies proposed end-to-end models by

adapting the encoder-decoder framework, which is a sequence-to-sequence model used

in machine translation. The adaption of the sequence-to-sequence model for data-to-text

generation includes representing the input as a sequence. Hence, the order of properties

is essential to guide the decoder to generate a good description [156]. However, previous

studies [6,81,82] do not explicitly handle the order of input (i.e., properties). In fact, most

data sources do not provide sets of properties with a proper order.

We address the issues above by proposing an end-to-end model that jointly learns the

entity order in a sentence (i.e., content-planner) and the corresponding sentence as the

description of the target entity (i.e., description generator). We integrate the content-plan

in the attention model [4] of an encoder-decoder model. The challenge of the integra-

tion is to align the learned content-plan and the generated description. To address this

problem, we propose the content-plan-based bag of tokens attention model by adapting the

coverage mechanism [150] to track the order of properties in a content-plan for comput-

ing the attention of the attributes. This mechanism helps the attention module of the

encoder-decoder model captures the most salient property at each time-step of the de-

scription generation phase in a proper order.

We also perform further studies in description generation on arbitrary-shaped graphs

as opposed to the star-shaped graphs described above. The star-shaped graph is easy to

extract since many KBs allows unnormalized forms, but it is less natural in represent-

ing the real-world relationships between entities. For example, the facts expressed by

the triples "〈John, live in, London〉 and 〈John, live in, England〉" can be

represented in a more natural form by the triples "〈John, live in, London〉 and

〈London, capital of, England〉". The latter representation may form an arbitrary-

shaped graph as opposed to a star-shaped graph, which is more challenging for a ma-

chine to process.

To handle arbitrary-shaped graphs, we propose a novel graph-based triple encoder.

To capture the relationships both within a triple and between the triples, we propose an

8 Introduction

entity traversal scheme based on a topological sort algorithm for the encoding process.

Our traversal scheme breaks ties based on entity order in a sentence learned by an entity-

order aware translation-based graph embedding model.

1.1.4 Summary of Contributions

For the problem of knowledge bases alignment, we make the following contributions:

• We propose a fully automatic embedding-based entity alignment model to learn the

similarity between entities in two KGs with no seed alignments required (neither

predicate nor entity seed alignments).

• To compute the entity embeddings, we propose a novel embedding model that inte-

grates entity embeddings with attribute embeddings to learn a unified embedding

space for two KGs.

• We propose a novel fully automatic predicate alignment procedure by learning

predicate embeddings from a predicate proximity graph of two KGs to capture the

similarity between predicates across two KGs automatically.

• We propose a joint learning scheme of entity, predicate, and attribute embeddings

to ensure the resulting embeddings fall in the same vector space.

• We evaluate the proposed model over three real KG pairs. The results show that our

model outperforms the state-of-the-art models consistently on the entity alignment

task by over 40% in terms of hits@1.

For the problem of relation extraction for knowledge base enrichment, we make the

following contributions:

• We propose an end-to-end model for extracting and canonicalizing triples to enrich

a KB. The model reduces error propagation between relation extraction and NED,

which existing approaches are prone to.

1.1 Approaches and Contributions 9

• We propose an n-gram based attention model to effectively map the multi-word

mentions of entities and their relationships into uniquely identified entities and

predicates. We propose joint learning of word and entity embeddings to capture

the relationship between words and entities for named entity disambiguation. We

further propose a modified beam search and a triple classifier to generate high-

quality triples.

• We evaluate the proposed model over two real-world datasets. We adapt distant

supervision with co-reference resolution and paraphrase detection to obtain high-

quality training data. The experimental results show that our model consistently

outperforms a strong baseline for neural relation extraction coupled with state-of-

the-art NED models.

For the problem of description generation, we make the following contributions:

• We propose an end-to-end model that employs joint learning of content-planning

and description generation to handle disordered input for generating a description

of an entity from its properties. The model reduces error propagation between the

content-planner and the description generator, which two-stage models are prone

to. We further propose a content-plan-based bag of tokens attention model to effec-

tively capture salient properties in a proper order based on a content-plan.

• For the arbitrary-shaped graphs, we propose a graph-based triple encoder to opti-

mize the amount of information preserved in the input of the model. The proposed

model can handle cycles to capture the relationships both within a triple and be-

tween the triples in a KG. To capture the order of entities in a sentence, we present

an entity-order aware translation-based graph embedding model.

• We evaluate the proposed models over real-world datasets. The experimental re-

sults show that our models consistently outperform state-of-the-art baselines for

data-to-text generation.

10 Introduction

1.2 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, first, we review knowledge

base development frameworks in general, then we review research on knowledge bases

alignment, relation extraction, and description generation. In Chapter 3, we study the

problem of knowledge bases alignment and propose an embedding-based model for

aligning entities from two different KBs. In Chapter 4, we study the problem of relation

extraction and propose an end-to-end relation extraction for knowledge base enrichment

model that integrates the extraction and canonicalization tasks. In Chapter 5, we study

the problem of description generation from a set of triples in the form of a star-shaped-

graph and propose an order-agnostic data-to-text generation model. In Chapter 6, we

study the problem of description generation from arbitrary-shaped graphs and propose

a novel graph-based triple encoder. In Chapter 7, we conclude the thesis by summarizing

our contributions and discussing future research directions.

Publications out of the Thesis

• Part of the content in Chapter 3 has been published in AAAI 2019: Bayu Distiawan

Trisedya, Jianzhong Qi, Rui Zhang (2019). Entity Alignment between Knowledge

Graphs Using Attribute Embeddings. In the 2019 AAAI Conference on Artificial

Intelligence.

• Part of the content in Chapter 4 has been published in ACL 2019: Bayu Distiawan

Trisedya, Gerhard Weikum, Jianzhong Qi, Rui Zhang (2019). Neural Relation Ex-

traction for Knowledge Base Enrichment. In the 2019 Annual Meeting of the Asso-

ciation for Computational Linguistics.

• Part of the content in Chapter 5 has been published in AAAI 2020: Bayu Distiawan

Trisedya, Jianzhong Qi, Rui Zhang (2020). Sentence Generation for Entity Descrip-

tion with Content-plan Attention. In the 2020 AAAI Conference on Artificial Intel-

ligence.

• Part of the content in Chapter 6 has been published in ACL 2018: Bayu Distiawan

1.2 Thesis Outline 11

Trisedya, Jianzhong Qi, Rui Zhang, Wei Wang (2018). GTR-LSTM: A Triple En-

coder for Sentence Generation from RDF Data. In the 2018 Annual Meeting of the

Association for Computational Linguistics.

This page intentionally left blank.

Chapter 2

Literature Review

THIS chapter reviews existing studies from two aspects. The first is related work on

early knowledge base development, which includes algorithms to build a knowl-

edge base from scratch. The second is related work on knowledge base enrichment. We

cover three common methods for knowledge base enrichment: (i) knowledge bases align-

ment, (ii) relation extraction, and (iii) description generation.

2.1 Knowledge Base Development

Building Artificial Intelligence (AI) systems become popular in recent decades. Hence,

sharing knowledge between machines becomes an essential part of achieving this pur-

pose. Knowledge bases (KBs) play critical roles in many AI systems since they offer

a simple representation for easy data sharing in the form of knowledge graphs (KGs).

Wordnet [39] is one of the pioneers in knowledge base development. Wordnet contains

manually collected lexical knowledge that classifies words and defines the relationship

between them, such as synonym, hypernym, and meronym. The development of Wordnet

involves experts in linguistic to ensure its quality.

Early general domain knowledge base development approaches are using traditional

relation extraction methods, i.e., using rule-based extraction methods. DBpedia [3] is one

of the large scale knowledge bases that is considered as a central hub of Linked Open

Data, which is an effort to interlink data on the Internet for knowledge inference through

semantic queries. DBpedia mainly contains triples extracted from structured data in

Wikipedia, such as infobox. A rule base extractor is used to map infobox tables into

13

14 Literature Review

triples in DBpedia. Specific features in a Wikipedia page of an entity such as labels and

geographic coordinates are extracted using different rules. Another large-scale knowl-

edge base is YAGO [139]. Similar to DBpedia, rule-based methods are used to extract

triples from Wikipedia, which becomes the core of YAGO. In the follow-up work, YAGO2

[57], temporal and spatial data are added to the core of YAGO KB. Temporal data are as-

signed to entities such as persons, groups, artifacts, and events to denote their existence

in time. In contrast, the spatial data are used to denote the location of entities. These data

are extracted using regular expressions from Wikipedia, Wordnet, and Geonames1.

Besides general domain knowledge bases, there are also efforts in the development of

domain-specific knowledge bases such as in geographic domain. Chaves et al. [16] ini-

tiated the development of a geographic knowledge base. They use standard extraction,

transformation, and loading processes (ETL) [132] with predefined rules to extract triples

from different sources, including Wikipedia, postal code databases, and gazetteers. In

this effort, they cover a limited area, i.e., a single country. The follow-up work in the de-

velopment of a geographic knowledge base is LinkedGeoData (LGD) [136]. LGD extracts

geographic data from OpenStreetMap (OSM) and stores them in a relational database.

LGD provides a system named Triplify to convert database instances into triples.

Another line of work in developing knowledge bases is via crowdsourcing. Crowd-

sourcing is a method for completing arbitrary tasks by soliciting contributions from a

group of human workers [69]. The main problem of this method is determining incen-

tives to persuade users to involve in crowdsourcing. Typically, the incentive for partici-

pants is in the form of money. Still, the problem is that there may also be participants who

simply want to take the incentives (i.e., money) without making useful contributions. An-

other incentive scheme is gamification [120]. However, developing an interesting game

for gamification may raise another problem since defining the task to be crowdsourced

may not be straightforward. Identifying trustworthy participants is another challenge

in crowdsourcing. Despite the difficulty of this method, recent studies show successful

implementations of crowdsourcing in knowledge base refinement [71, 73], where crowd-

sourcing is used to check the quality of knowledge base data obtained from the tradi-

1http://www.geonames.org/

http://www.geonames.org/

2.2 Knowledge Base Enrichment 15

tional extraction method.

In summary, there are three common approaches used in the early knowledge base

development, including manual approaches [39], traditional extraction methods [3, 57,

139], and crowdsourcing approaches [120]. The manual and crowdsourcing approaches

require extensive human labor and are error-prone. Meanwhile, the traditional extraction

methods require manually defined rules that work well on a homogeneous data source

but may not be applied to different data sources.

2.2 Knowledge Base Enrichment

Existing knowledge bases are far from complete and require continuous enrichment and

curation. There are three common approaches to knowledge base enrichment. The first

approach is knowledge bases alignment [19, 20], which is done by first aligning enti-

ties from the source and target knowledge bases. Then for each aligned entity, all related

triples are merged from the source KB to the target KB to have a more comprehensive tar-

get KB. The second approach is relation extraction that aims to extract new facts from sen-

tences in the form of KB triples to enrich a knowledge base [78,97,117,176,179]. The third

approach is by adding a description for each entity in a knowledge base [6,81,82]. Entity

descriptions in a knowledge base are not only used in many downstream applications

such as question answering systems and entity linking models but also become valuable

resources to provide contextual features for many machine learning models [72, 83, 159].

Thus, description generation techniques for enriching knowledge bases become popular

in recent years.

2.2.1 Traditional Methods of Knowledge Base Enrichment

Traditional methods of KB enrichment methods are dominated by rule-based approaches

and shallow machine learning models. In KB alignment, earlier approaches, such as

LIMES [101], RDF-AI [123], and SILK [158], use string similarity. Other methods, such

as LD-Mapper [114] and HolisticEM [110] combine string similarity and graph similarity

to compute the alignment. The limitation of these traditional methods is that they rely

16 Literature Review

on user-defined rules to determine the comparable properties. These manually defined

rules are hard to obtained and require significant human efforts.

Traditional approaches to relation extraction can be grouped into three categories: su-

pervised, unsupervised, and bootstrapping. The supervised approach is the most popu-

lar technique which achieves relatively high performance. Surdeanu et al. [144] created

two-step extraction model. The first step is entity mention detection, and the second

step is relation detection between entities extracted from the previous step. Zhou et al.

[184] investigated the effect of syntactic and semantic features on relation classifiers us-

ing Support Vector Machine (SVM). The unsupervised methods are initiated by Banko et

al. [5] that create a self-supervised tuple extractor using the Naı̈ve Bayes classifier. Later,

Shinyama and Sekine [131] employed a clustering technique for relation extraction. The

other approach is bootstrapping, which use a small amount of example for gaining more

data. Ravichandran and Hovy [115] used a small example of question answering data

to obtain more extraction patterns. These traditional relation extraction approaches typi-

cally use shallow machine learning algorithms, such as Naı̈ve Bayes and SVM. The limi-

tation of these models is they require extensive feature engineering work for the machine

learning model, which is labor-intensive and time-consuming.

In traditional description generation, most methods use a pipeline framework that

consists of content planning, sentence planning, and surface realization. Bontcheva and

Wilks [10] use the pipeline framework to generate sentences from knowledge base triples

in the medical domain. Cimiano et al. [23] generate cooking recipes from semantic web

data. Duma and Klein [37] learn a sentence template from a parallel triples-text corpus.

Similar to traditional relation extraction methods, the traditional description generation

models employ hand-crafted rules or a shallow statistical model for content-planning,

sentence planning, and surface realization. Thus, these models require significant man-

ual work, which is prone to errors.

2.2.2 Neural Networks for Knowledge Base Enrichment

Neural networks have shown great success in many machine learning tasks such as im-

age recognition, text classification, and video processing. Recent knowledge base en-

2.2 Knowledge Base Enrichment 17

richment approaches have adopted neural networks and show better performance than

the traditional machine learning models or rule-based approaches. Before we detail three

knowledge base enrichment approaches, we discuss neural network models that are com-

monly used in those approaches.

In this section, we review neural network models that are commonly used in knowl-

edge base enrichment approaches, including word embeddings, knowledge base embed-

dings, encoder-decoder framework, and graph neural networks.

Word Embeddings

Feature representation is a fundamental part of many machine learning models. Recently,

feature representation in the form of a continuous vector space (i.e., embeddings) has at-

tracted the attention of many researchers. For example, in natural language processing

and information retrieval, traditional representation such as bag-of-words and n-gram

models have been replaced by word embeddings. Such traditional representations have

limitations in representing words or sequences of words. Bag-of-words representation ig-

nores the order of words in a sequence and further discards contextual information, while

n-gram representation has difficulty in representing long sequences due to the sparsity

of the word combinations. In contrast, word embeddings can represent words (or se-

quences of words) as vectors in a continuous vector space that can preserve the semantic

and contextual information of words.

Various word embedding models have been proposed. Bengio et al. [9] introduced

word embeddings in their neural language model. Later, pre-trained word embedding

models became popular as they can power many downstream tasks. Among them,

Word2vec [95] and GloVe [109] are the early pre-trained embedding models that are widely

used by many natural language processing tools. These early pre-trained embedding

models are context-independent, i.e., the same vector is used to represent a word across

different contexts. For example, the same vector is used to represent the word apple

in different sentences "Steve Jobs eats an apple" and "Steve Jobs is the

founder of Apple" despite the different meanings the word (i.e., a fruit or a com-

pany). To address this problem, context-aware word embedding models are proposed.

18 Literature Review

Instead of producing a static vector, ELMo [111] considers the entire sentence before com-

puting the final embeddings of a word. In contrast, BERT [33] computes the word em-

beddings using a Masked Language Model over the Transformer encoder [153]. These

models significantly improve the performance of many downstream applications. Fol-

lowing the success of word embedding techniques, many researchers also study the en-

tity representations of a knowledge base, i.e., knowledge base embeddings.

Knowledge Base Embeddings

Knowledge base embedding models aim to compute the vector representation of enti-

ties and relationships in a knowledge base. Translation based models, e.g., TransE [11],

become one of the pioneers in knowledge base embedding studies. TransE represents a

relationship between a pair of entities as a translation between the embeddings of the en-

tities. A triple that consists of 〈subject, predicate, object〉, denoted as 〈s, p, o〉,

is represented as s + p ≈ o. This representation indicates that the embedding of the sub-

ject s is close to the embedding of the object o by translating s via the embedding of the

predicate p. A scoring function f (s, o) = ‖s + p− o‖2 is used to measure the plausibility

that a triple is incorrect (i.e., plausibility score). Here, ‖x‖2 is the L2-norm of a vector x.

Wang et al. [162] argued that the triple representation in TransE applies well to 1-to-1

relationships, but have issues on reflexive, N-to-1, 1-to-N, and N-to-N relationships. For

example, consider the following reflexive triples 〈John, spouse, Jane〉 denoted by

〈s, p, o〉 and 〈Jane, spouse, John〉 denoted by 〈o, p, s〉. The assumptions in TransE

result in p = 0 and s = o. To address these problems, they proposed TransH [162] that

normalizes the embeddings of the subject and the object by projecting them into a hyper-

plane before computing the plausibility score. The TransH scoring function is defined as

follows:

f (s, o) = ‖s⊥ + p− o⊥‖2 (2.1)

s⊥ = s−w>r swr (2.2)

o⊥ = o−w>r owr (2.3)

2.2 Knowledge Base Enrichment 19

‖wr‖2 = 1 (2.4)

where s⊥ and o⊥ are the projected vector, and wr is the hyperplane projection vector.

Lin et al. [79] proposed TransR that improves TransH by separating the relationship

vector space from the entity vector space. They replace the hyperplane vector wr by a

projection matrix Mp that projects the entity embeddings into a corresponding relation-

ship vector space, i.e., s⊥ = Mps, and o⊥ = Mpo. TransSparse [60] handles unbalanced

relationships in a knowledge base. Some relationships (i.e., predicates) connect many

entity pairs while others only connect a few. To address this problem, TransSparse uses

a projection matrix that has a sparse degree θ determined by the number of entity pairs

connected by the corresponding relationships.

Recent studies also improve TransE by using additional language resources, advanced

neural network models, and hierarchy-aware models. For example, DKRL [171] and

TEKE [164] employ additional language resources to compute the entity embeddings.

DKRL uses entity descriptions and computes description embeddings using two en-

coders, including Continuous Bag of Words (CBOW) [95] and Convolution Neural Net-

work encoder [26], respectively. TEKE exploits word co-occurrences that describe entities

in a text corpus. In TEKE, the embeddings of the elements of a triple are defined as fol-

lows.

s = n (s)A + sb (2.5)

o = n (o)A + ob (2.6)

p = n (s, o)B + pb (2.7)

where A and B are learned matrices, n(x) and n(x, y) are the point-wise and the pairwise

context vector computed based on word co-occurrences, respectively. The subscript b

denotes a bias vector.

Another technique to integrate language resources into KB embeddings is by using a

combination of the entity and word embeddings. Malaviya et al. [88] employed a transfer

learning approach that first learns word embeddings using BERT, and then concatenates

20 Literature Review

the word embeddings to the entity embeddings. To compute the structure embeddings,

they use Graph Convolutional Networks (GCN) [68]. Liu et al. [83] proposed K-BERT, which

is an extension of BERT trained over triple-enhanced sentences. The input sentence of K-

BERT is injected with knowledge base triples to form a knowledge-rich sentence tree. To

process the sentence tree, they devise a masked transformer encoder that uses a visible

matrix to control the connection between entity mentions in the sentence and the injected

triples. He et al. [53] proposed a knowledge augmented word representation (KAWR). Their

model uses an entity aware gated recurrent unit (GERU), which is an extension of the Gated

Recurrent Unit (GRU) [21] that includes entity attention for computing the hidden state

of an input sequence.

Another line of work takes advantage of the flexibility of neural networks to express

the relationships between elements of a triple (i.e., the head entity, the predicate, and

the tail entity). ConvE [32] predicts the embeddings of the tail entity by first concatenat-

ing the head entity and predicate embeddings and reshaping them into an input matrix.

Then, the matrix is fed into multiple layers of convolutional neural networks connected

via residual layers. ConvKB [102] and ConvTransE [129] follow ConvE. They differ in the

stacking and reshaping of the entity and predicate embeddings to provide more inter-

action among the embeddings. InteractE [152] further increases the interaction among

embeddings by using feature permutation, multiple reshaping techniques, and circular

convolution. ParamE [17] and CoPER [138] treat the predicate as a parameter (i.e., context)

of a projection function that maps the embeddings of the head entity into the embeddings

of the tail entities.

Hierarchy-aware models consider multi-hop relationships (e.g., a transitive predicate

between two triples 〈s1, p1, o1〉 and 〈o1, p2, o2〉 indicates a relationship between s1 and o2)

in a knowledge base for computing the entity and predicate embeddings. Minerva [29]

uses a reinforcement learning method that gives higher rewards on possible multi-hop

walks in a knowledge base. A follow-up work, Multihop-KG [77], improves the reward

function of Minerva by using a pre-trained embedding model to compute the rewards.

HAKE [181] transforms the hierarchy in a knowledge base into a polar coordinate sys-

tem, where the radial coordinate aims to model entities at different levels of the hierarchy

2.2 Knowledge Base Enrichment 21

while the angular coordinate aims to distinguish entities at the same level of the hierar-

chy. RGHAT [182] uses two attention mechanisms to model the hierarchy in a knowledge

base. The first is predicate-level attention that highlights the most indicative predicate

(i.e., property) that represents the subject. The second is entity-level attention that high-

lights the most indicative entity under the same predicate. Both attention scores are ag-

gregated to predict the object of a triple.

There are also non-translation-based approaches to learn entity embeddings. The Un-

structured model [12] does not explicitly represent the relationship embeddings. RESCAL

[105] and HolE [104] use tensor-based factorization and represent relationships with ma-

trices. NTN [134] jointly models head and tails entities by combining them using a bilin-

ear tensor operator and maps them to a non-linear hidden layer.

Graph Neural Networks

Many applications produce data in the form of graphs such as knowledge base, social

media, e-commerce, etc. The complexity of graph data becomes a challenge in machine

learning. Recent studies exploit deep neural networks to solve problems related to un-

structured data, including graphs. We review popular Graph Neural Network (GNN)

techniques related to knowledge base enrichment models.

The main goal of graph neural networks is to compute node or graph representa-

tions (i.e., embeddings) for different tasks such as node classification, edge classification,

or graph classification. Node classification aims to predict the label of a node given its

embedding learned based on the propagation information from its neighbors. Edge clas-

sification is related to the link prediction task. Given the embeddings of two nodes, one

may predict the relationship between these nodes. Graph classification aims to predict

the label of a graph given a compact vector representation learned from node connections

in a graph.

Wu et al. [169] classify graph neural networks into three categories. The first is re-

current GNN (RecGNN) that learns node embeddings using a recursive operation, i.e.,

applying the same set of parameters recursively over nodes in a graph to extract its em-

beddings. The second is convolutional GNN (ConvGNN) that learns the node and edge

22 Literature Review

embeddings using multiple neural network layers with different weights on each layer.

There are two types of ConvGNN: (1) Spectral-based ConvGNN that treats convolution

as graph signal processing; (2) Spatial-based ConvGNN that treats convolution as infor-

mation propagation between nodes in a graph. The third GNN category is Graph Auto

Encoder (GAE) that encodes nodes in a graph into vector representations and regenerates

the graph based on the encoded representation. Among these categories, ConvGNN is

the most popular approach due to its convenience in composing end-to-end models with

other neural network models for downstream tasks. Specifically, Spatial-based ConvGNN

is preferred since it is scalable to a large graph and can handle undirected, weighted, and

cyclic graphs.

Graph Convolutional Networks (GCN) [68] is the most popular spatial-based ConvGNN

model. As a spatial model, GCN considers convolution as information propagation be-

tween nodes in a graph, i.e., a node state is updated by aggregating its own state and its

neighbors’ state:

hl
ni
= σ

 ∑
nj∈N(ni)

∪{ni}

1√
deg(ni)deg(nj)

W lhl−1
nj

 (2.8)

Here, N(ni) is the neighbors of the entity ni, deg(n) is the degree of node n, σ is an activa-

tion function, W l is learned parameter of the l-th layer. Multiple layers in GCN are used

to capture multi-hop relationships between nodes.

GCN assumes identical structures shared among the entity’s neighbors, i.e., each

neighbor has the same contribution for computing a node state. However, in real-world

graphs, the structures may vary. Follow-up studies address this problem by proposing

different weighting mechanisms. AGCN (Adaptive Graph Convolutional Neural Net-

works) [74] uses residual Laplacian matrix and distance metric function to learn the

topological structure of a graph. DGCN (Dual Graph Convolutional Networks) [187]

uses two convolutional layers to compute the local and global consistency, respectively.

DGCN also uses positive point-wise mutual information (PPMI) matrix to preserve node

co-occurrences captured using random walks as additional features alongside the stan-

dard normalized adjacency matrix in GCN. RGCN (Relational Graph Convolutional Net-

2.2 Knowledge Base Enrichment 23

works) [124] extends GCN by adding relation-specific weight to compute the node states:

hl
ni
= σ

W l
i hl−1

i + ∑
r∈R

∑
nj∈N(ni)

1
ci,r

W l
r hl−1

nj

 (2.9)

where R is the relation (edge) set, ci,r is the normalization constant Wi is the weight matrix

for the updated node, and Wr is the neighbor weight based on a specific relation r.

Another popular graph neural network model is Graph Attention Network (GAT) [154].

GAT uses an attention model as the weighting mechanism to compute the relative weight

of edges connected to a node. The node states in GAT are updated as follows.

hl
ni
= σ

 ∑
nj∈N(ni)

αl
ijW

l
1hl−1

nj

 (2.10)

αl
ij = so f tmax

(
g
(

a>
[
W l

2hl−1
ni

; W l
3hl−1

nj

]))
(2.11)

Here, αl
ij is the attention-based weight that replaces the predefined weight in GCN (i.e.,

1√
deg(ni)deg(nj)

); g(.) is an activation function such as LeakyReLU; a and w are learned

parameters. Similar to the Transformer [153], GAT also uses multi-head attention to

compute multiple different weighting schemes that increase the expressiveness of the

model in capturing multiple relationships between entities. Follow-up studies propose

different techniques to capture multiple relationships between entities. For example,

GAAN (Gated Attention Network) [180] uses different attentional scores for each atten-

tion head. GeniePath [84] uses a gating mechanism to control the information propagation

in a graph.

Encoder-decoder Framework

The encoder-decoder framework is a sequence-to-sequence learning model popularized

by Google in 2014 [21, 146]. This model aims to transform a fixed-length input into a

fixed-length output, where the length of the input and output may differ. This model

recently achieves significant improvements in many tasks, including text generation that

can be used to generate entity description for knowledge base enrichment.

24 Literature Review

The idea of the encoder-decoder framework is as follows. The encoder is used to

encode an input sequence using recurrent neural networks (RNN) [121, 165]. Given a

sequence of inputs 〈x1, x2, ..., xn〉, at each time-step, RNN computes a hidden state he
n

using the following equation:

he
n = σ(We

1 xn + We
2he

n−1) (2.12)

where σ is a sigmoid function, and W1 and W2 are trained parameters. Intuitively, a

hidden state summarizes all information of the previous tokens in a sequence because it

recursively includes the hidden state of the previous token he
n−1 to compute he

n. Hence,

the last hidden state of RNN he
n summarizes all information of the whole input. The

decoder is used to generate a sequence of outputs 〈y1, y2, ..., ym〉 using another RNN:

hd
m = σ(Wd

1 ym−1 + Wd
2 hd

m−1 + Wd
3 he

n) (2.13)

ym = Vhd
m (2.14)

where V is the hidden-to-output weight matrix. Here, the summary of input sequence

he
n is used as a context to generate the output token by token. For example, in machine

translation, the encoder first encodes a sentence from a source language into he
n, then

the decoder uses he
n as a reference of the whole representation of the input sentence to

generate the corresponding translation word by word in a target language.

One problem with the encoder-decoder framework is that the RNN used in the en-

coder and the decoder may fail to capture long-range dependencies between words. To

handle this problem, Bahdanau et al. [4] proposed an attention mechanism to compute

the context vector he
n for each time step dynamically. Instead of using the last hidden state

of the RNN encoder as a static context, the attention mechanism learns the alignment be-

tween words in the source and target sentences, and highlight the most relevant word in

the source sentence for generating the output at each time-step. For example, when trans-

lating a sentence in English"I am eating a banana" to the corresponding sentence

in Bahasa Indonesia "Saya sedang makan pisang", the model should highlight the

word "eating" when generating the word "makan" since both words have the same

2.2 Knowledge Base Enrichment 25

meaning.

At every time-step, the decoder computes the weights of the encoder hidden states

〈he
1, ..., he

n〉, which are considered as the representation of each word in the input sequence,

and gives the highest score to the most relevant word. These scores are then used to

normalized the encoder hidden states. Thus, the most relevant word will have the highest

contribution in computing the context vector. The context vector cm for the decoder at

each time-step m is computed as follows.

αi =
exp(hd

m
>Wa

1 he
i)

∑n
j=1 exp(hd

m
>Wa

2 he
j)

(2.15)

cm =
n

∑
i=1

αihe
i (2.16)

Attention mechanisms can also be used to solve the out of vocabulary problem. Note

that at each time-step of the decoder, the output is a word (or token) that has the highest

probability so f tmax(ym) in predefined vocabularies. Here, the vocabularies consist of a

limited set of words in the target language and may not cover many words, such as the

name of a person. To handle this problem, existing text generation models apply a copy

mechanism. A straightforward copy mechanism is done by copying the most relevant

word computed by the attention mechanism (i.e., the word with the highest attention

score α) when the decoder generates a UNK token (i.e., a unique token that indicates an

unknown word generated for a particular time-step). Another copy mechanism [126]

uses an additional layer that computes a probability score to decide whether the output

should be selected from the vocabularies or be copied from the input token.

Another type of encoder-decoder framework is Pointer Networks [157]. Different from

the standard encoder-decoder framework that has a fixed size of vocabularies, Pointer

Network models deal with the problem of representing variable-length vocabulary, i.e.,

the candidate outputs are only listed in the given input. Pointer Networks use the soft-

max probability distributions as pointers to the input for selecting the output at every

decoder time-step. Examples of problems that can be solved using pointer networks

include convex hull problem, traveling salesman problem, and Delaunay triangulation

problem.

26 Literature Review

The above encoder-decoder frameworks are built upon recurrent neural networks

such as LSTM [55] or GRU [21]. The problem with such recurrent models is that the in-

puts are processed sequentially, thus inhibits parallelization. To address this problem,

Vaswani et al. [153] proposed an encoder-decoder model based on a self-attention mech-

anism named Transformer. They replace the recurrent neural networks in the encoder

and decoder with a self-attention model to capture the long-range dependency between

words in the source sentence. The difference between the standard attention mechanism

and the self-attention mechanism is as follows. In the standard attention mechanism, the

previous hidden state of the decoder (e.g., hd
m in Eq. (2.15)) is used as a query vector

over the encoder hidden states as the key/value vectors (i.e., the attention scores of the

source tokens are computed based on decoder hidden states). In contrast, in the self-

attention mechanism, the query vector is the vector representation of the tokens from the

source sentence itself. The Transformer uses multi-head self-attention that expands the

capability of a single self-attention to focus on different positions. For example, one self-

attention unit may focus on the actual word itself, while the other self-attention unit may

focus on a pronoun that refers to it.

2.3 Knowledge Bases Alignment

One of the approaches to enrich knowledge bases is via knowledge bases alignment.

Given two knowledge bases, i.e., a source KB and a target KB, the alignment is done

by first identifying the same entity in the source and target KBs then integrating these

knowledge bases to form a larger KBs. The integration is done by importing the prop-

erties of the same entities from the source KB to the target KB. The main challenge in

knowledge bases alignment is to identify the same real-world entities stored in different

KBs, i.e., entity alignment. We discuss two groups of commonly used entity alignment

approaches. The first is string-similarity-based approaches detailed in Section 2.3.1. The

second is embedding-based approaches detailed in Section 2.3.2.

2.3 Knowledge Bases Alignment 27

2.3.1 String-Similarity-based Entity Alignment

Earlier entity alignment approaches use string similarity as the main alignment tool. For

example, LIMES [101] uses the triangle inequality to compute similarities between entities

from the source and target KBs. First, it creates clusters to group entities on the target KB.

Then, the similarities between entities in the source KB and the generated clusters are

computed as an approximation. Using these approximations, LIMES avoids to compare

every entity pair from the source and target KBs, and hence speed-up the alignment

process. Finally, the actual similarity between entities from the source KB and entities

in the corresponding cluster on the target KB is computed, and the entity pair with the

highest actual string similarity is returned.

RDF-AI [123] implements an alignment framework that consists of pre-processing,

matching, fusion, interlink, and post-processing modules. The pre-processing module

inspects the ontology consistency and transforms properties into a standard form. The

matching module uses fuzzy string matching based on sequence alignment [119], word

relation [39], and taxonomic similarity algorithms to compute a similarity score between

entities in the source and target KBs. Based on this similarity score, the interlinking mod-

ule creates a temporary graph that contains entities and their properties from the source

KB that correspond to entities in the target KB. The fusion module combines the target

KB and the temporary graph from the previous step. Lastly, the post-processor module

verifies the resulting ontology consistency.

Another alignment framework, SILK [158], allows users to specify the mapping rules

using a Link Specification Language (LSL). In LSL, users can define the properties and the

metrics to be used for entity similarity computation. SILK provides various similarity

metrics, including string similarity, numeric similarity, date similarity, and URI equality.

To reduce the number of comparisons between entities from two different KBs, SILK

provides rough index pre-matching. All target resources are indexed based on the values of

their properties. This index is used to look up potential matches for a given entity.

There are also studies using graph similarity to improve entity alignment perfor-

mance. LD-Mapper [114] combines string similarity and entity nearest neighbor simi-

larity. RuleMiner [106] uses an Expectation-Maximization (EM) algorithm [30] to refine a

28 Literature Review

set of manually defined entity matching rules. First, a set of matching rules are defined

based on the manually collected samples. Then, the EM algorithm iteratively extracts

new matching rules and combines them to the existing rules until no further rules ex-

tracted. HolisticEM [110] constructs a graph of potential entity pairs based on the over-

lapping attributes and the neighboring entities. From the constructed graph, the local

and global properties are propagated using Personalized Page Rank to compute the actual

similarity of entity pairs.

The string similarity approaches work well when the properties to be compared be-

tween the entities are known. However, different knowledge bases may use different

property names to store the same property value. Hence, these approaches rely on user-

defined rules to determine the comparable properties. The manually defined rules are

error-prone because different entity types may contain a different set of properties. For

example, properties such as latitude and longitudemay exist in the set of properties

of LOCATION type entities but not in the set of properties of PERSON type entities.

2.3.2 Embedding-based Entity Alignment

Recently, knowledge base embedding models have been proposed to address KB com-

pletion tasks [134], which aim to predict missing entities or relationships based on the

existing triples in a knowledge base. These models compute a vector representation (i.e.,

embeddings) of all entities in a KB based on entity nearest neighbors. The embeddings

preserve structural information of entities. Entities that share similar neighbors in a KB

should have a close vector representation. Hence, the embeddings can be used to com-

pute similarities between entities in different KBs for the alignment. The advancement

of KB embedding models motivates researchers to study embedding-based entity align-

ment. In embedding-based entity alignment, the main challenge is to compute a unified

vector space of entity embeddings from two knowledge bases. The existing methods use

a seed set of aligned entities (i.e., seed alignments) to force the entity embeddings from

two knowledge bases to fall into the same vector space.

2.3 Knowledge Bases Alignment 29

Translation Based Alignment Models

Chen et al. [19] proposed MTransE, which is an embedding-based model for multilingual

entity alignment based on TransE. MTransE uses a knowledge model and an alignment model

to learn the multilingual knowledge base structures. The knowledge model is a standard

translation based entity embedding model (i.e., TransE) that computes entity and rela-

tionship embeddings of two knowledge bases separately. The alignment model learns

a transition matrix to translate both entity and relationships from different embedding

spaces (i.e., different KBs) into a unified embedding space over the seed alignments. For

computing the transition matrix, they use three strategies: (1) distance-based axis calibration

that penalizes the alignment based on the distances of cross-lingual counterpart; (2) trans-

lation vector that encodes cross-lingual transitions into a vector and considers the vector

as an additional translation to compute the plausibility score; and (3) linear transforma-

tion that uses additional neural networks layers to transform the entity and relationship

embeddings. In the follow-up work, Chen et al. [20] proposed a generalized affine-map-

based model to improve the alignment model of MTransE for handling various forms of

invertible transformations, such as translation and scaling.

ITransE [186] uses an iterative method for entity alignment via joint knowledge em-

beddings. This model consists of three modules. The first is a knowledge embedding mod-

ule that learns entity and relationship embeddings for each knowledge base. The second

is a joint embedding module that maps the entity and relationship embeddings from dif-

ferent KBs into a joint semantic space according to a seed set of known aligned entities.

The third is an iterative alignment module that updates the entity and relationship em-

beddings by taking the high-confident aligned entities found in the previous iteration.

Another iterative method is BootEA [142] that uses a bootstrapping model. BootEA iter-

atively assigns alignment of entities from two knowledge bases as pseudo training data

to further improve the embeddings and alignment results. The seed alignments and the

pseudo training data are combined to train the model for the next iteration. To reduce

the error propagation from the pseudo training data, they use a holistic perspective model

to recompute the probability distribution over the labeled and unlabeled data.

Recently, several techniques are proposed to improve the entity alignment results,

30 Literature Review

such as exploiting additional information (e.g., the entity types and the description of

entities). JAPE [141] uses a joint attribute-preserving embedding model for cross-lingual

entity alignment. Similar to the previous models, initially, the entity embeddings from

two KBs are computed separately. Then, the seed alignments are used to jointly embed

the entity embeddings of two KBs into a unified vector space. Their model further refines

the alignment by capturing the correlations of attributes via an attribute type similarity

model. Chen et al. [18] proposed KDCoE, which is a joint learning model between entity

embedding and multilingual literal description. For the entity embedding model, they

employ TransE. For the description embedding model, they use a self-attention with a

gated recurrent unit encoder to learn multilingual word embeddings from the entity de-

scriptions. The description embedding model aims to collocate the embeddings of cross-

lingual entities counterparts. They combine the description embeddings and the entity

embeddings computed by TransE as a representation of entities and then use them as in-

put for a linear-transformation-based alignment model trained over the seed alignments.

GNN Based Alignment Models

Recent improvements in graph neural networks attract the attention of many researchers

to use them in embedding-based entity alignment models such as GCN-Align [163],

GMNN [172], MuGNN [14], RDGCN [168], AVR-GCN [175], and AliNet [143]. GCN-

Align [163] employs standard Graph Convolutional Networks (GCN) [68] to compute

the entity embeddings from two different knowledge bases separately. The alignment is

computed based on the distances between entities in the embedding space in the final

layer of GCN using the seed alignments. To improve the performance of GCN for en-

tity alignment, they combine entity embeddings and attribute type embeddings in the

convolutional computation of GCN.

GMNN [172] uses two GCN encoders. The first GCN is similar to GCN-Align, which

is a standard GCN to compute entity embeddings of two knowledge bases. The sec-

ond GCN is combined with an attentive-matching model that first computes the simi-

larity approximation between entities in two knowledge bases, then computes attention

scores based on the approximated similarity scores. Later, the attention scores are used

2.3 Knowledge Bases Alignment 31

as edge weights in the second GCN. This way, the second GCN may capture the local

and global similarities based on the propagated entity embeddings from the first GCN

and the attentive-matching models, respectively.

MuGNN [14] highlights two challenges in the GNN based alignment models. The

first is the heterogeneity of knowledge base structure problem, i.e., the neighbors of the

same real-world entity in two knowledge bases are typically different, and may mislead

the embedding learning and the alignment process. The second is the limited seed align-

ments problem, i.e., the number of the seed alignments are not sufficient to compute

high-quality embeddings for alignment. To tackle these problems, they use a two-step

method that includes rule-based KB completion and multi-channel Graph Neural Net-

works entity alignment. The first step, the rule-based KB completion, aims to resolve

the structural differences by completing the missing relations using a rule mining system

AMIE [43]. The second step is the alignment step that uses a multi-channel Graph Neural

Network, which is a combination of GCN and GAT (Graph Attention Network) [154]. In

MuGNN, GAT is used to compute a connectivity matrix based on the self entity attention

in each KB and the cross-KB attention from the seed alignments, while GCN is used to

capture the graph structure based on the connectivity matrix.

Similar to MuGNN, AliNet [143] handles the heterogeneity of knowledge base struc-

ture problems. Specifically, they consider the multi-hop structure similarity. AliNet con-

sists of two main components, including the Gated Multi-hop Neighborhood aggregation

module and the noise reduction module. The aggregator consists of two GCN layers. The

first layer is a standard GCN layer to capture the structure of a node’s immediate neigh-

bors. The second layer is an attentive GCN layer that uses attention scores to compute

the weight of the two-hop neighbors. The noise reduction module is a graph attention

network to compute the aggregation of the one-hop and two-hop neighbors.

RDGCN [168] exploits dual relation graphs to improve GCN. The dual relation graph

is a graph constructed by combining two KBs and creating additional edges if any re-

lation that shares the same head or tail entities is found. To compute the interaction

between the original knowledge base and the dual relation graph, RDGCN uses GAT.

The attention scores computed on the dual relation graph are used as weights for the

32 Literature Review

edges in the original knowledge bases to encode the graphs using GCN. Similar to the

existing GNN based alignment models, the final layer of the GCN is used to compute the

alignments based on the distances between entities in the seed alignments.

AVR-GCN [175] is an entity alignment framework based on the vectorized relational

GCN (VR-GCN), which is the enhanced version of Relational GCN (R-GCN) [124]. Differ-

ent from the existing GCN-based models that are not computing relation/predicate em-

beddings, VR-GCN explicitly computes predicate embeddings to be incorporated with

the entity embeddings to learn the alignment. Before computing the embeddings using

GCN, the entity representation is updated using translation based operations, i.e., if the

entity is the head entity, the entity embedding is t− r, if the entity is the tail entity, the en-

tity embedding is h + r. To enhance the alignment performance, they use the seed align-

ments in two ways. The first is they use the seed alignments to compute the objective

function similar to the existing GCN-based methods. The second is they create a pseudo

graph from the seed alignments then inject them into the original knowledge bases. The

expanded graphs are expected to have more shared edges, and hence the embeddings of

the same entities from two knowledge bases would be closer to each other.

In summary, the existing embedding-based entity alignment models rely on a set of

manually collected seed pairs of aligned entities (i.e., seed alignments). First, the entity

and relationship embeddings are computed for each KB separately. Then, a transition

matrix is computed using the seed alignments to provide transitions for each embedding

to its counterparts. However, the seed alignments between two KBs are rarely available,

and hence are difficult to obtain due to expensive human efforts required. To address

this problem, in this thesis, we introduce a novel embedding model that first generates

attribute embeddings from the attribute triples and then use this attribute embeddings

to shift the entity embeddings of two KBs to the same vector space. Our proposed model

exploits a large number of attribute triples available in knowledge bases to compute the

attribute embeddings, and hence our model does not rely on seed alignments.

2.4 Relation Extraction 33

2.4 Relation Extraction

Relation extraction plays an important role in extracting structured data from unstruc-

tured content, such as text documents. Given a sentence, relation extraction aims to

identify entities and their relationship (predicate). Here, the extracted entities and rela-

tionships are in the form of knowledge base triples used for knowledge base enrichment.

We review two groups of commonly used relation extraction methods. The first is the

unsupervised approach that commonly known as open information extraction models

detailed in Section 2.4.1. The second is the supervised approach that predicts the rela-

tionship of a given entity pair in a sentence. We call this approach entity-aware relation

extraction models. This approach is detailed in Section 2.4.2.

2.4.1 Open Information Extraction

Banko et al. [5] introduced the paradigm of Open Information Extraction (Open IE) and

proposed a pipeline that consists of three stages: learner, extractor, and assessor. The

learner uses dependency-parsing information to learn extraction patterns in an unsu-

pervised way. The extractor generates candidate triples by identifying noun phrases as

arguments (i.e., entities) and connecting phrases as predicates (i.e., relationships). The

assessor assigns a probability score to each candidate triple based on statistical evidence.

This approach was prone to extracting incorrect, redundant, and uninformative triples.

Various follow-up studies improve the accuracy of Open IE by adding hand-crafted

patterns or by using distant supervision. For example, Fader et al. [38] proposed an Open

IE system named ReVerb that employs manually defined syntactic constraints expressed

in the form of part-of-speech based regular expressions. The syntactic constraints cover

85% relational phrases in English, which help in reducing incoherent and uninforma-

tive extraction output. They further employed lexical constraints to avoid over-specified

relational phrases. The lexical constraints are based on the intuition that a binary re-

lational phrase should appear in many sentences in a large corpus. Angeli et al. [2]

proposed Stanford Open IE, which is a classifier for splitting a sentence into smaller parts

(i.e., clause) that are semantically entailed the original sentence. The classifier is trained

34 Literature Review

based on dependency paths. A sentence is traversed along its dependency path, where at

each step, the classifier predicts whether the traversed part of the sentence should yield

a clause or not. They also specified a small set of manually defined rules to extract a

predicate-argument triple.

Mausam et al. [91] proposed a bootstrapping method named OLLIE that learns extrac-

tion rules based on dependency paths. OLLIE takes a set of high precision seed triples

extracted by ReVerb as training data to learn extraction rules. OLLIE also includes a

context-analysis step that expands the output representation by adding attribution and

clausal modifiers to increase precision. They further presented the follow-up work, in-

cluding OpenIE4 [90] and OpenIE5.02. OpenIE4 employs Semantic Role Labeling [22]

by taking the extracted verbs as the candidate relationship phrases and the extracted

role-labeled arguments as the candidate entities. OpenIE4 also exploits noun-mediated

relations from RelNOUN [107] to handle compound nouns for relationship phrases. The

latest tool along these lines is OpenIE5.0 that improves the OpenIE4 by handling the ex-

traction of propositions from conjunctive sentences.

Another work along these lines is the clause based systems. Del Corro et al. proposed

ClausIE [27], a method that analyzes the clauses in a sentence and derives triples from this

structure. First, ClausIE derives coherent clauses from a sentence by using a dependency

parser. Then, knowledge base triples are extracted from the derived clauses using basic

patterns that are manually defined from English grammar. ClausIE suffers from overly

specific extractions that combine unrelated propositions. Gashteovski et al. [47] proposed

MinIE to advance ClausIE by making the resulting triples more concise, particularly to

address the aforementioned problem. MinIE provides four different minimization modes

to control the trade-off between precision and recall.

Recently, Stanovsky et al. [137] proposed a supervised learner for Open IE (super-

vised Open IE) by casting relation extraction into sequence tagging. A bidirectional LSTM

model is trained to predict the label (entity, predicate, or other) of each token of the input.

Another work is Neural Open IE [28] that uses an encoder-decoder framework to extract

triples. However, this work is not geared to extract the relations of canonicalized enti-

2https://github.com/dair-iitd/OpenIE-standalone

https://github.com/dair-iitd/OpenIE-standalone

2.4 Relation Extraction 35

ties. Another line of study uses neural learning for semantic role labeling [52]. Still, the

goal here is to recognize the predicate-argument structure of a single input sentence as

opposed to extracting relations from a corpus.

All of these methods generate triples where the subject, the predicate, and the object

stay in their surface forms. Therefore, different names and phrases for the same entities

result in multiple triples, which would pollute the KB if added this way. The only means

to map triples to uniquely identified entities in a KB is by post-processing via entity

linking methods [130] or by clustering with subsequent mapping [42].

2.4.2 Entity-aware Relation Extraction

Unlike the Open Information Extraction models that use unsupervised approaches, the

training data is often the bottleneck for learning supervised extractors, i.e., lack of train-

ing data to train a good supervised extractor. Inspired by the work of Brin et al. [13],

state-of-the-art methods circumvent the training bottleneck by employing distant super-

vision [97] that aligns sentences in a text (e.g., Wikipedia article) with seed facts in a KB

to collect extensive training data. These alignments are used as training data to build a

classifier that takes a pair of entities and a set of aligned sentences as input and predicts

the relationship between entities. In this section, we review two common approaches

to build such classifiers. The first is the traditional machine learning approach, and the

second is the neural networks approach.

Traditional Machine Learning Relation Extraction Models

Traditional relation extraction models [15, 97] learn extraction patterns from seed facts,

apply the patterns to extract new fact candidates, iterate this principle, and finally use

statistical inference (e.g., a classifier) for assessing the confidence of the triples and re-

ducing the false positive rate. Some of these methods hinge on the assumption that the

co-occurrence of a seed fact’s entities in the same sentence is an indicator of expressing a

semantic relationship between the entities. However, the aligned sentences do not always

express a relationship between entities, which can lead to a wrong labeling problem. For

36 Literature Review

example, the sentence "Barack Obama visited Honolulu in 2012" does not in-

dicate the relationship birth place between Barack Obama and Honolulu.

Follow-up studies [58,117,118,145] overcome the above limitation by various means,

including the use of relation-specific lexicons and latent factor models. Riedel et al. [117]

introduced an assumption that if an entity pair holds a relation, at least one sentence that

contains both entities express the relation (i.e., at-least-one assumption). They further pro-

posed a multi-instance learning classifier that computes relevance scores for the aligned

sentences and gives the highest score to the most relevant sentence for predicting the rela-

tionship. Surdeanu et al. [145] proposed a multi-instance multi-label classifier to accom-

modate multiple relationships of an entity pair. Suchanek et al. [140] and Sa et al. [122]

employed probabilistic-logical inference to eliminate false positives based on constraint

solving or Monte Carlo sampling over probabilistic graphical models, respectively.

Neural Relation Extraction Models

The traditional machine learning methods rely on lexical and syntactic features such as

part of speech tags, named entity tags, and dependency paths. Recent studies employ

neural networks that automatically learn the lexical features for extracting triples from

sentences. For example, Nguyen et al. [103] proposed a classifier using Convolution Neu-

ral Networks (CNN) with multi-sized window kernels. They also employed positional

embedding [177] that preserves the distances between words and the entity pair in a sen-

tence. The positional embedding helps the model to handle the long dependency prob-

lem in CNN (i.e., the two entities are mentioned far apart in a long sentence). Zeng et al.

[176] proposed PCNN (Piecewise Convolution Neural Networks) that replaces the stan-

dard max-pooling layer by piecewise max-pooling to better capture the lexical structure

between entities in a sentence. First, the input sentences are segmented into three parts

based on the entity pair position. Then, the piecewise max-pooling returns the maximum

value in each segment instead of a single maximum value in the standard max-pooling

layer.

Multiple studies further improve PCNN, specifically for addressing the wrong la-

beling problem. Instead of predicting the relationship between two given entities in a

2.4 Relation Extraction 37

sentence, current methods use bag-level prediction. In bag-level prediction, a set of sen-

tences (i.e., a bag of sentences) that mentions the two given entities is used as input, then

the model selects the most representative sentence and considers the other sentences in

the bag as noises. Based on the selected sentence, the relationship between the two given

entities is predicted.

Lin et al. [78, 80] employed sentence-level attention to address the wrong labeling

problem. First, each sentence in the input is encoded into a vector using PCNN. Then,

the final representation of the input sentences is computed using the attention-weighted

average of all sentences. Jiang et al. [63] combined piecewise max-pooling with cross-

sentence max-pooling. The cross-sentence max-pooling relaxes the at-least-once assump-

tion by aggregating the piecewise max-pooling segments from all sentences. Follow-up

studies consider further variations: Zhou et al. [185] proposed hierarchical selective at-

tention; Ji et al. [61] employed entity descriptions; Miwa and Bansal [98] incorporated

syntactic features; Sorokin and Gurevych [135] proposed context-aware relation extrac-

tion by combining the context vector of all relationships in a sentence to predict the rela-

tionship between two given entities.

Sentence structures, e.g., dependency trees, provide rich information that helps to

improve the performance of relation extraction models. Several neural approaches also

exploit this information to improve model performance. Veyseh et al. [155] proposed an

end-to-end framework that implicitly learns sentence structures via ON-LSTM (Ordered

Neuron LSTM) and self-attention unit. ON-LSTM extends the standard LSTM by assign-

ing an attention score for each word in a sentence in the input and forget gates of LSTM.

On the other hand, the self-attention unit learns the sentence structures by estimating

the long dependency between words in a sentence. Jin et al. [64] exploited the full de-

pendency forest instead of using the 1-best dependency tree generated from an external

parser. Their model uses convolution layers to encode the representation of the depen-

dency forest. This representation is combined with the bag representation to predict the

relationship between two given entities using feed-forward neural networks.

Li et al. [75] spotted a problem in the bag-level prediction. They found that 80%

of bags in the benchmark dataset only contain a single sentence, where roughly 35% of

38 Literature Review

them are wrongly labeled. This condition may lead the sentence selection mechanisms to

learn the wrong patterns. To address this problem, Li et al. [75] proposed a framework

that consists of three components. The first component is an entity aware embedding

module that dynamically combines position and entity embeddings to highlight entity

mentions in a sentence. The second component is a multi-head self-attention mechanism

combined with a convolution layer to encode sentences in the bag. The third component

is a selective gate module. Instead of using a selective attention mechanism, their model

uses a pooling mechanism that assigns lower scores to the wrong labeled sentences and

then generates the bag-level representation based on the pooling scores.

Adversarial Networks for Neural Relation Extraction Models

Other works use different techniques to improve relation prediction accuracies, such as

adversarial networks and knowledge distillation. Qin et al. [113] employed generative

adversarial networks to predict the relationship between two given entities in a sentence.

The discriminator is designed to learn two tasks jointly. The first task is differentiating

the representation of real data and fake data (i.e., real and fake relation embeddings). The

second task is predicting the correct relationship between two given entities. The repre-

sentation of the real data is computed by a feature encoder that learns the relationship

between a pair of entities and their immediate neighbors. Meanwhile, the representation

of fake data is generated by multiple layers of fully connected neural networks from a

sentence that expresses the relationship between the given entity pair. Zhang et al. [183]

employed knowledge distillation via teacher-student network architecture. The teacher

networks are used to learn soft-labels from a bipartite graph that maps the entity types

of the original entity pairs. The soft-labels is then used to guide the student networks to

predict the actual relationship between two given entities.

The aforementioned methods predict the relationships between two given entities.

Another line of work jointly predicts a pair of entities and their relationships. Nayak et

al. [100] proposed an encoder-decoder relation extraction model with a pointer network-

based decoding approach. Instead of generating the output token by token, the decoder

generates 5-tuple. The first two elements of the output tuple are the start and end location

2.5 Description Generation 39

of the subject entity in a sentence, the next two elements indicates the location of the

object entity, and the last element is the relationships between the subject and the object.

Takanobu et al. [148] proposed a hierarchical reinforcement learning method that jointly

extracts a pair of entities using a low-level reinforcement learning model and predicts

the relationships between the extracted entities using a high-level reinforcement learning

model. Xiao et al. [170] proposed a combination of the Transformer model [153] and a

reinforcement learning model. The Transformer is used to encode a sentence. They use

an LSTM decoder to predict the entity mentions in the sentence. The predicted entities

are then used as input for a classifier trained on top of a reinforcement learning model.

The entity-aware models achieve state-of-the-art in relation extraction. However,

most of these models are not geared for KB enrichment, as the canonicalization of en-

tities is out of their scope. In practice, named entity disambiguation (NED) is required

as a pre-processing step to extract the entities, which may propagate errors for the ex-

traction model that may affect the overall precision and recall. Some methods [122, 140]

integrate entity linking (i.e., NED) into their models. However, these models have high

computational complexity and rely on modeling constraints and appropriate priors. In

this thesis, we address the above problems by proposing a novel end-to-end neural re-

lation extraction model that jointly handles both the extraction and the canonicalization

tasks.

2.5 Description Generation

Another approach to enrich a knowledge base is by adding a description for each entity

in the knowledge base. Many downstream applications such as question answering and

entity linking benefit from these entity descriptions. Recently, many researchers study

entity description generation to generate entity descriptions in a knowledge base auto-

matically. Entity description generation aims to produce sentences that describe a target

entity from a set of triples of the target entity. This task falls in the area of text generation,

specifically data-to-text-generation, where the data is in the form of triples. In this sec-

tion, we review two common text generation approaches. The first includes traditional

40 Literature Review

approaches that use hand-crafted rules and shallow statistical machine learning models

(Section 2.5.1). The second includes neural text generation models (Section 2.5.2).

2.5.1 Traditional Text Generation

Traditional text generation [116] models consist of three steps: (1) content planning, which

is a step to select the data to be expressed, (2) sentence planning, which is a step to de-

cide the structures of the sentences to be generated, and (3) surface realization, which is

a step to generate the final output based on the sentence planning. Earlier studies on

content-planning employ hand-crafted rules [36] or a machine learning model as a con-

tent classifier [7, 35]. For sentence planning and surface realization, earlier studies pro-

posed template-based models [92,151], machine learning models using various linguistic

features [1,8,85,116], ordering constrained models [34,94], and tree-based models [66,86].

In data-to-text generation, Bontcheva and Wilks [10] employed a traditional text gen-

eration approach to generate sentences from knowledge base triples in the medical do-

main. Their model starts with filtering repetitive triples (i.e., content planning) and then

group the coherent triples (i.e., document planning). Then, their model aggregates the

generated sentences of the coherent triples to produce the final sentences (i.e., surface

realization). Cimiano et al. [23] developed a simple model to generate cooking recipes

from semantic web data. They focused on using a large corpus to extract lexicon in the

cooking domain. The lexicon is then used with a traditional text generation approach

to generate cooking recipes. Duma and Klein [37] developed a model to learn a sen-

tence template from a parallel triples-text corpus. Their model first aligns entities in the

triples with entities mentioned in sentences. Then, the model extracts templates from the

aligned sentences by replacing the entity mentions with unique tokens. These methods

employ human-generated rules that work well on triples in a seen domain but fail on

triples in an unseen domain.

2.5 Description Generation 41

2.5.2 Neural Text Generation

The encoder-decoder framework [21] is the most commonly used model in neural text

generation. The encoder encodes the input (e.g., KB triples) into a vector representa-

tion used as a context for the decoder. The decoder generates the output token-by-token

constrained by the previously generated token and the context vector computed by the

encoder. For entity description generation from knowledge base triples, recent studies

use two types of encoders. The first is linear encoder models as in the standard encoder-

decoder framework, i.e., treating the input as a sequence. The second is graph-based

encoder models that preserve the graph structures of the input triples. We first review

the standard encoder-decoder based text generation models. Then, we discuss the graph-

based encoder models afterward.

Encoder-decoder Based Text Generation Models

The encoder-decoder framework [21] is a sequence-to-sequence learning model, which is

a model that reads the input sequentially and predicts the output token-by-token. This

framework has been successfully applied in machine translation to translate a sequence

of words from one language to another. Earlier studies adapt the encoder-decoder frame-

work for data-to-text generation by either using simple linear transformation to encode

the input or representing the input as a sequence that may discard the input structures.

For example, Serban et al. [127] applied the encoder-decoder to generate questions from

facts in a KB. In the encoder side, they use a facts embedding model that encodes each

triple by concatenating vector representation of the subject, the predicate, and the object.

In the decoder side, they use Gated Recurrent Unit (GRU) [21] and an attention mecha-

nism [4] to generate the question. Wiseman et al. [166] employed the encoder-decoder

to generate NBA game summaries. The main challenge handled in their study is to gen-

erate a longer text than the typical data-to-text generation models. To handle this prob-

lem, they combine the copy model [49, 50, 62, 174] and source reconstruction loss [149]. The

copy model is used to copy words directly from the data-records, e.g., triples. This tech-

nique helps to handle the out of vocabulary problem, i.e., unseen entities (words) in the

42 Literature Review

inference phase. Meanwhile, the source reconstruction loss is used to ensure that the

model properly captures the structures of the input. Mei et al. [93] proposed an encoder-

aligner-decoder model to generate weather forecasts. The aligner is used to select the

most relevant data to be used to predict weather forecasts. These studies experiment

on cross-domain datasets for data-to-text generation, and the results show that neural

generation models are more flexible to work in an open domain since it is not limited

to hand-crafted rules. These results motivate further studies in encoder-decoder based

data-to-text generation.

In biography summarization, Lebret et al. [72] developed a conditional neural lan-

guage model to generate the first sentence of a biography. This model is trained to predict

the next word of a sentence not only based on previous words, but also by using features

captured from Wikipedia infoboxes. The follow-up studies employ the encoder-decoder

framework. Sha et al. [128] proposed a link-based attention model to capture the rela-

tionships between properties. Their model consists of three modules, including an en-

coder, a dispatcher, and a decoder. The encoder and the decoder are similar to the typical

data-to-text generation model. Meanwhile, the dispatcher is an improvement over the

attention mechanism by integrating a link-based attention model into the content-based

attention model. The dispatcher constructs a link matrix that preserves the typical prop-

erty order in a sentence from a text corpus. Liu et al. [82] proposed a field-gating unit

and dual attention mechanism. The field gating unit is an improvement over the LSTM

unit by adding a field gate into the LSTM unit to update the cell memory based on the

corresponding property (i.e., the predicate of the triples). Meanwhile, the dual attention

mechanism combines word-level and property-level attentions to capture inter-property

relevance.

Another work along this line is the two-stage neural text generation model [112].

First, the two-stage model employs pointer networks [157] to select salient properties and

learn its order as a content-plan (i.e., reasonable order of properties in a well-organized

sentence). Then it uses the content-plan to generate a summary using the encoder-

decoder framework. However, the two-stage models are prone to propagate errors.

These encoder-decoder data-to-text generation models produce fluent text on an or-

2.5 Description Generation 43

dered input. However, these models had decreased performance on disordered input

since linearizing the input (i.e., a set of triples) may not yield the proper order of the

triples, and hence leads the encoder to produce an improper context to generate a de-

scription. To handle this problem, in this thesis, we propose a novel content-plan based

attention model that highlights salient properties in a proper order.

Graph-based Text Generation Models

Recent studies propose graph-based encoders to encode the input triples as a graph.

Graph-based encoders preserve the input graph structures better than the LSTM en-

coder that is used in the typical text generation models. This is because the use of the

LSTM encoder forces the input to be represented as a sequence that may discard the in-

put structures. Vougiouklis et al. [159] developed Neural Wikipedian, which generates a

summary from a set of knowledge base triples. First, their model represents each triple

as a sequence as opposed to representing the whole triples as a sequence. Then, it uses

feed-forward neural networks to encode each triple and concatenate them as the input

of the decoder. Marcheggiani and Perez-Beltrachini [89] employed graph convolutional

networks (GCN) [68] as the encoder of the input. GCN is used to compute node repre-

sentation (i.e., entity embeddings) in a graph, based on its graph structures. They use

skip connections [51,59] to link multiple layers of GCN to get a better node representation.

In the decoder side, they use LSTM with an attention mechanism model.

The existing models are good at capturing the relationships between entities in a triple

(intra-triple relationships). Still, they may fail to capture the relationships between entities

in related triples (inter-triple relationships). Neural Wikipedian applies feed-forward neu-

ral networks for each triple, which makes it only optimized for capturing intra-triple

relationships. Meanwhile, GCN may fail to capture long-range relationships between

entities since GCN only allows one-hop message passing. In this thesis, we address the

aforementioned problem by proposing a supervised topological traversal for a graph-

based encoder model. Our graph-based encoder model can handle cycles to capture the

intra-triple and inter-triple relationships between entities in a KB.

44 Literature Review

2.6 Summary

In this chapter, we reviewed the literature related to the problems of knowledge base

enrichment as well as the knowledge base development. Previous work tackles the prob-

lem of knowledge base enrichment using various approaches such as knowledge bases

alignment, relation extraction, and description generation. However, the accuracy and

applicability of existing approaches still need improvements. The existing knowledge

bases alignment models rely on seed alignments that are rarely available and difficult to

obtain due to expensive human efforts required. We address this problem by proposing

a novel embedding model that first generates attribute embeddings from the attribute

triples and then use this attribute embeddings to shift the entity embeddings of two KBs

to the same vector space. This way, entities from different knowledge bases that represent

the same real-world entities will have close entity embeddings.

In relation extraction for knowledge base enrichment, the existing models rely on

Named Entity Disambiguation (NED) for the canonicalization task. The Open IE meth-

ods generate triples where the subject, the predicate, and the object stay in their surface

forms. The only means to map the extracted triples to uniquely identified entities in a

KB is by post-processing via entity linking methods (i.e., NED). Meanwhile, the entity-

aware relation extraction models rely on NED to extract entities in a sentence in a pre-

processing step. These methods are prone to error propagation between the extraction

and the canonicalization task. To tackle these problems, we propose a novel neural rela-

tion extraction model that handles both the extraction and the canonicalization tasks in

an end-to-end fashion.

In description generation, the existing encoder-decoder based models represent a

graph (i.e., set of triples) as a sequence. These models are unable to handle disordered

input since linearizing the input may not yield the proper order of the triples, and hence

leads the encoder to produce an improper context to generate a description. Meanwhile,

the existing graph-based models good at capturing the relationships between entities in

a triple but may fail to capture the relationships between entities in related triples. We

handle these problems by proposing an order agnostic graph-based encoder model that

uses a supervised topological traversal to encode a graph.

2.6 Summary 45

We detail our algorithms to tackle the problem of knowledge base enrichment in the

following chapters.

This page intentionally left blank.

Chapter 3

Fully Automatic and Effective
Embedding-Based Entity Alignment

This chapter is based on a paper that has been published in the AAAI Conference on Artificial

Intelligence 2019: Entity Alignment between Knowledge Graphs Using Attribute Embeddings. Bayu

Distiawan Trisedya, Jianzhong Qi, Rui Zhang.

3.1 Introduction

MANY knowledge bases have been created separately in the form of knowledge

graphs (KGs) for particular purposes. The same entity may exist in different

forms in different KGs. For example, lgd:240111203 in a KG named LinkedGeoData

and dbp:Kromsdorf in another KG named DBpedia [3] both refer to a village named

Kromsdorf in Germany. Typically, these KGs are complementary to each other in terms of

completeness. We may integrate such KGs to form a larger KG for knowledge inferences.

In this chapter, we study knowledge bases alignment to enrich a knowledge base by

integrating two KGs. Knowledge bases alignment methods aim to find entities in two

KBs that represent the same real-world entity, and then integrate these KBs based on the

aligned entities. The underlying problem to integrate KGs is identifying the entities in

different KGs that represent the same real-world entity, which is commonly referred to

as the entity alignment problem. We consider KGs where real-world facts are stored in the

form of triples. A triple consists of three elements in the form of 〈subject, predicate, object〉,

where subject denotes an entity, and object denotes either an entity or a literal. Here, if

object is an entity, the triple is called a relationship triple; if object is a literal, the triple is

called an attribute triple. Table 1 gives an example of two subsets of triples from two KGs,

47

48 Fully Automatic and Effective Embedding-Based Entity Alignment

Table 3.1: Knowledge graphs alignment example*

G1

...
〈lgd:240111203,geo:long,11.3700843〉
〈lgd:240111203,lgd:population,1595〉
〈lgd:240111203,rdfs:label,"Kromsdorf"〉
〈lgd:240111203,geo:lat,50.9988888889〉
〈lgd:240111203,lgd:alderman,"B. Grobe"〉
〈lgd:240111203,lgd:is in,lgd:51477〉
...

G2

...
〈dbp:Kromsdorf,geo:long,11.3701〉
〈dbp:Kromsdorf,rdfs:label,"Kromsdorf"〉
〈dbp:Kromsdorf,geo:lat,50.9989〉
〈dbp:Kromsdorf,dbp:populationTotal,1595〉
〈dbp:Kromsdorf,dbp:located in,dbp:Germany〉
〈dbp:Kromsdorf,dbp:district,dbp:Weimarer〉
...

Merged G1 2

...
〈lgd:240111203,:long,11.3700843〉
〈lgd:240111203,:population,1595〉
〈lgd:240111203,:label,"Kromsdorf"〉
〈lgd:240111203,:lat,50.9988888889〉
〈lgd:240111203,:alderman,"B. Grobe"〉
〈lgd:240111203,:is in,lgd:51477〉
〈lgd:240111203,:district,dbp:Weimarer〉
...

* this example is from our paper: B. D. Trisedya, J. Qi, and R. Zhang, ”Entity alignment between
knowledge graphs using attribute embeddings,” in AAAI, vol. 33, 2019, pp. 297–304.

denoted by G1 and G2 (we use prefixes "lgd:" and "dbp:" to simplify the original spell

out). The subjects in these two subsets refer to the same entity Kromsdorf, even though

they are in different forms "lgd:240111203" and "dbp:Kromsdorf". We aim to iden-

tify such entities and give them a unified ID such that both KGs can be merged together

through them. In Table 3.1, G1 2 denotes the merged KG, where lgd:240111203 is used

as the unified ID for the entity Kromsdorf which has a set of properties that is the union

3.1 Introduction 49

of the sets of properties from both KGs.

Early studies on entity alignment are based on the similarity between the properties

of entities [101,110,158]. These methods rely on user-defined rules to determine the prop-

erties to be compared between the entities. For example, the properties to be compared

between entities of the two KGs in Table 3.1 are rdfs:label, geo:lat, and geo:long.

Such approaches are error-prone because different pairs of entities may need different

properties to be compared, e.g., for two celebrity entities, they may not have properties

such as geo:lat and geo:long.

Recently, embedding-based models are proposed for entity alignment. Such models

are built on top of a KG embedding model, such as translation-based models (e.g., TransE

[11]) and Graph Neural Network (GNN-based) models (e.g., GCN [68]). TransE learns en-

tity embeddings that capture the similarity between entities within a single KG based on the

relationship triples in the KG. To adapt the KG embedding for entity alignment between

two KGs, the embedding-based models require both predicate and entity embeddings of

two KGs to fall in the same vector space. To address this problem, Chen et al. [19,20] and

Zhu et al. [186] proposed embedding-based entity alignment models that learn an em-

bedding space for each KG separately and use a transition matrix to map the embedding

space from one KG to the other as illustrated in Figure 3.1. Their models rely on large

numbers of seed alignments (i.e., a seed set of aligned entities from two KGs) to compute

the transition matrix. However, the seed alignments between two KGs are rarely avail-

able, and hence are difficult to obtain due to expensive human efforts required. Similar

to translation-based models, the GNN-based models [14, 143, 163, 168, 172, 175] also re-

quire seed alignments. In GNN-based models, the lost function is based on the distances

between entities in the seed alignments. Thus, these models have the same problems as

the translation-based models when being used for aligning entities from different KGs.

In this thesis, we address the above limitations by proposing TransAlign, a fully auto-

matic and effective embedding-based entity alignment model that does not require any

human intervention either in aligning predicates or in collecting seed alignments. It is

also worth noting that our proposed model does not require seed alignments. TransAlign

includes joint learning of entity, predicate, and attribute embeddings to ensure the result-

50 Fully Automatic and Effective Embedding-Based Entity Alignment

mayor

country

lgd:240111203

lgd:11011239

lgd:51477

dbp:Kromsdorf

dbp:Weimarer

dbp:Germany

country

district

<0.1, ..., 0.4> <0.9,..., 0.7>

Transition
Matrix from

seed
alignments

<0.8, ..., 0.7>

Seed Alignment
lgd:1234 == dbp:Melbourne
lgd:2345 == dbp:Australia
...

KG2KG1

embeddings e1 embeddings e2

embeddings e1’

Similarity for
alignment

Figure 3.1: Embedding-based knowledge bases alignment

ing embeddings fall in the same vector space. To align predicates from two KGs, we

compute predicate embeddings over a predicate proximity graph, where each predicate

is a vertex that represents a relationship between entity types (instead of entities). We

create such a graph by replacing the subject and object of KG triples by their correspond-

ing types. For example, we replace the triples 〈dbp:Kromsdorf, dbp:located in,

dbp:Germany〉 and 〈lgd:240111203, lgd:is in, lgd:51477〉with the triples 〈vill-

age, dbp:located in, country〉 and 〈village, lgd:is in, country〉, respectively.

Using the predicate proximity graph, our model can learn the similarity between predi-

cates from two KGs that represent the same relationships, e.g., the predicates dbp:located in

and lgd:is in.

To yield a unified entity embedding space for two KGs, our model first generates at-

tribute embeddings from the attribute triples and then uses this attribute embeddings to

shift the entity embeddings of two KGs to the same vector space. We observe that many

knowledge graphs contain large numbers of attribute triples, which have not been uti-

lized for entity alignment so far. For example, DBpedia, YAGO, LinkedGeoData, and

Geonames contain 47.62%, 62.78%, 94.66%, and 76.78% of attribute triples, respectively.

The attribute similarity between two KGs helps the attribute embedding to yield a uni-

fied embedding space for two KGs. This enables us to use attribute embeddings to shift

the entity embeddings of two KGs into the same vector space and hence allows the en-

3.2 Preliminary 51

tity embeddings to capture the similarity between entities from two KGs. We further

use the transitive rule (e.g., by knowing that Emporium Tower is located in London

and London is located in England, we also know that Emporium Tower is located in

England.) to enrich KG triples for embedding computation.

Our contributions are summarized as follows:

• We propose a fully automatic embedding-based entity alignment model to learn the

similarity between entities in two KGs with no seed alignments required (neither

predicate nor entity seed alignments).

• To compute the entity embeddings, we propose a novel embedding model that inte-

grates entity embeddings with attribute embeddings to learn a unified embedding

space for two KGs.

• We propose a novel fully automatic predicate alignment procedure by learning

predicate embeddings from a predicate proximity graph of two KGs to capture the

similarity between predicates across two KGs automatically.

• We propose a joint learning scheme of entity, predicate, and attribute embeddings

to ensure the resulting embeddings fall in the same vector space.

• We evaluate the proposed model over three real KG pairs. The results show that

our model outperforms the state-of-the-art models [14, 19, 141] consistently on the

entity alignment task by over 40% in terms of hits@1.

The rest of this chapter is organized as follows. Section 3.2 defines the studied prob-

lem. Section 3.3 details the proposed model. Section 3.4 presents the experimental results.

Section 3.5 summarizes the chapter.

3.2 Preliminary

We start with the problem definition. A knowledge graph G consists of a combination

of relationship triples and attribute triples. A relationship triple is in the form of 〈s, p, o〉,

52 Fully Automatic and Effective Embedding-Based Entity Alignment

where p is a relationship (predicate) between two entities s (subject) and o (object). Mean-

while, an attribute triple is in the form of 〈s, p, a〉 where a is an attribute value of entity

s with respect to the predicate (relationship) p. Given two knowledge graphs G1 and G2,

the task of entity alignment aims to find every pair 〈s1, s2〉 where s1 ∈ G1, s2 ∈ G2, and

s1 and s2 represent the same real-world entity. We use an embedding-based model that

assigns a continuous representation for each element of a triple in the forms of 〈s, p, o〉

and 〈s, p, a〉, where the bold-face letters denote the vector representations of the corre-

sponding element.

Our proposed model is built on top of a transition-based embedding model such as

TransE [11]. We first discuss TransE and its limitations when being used for entity align-

ment before presenting our proposed model.

3.2.1 TransE

Given a relationship triple 〈s, p, o〉, TransE suggests that the embeddings of the tail en-

tity o (i.e., object) should be close to the embeddings of the head entity s (i.e., subject)

plus the embeddings of the relationship p, i.e., s + p ≈ o. Such an embedding model

aims to preserve the structural information of the entities, i.e., entities that share similar

neighbor structures in a knowledge graph should have a close representation in the em-

bedding space. We call it a structure embedding. To learn the structure embedding, TransE

minimizes a margin-based objective function JSE:

JSE = ∑
tr∈Tr

∑
t′r∈T′r

max
(
0,
[
γ + f (tr)− f (t′r)

])
(3.1)

f (tr) = ‖s + p− o‖2 (3.2)

Tr = {〈s, p, o〉|〈s, p, o〉 ∈ G} (3.3)

Tr
′ =

{〈
s′, p, o

〉
| s′ ∈ E

}
∪
{〈

s, p, o′
〉
| o′ ∈ E

}
(3.4)

Here, ‖x‖2 is the L2-Norm of vector x, γ is a margin hyperparameter, and Tr is the set

of valid relationship triples from the training dataset, and T′r is the set of corrupted rela-

tionship triples (E is the set of entities in G). The corrupted triples are used as negative

3.3 Proposed Model 53

samples, which are created by replacing the head or tail entity of a valid triple in Tr with

a random entity.

TransE has been used to address KG completion tasks that aim to predict missing en-

tities or relations based on existing triples in a KG. TransE constructs a low-dimensional

and continuous vector (i.e., embeddings) to describe the latent semantic information (as

reflected by the neighboring entities) of a KG. The resulting embeddings capture the

similarity between entities in the embedding space. For example, the embedding of

dbp:Germany should be close to the embedding of dbp:France as both entities rep-

resent two countries in Europe; they share similar types of neighboring entities (e.g.,

currency, continent, etc.).

The advantages of structure embedding drive further studies of embedding-based

entity alignment. However, a straightforward implementation of structure embedding

for entity alignment has limitations: the entity embeddings computed on different KGs

may fall in different spaces, where similarity cannot be computed directly. Existing tech-

niques [19, 141, 186] address this limitation by computing a transition matrix to map the

embedding spaces of different KGs into the same space, as discussed earlier. However,

such techniques require manually collecting a seed set of aligned entities from the differ-

ent KGs to compute the transition matrix, which do not scale and are vulnerable to the

quality of the selected seed aligned entities.

Next, we detail our proposed model to address these limitations.

3.3 Proposed Model

We present an overview of our proposed model in Section 3.3.1. We detail the compo-

nents of the proposed model afterwards, including predicate embedding module in Section

3.3.2, structure embedding module in Section 3.3.3, attribute embedding module in Section

3.3.4, entity alignment in Section 3.3.6, and triple enrichment in Section 3.3.7.

54 Fully Automatic and Effective Embedding-Based Entity Alignment

GU = G1 ∪ G2

hlgd:240111203,lgd:population,1595i; hlgd:240111203,rdfs:label,‘Kromsdorf’i;
hdbp:Kromsdorf,rdfs:label,‘Kromsdorf’i; hdbp:Kromsdorf,dbp:population_total,1595i;
hdbp:Kromsdorf,dbp:located_in,dbp:Germanyi;hlgd:240111203,lgd:is_in,lgd:51477i;
...

Relationship Triple
hlgd:240111203,lgd:is_in,lgd:51477i
hdbp:Kromsdorf,dbp:located_in,dbp:Germanyi
...

Transitivity rule

Attribute Triple
hlgd:240111203,rdfs:label,‘Kromsdorf’i
hdbp:Kromsdorf,rdfs:label,‘Kromsdorf’i
...

Transitivity rule

Predicate Proximity Triples
hvillage,lgd:is_in,countryi
hvillage,dbp:located_in,countryi
hvillage,lgd:population,integeri
hvillage,rdfs:label,stringi
...

Predicate Embedding

spvillage plgd:is_in opcountry

+ =

f
Attribute Character Embedding

scelgd:24111203 prdfs:label cK cr cr cf

g+ fa= ...

Structure Embedding

sselgd:24111203 plgd:is_in olgd:51477

+ =

sselgd:24111203
=

scelgd:24111203

update

Transfer
predicate
embeddings

1. Predicate Embedding Module

2. Attribute Embedding Module

3. Structure Embedding Module

Figure 3.2: Overview of our proposed solution for entity alignment

3.3.1 TransAlign Overview

TransAlign is a fully automatic and effective embedding-based entity alignment model

for aligning entities across different KGs. Our proposed model is a joint learning model

of entity, predicate, and attribute embeddings from different KGs. TransAlign consists of

three embedding modules, including predicate embedding, attribute embedding, and struc-

ture embedding. Fig 3.2 illustrates the interaction of these embedding modules in TransAlign.

Embedding-based entity alignment requires the embeddings (both predicate and en-

tity embeddings) of two KGs to fall in the same vector space. To train such a model,

3.3 Proposed Model 55

we first combine two knowledge graphs GU = G1 ∪ G2. From the combined graph, we

create three sets of triples, including the set of predicate proximity triples Tp, the set of

relationship triples Tr, and the set of attribute triples Ta. In the set of predicate proximity

triples, each predicate represents a relationship between entity types. We train the pred-

icate embeddings (detailed in Section 3.3.2) using these triples. This way, our model not

only generates a unified embedding space of predicates but also captures the similarity

between predicates from two KGs. The predicate embeddings are then used to compute

the attribute and the structure embeddings.

The structure embedding (detailed in Section 3.3.3) is learned using the set of rela-

tionship triples Tr, while the attribute embedding (detailed in Section 3.3.4) is learned

using the set of attribute triples Ta. Initially, the structure embeddings of the entities

that come from G1 and G2 fall into different vector spaces because the entities from both

KGs are represented using different naming schemes. On the contrary, the attribute em-

beddings learned from the attribute triples Ta can fall into the same vector space. This

is achieved by learning character embeddings from the attribute strings, which can be

similar even if the attributes are from different KGs (we call it attribute character embed-

ding). Then, we use the resulting attribute character embedding to shift the structure

embeddings of the entities into the same vector space, which enables the entity embed-

dings to capture the similarity between entities from two KGs. As an example, suppose

that we have triples 〈lgd:240111203, lgd:is in, lgd:51477〉 and 〈lgd:51477,

rdfs:label, "Germany"〉 from G1, and 〈dbp:Kromsdorf, dbp:located in,

dbp:Germany〉 and 〈dbp:Germany, rdfs:label, "Germany"〉 from G2. The at-

tribute character embedding allows both entities lgd:5147 and dbp:Germany to have

similar vector representations since both entities have a similar attribute value "Germany".

Then, the structure embeddings of entities lgd:240111203 and dbp:Kromsdorf will

also be similar since the two entities share similar predicate representation (from the

predicate embedding similarity) and have two tail entities lgd:51477 and dbp:Germany

which have similar vector representations.

Once we have the embeddings for all entities in G1 and G2, the entity alignment mod-

ule (detailed in Section 3.3.6) finds every pair 〈s1, s2〉 where s1 ∈ G1 and s2 ∈ G2 with a

56 Fully Automatic and Effective Embedding-Based Entity Alignment

Table 3.2: Example of predicate triples

(a) Predicate triples of relationship lgd:is in

LinkedGeoData

...
〈lgd:240111203,lgd:is in,lgd:240055406〉
〈lgd:240055406,lgd:is in,lgd:473883922〉
〈lgd:473883922,lgd:is in,lgd:51477〉
...

(b) Predicate triples of relationship dbp:located in

DBpedia

...
〈dbp:Kromsdorf,dbp:located in,dbp:Weimarer Land〉
〈dbp:Weimarer Land,dbp:located in,dbp:Thuringia〉
〈dbp:Thuringia,dbp:located in,dbp:Germany〉
...

lgd:is_in

lgd:240055406lgd:240111203

lgd:240055406 lgd:473883922

lgd:51477lgd:473883922

dbp:located_in

dbp:Weimarer_
Landdbp:Kromsdorf

dbp:Weimarer_
Land dbp: Thuringia

dbp:Germanydbp:Thuringia

(a) Predicate graph of relationship lgd:is in (left) and dbp:located in (right)

lgd:is_in

districtvillage

district state

countrystate

dbp:located_in

districtvillage

district state

countrystate

(b) Predicate proximity graph of relationship lgd:is in (left) and dbp:located in (right)

Figure 3.3: Graph representation of predicate triples

similarity score above a threshold β.

To further improve the performance of the model, we use the relationship transitivity

rule to enrich the properties of an entity that helps build a more robust attribute embed-

ding for computing the similarity between entities. This is detailed in Section 3.3.7.

3.3 Proposed Model 57

3.3.2 Predicate Embedding

The same predicates from two knowledge graphs typically connect the same real-world

entities. However, they may exist in different surface forms. For the example in Ta-

ble 3.2, the predicate lgd:is in in LinkedGeoData and the predicate dbp:located in

in DBpedia map three entity pairs. In LinkedGeoData, the predicate lgd:is in maps

〈lgd:240111203,lgd:240055406〉, 〈lgd:240055406,lgd:473883922〉, and 〈lgd:-

473883922,lgd:51477〉. Meanwhile, the predicate dbp:located in in DBpedia maps

〈dbp:Kromsdorf,dbp:Weimarer Land〉, 〈dbp:Weimarer Land,dbp:Thuringia〉,

and 〈dbp:Thuringia, dbp:Germany〉. Here, the entity pairs from both knowledge

graphs correspond to the same real-world entity pairs. For example, the head and tail en-

tities of the entity pair 〈lgd:240111203, lgd:240055406〉 and 〈dbp:Kromsdorf,

dbp:Weimarer Land〉 correspond to a village named Kromsdorf and a district named

Weimarer Land, respectively. However, due to different naming schemes of two knowl-

edge graphs, entity embedding models may not capture this similarity. For example, if

we applied an entity embedding model to the raw knowledge graph, the predicate em-

beddings of lgd:is in and dbp:located in may fall in different vector spaces.

To address the above problem and provide a fully automatic predicate alignment

procedure, our model learns predicate embeddings from a predicate proximity graph of

two KGs. Hence, our model can automatically capture the similarity between predicates

across two KGs. A predicate proximity graph is a graph that represents the relationships

between entity types instead of entities. We create the predicate proximity graph by re-

placing entities by their corresponding types. First, we combine two knowledge graphs

GU = G1 ∪ G2. Then, we replace the subject and object of each triple in the combined

graph to their corresponding entity types. We take the label of entity types from each

knowledge graph to replace the subject and object of the corresponding triples. As illus-

trated in Fig 3.3(b), we replace the entity lgd:240111203 with its type, village.

We obtain the entity types by extracting the value of rdfs:type predicate for all

entities from each KG. Typically, each entity has multiple types. For example, the entity

Germany may have multiple entity types {thing, place, location, country}

in a KG. Moreover, different KGs may have different schemes of entity types, e.g., in

58 Fully Automatic and Effective Embedding-Based Entity Alignment

another KG, the entity Germany may have entity types {place, country}. To get a

consistent entity type scheme from different KGs, we only take the most specific entity

type for each entity, e.g., we take country instead of place for the entity Germany. The

level of specificity of an entity type is determined by its hierarchy in WordNet [39]. For

the attribute values, we extract the corresponding data type for each value (e.g., string,

integer, date, etc.).

After obtaining a predicate proximity graph, we compute the predicate embeddings

by minimizing the following objective function:

JPE = ∑
tp∈Tp

∑
t′p∈T′p

max
(

0,
[
γ + f (tp)− f (t′p)

])
(3.5)

f (tp) =
∥∥sp + p− op

∥∥
2 (3.6)

Tp = {〈sp, p, op〉|〈sp, p, op〉 ∈ Gp; sp, op ∈ Ep} (3.7)

Tp
′ =

{〈
s′p, p, op

〉
| s′p ∈ Ep

}
∪
{〈

sp, p, o′p
〉
|p o′ ∈ Ep

}
(3.8)

Here Gp is the predicate proximity graph, Ep is the set of entities in Gp (i.e., the entity

types) Tp and T′p are the valid and corrupted triples (i.e., for negative samples) from

the predicate proximity graph, respectively. By optimizing the above objective function,

our model yields a unified predicate embedding space from two knowledge graphs. We

maintain the predicates from two knowledge graphs, and hence we can transfer these

unified predicate embeddings to learn the structure and the attribute character embed-

dings.

3.3.3 Structure Embedding

We follow TransE to compute the structure embeddings. TransE considers the same

weight for each neighbor in computing the embeddings of an entity, i.e., to update the

embeddings of an entity, all neighbors have the same contribution. However, this as-

sumption may not give any advantage in entity alignment since different knowledge

graphs are typically do not have the same structure (e.g., have different sets of pred-

icates), which does not help in computing the similarity between entities in different

3.3 Proposed Model 59

knowledge graphs. From the example in Table 3.1, the predicates lgd:alderman and

dbp:district do not help in entity alignment.

To tackle the above problem, we adapt TransE to learn the structure embedding for

entity alignment between KGs by focusing the embedding learning more on the aligned

triples (i.e., triples with aligned predicates). We take benefit from the knowledge base

predicate naming scheme convention1 that provides standardization for typical predicate

such as label, type, etc. The adaptation is done by adding a weight α to control the

embedding learning over the triples. To learn the structure embedding, in our model, we

minimize the objective function JSE adapted from Eq. (3.1) as follows:

JSE = ∑
tr∈ Tr

∑
t′r∈ T′r

max
(
0, γ + α

(
f (tr)− f (t′r)

))
(3.9)

α =
count(r)
|T| (3.10)

where Tr is the set of valid relationship triples, T′r is the set of corrupted relationship

triples, count(r) is the number of occurrences of relationship r, and |T| is the total number

of triples in the merge KG G1 2. Typically, the number of occurrences of the aligned

predicates is higher than the non-aligned predicates since the aligned predicates appear

in both KGs, and hence allows the model to learn more from the aligned triples. For

example, for the triples in Table 3.1, the weight α helps the embedding model to focus

more on relationships rdfs:label, geo:lat, and geo:long (α = 2/12 for each of

these predicates) than on relationships lgd:alderman or dbp:district (α = 1/12

for each of these predicates).

3.3.4 Attribute Character Embedding

Following TransE, for the attribute character embedding, we interpret predicate p as a

translation from the head entity s to the attribute a. However, the same attribute may

appear in different forms in two KGs, e.g., 50.9989 vs. 50.9988888889 as the lati-

tude of an entity; "Barack Obama" vs. "Barack Hussein Obama" as a person name,

1https://www.w3.org/TR/rdf-schema/

60 Fully Automatic and Effective Embedding-Based Entity Alignment

etc. Hence, we use a compositional function to encode the attribute value and define

the relationship of each element in an attribute triple as s + p ≈ fa(a). Here, fa(a)

is a compositional function and a is a sequence of the characters of the attribute value

a = {c1, c2, c3, ..., ct}. The compositional function encodes the attribute value into a sin-

gle vector and maps similar attribute values to a similar vector representation. We define

three compositional functions as follows.

Sum compositional function (SUM). The first compositional function is defined as a

summation of all character embeddings of the attribute value.

fa(a) = c1 + c2 + c3 + ... + ct (3.11)

where c1, c2, ..., ct are the character embeddings of the attribute value. This compositional

function is simple, but it suffers in that two strings that contain the same set of characters

with a different order will have the same vector representation (i.e., order invariant). For

example, two coordinates "50.15" and "15.05" will have the same vector representa-

tion.

LSTM-based compositional function (LSTM). To address the problem of SUM, we pro-

pose an LSTM-based compositional function. This function uses LSTM networks to en-

code a sequence of characters into a single vector. We use the final hidden state of the

LSTM networks as a vector representation of the attribute value.

fa(a) = flstm(c1, c2, c3, ..., ct) (3.12)

where flstm is the LSTM networks as defined by Hochreiter et al. [55].

N-gram-based compositional function (N-gram). LSTM-based compositional function

handles the order invariant problem of the SUM compositional function. However, the

LSTM-based compositional function only considers the unigram features of a string. To

capture rich compositional information of a string, we further propose an N-gram-based

compositional function as an alternative to the above compositional functions. Here, we

use the summation of the n-gram combination of the attribute value. This way our pro-

posed n-gram compositional function can capture the partial similarity between attribute

3.3 Proposed Model 61

values. For example, for two attribute values, 1.7 meter and 170 cm, the n-gram com-

positional function can capture the similarity between the two attribute values based on

the characters: "1", "7", and "m".

fa(a) =
N

∑
n=1

(
∑l

i=1 ∑n
j=i cj

t− i− 1

)
(3.13)

where N indicates the maximum value of n used in the n-gram combinations (N = 10 in

our experiments), and l is the length of the attribute value.

To learn the attribute character embedding, we minimize the following objective func-

tion JCE:

JCE = ∑
ta∈Ta

∑
t′a∈T′a

max
(
0,
[
γ + α

(
f (ta)− f (t′a)

)])
(3.14)

f (ta) = ‖s + p− fa(a)‖2 (3.15)

Ta = {〈s, p, a〉 ∈ G} (3.16)

Ta
′ =

{〈
s′, p, a

〉∣∣ s′ ∈ E
}
∪
{〈

s, p, a′
〉
|a′ ∈ A

}
(3.17)

Here, Ta is the set of valid attribute triples from the training dataset, while T′a is the set of

corrupted attribute triples (A is the set of attributes in G). The corrupted triples are used

as negative samples by replacing the head entity with a random entity or the attribute

with a random attribute value. f (ta) is the plausibility score computed based on the

embedding of the head entity s, the embedding of the relationship p, and the vector

representation of the attribute value computed using the compositional function fa(a).

3.3.5 Joint Learning Embedding Model

Our model jointly learns the predicate embeddings, the structure embeddings, and the

attribute character embeddings. The proposed model trained over the predicate proxim-

ity graph to yield the same predicate embeddings space. Our model uses these predicate

embeddings to learn the structure and attribute character embeddings. The attribute em-

bedding model yields the same embeddings space for two knowledge graphs, but lack

of structure information. On the other hand, the structure embedding model may yield

62 Fully Automatic and Effective Embedding-Based Entity Alignment

different embedding space for two knowledge graphs. To get benefit from the structure

embeddings for entity alignment, we use the attribute character embedding sce to shift

the structure embedding sse into the same vector space by minimizing the following ob-

jective function JSIM:

JSIM = ∑
h∈G1∪G2

[1− cos(sse, sce)] (3.18)

Here, cos(sse, sce) is the cosine similarity of vector sse and sce. As a result, the structure

embedding captures the similarity of entities between two KGs based on entity relation-

ships, while the attribute character embedding captures the similarity of entities based

on attribute values. The overall objective function of the joint learning of structure em-

bedding and attribute character embedding is:

J = JPE + JSE + JCE + JSIM (3.19)

3.3.6 Entity Alignment

The existing embedding-based entity alignment models are considered as supervised

models that need seed alignments to learn entity alignments from two knowledge graphs.

Unlike the existing models, our proposed model is unsupervised – it captures the similar-

ity between entities from two knowledge graphs by learning a unified entity embedding

space via predicate and attribute embeddings. Hence, our model does not need seed

alignments. Our joint learning embedding model lets similar entities from G1 and G2 to

have close vector representations. Thus, the resulting embeddings can be used for entity

alignment. We compute the following equation for entity alignment.

smap = argmax
s2∈G2

cos(s1, s2) (3.20)

Given an entity s1 ∈ G1, we compute the similarity between s1 and all entities s2 ∈ G2;〈
s1, smap

〉
is the expected pair of aligned entities. We use a similarity threshold β to filter

the pair entities that are too dissimilar to be aligned.

3.4 Experiments 63

3.3.7 Triple Enrichment via Transitivity Rule

In translation based embedding models such as TransE, the embeddings of an entity is

learned by aggregating information from its immediate neighbors (i.e., one-hop neigh-

bors). These models may implicitly learn the multi-hop relationships between entities via

information propagation after many training epochs. However, the information propa-

gation of the multi-hop relationship is weak. On the other hand, the explicit inclusion of

multi-hop relationships (e.g., transitive relationships) increases the number of attributes

and related entities for each entity, which helps identify the similarity between entities.

For example, given triples 〈dbp:Emporium Tower, :locatedIn, dbp:London〉 and

〈dbp:London, :country, dbp:England〉, we can infer that dbp:Emporium Tower

has a relationship (i.e., ":locatedInCountry") with dbp:England. In fact, this infor-

mation can be used to enrich the related entity dbp:Emporium Tower. We treat the

one-hop transitive relation as follows. Given transitive triples 〈s1, p1, o1〉 and 〈o1, p2, o2〉,

we interpret p1.p2 as a relation from head entity s1 to tail entity o2. Therefore, the rela-

tionship between these transitive triples is defined as s1 + (p1.p2) ≈ o2. The objective

functions of the transitivity-enhanced embedding models are adapted from the Eq. (3.9)

and Eq. (3.14) by replacing the relationship vector p with p1.p2.

3.4 Experiments

We design the experiments to show the power of our proposed model from three different

aspects. First, we show the power of our model in entity alignment. Second, we show

that our predicate embedding model trained over a predicate proximity graph achieves

satisfying performance on aligning predicate from different knowledge graphs. Third,

we show that the resulting embeddings of our proposed model preserve the structure

information of knowledge graphs, which is the original objective of knowledge graph

embedding models.

64 Fully Automatic and Effective Embedding-Based Entity Alignment

Table 3.3: Statistics of the dataset for entity alignment

Dataset Entities
Attribute
Triples

Relationship
Triples

LGD 24,309 90,054 10,084
DBP-LGD DBP 22,748 166,008 19,594

GEO 21,794 98,790 17,410
DBP-GEO DBP 22,748 166,008 19,594

YAGO 30,628 173,309 38,451
DBP-YAGO DBP 33,627 184,672 36,906

3.4.1 Dataset

We evaluate our model on four real KGs including DBpedia (DBP) [3], LinkedGeoData

(LGD) [136], Geonames (GEO)2, and YAGO [57]. We run our proposed model to align en-

tities of DBP with those of LGD, GEO, and YAGO, respectively. We compare the aligned

entities found by our model with those in three ground truth datasets, DBP-LGD, DBP-

GEO, and DBP-YAGO, which contain aligned entities3 between DBP and LGD, GEO,

and YAGO, respectively. We focus on the LOCATION entities in the LGD and GEO KGs

since both KGs contain mainly geographical data. We consider LOCATION, PERSON, and

ORGANIZATION entities in the YAGO KG. DBP-YAGO contains 15,000 aligned entities

and 279 predicates; DBP-LGD contains 10,000 aligned entities and 510 predicates; DBP-

GEO contains 10,000 aligned entities and 716 predicates. The datasets are summarized in

Table 3.3.

3.4.2 Hyperparameters

We use grid search to find the best hyperparameters for the models. We choose the em-

beddings dimensionality d among {50, 75, 100, 200}, the learning rate of the Adam opti-

mizer among {0.001, 0.01, 0.1}, and the margin γ among {1, 5, 10}. We train the models

with a batch size of 100 and a maximum of 400 epochs.

2http://www.geonames.org/ontology/
3http://downloads.dbpedia.org/2016-10/links/

3.4 Experiments 65

3.4.3 Compared Models

We compare TransAlign with four existing embedding-based entity alignment models,

including:

• TransE [11], which is the adapted knowledge graph embedding model for entity

alignment. We use the same procedure as in our proposed model to perform entity

alignment using TransE. First, we combine two knowledge graphs. Then, we ap-

ply TransE to compute the entity embeddings of the combined graph. Finally, we

compare the embeddings for entity alignment.

• MTransE [19], which is the state of the art embedding-based entity alignment model

on top of TransE. MTransE learns a transition matrix from seed alignments to yield

a unified embedding space from two knowledge graphs.

• JAPE [141], which is another state of the art embedding-based entity alignment

model on top of TransE. JAPE combines the relationship triples with masked at-

tribute triples. A masked attribute triple is an attribute triple in which its object

(literals) is replaced by its data type (e.g., string, integer, etc.).

• MuGNN [14], which is the state-of-the-art embedding-based model on top of Graph

Convolutional Network (GCN) [68].

3.4.4 Entity Alignment Results

We evaluate the performance of the models using hits@k(k = 1, 10) (i.e., the proportion

of correctly aligned entities ranked in the top k predictions), and the mean of the rank

(MeanRank) of the correct (i.e., matching) entity. Higher hits@k and lower MeanRank

indicate better performance. For each entity from DBP, we use Eq. (3.20) to compute the

similarity scores with entities from the other KG (LGD/GEO/YAGO).

Table 3.4 shows that our proposed model consistently outperforms the baseline mod-

els, with p < 0.01 based on the t-test on the MR. As expected, TransE has poor perfor-

mance on the entity alignment task because its embeddings of different KGs fall into

different vector spaces. Hence, it fails to capture the entity similarity between KGs.

66 Fully Automatic and Effective Embedding-Based Entity Alignment

Table 3.4: Performance comparisons of entity alignment models

(a) Entity alignment on LGD-DBP dataset

Model
LGD-DBP

hits@1 hits@10 MeanRank

TransE 2.61 7.01 18445
MTransE 33.29 34.32 10194
JAPE 33.33 33.35 5104
MuGNN 38.62 39.97 3526
SUM 50.26 63.11 482
LSTM 59.11 71.27 302
N-gram 82.96 92.54 35

+Transitivity

SUM 51.88 65.61 392
LSTM 60.97 72.96 126
N-gram 84.17 92.05 29

(b) Entity alignment on GEO-DBP dataset

Model
GEO-DBP

hits@1 hits@10 MeanRank

TransE 1.34 6.71 17145
MTransE 33.34 33.98 10240
JAPE 33.35 33.75 5088
MuGNN 37.01 41.22 3546
SUM 50.23 62.81 915
LSTM 61.87 73.08 208
N-gram 85.31 92.72 78

+Transitivity

SUM 52.28 64.39 816
LSTM 62.35 72.91 259
N-gram 86.91 93.32 23

(c) Entity alignment on YAGO-DBP dataset

Model
YAGO-DBP

hits@1 hits@10 MeanRank

TransE 1.22 3.54 24809
MTransE 33.46 34.32 7105
JAPE 33.35 33.37 5296
MuGNN 39.32 41.87 3987
SUM 81.14 81.72 158
LSTM 86.14 92.18 104
N-gram 90.31 94.43 21

+Transitivity

SUM 80.78 82.14 209
LSTM 86.88 91.07 75
N-gram 91.44 94.52 19

Meanwhile, MTransE, JAPE, and MuGNN rely on the number of the seed alignments,

i.e., the larger the number of the seed alignment, the better their performances. In this

experiment, we take 30% of the gold standard as the seed alignments, as suggested in the

original papers.

To further investigate the effect of seed alignments on the existing methods, we grad-

ually increase the proportion of seed alignments, from 10% to 50%. The results in Fig. 3.4

3.4 Experiments 67

10 20 30 50
20

40

60

80

seed alignments (%)

hi
ts

@
1

LGD-DBP

10 20 30 50
20

40

60

80

seed alignments (%)
hi

ts
@

1

GEO-DBP

10 20 30 50
20

40

60

80

seed alignments (%)

hi
ts

@
1

YAGO-DBP

MTransE JAPE MuGNN Proposed (without seed alignment)

Figure 3.4: The effect of seed alignment size on the existing embedding-based entity
alignment models.

SUM LSTMN-gram

60

80

100

52
.0

1 61
.7

5

85
.3

2

51
.8

8

60
.9

7

84
.1

7

LGD-DBP

hi
ts

@
1

SUM LSTMN-gram

60

80

100

54
.0

5

62
.2

9

88
.6

1

52
.2

8 62
.3

5

86
.9

1

GEO-DBP

hi
ts

@
1

SUM LSTMN-gram

60

80

100

81
.1

2

86
.6

5

91
.0

2

80
.7

8

86
.8

8

91
.4

4

YAGO-DBP

hi
ts

@
1

Semi-automatic predicate alignment
Proximity-graph-based predicate alignment

Figure 3.5: The effect of predicate alignment models.

show that the performances of these methods are increasing along with the increase of

the seed alignment proportions, i.e., these methods rely on seed alignments. In contrast,

our proposed method does not need any seed alignment. The predicate alignments are

learned from the predicate proximity graph, while the entity alignments are learned from

the combination of the structure embeddings and the attribute character embeddings.

Among our attribute character embedding models, the N-gram compositional func-

tion gives the best performance. This is because the N-gram compositional function pre-

serves string similarity better when mapping attribute strings to their vector representa-

tions than the other functions. The transitivity rule further improves the performance of

the model since it enriches the attributes of the entities, which allows more attributes to

68 Fully Automatic and Effective Embedding-Based Entity Alignment

be used in the alignment.

3.4.5 Predicate Alignment Methods Comparison

To show the power of a predicate proximity graph for predicate alignment, we compare

it with a semi-automatic predicate alignment procedure. In the semi-automatic predicate

alignment procedure, we rename the similar predicates of two KGs with a unified naming

scheme to have a unified vector space for the relationship embeddings. First, we use

string edit distance to find the similar predicates from two KGs, and then we manually

remove the false positive. From the results in Fig. 3.5, we can see that both approaches

(i.e., the predicate proximity graph and the semi-automatic predicate alignment) help

our entity alignment model achieve comparable performance in terms of hits@1, while

our proposed predicate embeddings method does not require any error-prone manual

intervention.

3.4.6 Discussion
To evaluate the power of our attribute character embedding in capturing the similarity

between entities, we further create rule-based models for entity alignment, where we

simply use the edit distance between entity label strings to align the entities. For the

DBP-LGD and DBP-GEO datasets, we add coordinate similarity as an additional feature

since both datasets only contain LOCATION entities. From Table 3.5, we can see that the

resulting embeddings of our model can be added as another additional feature to enhance

the performance of the rule-based models.

We further evaluate our proposed model on KG completion tasks. We follow two

standard tasks, including link prediction [11] and triple classification [134]. Link predic-

tion aims to predict the missing element (either the entity s or o, i.e., entity link prediction,

or the predicate p, i.e., predicate link prediction) given two other elements (i.e., predicting

s given p and o; predicting o given s and p; or predicting p given s and o). The evalu-

ation protocol for link prediction is defined as follows. First, each relationship triple is

corrupted by replacing one of its elements (i.e., head, predicate, or tail) with all possi-

ble elements in the dataset. Then, these corrupted triples are ranked ascendingly based

3.4 Experiments 69

Table 3.5: Rule-based entity alignment results

(a) Rule-based entity alignment on LGD-DBP dataset

Model
LGD-DBP

hits@1 hits@10 MeanRank

String 80.52 80.57 2603
String + Coord 86.27 88.85 380
String (+ Coord) + Embeddings 88.25 89.04 36

(b) Rule-based entity alignment on GEO-DBP dataset

Model
GEO-DBP

hits@1 hits@10 MeanRank

String 79.32 79.41 2048
String + Coord 87.61 89.15 441
String (+ Coord) + Embeddings 91.27 90.89 29

(c) Rule-based entity alignment on YAGO-DBP dataset

Model
YAGO-DBP

hits@1 hits@10 MeanRank

String 76.41 76.88 484
String + Coord n/a n/a n/a
String (+ Coord) + Embeddings 86.22 86.51 69

on the plausibility score (s + p− o) (i.e., valid triples should have smaller plausibility

scores than corrupted triples). We report hits@10 for the link prediction task. Triple clas-

sification aims to determine whether a triple 〈s, p, o〉 is a valid relationship triple or not.

A binary classifier is trained based on the plausibility score (s + p− o). We report the

percentage of correctly classified triples.

Table 3.6 shows the results of KG completion tasks. Despite not being specifically de-

signed for KG completion tasks, our proposed model achieves competitive performance

on these tasks compared to TransE, which was proposed for these tasks. This degradation

in performance is due to that parameter α in our model guides the model to learn more

on the aligned triples. However, the degradation is not significant with p > 0.05 based on

70 Fully Automatic and Effective Embedding-Based Entity Alignment

Table 3.6: Knowledge Graph Completion Results

Entty Link Prediction Predicate Link Prediction Triple Classification

hits@10 hits@10 Precision

LGD GEO YAGO LGD GEO YAGO LGD GEO YAGO

TransE 78.80 78.77 65.81 86.06 86.29 86.62 80.46 76.94 66.45
MTransE 65.55 63.89 60.40 80.95 80.98 81.00 77.41 73.81 63.21
JAPE 72.89 71.97 61.31 82.64 82.67 82.87 75.19 72.94 62.32
SUM 76.98 74.89 63.11 84.64 84.53 83.43 78.16 73.25 63.12
LSTM 75.17 75.11 63.43 84.31 84.05 84.04 79.21 74.16 63.74
N-gram 75.82 76.75 63.65 83.98 83.85 83.76 77.98 74.31 64.15

Transitivity-enhanced model

SUM 73.11 72.87 61.34 83.74 83.49 83.34 77.86 73.12 62.25
LSTM 74.56 74.47 61.99 83.12 83.06 82.90 77.98 72.19 64.17
N-gram 74.98 75.85 63.19 82.76 82.31 82.02 79.21 73.97 63.81

the t-test on the MR of the link prediction results. Moreover, our method achieves better

performance than the existing embedding-based entity alignment models MTransE and

JAPE on these tasks.

3.5 Summary

In this chapter, we studied the problem of knowledge bases alignment for enriching a

knowledge base and propose an embedding model for aligning entities from two dif-

ferent KBs. Our proposed model integrates predicate embedding, structure embedding,

and attribute character embedding. The predicate embedding is computed over a predi-

cate proximity graph to ensure that the predicate embeddings of two KGs have a unified

embedding space. Meanwhile, to ensure a unified entity embedding space, our proposed

model uses the attribute character embedding to shift the entity embeddings from differ-

ent KGs to the same vector space. Moreover, we adopt the transitivity rule to enrich the

number of attributes of an entity that helps identify the similarity between entities based

on the attribute embeddings.The experimental results show that our proposed model

outperforms the baselines consistently. The results on knowledge base completion show

3.5 Summary 71

that our proposed models that jointly learns the entity, predicate, and attribute embed-

dings can capture the similarity between entities and predicates in both within a KG and

across KGs. The alignment accuracy of our model measured by hits@1 is consistently

over 80%, which makes our proposed model more practical to be used than the existing

models.

This page intentionally left blank.

Chapter 4

An End-to-end Relation Extraction
and Canonicalization Model for

Knowledge Base Enrichment

This chapter is based on a paper that has been published in the Annual Meeting of the Associ-

ation for Computational Linguistics (ACL) 2019: Neural Relation Extraction for Knowledge Base

Enrichment. Bayu Distiawan Trisedya, Gerhard Weikum, Jianzhong Qi, Rui Zhang.

4.1 Introduction

KNOWLEDGE bases alignment (KBA) is one of the approaches to enrich a knowl-

edge base. We have detailed our work on knowledge bases alignment in Chapter

3. Knowledge base enrichment via KBA is done by first aligning entities from differ-

ent knowledge bases that represent the same real-world entity. Then, the properties of

the aligned entities are merged to form a more extensive knowledge base. However, a

merged KB from large knowledge bases such as DBpedia [3], Wikidata [160], and Yago

[139] are far from complete and mandate continuous enrichment and curation.

In this chapter, we present another approach to enrich a knowledge base via rela-

tion extraction from textual sources. Specifically, we aim to extract triples in the form

of 〈s, p, o〉, where s is a head entity (i.e., subject), o is a tail entity (i.e., object), and p is

a relationship (i.e., predicate) between the entities. Importantly, as KBs typically have

much better coverage on entities than on relationships, we assume that s and o are ex-

isting entities in a KB, p is a predicate that falls in a predefined set of predicates that

we are interested in, but the relationship triple 〈s, p, o〉 does not exist in the KB yet. We

73

74
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Q49210:
New York
University

Q777403:
Washington
University

Q731310:
Manhattan

Q6879477:
Missouri

Q30: USA
Q902104:

Private
University

located_in

located_in

country

country
P31: instance_of

Existing KB

Relation Extraction

Sentence : New York University is a private university in Manhattan.
Output : <New York University, instance_of, Private University>

<New York University, located_in, Manhattan>

P31: instance_of

Figure 4.1: Relation extraction for knowledge base enrichment

aim to find more relationships between s and o and add them to the KB. For example,

from the first extracted triples in Figure 4.1, we may recognize two entities New York

University and Private University, which already exist in the KB; also the pred-

icate instance of is in the set of predefined predicates we are interested in, but the rela-

tionship triple 〈New York University, instance of, Private University〉 does

not exist in the KB. We aim to add this relationship to our KB (indicated by the blue

dashed line in the graph in Figure 4.1). This is a typical situation for KB enrichment (as

opposed to constructing a KB from scratch or performing relation extraction for other

purposes, such as question answering or summarization).

KB enrichment mandates that the entities and relationships of the extracted triples

are canonicalized by mapping them to their proper entity and predicate IDs in a KB. Ta-

ble 4.1 illustrates an example of triples extracted from a sentence. The entities and predi-

cate of the first extracted triple, including New York University, instance of, and

Private University, are mapped to their unique IDs Q49210, P31, and Q902104,

respectively, to comply with the semantic space of the KB.

Previous studies on relation extraction have employed both unsupervised and super-

vised approaches. Unsupervised approaches typically start with a small set of manually

defined extraction patterns to detect entity names and phrases about relationships in an

4.1 Introduction 75

Table 4.1: Example of relation extraction from a sentence

Input sentence:

"New York University is a private university in Manhattan."

Unsupervised approach output:

〈New York University,is,private university〉
〈New York University,is private university in,Manhattan〉

Supervised approach output:

〈New York University, instance of, Private University〉
〈New York University, located in, Manhattan〉

Canonicalized output:

〈Q49210, P31, Q902104〉
〈Q49210, P131, Q11299〉

input text. This paradigm is known as Open Information Extraction (Open IE) [5,27,47]. In

this line of approaches, both entities and predicates are captured in their surface forms

without canonicalization. Supervised approaches train statistical and neural models for

inferring relationships between two known entities in a sentence [80, 97, 117, 118, 176].

Most of these studies employ pre-processing steps to recognize entities. Only a few stud-

ies have integrated the mapping of extracted triples onto uniquely identified KB enti-

ties by using logical reasoning on the existing KB to disambiguate the extracted entities

[122, 140].

Most existing methods thus entail the need for Named Entity Disambiguation (NED) (cf.

the survey by Shen et al. [130]) as a separate processing step. In addition, the mapping

of relationship phrases onto KB predicates necessitates another mapping step, typically

aided by paraphrase dictionaries. This two-stage architecture is inherently prone to er-

ror propagation across its two stages: NED errors may cause extraction errors (and vice

versa) that lead to inaccurate relationships being added to the KB.

We aim to integrate the extraction and the canonicalization tasks by proposing an end-

to-end neural learning model to jointly extract triples from sentences and map them into

an existing KB. Our method is based on the encoder-decoder framework [21] by treating

the task as a translation of a sentence into a sequence of elements of triples. For the

example in Table 4.1, our model aims to translate the sentence "New York University

76
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

is a private university in Manhattan" into a sequence of IDs "Q49210 P31

Q902104 Q49210 P131 Q11299", from which we can derive two triples 〈Q49210,

P31, Q902104〉 and 〈Q49210, P131, Q11299〉 to be added to the KB.

A standard encoder-decoder model with attention [4] is, however, unable to capture

the multi-word entity names and verbal or noun phrases that denote predicates. To ad-

dress this problem, we propose a novel form of n-gram based attention that computes the

n-gram combination of attention weight to capture the verbal or noun phrase context that

complements the word level attention of the standard attention model. Our model thus,

can better capture the multi-word context of entities and relationships. Our model har-

nesses pre-trained word and entity embeddings that are jointly learned with skip-gram

[95] and TransE [11]. The advantages of our jointly learned embeddings are twofold.

First, the embeddings capture the relationship between words and entities, which is es-

sential for named entity disambiguation. Second, the entity embeddings preserve the

relationships between entities, which help to build a highly accurate classifier to filter the

invalid extracted triples. To cope with the lack of fully labeled training data, we adapt

distant supervision to generate aligned pairs of sentence-triple as the training data. We

augment the process with co-reference resolution [25] and dictionary-based paraphrase

detection [44, 48]. Co-reference resolution helps extract sentences with implicit entity

names, which enlarges the set of candidate sentences to be aligned with existing triples

in a KB. Meanwhile, paraphrase detection helps filter sentences that do not express any

relationships between entities.

Our contributions are summarized as follows:

• We propose an end-to-end model for extracting and canonicalizing triples to enrich

a KB. The model reduces error propagation between relation extraction and NED,

which existing approaches are prone to.

• We propose an n-gram based attention model to effectively map the multi-word

mentions of entities and their relationships into uniquely identified entities and

predicates. We propose joint learning of word and entity embeddings to capture

the relationship between words and entities for named entity disambiguation. We

further propose a modified beam search and a triple classifier to generate high-

4.2 Proposed Model 77

quality triples.

• We evaluate the proposed model over two real-world datasets. We adapt distant

supervision with co-reference resolution and paraphrase detection to obtain high-

quality training data. The experimental results show that our model consistently

outperforms a strong baseline for neural relation extraction [80] coupled with state-

of-the-art NED models [56, 70].

The rest of this chapter is organized as follows. Section 4.2 explains the proposed

model. Section 4.3 presents the experimental results. Section 4.4 summarizes the chapter.

4.2 Proposed Model

We start with the problem definition. Let G = (E, R) be an existing KG where E and R

are the sets of entities and relationships (predicates) in G, respectively. We consider a sen-

tence S = 〈x1, x2, ..., xi〉 as the input, where xi is a token at position i in the sentence. We

aim to extract a set of triples Y = {y1, y2, ..., yj} from the sentence, where yj = 〈sj, pj, oj〉,

sj, oj ∈ E, and pj ∈ R. Table 4.1 illustrates the input and target output of our problem.

4.2.1 Solution Framework

Figure 4.2 illustrates the overall framework. Our framework consists of three compo-

nents: data collection module, embedding module, and neural relation extraction module.

In the data collection module (detailed in Section 4.2.2), we align known triples in

an existing KB with sentences that contain such triples from a text corpus. The aligned

pairs of sentences and triples will later be used as the training data in our neural rela-

tion extraction module. This alignment is done by distant supervision. To obtain a large

number of high-quality alignments, we augment the process with a co-reference resolu-

tion procedure to extract sentences with implicit entity names, which enlarges the set of

candidate sentences to be aligned. We further use dictionary-based paraphrase detection

to filter sentences that do not express any relationships between entities.

78
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Wikidata

Wikipedia
article

Joint learning
skip-gram &

TransE

Word
Embeddings

0.2 0.4 0.1 0.2 0.1

0.1 0.5 0.1 0.1 0.2

0.2 0.3 0.3 0.3 0.2

0.4 0.2 0.2 0.1 0.1

Entity
Embeddings

0.1 0.5 0.1 0.4 0.2

0.1 0.5 0.1 0.5 0.1

0.2 0.3 0.3 0.3 0.3

0.2 0.3 0.3 0.3 0.1

Distant
supervision

Sentence-Triple pairs
Sentence input: New York University is a private university in Manhattan.
Expected output: Q49210 P31 Q902104 Q49210 P131 Q11299

Sentence input: New York Times Building is a skyscraper in Manhattan
Expected output: Q192680 P131 Q11299
...

Sentence input: New York University is a private university in Manhattan.

Expected output:
<Q49210,P31,Q902104>;
<Q387638,P131,Q40026>

N-gram-based attention

Encoder

Decoder

Triple classifier

Dataset Collection
Module Embedding Module Neural Relation Extraction

Module

Figure 4.2: Proposed solution for relation extraction to enrich a knowledge base

In the embedding module (detailed in Section 4.2.3), we propose joint learning of

word and entity embeddings by combining skip-gram [95] to compute the word em-

beddings and TransE [11] to compute the entity embeddings. The objective of the joint

learning model is to capture the similarity of words and entities that helps map the entity

names into the related entity IDs. Moreover, the resulting entity embeddings are used to

train a triple classifier that helps filter invalid triples generated by our relation extraction

model.

In the neural relation extraction module (detailed in Section 4.2.4), we propose an

n-gram based attention model by expanding the attention mechanism to the n-gram to-

ken of a sentence. The n-gram attention computes the n-gram combination of attention

weight to capture the verbal or noun phrase context that complements the word level

4.2 Proposed Model 79

attention of the standard attention model. This expansion helps our model better in cap-

turing the multi-word context of entities and relationships.

The output of the encoder-decoder model is a sequence of the entity and predicate

IDs where every three IDs indicate a triple. To generate high-quality triples, we propose

two strategies. The first strategy uses a modified beam search that computes the lexical

similarity of the extracted entities with the surface form of entity names in the input

sentence to ensure the correct entity prediction. The second strategy uses a triple classifier

that is trained using the entity embeddings from the joint learning to filter the invalid

triples. The triple generation process is detailed in Section 4.2.5

4.2.2 Dataset Collection

We aim to extract triples from a sentence for KB enrichment by proposing a supervised

relation extraction model. To train such a model, we need a large volume of labeled

training data in the form of sentence-triple pairs. Following Sorokin et al. [135], we use

distant supervision [97] to align sentences in Wikipedia1 with triples in Wikidata2 [160].

Figure 4.3 illustrates the dataset collection process. We map an entity mention in

a sentence to the corresponding entity entry (i.e., Wikidata ID) in Wikidata via the hy-

perlink associated with the entity mention, which is recorded in Wikidata as the URL

property of the entity entry. Each pair may contain one sentence and multiple triples.

We sort the order of the triples based on the order of the predicate paraphrases that indi-

cate the relationships between entities in the sentence. We collect sentence-triple pairs by

extracting sentences that contain both head and tail entities of Wikidata triples.

To generate high-quality sentence-triple pairs, we propose two additional steps: (1)

extracting sentences that contain implicit entity names using co-reference resolution, and

(2) filtering sentences that do not express any relationships using paraphrase detection.

We detail these steps as follows. Prior to aligning the sentences with triples, in Step

(1), we find the implicit entity names to increase the number of candidate sentences

to be aligned. We apply co-reference resolution [25] to each paragraph in a Wikipedia

1https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
2https://dumps.wikimedia.org/wikidatawiki/entities/latest-all.ttl.gz

80
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Mapping

<Q76, P19, Q18094> --- Barack Obama was born in Honolulu, Hawaii.
<Q76, P69, Q49088> --- After graduating from Columbia University, Barack Obama enrolled

in Harvard Law School.
<Q76, P69, Q49122> --- After graduating from Columbia University, Barack Obama enrolled

in Harvard Law School.
<Q76, P19, Q18094> --- Barack Obama visited Honolulu in 2010.

Knowledge base

<Q76, label, Barack Obama>
<Q18094, label, Honolulu Hawaii>
<Q49088, label, Columbia University>
<Q49122, label, Harvard Law School>
<P19, label, place of birth>
<P19, label, educated at>
...
<Q76, url, .../wiki/Barack_Obama>
<Q18094, url, .../wiki/Honolulu>
...
<Q76, P19, Q18094>
<Q76, P69, Q49088>
<Q76, P69, Q49122>
...

Original Sentence

Barack Obama was born in Honolulu, Hawaii. After
graduating from Columbia University, he enrolled
in Harvard Law School. He visited Honolulu in
2010.

Updated Sentence

Barack Obama was born in Honolulu, Hawaii. After
graduating from Columbia University, Barack Obama
enrolled in Harvard Law School. Barack Obama
visited Honolulu in 2010.

Co-reference resolution: replaces pronouns
with the actual entity names

Sentence-Triples pairs

Sentence input : Barack Obama was born in Honolulu, Hawaii.
Expected output : Q76 P19 Q18094

Sentence input : After graduating from Columbia University, Barack Obama enrolled
in Harvard Law School.

Expected output : Q76 P69 Q49088 Q76 P69 Q49122

Distant supervision mapping: for each triple in the KB, find
sentences that contains both the head and tail entities

Generating Sentence-Triples pairs:
a. Sentence merging: merges triples that have the same sentence. The order of the

triple is based on the order of entity or relationship mention in the sentence
b. Noise filtering: removes sentences that do not express relationship between entity

Figure 4.3: Dataset collection for relation extraction

article and replace the extracted co-references with their actual entity names. We ob-

serve that the first sentence of a paragraph in a Wikipedia article may contain a pronoun

that refers to the main entity. For example, there is a paragraph on the Wikipedia page

of entity Barack Obama that starts with a sentence "He was re-elected to the

4.2 Proposed Model 81

Illinois Senate in 1998". This may cause the co-reference resolution to lose the

implicit entity names for the rest of the paragraph. To address this problem, we heuris-

tically replace the pronouns in the first sentence of a paragraph if the main entity name

of the Wikipedia page is not mentioned. For the sentence in the previous example, we

replace "He" with "Barack Obama". The intuition is that a Wikipedia article contains

content of a single entity of interest and that the pronouns mentioned in the first sentence

of a paragraph mostly relate to the main entity.

In Step (2), we use dictionary-based paraphrase detection to capture relationships

between entities in a sentence. First, we create a dictionary by populating predicate para-

phrases from three sources, including PATTY [99], POLY [48], and PPDB [44] that yield

540 predicates and 24, 013 unique paraphrases. For example, predicate paraphrases for

the relationship "place of birth" are {born in, was born in, ...}. Then, we

use this dictionary to filter sentences that do not express any relationships between en-

tities. We use exact string matching to find verbal or noun phrases in a sentence, which

is paraphrases of a predicate of a triple. For example, for the triple 〈Barack Obama,

place of birth, Honolulu〉, the sentence "Barack Obama was born in 1961

in Honolulu, Hawaii"will be retained while the sentence "Barack Obama visited

Honolulu in 2010" will be removed (the sentence may be retained if there is another

valid triple 〈Barack Obama, visited, Honolulu〉). This helps filter noises for the

sentence-triple alignment.

The above strategies are used to obtain extensive training data automatically. The

use of co-reference resolution is to obtain more sentences that are not extracted using

the distance supervision technique. Meanwhile, filtering using paraphrase detection is

used to remove sentences that do not express any relationships. We use three paraphrase

dictionaries, which are the most representative dictionary available. These dictionaries

enable us to automatically obtain extensive training data rather than manually annotate

the data, which is very costly.

The collected dataset contains 255,654 sentence-triple pairs. For each pair, the maxi-

mum number of triples is four (i.e., a sentence can produce at most four triples). We split

the dataset into a train set (80%), a dev set (10%), and a test set (10%) (we call it the WIKI

82
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Table 4.2: Statistics of the dataset for relation extraction

#pairs #triples #entities #predicates

All (WIKI) 255,654 330,005 279,888 158
Train+val 225,869 291,352 249,272 157
Test (WIKI) 29,785 38,653 38,690 109
Test (GEO) 1,000 1,095 124 11

test dataset). For stress testing (to test the proposed model on a different style of text than

the training data), we also collect another test dataset outside Wikipedia. We apply the

same procedure to the user reviews of a travel website. First, we collect user reviews

on 100 famous landmarks in Australia. Then, we apply the adapted distant supervision

to the reviews and collect 1,000 sentence-triple pairs (we call it the GEO test dataset).

Table 4.2 summarizes the statistics of our datasets.

4.2.3 Joint Learning of Word and Entity Embeddings

Our relation extraction model is based on the encoder-decoder framework, which has

been widely used in Neural Machine Translation to translate text from one language to

another. In our setup, we aim to translate a sentence into triples, and hence the vocabu-

lary of the source input is a set of English words, while the vocabulary of the target output

is a set of entity and predicate IDs in an existing KG. To compute the embeddings of the

source and target vocabularies, we propose joint learning of word and entity embeddings

that is effective in capturing the similarity between words and entities for named entity

disambiguation [173]. Note that our method differs from that of Yamada et al. [173]. We

use joint learning by combining skip-gram [95] to compute the word embeddings and

TransE [11] to compute the entity embeddings (including the relationship embeddings).

In contrast, Yamada et al. [173] use Wikipedia Link-based Measure (WLM) [96] that does

not consider the relationship embeddings.

Our model learns the entity embeddings by minimizing a margin-based objective

4.2 Proposed Model 83

Wikipedia Sentences

“New York University is a private university in
Manhattan”

Wikidata Triples

<Q49210 P131 Q11299>

Anchor Context Model (Yamada et al., 2016)

“Q49210 is a Q902104 in Q11299”

Joint Learning

Skip gram
(Mikolov et al., 2013)

TransE
(Bordes et al., 2013)

Embeddings

Figure 4.4: Joint learning of word and entity embeddings for neural relation extraction

function JE:

JE = ∑
tr∈Tr

∑
t′r∈T′r

max
(
0,
[
γ + f (tr)− f (t′r)

])
(4.1)

Tr = {〈s, p, o〉|〈s, p, o〉 ∈ G} (4.2)

Tr
′ =

{〈
s′, p, o

〉
| s′ ∈ E

}
∪
{〈

s, p, o′
〉
| o′ ∈ E

}
(4.3)

f (tr) = ‖s + p− o‖ (4.4)

Here, ‖x‖ is the L1-Norm of vector x, γ is a margin hyperparameter, Tr is the set of valid

relationship triples from a KG G, and T′r is the set of corrupted relationship triples (recall

that E is the set of entities in G). The corrupted triples are used as negative samples,

which are created by replacing the head or tail entity of a valid triple in Tr with a random

entity. We use all triples in Wikidata except those which belong to the testing data to

compute the entity embeddings.

To establish the interaction between the entity and word embeddings, we follow the

Anchor Context Model proposed by Yamada et al. [173]. First, we generate a text corpus

by combining the original text and the modified anchor text of Wikipedia. This is done

by replacing the entity names in a sentence with the related entity or predicate IDs. For

example, the sentence "New York University is a private university in

84
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Manhattan" is modified into "Q49210 is a Q902104 in Q11299". Then, we use

the skip-gram method to compute the word embeddings from the generated corpus (the

entity IDs in the modified anchor text are treated as words in the skip-gram model). Fig-

ure 4.4 illustrates the joint learning embedding model. Given a sequence of n words

[x1, x2, ..., xn], the model learns the word embeddings, by minimizing the following ob-

jective function JW :

JW =
1
T

n

∑
t=1

∑
−c≤j≤c,j 6=0

log P
(
xt+j|xt

)
(4.5)

P
(
xt+j|xt

)
=

exp(v
′
xt+j

>
vxt)

∑X
i=1 exp(v′i

>vxt)
(4.6)

where c is the size of the context window, xt denotes the target word, and xt+j is the

context word; vx and v
′
x are the input and output vector representations of word x, and

X is the vocabulary size. The overall objective function of the joint learning of word and

entity embeddings is:

J = JE + JW (4.7)

4.2.4 N-gram Based Attention Model

Our proposed relation extraction model integrates the extraction and canonicalization

tasks for KB enrichment in an end-to-end manner. To build such a model, we employ an

encoder-decoder model [21] to translate a sentence into a sequence of triples. The encoder

encodes a sentence into a vector that is used by the decoder as a context to generate a

sequence of triples. Because we treat the input and output as a sequence, We use the

LSTM networks [55] in the encoder and the decoder.

The encoder-decoder with attention model [4] has been used in machine translation.

However, in the relation extraction task, the attention model cannot capture the multi-

word entity names. In our preliminary investigation, we found that the attention model

yields misalignment between the word and the entity.

The above problem is due to the same words in the names of different entities (e.g.,

the word University in different university names such as New York University,

4.2 Proposed Model 85

Washington University, etc.). During training, the model pays more attention to the

word University to differentiate different types of entities of a similar name, e.g., New

York University, New York Times Building, or New York Life Building,

but not the same types of entities of different names (e.g., New York University

and Washington University). This may cause errors in entity alignment, especially

when predicting the ID of an entity that is not in the training data. Even though we

add 〈Entity-name, Entity-ID〉 pairs as training data (see the Training section), the

misalignments still take place.

We address the above problem by proposing an n-gram based attention model. This

model computes the attention of all possible n-grams of the sentence input. The attention

weights are computed over the n-gram combinations of the word embeddings, and hence

the context vector for the decoder is computed as follows.

cd
t =

[
he;

|N|

∑
n=1

Wn

(
|Xn|

∑
i=1

αn
i xn

i

)]
(4.8)

αn
i =

exp(he>Vnxn
i)

∑|X
n|

j=1 exp(he>Vnxn
j)

(4.9)

Here, cd
t is the context vector of the decoder at time-step t, he is the last hidden state of the

encoder, the superscript n indicates the n-gram combination, x is the word embeddings

of input sentence, |Xn| is the total number of n-gram token combination, N indicates the

maximum value of n used in the n-gram combinations (N = 3 in our experiments), W

and V are learned parameter matrices, and α is the attention weight. Figure 4.5 illustrates

the n-gram attention model.

Training

In the training phase, in addition to the sentence-triple pairs collected using distant su-

pervision (see Section 4.2.2), we also add pairs of 〈Entity-name, Entity-ID〉 of all

entities in the KB to the training data, e.g., 〈New York University, Q49210〉. This

allows the model to learn the mapping between entity names and entity IDs, especially

for the unseen entities.

86
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Figure 4.5: N-gram attention model

4.2.5 Triple Generation

The output of the encoder-decoder model is a sequence of the entity and predicate IDs

where every three tokens indicate a triple. Therefore, to extract a triple, we simply group

every three tokens of the generated output. However, the greedy approach (i.e., picking

the entity with the highest probability of the last softmax layer of the decoder) may lead

the model to extract incorrect entities due to the similarity between entity embeddings

(e.g., the embeddings of New York City and Chicago may be similar because both

are cities in the United States of America). To address this problem, we propose two

strategies: re-ranking the predicted entities using a modified beam search and filtering

invalid triples using a triple classifier.

The modified beam search re-ranks top-k (k = 10 in our experiments) entity IDs that

are predicted by the decoder by computing the edit distance between the entity names

(obtained from the KB) and every n-gram token of the input sentence. The intuition is

that the entity name should be mentioned in the sentence so that the entity with the

highest similarity will be chosen as the output.

Our triple classifier is trained with entity embeddings from the joint learning (see

Section 4.2.3). Triple classification is one of the metrics to evaluate the quality of entity

embeddings [134]. We build a classifier to determine the validity of a triple 〈s, p, o〉. We

train a binary classifier based on the plausibility score (s + p− o) (the score to compute

4.3 Experiments 87

the entity embeddings). We create negative samples by corrupting the valid triples (i.e.,

replacing the head or tail entity by a random entity). The triple classifier is effective to

filter invalid triple such as 〈New York University, capital of, Manhattan〉.

There may be multiple unrelated triples in a sentence. Our proposed model handles

this problem as follows. First, our encoder captures the latent information (e.g., the en-

tities in the sentence, how many relations between them, etc.) from the input sentence

using our proposed n-gram attention model. This latent information is stored in the form

of a hidden vector representation of the encoded input sentence. Then, in the triple gener-

ation process, this vector representation, along with the decoder’s previous hidden state,

is used as context vectors for the decoder to guide the generation process. The input vec-

tor representation helps the decoder to generate the triples (i.e., predict what the entities

and their relationships in a triple are), while the decoder’s previous hidden state helps to

avoid generating duplicate triples.

It is worth noting that in this paper, our goal is to enrich a KB by adding more re-

lationships between existing entities in a KB (i.e., KB completion). If an input sentence

contains unknown entities, our model will generate a special token 〈UNK〉. Triples with

this special token will be removed from the generated output as we aim to enrich the

knowledge base based on the predefined entities and relationships.

4.3 Experiments

We evaluate our model on two real datasets, including WIKI and GEO test datasets (see

Section 4.2.2). We use precision, recall, and F1 score as the evaluation metrics.

4.3.1 Hyperparameters

We use grid search to find the best hyper-parameters for the networks. We use 512 hidden

units for both the encoder and the decoder. We use 64 dimensions of pre-trained word

and entity embeddings (see Section 4.2.3). We use a 0.5 dropout rate for regularization

on both the encoder and the decoder. We use Adam [67] with a learning rate of 0.0002.

88
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

4.3.2 Baseline Models

We compare our proposed model with three existing models, including CNN (the state-

of-the-art supervised approach by Lin et at. [80]), MiniE (the state-of-the-art unsuper-

vised approach by Gashteovski et al. [47]), ClausIE by Corro et al. [27], CopyR (a

triples generation model based on encoder-decoder framework by [179]), and CopyR-

RL (a triples generation model based on reinforcement learning by [178]). To map the

extracted entities by these models, we use two state-of-the-art NED systems, including

AIDA [56] and NeuralEL [70]. The precision (tested on our test dataset) of AIDA and

NeuralEL is 70% and 61%, respectively. To map the extracted predicates (relationships)

of the unsupervised approaches output, we use the dictionary-based paraphrase detec-

tion. We use the same dictionary that is used to collect the dataset (i.e., the combination of

three paraphrase dictionaries, including PATTY [99], POLY [48], and PPDB [44]). We re-

place the extracted predicate with the correct predicate ID if one of the paraphrases of the

correct predicate (i.e., the gold standard) appear in the extracted predicate. Otherwise,

we replace the extracted predicate with "NA" to indicate an unrecognized predicate. We

also compare our N-gram Attention model with two encoder-decoder based models, in-

cluding the Single Attention model [4] and Transformer model [153].

4.3.3 Results

Table 4.3 shows that the end-to-end models outperform the existing model. In particu-

lar, our proposed n-gram attention model achieves the best results in terms of precision,

recall, and F1 score. Our proposed model outperforms the best existing model (MinIE)

by 33.39% and 34.78% in terms of the F1 score on the WIKI and GEO test dataset, re-

spectively. These results are expected since the existing models are affected by the error

propagation of the NED. As expected, the combination of the existing models with AIDA

achieves higher F1 scores than the combination with NeuralEL as AIDA achieves higher

precision than NeuralEL. CopyR and CopyR-RL achieve low performance as they cannot

capture multi-word entity names.

To further show the effect of error propagation, we set up experiments without the

4.3 Experiments 89

Table 4.3: Performance comparisons of relation extraction models

Model
WIKI GEO

Precision Recall F1 Precision Recall F1

Existing
Models

MinIE (+AIDA) 0.3672 0.4856 0.4182 0.3574 0.3901 0.3730
MinIE (+NeuralEL) 0.3511 0.3967 0.3725 0.3644 0.3811 0.3726

ClausIE (+AIDA) 0.3617 0.4728 0.4099 0.3531 0.3951 0.3729
ClausIE (+NeuralEL) 0.3445 0.3786 0.3607 0.3563 0.3791 0.3673

CNN (+AIDA) 0.4035 0.3503 0.3750 0.3715 0.3165 0.3418
CNN (+NeuralEL) 0.3689 0.3521 0.3603 0.3781 0.3005 0.3349

CopyR (+AIDA) 0.3357 0.3001 0.3130 0.3143 0.2932 0.3024
CopyR (+NeuralEL) 0.3012 0.2971 0.2992 0.3182 0.2711 0.2924

CopyR-RL (+AIDA) 0.3422 0.3011 0.3232 0.3221 0.3057 0.3154
CopyR-RL (+NeuralEL) 0.3146 0.3114 0.3125 0.3011 0.2901 0.2921

Encoder-
Decoder
Models

Single Attention 0.4591 0.3836 0.4180 0.4010 0.3912 0.3960
Single Attention (+pre-trained) 0.4725 0.4053 0.4363 0.4314 0.4311 0.4312
Single Attention (+beam) 0.6056 0.5231 0.5613 0.5869 0.4851 0.5312
Single Attention (+triple classifier) 0.7378 0.5013 0.5970 0.6704 0.5301 0.5921

Transformer 0.4628 0.3897 0.4231 0.4575 0.4620 0.4597
Transformer (+pre-trained) 0.4748 0.4091 0.4395 0.4841 0.4831 0.4836
Transformer (+beam) 0.5829 0.5025 0.5397 0.6181 0.6161 0.6171
Transformer (+triple classifier) 0.7307 0.4866 0.5842 0.7124 0.5761 0.6370

Proposed

N-gram Attention 0.7014 0.6432 0.6710 0.6029 0.6033 0.6031
N-gram Attention (+pre-trained) 0.7157 0.6634 0.6886 0.6581 0.6631 0.6606
N-gram Attention (+beam) 0.7424 0.6845 0.7123 0.6816 0.6861 0.6838
N-gram Attention (+triple classifier) 0.8471 0.6762 0.7521 0.7705 0.6771 0.7208

canonicalization task (i.e., the objective is predicting a relationship between known en-

tities). We remove the NED pre-processing step by allowing the CNN model to access

the correct entities. Meanwhile, we provide the correct entities to the decoder of our pro-

posed model. In this setup, our model achieves 86.34% and 79.11%, while CNN achieves

81.92% and 75.82% in precision over the WIKI and GEO test datasets, respectively.

Our proposed n-gram attention model outperforms the end-to-end models by 15.51%

and 8.38% in terms of F1 score on the WIKI and GEO test datasets, respectively. The

Transformer model also only yields similar performance to that of the Single Attention

model, which is worse than ours. These results indicate that our model captures multi-

word entity names (in both datasets, 82.9% of the entities have multi-word entity names)

in the input sentence better than the other models.

90
An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base

Enrichment

Table 4.3 also shows that the pre-trained embeddings improve the performance of the

model in all measures. Moreover, the pre-trained embeddings help the model to converge

faster. In our experiments, the models that use the pre-trained embeddings converge in

20 epochs on average, while the models that do not use the pre-trained embeddings con-

verge in 30− 40 epochs. Our triple classifier, combined with the modified beam search,

boosts the performance of the model. The modified beam search provides a high recall by

extracting the correct entities based on the surface form in the input sentence, while the

triple classifier provides a high precision by filtering the invalid triples. We further per-

form manual error analysis. We found that the incorrect output of our model is caused by

the same entity name of two different entities (e.g., the name of Michael Jordan that

refers to the American basketball player or the English footballer). The modified beam

search cannot disambiguate those entities as it only considers the lexical similarity.

4.4 Summary

We proposed an end-to-end relation extraction model for KB enrichment that integrates

the extraction and canonicalization tasks. Our model thus reduces the error propaga-

tion between relation extraction and NED that existing approaches are prone to. To ob-

tain high-quality training data, we adapt distant supervision and augment it with co-

reference resolution and paraphrase detection. We propose an n-gram based attention

model that better captures the multi-word entity names in a sentence. Moreover, we pro-

pose a modified beam search and a triple classification that helps the model to generate

high-quality triples.

Experimental results show that our proposed model outperforms the existing models

by 33.39% and 34.78% in terms of the F1 score on the WIKI and GEO test dataset, re-

spectively. These results confirm that our model reduces the error propagation between

NED and relation extraction. Our proposed n-gram attention model outperforms the

other encoder-decoder models by 15.51% and 8.38% in terms of the F1 score on the two

real-world datasets. These results confirm that our model better captures the multi-word

entity names in a sentence.

Chapter 5

Description Generation for
Knowledge Bases Represented as

Star-Shaped Graphs

This chapter is based on a paper that has been published in the AAAI Conference on Artificial

Intelligence 2020: Sentence Generation for Entity Description with Content-plan Attention. Bayu

Distiawan Trisedya, Jianzhong Qi, Rui Zhang.

5.1 Introduction

IN this chapter, we study how to generate an entity description from its properties to

enrich a knowledge base. Specifically, the generated descriptions are used to enrich

information about entities in a knowledge base, which later can be used in many down-

stream applications. For example, in question answering systems [161, 167], the gener-

ated sentence can be used to describe the entity in the answer. This work complements

our efforts in enriching a knowledge base via entity alignment and relation extraction

that have been detailed in the previous chapters.

Description generation aims to generate a sentence from a set of properties of a target

entity A (i.e., description of the target entity). The properties are in the form of pairs of

key and value, i.e., A = {〈k1; v1〉, 〈k2; v2〉, ...〈kn; vn〉}, where kn is the key of the property

and vn is the value of the property. Table 5.1 illustrates the input and output of the task;

in this example, the properties are name, type, etc. and their values are "Flinders

Street Station", "Station", etc. Here, the properties may have been extracted

from a table, which makes the task table-to-text generation, or from a knowledge graph

91

92 Description Generation for Star-Shaped Graphs

Table 5.1: Data-to-text generation example

Input

〈name; Flinders Street Station〉
〈type; Station〉
〈longitude; 144.9673124〉
〈color; Yellow〉
〈latitude; -37.8182822〉
〈located in country; Australia〉
〈located in city; Melbourne〉
〈roof; green dome〉

Output

Flinder Street Station is
a railway station with its
distinctive yellow facade
and green dome in Melbourne,
Australia

(KG), which makes the task triple-to-text generation. In table-to-text generation, the prop-

erties are extracted from a two-column table (e.g., Wikipedia infobox), where the first

column indicates the key, and the second column indicates the value of the properties.

In triple-to-text generation, the properties are extracted by querying a KG for triples (i.e.,

〈subject,predicate,object〉) that contain the target entity as the subject. In both

cases, the input will form a star-shaped graph with the target entity as the center of the

star-shaped graph, the property values as the points of the star, and the property keys as

the edges (cf. Figure 5.1).

Recent studies proposed end-to-end models by adapting the encoder-decoder frame-

work. The encoder-decoder framework is a sequence-to-sequence model that has been

successfully used in many tasks, including machine translation [21] and data-to-text gen-

eration [82]. The adaption of the sequence-to-sequence model for data-to-text genera-

tion includes representing the input as a sequence. Hence, the order of properties is

essential to guide the decoder to generate a good description [156]. Here, our defi-

nition of a proper order of properties is the reasonable order of properties in a well-

organized sentence (i.e., a content-plan). For example, 〈name, type, color, roof,

located in city, located in country〉 is a content-plan for the output sentence

in Table 5.1.

Previous studies [6, 81, 82, 128] do not explicitly handle the order of input (i.e., the

5.1 Introduction 93

type

Flinders
Street

Station
Melbourne

Station

located_in_citylatitude

color

144.9673124

-37.8182822

Yellow Green
Dome

Australia

Figure 5.1: Star-shaped graph example

properties). In fact, most data sources do not provide sets of properties with a proper

order. For example, the extracted properties as a result of a query from a KG are typically

disordered. Meanwhile, the extracted properties from a web table are practically ordered,

i.e., the salient properties are relatively ordered but may have noises (non-salient prop-

erties) between them, which disrupt the encoding. Moreover, Li et al. [82] reported a

decrease in the performance of their model when experimenting on disordered input.

Marcheggiani et al. [89] proposed a graph encoder based on Graph Convolution Net-

works (GCN) [68] to exploit the input structure for generating sentences from a knowl-

edge base. However, GCN fails to capture the relationship between entities of a star-

shaped graph since there are no edges between nodes that show the reasonable order of

nodes.

Puduppully et al. [112] proposed Neural Content Planning (NCP), which is a two-

stage model that includes content-planning to handle disordered input. First, NCP uses

pointer networks (i.e., content-planner) [157] to generate a content-plan. Then, the gener-

ated content-plan is used as the input of the encoder-decoder model (i.e., text generator)

[4] to generate a description. However, this two-stage model suffers from error propa-

gation between the content-planner and the text generator. The generated content-plan

may contain errors (e.g., missing one or more properties that should be mentioned in the

description) that lead the text generator to produce an incomplete description.

94 Description Generation for Star-Shaped Graphs

In this chapter, we address the issues above by proposing an end-to-end model that

jointly learns the content-planner and the text generator by integrating the content-plan

in the attention model of an encoder-decoder model. The challenge of the integration is

to align the learned content-plan and the generated description. To address this problem,

we propose the content-plan-based bag of tokens attention model by adapting the coverage

mechanism [150] to track the order of properties in a content-plan for computing the

attention of the properties. This mechanism helps the attention module of the encoder-

decoder model captures the most salient properties at each time-step of the description

generation phase in a proper order. Unlike the existing data-to-text generation models

which treat the input as a sequence of properties, our model treats the input as a bag of

tokens and uses pointer networks to learn a content plan to handle disordered properties.

Our model maintains the original data (i.e., the original set of properties) as the input of

the text generator while exploiting the learned content-plan to highlight the properties

to be mentioned. Hence, our model is able to reduce the error propagation between the

content-planner and the text generator. To collect training data for the content-planner,

we use string matching for extracting the order of properties mentioned in the description

as the target content-plan.

Our contributions are summarized as follows:

• We propose an end-to-end model that employs joint learning of content-planning

and text generation to handle disordered input for generating a description of an

entity from its properties. The model reduces error propagation between the content-

planner and the text generator, which two-stage models are prone to.

• We propose a content-plan-based bag of tokens attention model to effectively capture

salient properties in a proper order based on a content-plan.

• We evaluate the proposed model over two real-world datasets. The experimental

results show that our model consistently outperforms state-of-the-art baselines for

data-to-text generation [82, 112].

The rest of this chapter is organized as follows. Section 5.2 defines the studied prob-

lem. Section 5.3 details the proposed model. Section 5.4 presents the experimental results.

5.2 Preliminary 95

Section 5.5 summarizes the chapter.

5.2 Preliminary

We start with the problem definition. Let A be a set of properties of an entity in the form

of pairs of key and value in any order, i.e., A = {〈k1; v1〉, 〈k2; v2〉, 〈k3; v3〉, ...〈kn; vn〉},

where kn is the key of the property and vn is the value of the property. We consider A

as the input and aim to generate a sentence S = 〈t1, t2, t3, ..., tl〉 as the description of an

entity, where tl is a token at position l in the sentence. Table 5.1 illustrates the input and

output of the task.

Most data-to-text generation models are built on top of an encoder-decoder frame-

work [82,93,128,166]. We first discuss the encoder-decoder framework [4] and its limita-

tion when generating text from disordered input.

5.2.1 Encoder-Decoder Framework

The encoder-decoder framework is a sequence-to-sequence learning model that takes a

variable-length input T and generates a variable-length output T′ where the length of T

and T′ may differ. The encoder reads each token of the input sequentially and computes

a hidden state of each token. The hidden state of the last token represents a summary of

the input sequence in the form of a fixed-length vector representation (i.e., context vector

c). The decoder is trained to generate a sequence by predicting the next token given the

previous hidden state of the decoder and the context vector c. This framework has been

successfully applied in machine translation [21] to translate a sequence of words from

one language to another.

In data-to-text generation, encoder-decoder is used to generate text (e.g., entity de-

scription) from structured data (e.g., a set of properties of an entity). Here, the encoder

learns to encode the properties into a fixed-length vector representation, which is used

as a context vector by the decoder to generate a description. Different from machine

translation, in data-to-text generation, the input (i.e., properties) may be disordered, and

linearizing the input may not yield the proper order of the properties. Hence, reading

96 Description Generation for Star-Shaped Graphs

the disordered input sequentially may produce an improper context vector.

Bahdanau et al. [4] proposed an attention model that improves the performance of

sequence-to-sequence models. The attention model allows the encoder to dynamically

compute the context vector for each decoding time-step by computing the weighted sum

of each hidden state of the encoder. The weight represents the importance score of each

token of the properties and helps the encoder computes a specific context vector for each

decoding time-step. However, the computations of the context vector are based on the

hidden states of the encoder, which may not be appropriate for disordered input because

a hidden state represents a summary of the previous tokens that do not hold the proper

order. Besides, if we use the embeddings of the input (i.e., embeddings of the property

token) instead of the hidden states to compute the attention, the model may not capture

the relationships between properties.

Next, we detail our model to address these limitations.

5.3 Proposed Model

We present an overview of our proposed model in Section 5.3.1. We detail the com-

ponents of the proposed model afterwards, including the dataset collection module in

Section 5.3.2, the content-plan generation module in Section 5.3.3, and the description

generation module in Section 5.3.4.

5.3.1 Solution Framework

Figure 5.2 illustrates the overall solution framework. Our framework consists of three

components: a data collection module, a content-plan generation module, and a description

generation module.

In the data collection module (cf. Section 5.3.2), we collect a dataset in the form of

triples of properties, content-plan, and entity description. The properties are extracted

by querying Wikidata for triples that contain the target entity as the subject. The descrip-

tion is obtained from Wikipedia by extracting the first sentence of the Wikipedia page of

the target entity. The content-plan is extracted by finding the order of properties in the

5.3 Proposed Model 97

Wikidata

Wikipedia
article

Dataset Collection
Module

Dataset
Attributes: {<name, “Flinders Street Station”>, <type, “Station”>, ...,

<roof, “green dome”>}
Content-plan : <name, type, color, roof, located_in_city, located_in_country>
Description : “Flinder Street Station is a railway station with its distinctive

yellow facade and green dome in Melbourne, Australia ”
...

Attributes: {<name, “Flinders Street Station”>, <type, “Station”>, ...,
<roof, “green dome”>}

Description: “Flinder Street
Station is a railway station
with its distinctive yellow
facade and green dome in
Melbourne, Australia”

Content-plan-based bag
of token attention

Description generator

Description Generation Module
(Text generator)

Attribute encoder

Pointer generator

Content-plan generator

Content-plan Generation Module
(Content-planner)

Learned content-plan X’

Content-plan encoder

Figure 5.2: Overview of our proposed solution for entity description generation

description using string matching.

In the content-plan generation module (content-planner, cf. Section 5.3.3), we train

pointer networks [157] to learn a content-plan that helps the attention model of the de-

scription generation module highlights the properties in a proper order. This module

consists of four components: (1) a property encoder that encodes a set of properties into a

vector by computing the average of the linear transformation of each token embeddings

of the properties; (2) a pointer generator that generates a sequence of indexes (pointers)

that represents the order of properties in the description; (3) a content-plan generator that

generates the content-plan based on the learned pointers; and (4) a content-plan encoder

that encodes the learned content-plan to be used in the description generation module.

In the description generation module (text generator, cf. Section 5.3.4), we integrate

the content-plan into the attention mechanism of the encoder-decoder model [4]. We

98 Description Generation for Star-Shaped Graphs

use the same encoder as in the content-plan generation module that treats the input (i.e.,

properties) as a bag of tokens to ensure that the same set of properties with different or-

ders have the same representation. We do not use the recurrent model (e.g., LSTM [55],

GRU [21]) to encode the properties because they may compute improper context from

disordered input (cf. Section 5.2.1). However, we use LSTM (i.e., content-plan encoder)

to encode the learned content-plan that holds the proper order of properties to capture

the relationships between properties. To integrate the learned content-plan into the at-

tention mechanism of the encoder-decoder model, we propose the content-plan-based bag

of tokens attention model by adapting the coverage mechanism [150] to track the order of

properties in a content-plan for computing the attention of the properties. This way, our

proposed attention model selects the salient properties conditioned by the content-plan

and hence provides a better context (i.e., attention of the properties in an ordered fashion)

for each decoding time-step.

5.3.2 Dataset Collection

We aim to generate a description of an entity from its properties where the properties

may be disordered. To handle disordered input, we propose a model that performs joint

learning of content-planning and text generation. To train such a model, we need a large

volume of fully labeled training data in the form of triples of properties, content-plan,

and entity description.

Following Lebret et al. [72], we extract the first sentence of a Wikipedia page of a tar-

get entity as the description. Different from Lebret et al. [72], who collected a specific type

of entities (e.g., Person), we do not restrict the type of entities to be collected. We extract

the properties of a target entity by querying Wikidata for triples that contain the target

entity as the subject. In other words, we extract the direct relationships (i.e., properties)

of an entity which form a star-shaped graph. We query the properties from Wikidata

instead of extracting from Wikipedia infobox to avoid additional processing (e.g., HTML

tag removal, normalization, etc.).

We use string matching to find the order of properties that are mentioned in the de-

scription as the content-plan. First, for each matched property, we store their position

5.3 Proposed Model 99

(index of the first character of the mentioned property value) in the description. Then,

we sort the matched properties based on their position ascendingly. For the example in

Table 5.1, the extracted content plan is 〈name, type, color, roof, located in

city, located in country〉.

Our proposed model is trained to generate a description from a set of properties of a

target entity, which includes selecting salient properties to be described. Since we auto-

matically extract the description from Wikipedia, the extracted description may contain

information (i.e., entities) that are not listed in the related extracted properties, which

creates noises in the dataset. This problem may be caused by the delayed synchroniza-

tion of a KG (i.e., the Wikipedia page has been updated, but the Wikidata records have

not been updated yet). The synchronization problem often occurs on frequently updated

information such as the current club of a football player, the latest movie of an actor, etc.

Besides the synchronization problem, the string-matching errors used in the algorithm

may also create noises in the training data. Hence, to obtain high-quality data, we filter

descriptions that contain noises. First, we use a Named Entity Recognizer1 to detect all

entities in a description. Then, we remove descriptions that contain any entity that is not

listed in the related extracted properties.

The collected dataset contains 152, 231 triples of properties, content-plan, and de-

scription (we call it the WIKIALL dataset). The dataset contains 53 entity types with

an average of 15 properties per entity and an average of 20 tokens per description. For

benchmarking, we use the WIKIBIO dataset [72], which contains 728,321 biographies

from Wikipedia (i.e., this dataset only contains one entity type: PERSON). The average

number of properties per entity of the WIKIBIO dataset is 19, and the average number of

tokens per description is 26. We split each dataset into a train set (80%), a dev set (10%),

and a test set (10%).

5.3.3 Content-plan Generation

We adapt pointer networks [157] to learn a content-plan given a set of properties (i.e., we

use the pairs of properties and content-plan from the dataset to train the networks). The

1https://spacy.io

100 Description Generation for Star-Shaped Graphs

Table 5.2: Input representation of the proposed description generation model

Key Value Forward
position

Reverse
posi-
tion

name (k1
1) Flinders (v1

1) 1 (f 1
1) 3 (r1

1)
name (k2

1) Street (v2
1) 2 (f 2

1) 2 (r2
1)

name (k3
1) Station (v3

1) 3 (f 3
1) 1 (r3

1)
type (k1

2) Station (v1
2) 1 (f 1

2) 3 (r1
2)

longitude (k1
3) 144.9673124 (v1

3) 2 (f 1
3) 2 (r1

3)
...
roof (k1

n) green (v1
n) 1 (f 1

n) 2 (r1
n)

roof (k2
n) dome (v2

v) 2 (f 2
n) 1 (r2

n)

pointer networks model uses an attention mechanism to generate a sequence of pointers

that refer to the input so that it is suitable to rearrange the properties as a content-plan.

This module consists of four components, including a property encoder, a pointer gener-

ator, a content-plan generator, and a content-plan encoder.

Property Encoder

The property encoder takes a set of properties A = {〈k1; v1〉, 〈k2; v2〉, ...〈kn; vn〉} as the in-

put. Here, the value of a property may consist of multiple tokens (i.e., vn = 〈v1
n, v2

n, ...vj
n〉).

We transform the multiple tokens into a single token representation and add positional

encoding to maintain its internal order. Thus, the properties can be represented as A =

[〈k1
1, v1

1, f 1
1 , r1

1〉, 〈k2
1, v2

1, f 2
1 , r2

1〉, ..., 〈kj
n, vj

n, f j
n, rj

n〉] where f j
n and rj

n are the forward and re-

verse positions, respectively (cf. Table 5.2). We call the quadruple of key, value, forward

position, and reverse position as property-token. The representation of each property-

token xa is computed as follows.

zk
j
n = tanh(Wk[k

j
n; fj

n; rj
n] + bk) (5.1)

zv
j
n = tanh(Wv[v

j
n; fj

n; rj
n] + bv) (5.2)

xa
j
n = tanh(zk

j
n + zv

j
n) (5.3)

5.3 Proposed Model 101

where [;] indicates vector concatenation, b indicates bias vector, and Wk and Wv are

learned parameters. zk and zv are the vector representations of the properties’ key and

value, respectively. To ensure that the same set of properties with different orders have

the same representation, we use the element-wise average of property-token vectors as

the vector representation of a set of properties. This vector is used as the initial hidden

state of the decoder of the pointer networks (i.e., the pointer generator) and the encoder-

decoder model (i.e., the text generator) since the property encoder is shared with the

description generation module (cf. Section 5.3.4).

Pointer Generator

Given a sequence of property-token vectors that are computed by the property encoder

X = 〈xa1, ..., xam〉 (m is the number of property-tokens in the input), the pointer gen-

erator aims to generate a sequence of pointer-indexes I = 〈i1, ..., ig〉 (g is the number of

properties-tokens in the target content-plan). Here, ig indicates an index that points to a

property-token. The pointer generator uses LSTM to encode the property-token that are

selected as part of the content-plan in the previous time-step xig−1 as a context vector (cf.

Eq. (5.4)) to compute the attention of the properties. The pointer generator predicts the

next index by selecting property-token with the highest attention (cf. Eq. (5.6)) that are

computed as follows.

cptrg = flstm(xig−1) (5.4)

uptrg = tanh(Wp1xa + Wp2cptrg) (5.5)

îg = softmax(uptrg) (5.6)

Here, îg is the pointer-index output probability distribution over the vocabulary (in this

case, the vocabulary is the property-token input), flstm is a single LSTM unit, and Wp1 and

Wp2 are learned parameters. The pointer generator is trained to maximize the conditional

log-likelihood:

p(Id | Ad) = ∑
g

j=m

∑
j=1

i′g,j × log îg,j (5.7)

Jptr =
1
D

D

∑
d=1
− log p(Id | Ad) (5.8)

102 Description Generation for Star-Shaped Graphs

where (Ad, Id) is a pair of properties and target pointer-index (generated by finding the

position of the property-token of the target content-plan in the original input) given for

training, i′ is the matrix of the target pointer-index over the vocabulary, D is the number

of records in the dataset and Jptr is the objective function of the pointer generator.

Content-plan Generator and Encoder

The pointer-index I is a sequence of indexes that refers to the property-token X in a

proper order that represents a content-plan. Hence, the content-plan generator uses the

pointer-index to rearrange the sequence of property-token into a content-plan X′. In

the content-plan encoder, we use LSTM to encode the learned content-plan X′ to cap-

ture the relationships between properties. The hidden states of the content-plan encoder

〈xcp1, ..., xcpg〉 are forwarded to the text generator to help its attention model select prop-

erties in a proper order.

5.3.4 Description Generation

We adapt the encoder-decoder model [4] to generate entity description by integrating

a content-plan to help the attention mechanism of the encoder-decoder computes the

properties to be mentioned and their order. For this adaptation, we propose the content-

plan-based bag of tokens attention model. This model works as follows.

Content-plan-based Bag of Tokens Attention

We use the same encoder as in the content-plan generation module (cf. Section 5.3.3).

This encoder treats the properties as a bag of tokens to allow our model to handle dis-

ordered input. However, this representation does not capture the relationships between

properties. To capture the relationships between properties, we use LSTM to encode the

content-plan (cf. Section 5.3.3). We integrate the encoded content-plan into the encoder-

decoder model to help the attention mechanism of the model selects the properties in a

proper order. This way, our proposed model has two advantages. First, our model yields

the same vector representation for the same set of properties regardless of their order

5.3 Proposed Model 103

while capturing the relationships between properties via the content-plan. Second, our

model computes a context vector based on the original input (i.e., properties) and the

content-plan, and hence reduces the error propagation (e.g., missing property errors).

The integration of the learned content-plan in the encoder-decoder model is done by

adapting the coverage mechanism [126, 150] as follows. First, we use a coverage vector

dcov to keep track of the content-plan history. We use the sum of a content-plan attention

distribution acp l′ from the previous decoding (i.e., description generator) time-step to

maintain the information about which properties in the content-plan have been exposed

(cf. Eq. (5.9))). Second, we use the coverage vector dcov to compute the attention (weight)

of the content-plan acp (cf. Eq. (5.10) and (5.11)). Then, the content-plan attention is

used as an additional input to compute the attention of the property-token ad (cf. Eq.

(5.12)). Finally, the property-token attention is used to compute a context vector cd for

the decoder (cf. Eq. (5.13)).

dcov l =
l−1

∑
l′=0

acp l′ (5.9)

ucp l = tanh(Wc1xcp + Wc2hd l−1 + wc3dcov l) (5.10)

acp l = ∑
g

softmax(ucp l)xcpg (5.11)

ad l = tanh(Wd1xa + Wd2hd l−1 + Wd3acp l) (5.12)

cd l = ∑
m

softmax(ad l)xam (5.13)

Here, hd l is the decoder hidden state at time-step l, and W and w are learned parameters.

Description Generator

We use LSTM for the description generator (i.e., the decoder). The decoder predicts the

next token of the description conditioned by the previous hidden state of the decoder

hd l−1, the previous generated token tl−1, and the context vector cd l .

hd l = flstm([hd l−1; tl−1; cd l]) (5.14)

t̂l = softmax(Vhd l) (5.15)

104 Description Generation for Star-Shaped Graphs

Here, t̂l is the output probability distribution over the vocabulary, and V is the hidden-to-

output weight matrix. The decoder is trained to maximize the conditional log-likelihood:

p(Sd | Ad) = ∑
l

j=|V|

∑
j=1

t′ l,j × log t̂l,j (5.16)

Jdec =
1
D

D

∑
d=1
− log p(Sd | Ad) (5.17)

J = Jptr + Jdec (5.18)

where (Ad, Sd) is a pair of properties and entity description given for training, t′ is the

matrix of the target token description over the vocabulary V, Jdec is the objective function

of the description generator, and J is the overall objective function of our proposed model.

5.4 Experiments

We evaluate our model on two real-world datasets, including WIKIALL and WIKIBIO

datasets. The properties in WIKIALL are disordered since they are the result of a query to

Wikidata. Meanwhile, the properties in WIKIBIO are practically ordered, i.e., the salient

properties are relatively ordered but may have noises (non-salient properties) between

them. To test on disordered properties of the WIKIBIO dataset, we randomly shuffle the

properties. We use BLEU, ROUGE, METEOR, and TER as the evaluation metrics.

5.4.1 Hyperparameters

We use 512 hidden units for both the pointer networks (content-planner) and the encoder-

decoder (text generator). We use 128, 64, and 8 dimensions of word embeddings (prop-

erty value token), type embeddings (property key), and position embeddings, respec-

tively. We use a 0.5 dropout rate for regularization. We use Adam [67] with a learning

rate of 0.0001 for optimization.

5.4 Experiments 105

Table 5.3: Performance comparisons of description generation models

(a) Results on WIKIBIO dataset

Model
WIKIBIO (disordered) WIKIBIO (ordered)

BLEU ROUGE METEOR TER BLEU ROUGE METEOR TER

MED 40.12 36.02 31.70 55.60 42.54 38.14 32.80 54.20
GTRLSTM 42.64 38.35 32.60 54.40 42.06 37.90 32.20 54.80
NCP 43.07 38.76 33.90 53.20 43.12 38.82 33.90 53.30
FGDA 42.31 38.93 32.20 55.00 44.59 40.20 34.10 52.10
Proposed 45.32 40.80 34.40 51.50 45.46 40.31 34.70 51.30

(b) Results on WIKIALL dataset

Model
WIKIALL

BLEU ROUGE METEOR TER

MED 61.77 56.91 44.20 30.70
GTRLSTM 62.71 57.02 44.30 29.50
NCP 63.21 57.28 44.30 28.50
FGDA 62.61 57.11 44.10 30.20
Proposed 65.12 58.07 45.90 27.50

5.4.2 Baseline Models

We compare our proposed model with four existing models including (1) the Field Gating

with Dual Attention model (FGDA), which is the state-of-the-art table-to-text generation

model [82]; (2) the Graph-based Triple LSTM encoder model (GTRLSTM) that uses topo-

logical sort and breadth-first traversal to select the entity order in the encoding process,

which is our initial work on triple-to-text generation model described (to be described)

in Chapter 6; (3) the Neural Content-Planning model (NCP), which is a data-to-text gen-

eration model that uses content-plan as one of its features [112]; and (4) the modified

encoder-decoder model (MED), which is a modification of the standard encoder-decoder

model that uses the embeddings of its input instead of the hidden state of the encoder to

compute the attention.

106 Description Generation for Star-Shaped Graphs

5.4.3 Results

Table 5.3 shows that our proposed model achieves a consistent improvement over the

baselines, and the improvement is statistically significant, with p < 0.01 based on the

t-test of the BLEU scores. We use MultEval to compute the p-value based on approx-

imate randomization [24]. Our model achieves higher BLEU and ROUGE scores than

the baselines, which indicate that our model generates descriptions with a better order

of property mention. Moreover, the better (lower) TER scores indicate that our model

generates a concise description (i.e., following the content-plan).

On disordered input experiments, the content-plan based models (i.e., our proposed

model and NCP) achieve stable performance with our model getting the highest score on

all metrics. These results show that content-planning helps neural data-to-text generation

models select and arrange the data (i.e., properties) to be mentioned in the text.

The content-planner (the pointer networks) achieves 83.41 and 87.12 BLEU scores on

the WIKIBIO and WIKIALL datasets, respectively. We further conduct experiments to

show that our model reduces error propagation between the content-planner and the

text generator. We use the content-plan gold standard (i.e., the target content-plan ex-

tracted from the description, cf. Section 5.3.2) as the input of the text generator. On

this setup, our model achieves comparable performance with NCP. Our model achieves

46.5 and 66.97 BLUE scores on the WIKIBIO and WIKIALL datasets, respectively. Mean-

while, NCP achieves 46.3 and 66.69 BLUE scores on the WIKIBIO and WIKIALL datasets,

respectively. These results are expected because both models take the same content-plan.

Human Evaluations

We conduct manual evaluations on the generated descriptions using three metrics, in-

cluding correctness, grammaticality, and fluency. Correctness is used to measure the seman-

tics of the generated description (i.e., contains wrong order of property mention or not,

e.g., "born in USA, New York"); grammaticality is used to rate the grammatical and

spelling errors; and fluency is used to measure the fluency of the output (e.g., contain

repetition or not). For each metric, a score of 3 is given to output that contains no errors;

5.5 Summary 107

Table 5.4: Human evaluation results

Model Correctness Grammaticality Fluency

MED 2.25 2.32 2.26
GTRLSTM 2.31 2.40 2.36
NCP 2.54 2.68 2.51
FGDA 2.51 2.58 2.54
Proposed 2.68 2.76 2.57

a score of 2 is given to output that contains one error; a score of 1 is given to output that

contains more than one error. We randomly choose 300 records of the WIKIALL dataset

along with the output of each model. We manage to get six annotators who have studied

English for at least ten years and completed education in an English environment for at

least two years. The total time spent for these evaluations is around 250 hours. Table 5.4

shows the results of the human evaluations. The inter-annotator agreement measured by

Fleiss’ kappa [41] is 0.47, which indicates moderate agreement. The results confirm the

automatic evaluations in which our proposed model achieves the best scores.

Discussion

Our model is a statistical model that performs joint learning of content-planning and

text generation. Hence, it needs a large training set in the form of triples of properties,

content-plan, and description. However, extracting a content-plan from a description

is a non-trivial task. We use string matching to find the order of properties in the de-

scription as a content-plan. However, string matching does not capture the semantic

similarity between properties and text. For example, string matching cannot capture the

similarity between United States and American, even though the word American

is commonly used to describe a United States citizen.

5.5 Summary

In this chapter, we studied the problem of description generation for enriching a knowl-

edge base. We proposed an end-to-end data-to-text generation model on top of an encoder-

108 Description Generation for Star-Shaped Graphs

decoder framework that includes content-planning to address the problem of disordered

input. Our model employs joint learning of content-planning and text generation to re-

duce error propagation between them for generating a description of an entity from its

properties. To integrate a content-plan into the encoder-decoder framework, we pro-

pose the content-plan-based bag of tokens attention model. Our attention model effectively

captures salient properties in a proper order. Experimental results show that our pro-

posed model outperforms the baselines and achieves the highest score in all metrics on

the WIKIALL and WIKIBIO test datasets. Moreover, our model achieves 45.46 and 45.32

in terms of BLEU score on the ordered and disordered WIKIBIO test dataset. These re-

sults show that our proposed model obtains stable performance on disordered input and

achieves a consistent improvement over the baselines by up to 5%.

Chapter 6

Description Generation for
Knowledge Bases Represented as

Arbitrary-Shaped Graphs

This chapter is based on a paper that has been published in the Annual Meeting of the Association

for Computational Linguistics (ACL) 2018: GTR-LSTM: A Triple Encoder for Sentence Generation

from RDF Data. Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang, Wei Wang.

6.1 Introduction

IN Chapter 5, we study text generation [116] from structured data. Specifically, we aim

to translate triples into a natural sentence that describes an entity in a KG. We call

this task triple-to-text generation. However, in the previous chapter, we only consider a set

of triples in the form of a star-shaped graph, where there is a central entity that appears

in every triple of interest. As illustrated in Fig. 6.1(a), The entity Flinders Street

Station is the central entity, and the other entities (or literals) connect to the central

entity directly. The star-shaped graph is easy to extract since many KBs allows unnor-

malized forms, but it is less natural in representing the real-world relationships between

entities. For example, the relationship between Australia and Melbourne may not

be properly defined. In contrast, the graph in Fig. 6.1(b) represents the relationship be-

tween entities in a more natural way. However, it may form an arbitrary-shaped graph

as opposed to a star-shaped graph, which is more challenging for a machine to process.

In this chapter, we study triple-to-text generation from an arbitrary-shaped graph

to generate a description of entities in a knowledge graph. Given a set of triples re-

109

110 Description Generation for Arbitrary-Shaped Graphs

type

Flinders
Street
Station

Melbourne

Station

located_indate_open

located_in

1854

Australia

(a) Star-shaped graph

type

Flinders
Street
Station

Melbourne

Station

located_indate_open located_in
1854 Australia

(b) Arbitrary-shaped graph

Figure 6.1: Different shapes of graphs

lated to a target entity [〈John Doe, birth place, London〉, 〈John Doe, birth

date, 1967-01-10〉, and 〈London ,capital of, England〉], we aim to generate

a natural sentence that describes the target entity. The description incorporates the in-

formation of the triples and is easier to be understood by humans. In this example, the

generated sentence is "John Doe was born on January 10, 1967 in London,

the capital of England". Table 6.1 illustrates such an example. The generated

description can be used to enrich a knowledge graph, which later can be used in many

downstream applications. For example, in question answering [161, 167], the generated

sentence can be used to describe the entity in the answer.

Traditional triple-to-text generation approaches use domain-specific rules. Bontcheva

and Wilks [10] created rules to generate sentences in the medical domain, while Cimiano

6.1 Introduction 111

Table 6.1: Data-to-text generation from an arbitrary-shaped graph

Triples
〈John Doe, birth place, London〉
〈John Doe, birth date, 1967-01-10〉
〈London, capital of, England〉

Target Sentence

John Doe was born on
January 10, 1967 in
London, the capital of
England.

et al. [23] created rules to generate step by step cooking instructions. Rule-based ap-

proaches need a lot of human efforts to create the rules, which mostly cannot deal with

complex or novel cases. Recent studies in text generation propose neural generation

models. Lebret et al. [72] developed a conditional neural language model to generate

the first sentence of a biography. Another approaches in biography summarization use

encoder-decoder frameworks [6, 82, 128]. Mei et al. [93] proposed an encoder-aligner-

decoder architecture to generate weather forecasts. These models do not need predefined

rules and hence generalize better to open domain data.

A straightforward adaptation of neural text generation models for triple-to-text gen-

eration is to use the encoder-decoder model [4, 21] by first concatenating the elements

of the triples into a linear sequence and then feeding the sequence as the model input

to learn the corresponding target sentence. We implemented such a model (detailed in

Section 6.2.4) that ranked top in the WebNLG Challenge 2017 [46]. This Challenge has

a primary objective of generating syntactically correct natural sentences from a set of

triples. Our model achieves the highest global scores on the automatic evaluation, out-

performing competitors that use rule-based methods, statistical machine translation, and

neural machine translation [46].

Simply concatenating the elements in the triples may lose the relationship between

entities that affects the semantics of the resulting sentence (cf. Table 6.3). Recent studies

in triple-to-text generation proposed a graph encoder to exploit the input structure. Vou-

gioklis et al. [159] proposed a triple encoder using feed-forward neural networks. This

encoder is good at capturing the relationships between entities in a triple (intra-triple re-

lationships). Still, it may fail to capture the relationships between entities in related triples

112 Description Generation for Arbitrary-Shaped Graphs

(inter-triple relationships). Marcheggiani and Perez-Beltrachini [89] employed graph con-

volutional networks (GCN) [68] as the encoder of the input. GCN is good at capturing

the relationship between an entity and its immediate neighbors but may fail to capture

long-range relationships between entities.

To address the limitations of the existing models, we propose a novel graph-based

triple encoder model named GTR-LSTM that maintains the structure of the triples as a

small knowledge graph. This model computes the hidden state of each entity in a graph

that preserves the intra-triple and inter-triple relationships, which helps to achieve more

accurate sentences. Capturing both types of relationships in a knowledge graph leads to

two problems: (1) how to deal with a cycle in a knowledge graph; (2) how to deal with

multiple relationships between two entities in a knowledge graph (e.g., John Doe and

London may have multiple relationships birth place and live in).

We handle the aforementioned difficulties as follows. We devise a supervised topo-

logical traversal algorithm to encode a graph in more natural order by taking supervision

signals on the processing order from entity-order aware embeddings. Here, the entity-order

refers to the order of entities occurrences in natural sentences. To learn such entity-order

aware embeddings, we train a translation-based graph embedding model over a word-

entity graph. The word-entity graph is a KG containing triples from which sentences

are to be generated, combined with entity-word co-occurrence triples and entity-order triples

extracted from a text corpus. Here, an entity-word co-occurrence triple is formed by

word-pairs that co-occur within a window in a sentence. An entity-order triple repre-

sents a previous relationship between two entities. To handle multiple relationships be-

tween entities, we propose a novel GTR-LSTM unit that aggregates both an entity and its

relationships, as opposed to the standard LSTM unit [55] that can only take one input.

The proposed model differs from existing non-linear LSTM models, such as Tree

LSTM [147] and Graph LSTM [76], in addressing the aforementioned problems. In par-

ticular, Tree LSTM does not allow cycles, while the proposed model handles cycles to

encode the input graph by first traversing the input graph as described above, and then

using an attention model to capture the global information of the knowledge graph.

Meanwhile, Graph LSTM only allows a single relationship between entities, while the

6.1 Introduction 113

proposed model handles multiple relationships by modifying the input, forget, and out-

put gates of the LSTM unit to aggregate an entity and its relationships.

To further enhance the capability of our model to handle unseen entities, we use entity

masking, which maps entities in the model training pairs to their types, e.g., we map an

entity (literal) 1967-01-10 to a type symbol DATE in the training pairs. This way, our

model can learn to handle any date entities rather than just 1967-01-10. This method

is particularly helpful when the training data is limited.

Our contributions are summarized as follows:

• We propose a graph-based triple encoder to optimize the amount of information

preserved in the input of the model. The proposed model can handle cycles to

capture the intra-triple and inter-triple relationships between entities in a KG. The

proposed model also handles multiple relationships between entities.

• To handle multiple relationships between entities, we propose a GTR-LSTM unit

that aggregates both an entity and its relationships in a single unit.

• To handle cycles, we devise a supervised topological traversal that takes supervi-

sion signals based on the order of entities in natural sentences, which makes the

encoding more robust.

• To capture the order of entities in natural sentences, we present an entity-order

aware translation-based graph embedding model that is trained over a word-entity

graph. The learned embeddings maintain the mentioning order of entities in sen-

tences, which helps the encoder to encode the input graph in a more natural order.

• We evaluate the proposed framework and model over two real datasets. The results

show that our model outperforms the state-of-the-art neural triple-to-text genera-

tion models [89, 159] consistently.

The rest of this chapter is organized as follows. Section 6.2 details the proposed

model. Section 6.3 presents the experimental results. Section 6.4 summarizes the chapter.

114 Description Generation for Arbitrary-Shaped Graphs

6.2 Proposed Model

We start with the problem definition. We consider a set of triples as the input, which

is denoted by T = {t1, t2, ..., tn} where a triple tn consists of three elements (subject sn,

predicate pn, and object on), tn = 〈sn, pn, on〉. Every element of the triple can contain

multiple words. We aim to generate a sentence that consists of a sequence of words

Y = 〈y1, y2, ..., yk〉, such that the relationships in the input triples are correctly represented

in Y while the sentences have a high quality. We use BLEU, METEOR, and TER to assess

the quality of the sentence (detailed in Section 6.3). Table 6.1 illustrates the input and

output of the problem.

This section is organized as follows. First, we describe the overall framework (Sec-

tion 6.2.1). Next, we describe the pre-processing module of the framework (Section 6.2.2)

and the entity-order aware embedding model used in the proposed model (Section 6.2.3).

Then, we describe three triple encoder models, including the adapted BLSTM model (Sec-

tion 6.2.4), the adapted triple encoder model (Section 6.2.5), and the proposed GTR-LSTM

model (Section 6.2.6). The same decoder is used for all encoder models, which is de-

scribed in Section 6.2.7.

6.2.1 Solution Framework

Our solution framework uses an encoder-decoder architecture [21], as illustrated in Fig-

ure 6.2. The framework consists of three components, including a triples pre-processor, a

target text pre-processor, and an encoder-decoder module.

The triples pre-processor consists of an entity type mapper and a masking module.

The entity type mapper maps the subjects and objects in the triples to their types, such

that the target sentences are learned based on entity types rather than entities. For exam-

ple, the input entities in Table 6.1, John Doe, London, England, and 1967-01-10 can

be mapped to PERSON, CITY, COUNTRY, and DATE, respectively. The mapping has been

shown in our experiments to be effective in improving the output quality. The masking

module converts each entity into an entity identifier (eid). The target text pre-processor

consists of a text normalizer and a masking module. The text normalizer converts ab-

6.2 Proposed Model 115

Entity	masking

Entity	type	mapping

…

…

Encoder

Decoder

Target Text

Masking ModuleSentence Normalizer

Target Text Pre-processor

Triples input

Entity Type Mapper Masking Module
Triples Pre-processor

s1 p1 o1 on…

y1 y2 yk…

< John Doe, birth place, London >
< John Doe, birth date, 1967-01-10 >

< London, capital of, England >

< John Doe [PERSON], birth place, London [CITY] >
< John Doe [PERSON], birth date, 1967-01-10 [DATE] >

< London [CITY], capital of, England [COUNTRY] >

< ENT-1 $john_doe [PERSON], birth place, ENT-2 $london [CITY] >
< ENT-1 $john_doe [PERSON], birth date, ENT-3 $date [DATE] >

< ENT-2 $london [CITY], capital of, ENT-4 $england [COUNTRY] >

John Doe was born on January 10, 1967 in London, the capital of England.

John Doe was born on 1967-01-10 in London, the capital of England.

ENT-1 was born on ENT-3 in ENT-2, the capital of ENT-4

Sentence	Normalising

Entity	masking

Figure 6.2: Triple-to-text generation based on an encoder-decoder architecture

breviations and dates into the same format as the corresponding entities in the triples.

Similar to the masking module of the triples pre-processor, the masking module of the

text processor replaces entities in the target sentences by their eids. These pre-processing

modules are detailed in Section 6.2.2.

To accommodate the knowledge graph triples as input, in the encoder side, we con-

sider three triple encoder models: (1) an adapted BLSTM encoder; (2) an adapted triple

encoder; and (3) the proposed GTR-LSTM triple encoder. The adapted BLSTM encoder

linearizes the words in a set of triples as an input sequence, while the adapted triple en-

coder encodes each triple into a vector representation. The latter model better captures

intra-triple relationships but suffers in capturing inter-triple relationships. Considering

the native representation of the triples as a graph, our GTR-LSTM encoder captures both

intra-triple and inter-triple entity relationships by handling cycles in the input graph and

capturing multiple relationships between entities.

To handle multiple relationships between entities, we propose a GTR-LSTM unit that

aggregates both an entity and its relationships. Meanwhile, to determine the processing

order of the input triples, the proposed GTR-LSTM encoder uses a supervised topolog-

ical traversal. The traversal takes supervision signals on the processing order from an

116 Description Generation for Arbitrary-Shaped Graphs

entity-order aware embeddings. To learn such entity-order aware embeddings, we train a

translation-based graph embedding model over a word-entity graph. The word-entity

graph is a KG containing triples from which sentences are to be generated combined

with entity-word co-occurrence triples and entity-order triples extracted from a text cor-

pus. Here, an entity-word co-occurrence triple is formed by word-pairs that co-occur

within a window in a sentence. An entity-order triple represents a previous relation-

ship between two entities. The entity-order aware embedding models and the proposed

GTR-LSTM encoder are detailed in Section 6.2.3 and Section 6.2.6, respectively.

6.2.2 Entity Masking

Entity masking makes our proposed framework generalizes better to unseen entities.

This technique addresses the problem of limited training data faced by many natural

language generation tasks.

Entity masking replaces entity mentions with eids, gids, and entity types in both the

input triples and the target sentences. Here, eid is a local entity identifier to differentiate

entities in a given input, while gid is a global identifier to differentiate entities in the

entire dataset. In the case of unseen entities in testing, the gid is set to a unique identifier

$unk. Hence, the entity types play critical roles to differentiate entities in the input.

As illustrates in Figure 6.2, the entity "John Doe" is replaced by "ENT-1 $john doe

[PERSON]"1 in the input triple and "ENT-1" in the target sentence. Here, "ENT-1",

"$john doe", and "[PERSON]" are the local identifier, global identifier, and entity type,

respectively. To get the entity type, the entity type mapper uses DBpedia lookup API2.

The API returns several types. The type assigned for each entity is determined by its level

in the WordNet [39] hierarchy. We take the type with the highest level in the hierarchy.

In the encoder side, the subject sn and the object on of a triple tn = 〈sn, pn, on〉 are

transformed into 〈eid, gid, type〉, where eid is the local identifier, gid is the global iden-

tifier, and type is the entity type extracted by the entity type mapper. Meanwhile, the

1To make the following examples more intuitive, we use the first word of the entity mention to represent
the entity instead of using eid and gid. For example, we use "John" instead of "ENT-1 $john doe" to
represent the entity "John Doe" for the following examples.

2http://wiki.dbpedia.org/projects/dbpedia-lookup

6.2 Proposed Model 117

predicate pn is preserved, since it indicates the relationship between the subject and the

object.

In the decoder side, the entities in the target text are replaced by their corresponding

eids. Before masking the entity in the target sentence, we normalize the target sentence

to convert the abbreviation and date into the same format as the corresponding entities

in the triples. To convert the abbreviation, we use a dictionary of acronyms extracted

from Wikipedia3 [125], while to convert the date we, use regular expressions. Figure 6.2

illustrates the sentence normalization procedure. In this example, the string "January

10, 1967" is replaced by "1967-01-10" to match the date format on the triple.

Entity matching is not the focus of our study. We use a combination of three string

matching methods to find entity mentions in the target sentence: exact matching, n-gram

matching, and parse tree matching. The exact matching is used to find the exact mention;

the n-gram matching is used to handle partial matching with the same number of words

(e.g., "John Doe" and "John D."); and parse tree matching is used to find partial

matching with a different number of words (e.g., "John Doe" and "John F. Doe").

6.2.3 Entity-order Aware Embedding Model

Since we aim to generate sentences based on a given set of triples, it is critical to learn

embeddings that preserve the relationships between the words that form the sentences

and the entities that form the triples. To train such an embedding model, we adapt a

translation-based graph embedding model. A translation-based graph embedding model

(e.g., TransE and variants [11, 60, 79, 162]) considers that the embeddings of the object o

of a triple should be close to the embeddings of the subject s plus the embeddings of the

predicate p, i.e., s + p ≈ o. This model preserves the structural information of entities,

i.e., entities that share similar neighbors in a KG should have a close representation in the

embedding space.

To capture relationships between words and entities, we train a translation-based

graph embedding model over a word-entity graph constructed as follows (cf. Figure 6.3).

The core of the word-entity graph is a knowledge graph containing triples from which

3https://github.com/davidsbatista/lexicons

118 Description Generation for Arbitrary-Shaped Graphs

Knowledge graph triples

<John Doe, birth place, London>
<John Doe, occupation, Politician>
<John Doe, birth date, 1967-01-10>
...

Text corpus

John Doe is a British politician who was born on January 10,
1967 in London.
...

Enriched text corpus

John Doe is a British politician who was born on January 10,
1967 in London.
$john_doe is a British $politician who was born on $date in
$london.
...

Entity-word co-occurrence triples

<John, COOC, Doe>
<John, COOC, is>
<John, COOC, a>
...
<$john_doe, COOC, is>
<$john_doe, COOC, a>
<$john_doe, COOC, British>
...

Entity-order triples

<$john_doe, PRE, $politician>
<$john_doe, PRE, $date>
...
<$date, PRE, $london>

Entity masking

Word-entity graph

<John Doe, birth place, London>
<John Doe, occupation, Politician>
<John Doe, birth date, 1967-01-10>
<$john_doe, PRE, $politician>
<$john_doe, PRE, $date>
<$date, PRE, $london>
<John, COOC, Doe>
<John, COOC, is>
<John, COOC, a>
<$john_doe, COOC, is>
<$john_doe, COOC, a>
<$john_doe, COOC, British>
...

Figure 6.3: Construction of a word-entity graph

sentences are to be generated. This can be a general domain knowledge base, such as

DBpedia [3]. We add two types of triples to the core graph. The first is entity-word

co-occurrence triples, and the second is entity-order triples.

Both entity-word co-occurrences and entity-order triples are extracted from a text cor-

pus such as Wikipedia. First, we apply entity masking (cf. Section 6.2.2) to the text

corpus to enrich them with masked sentences, where entity mentions are replaced by

their global identifiers. The masked sentences not only capture relationships between

words and entities but also help in entity disambiguation [173]. To collect entity-word

co-occurrence triples, we extract word pairs that co-occur in the enriched text corpus

within a window W1 (W1 = 5 in our experiments) and a frequency of co-occurrence

of 5. For each extracted pair 〈w1, w2〉, we create a triple by adding a predefined re-

lationship COOC. For example, 〈John,COOC,Doe〉 is extracted from the raw sentence

and 〈$john doe,COOC,is〉 is extracted from the masked sentence as illustrated in Fig-

ure 6.3. To collect entity-order triples, first, we extract a list of gids from left to the right in

the masked sentences, e.g., [$john doe, $politician, $date, $london]. Then,

we extract the entity pair using a sliding window W2 = 2 from the list. For each ex-

6.2 Proposed Model 119

tracted pair 〈e1, e2〉, we create a triple by adding a predefined relationship PRE. For ex-

ample, 〈$john doe,PRE,$politician〉 is extracted, as illustrated in Figure 6.3. This

triple represents a previous relationship between two entities, i.e., the entity $john doe

is mentioned before the entity $politician in a sentence. We combine these triples

with the core graph into a word-entity graph.

Based on the word-entity graph, our embedding model learns the entity and word

embeddings by minimizing a margin-based objective function:

JE = ∑
tr∈Tr

∑
t′r∈T′r

max
(
0,
[
γ + f (tr)− f (t′r)

])
(6.1)

Tr = {〈s, p, o〉|〈s, p, o〉 ∈ GWE} (6.2)

Tr
′ =

{〈
s′, p, o

〉
| s′ ∈ Z

}
∪
{〈

s, p, o′
〉
| o′ ∈ Z

}
(6.3)

f (tr) =
∥∥Mps + p−Mpo

∥∥
2 (6.4)

Here, ‖x‖2 is the L2-Norm of vector x, γ is a margin hyperparameter, Tr is the set of

valid triples from a word-entity graph GWE, T′r is the set of corrupted triples, and Z is the

set of entities (subject s and object o of a triple) in GWE. The corrupted triples are used

as negative samples, which are created by replacing the subject or object of a valid triple

in Tr with a random entity. Mp is a learned matrix to project the subject and object of a

triple into a relation space for computing a plausibility score f (tr).

Since we extract triples from text corpus based on word co-occurrences, the word-

entity graph may consist of reflexive (e.g., {〈s, p, o〉, 〈o, p, s〉}), one-to-many (e.g., {〈s, p, o1〉,

〈s, p, o2〉}), many-to-one (e.g., {〈s1, p, o〉, 〈s2, p, o〉}), and many to many relationships (e.g.,

{〈s1, p, o1〉, 〈s1, p, o2〉, 〈s2, p, o1〉, 〈s2, p, o2〉}). To handle these relationships, we employ

TransR [79] (cf. Eq. (6.4)), where the subject and object embeddings (s and o) are pro-

jected into a vector space by a learned matrix Mp for each corresponding predicate p.

The advantages of our embedding model are twofold. First, the learned embeddings

capture the relationships between words and entities. For the example in Figure 6.3, the

embedding model captures the relationship between the entity $john doe and the word

British. Second, the embeddings preserve the entity order information in a sentence

120 Description Generation for Arbitrary-Shaped Graphs

John → w1
PERSON → w2
birth → w3
place → w4
London → w5
CITY → w6
London → w7
CITY → w8
capital w9
of → w10
England → w11
COUNTRY → w12
… → ...
… → ...
… → ...
… → ...
… → ...
… → wm

t1

word embedding
Attention

MechanismLSTM

t2

tn

w’1

w’2

...

w’12

...

w1

w2

...

w12

...

c

wm
w’m

Figure 6.4: Adapted BLSTM encoder

that helps break ties in the topological traversal of the proposed encoder.

The learned embeddings are used to initialized all tested models, including the adapted

BLSTM encoder (cf. Section 6.2.4), the adapted triple encoder (cf. Section 6.2.5), and the

proposed model (cf. Section 6.2.6).

6.2.4 Adapted BLSTM Encoder

The encoder-decoder model with a bi-directional LSTM (BLSTM) encoder is a sequence-

to-sequence learning model [21]. To adapt such a model for our problem, we transform

a set of triples input T into a sequence of words (i.e., T = {w1, w2, ..., wm}), where m

is the number of words in a set of triples. As illustrated in Figure 6.4, w1 is the word

embedding of John, w2 is the word embedding of PERSON, etc. This sequence forms

an input for the encoder. The rest of the model is the same as the encoder-decoder with

attention mechanism model [4]. We call this model the adapted BLSTM encoder.

6.2 Proposed Model 121

6.2.5 Adapted Triple Encoder

The adapted BLSTM encoder suffers in capturing both intra-triple relationships and inter-

triple relationships since linearizing a set of triples may discard the graph structure. Next,

we further adapt the BLSTM encoder to aggregate the elements of the same triple to re-

tain the intra-triple relationship. We call this the adapted triple encoder.

The adaptation is done by grouping the elements of each triple, so the input is rep-

resented as T = {〈w1,1, ..., w1,j〉, ..., 〈wn,1, ...wn,j〉}, where wn,j is the embedding of a word

in the n-th triple. We use LSTM to compute a hidden state of each triple. We also use an

attention mechanism [4] to compute a context vector for the decoder as follows.

w′tn
= flstm(〈wn,1, wn,2, ..., wn,j〉) (6.5)

αl =
exp(hd

k−1
ᵀWw′tl

)

∑|T|n=1 exp(hd
k−1

ᵀWw′tn
)

(6.6)

ck =
|T|

∑
l=1

αlw′l (6.7)

where w′tn
is a triple vector representation encoded by an LSTM network flstm, αl is

the attention score of each triple, |T| is the number of triples, hd
k−1 is the previous hidden

state of the decoder, W is a learned parameter, and ck is the context vector representation

for the decoder at time-step k. Figure 6.5(b) illustrates the adapted triple encoder.

6.2.6 GTR-LSTM Triple Encoder

The adapted triple encoder preserves intra-triple relationships. However, it has not con-

sidered the structural relationships between entities in different triples. To overcome this

limitation, we propose a graph-based triple encoder. We call it the GTR-LSTM triple en-

coder. This encoder takes the input triples in the form of a graph (cf. Figure. 6.6), which

preserves the natural structure of the triples. Hence, the proposed encoder captures both

intra-triple relationships and inter-triple relationships.

GTR-LSTM differs from existing Graph LSTM [76] and Tree LSTM [147] models in the

122 Description Generation for Arbitrary-Shaped Graphs

...

John → w1,1
PERSON → w1,2
birth → w1,3
place → w1,4
London → w1,5
CITY → w1,6
London → w2,1
CITY → w2,2
capital w2,3
of → w2,4
England → w2,5

COUNTRY → w2,6
… → wn,1
… → wn,2
… → wn,3
… → wn,4
… → wn,5
… → wn,6

t1

word embedding Attention
MechanismLSTM

t2

tn

w’n,1

w’n,2

w’n,3

w’n,4

w’n,5

wn,1

wn,2

wn,3

wn,4

wn,5

c

wn,6

w’t1

w’tn

...

w’t2

w’tn

Figure 6.5: Adapted Triple encoders

birth_place capital_of

1967

EnglandLondonJohn

birth_date

lead_by

Figure 6.6: A small knowledge graph formed by a set of triples

following aspects. Graph LSTM is proposed for image data. It constructs the graph based

on the spatial relationships among super-pixels of an image. Tree LSTM uses the depen-

dency tree as the structure of a sentence. Both models have a predefined relationship

between the vertices (Graph LSTM uses spatial relationships: top, bottom, left, or right

between super-pixels; Tree LSTM uses dependencies between words in a sentence as the

relationship). In contrast, a KG has an open set of relationships between the vertices (i.e.,

the predicate defines the relationship between entities/vertices), which makes our prob-

6.2 Proposed Model 123

< >

xJohn
xnull

x’john

x0

x1967

x’1967

xengland
xcapital_of

x’england

xlondon

x’london

x’John
xlead_by

x’’john

xbirth_date xbirth_place

Attention model

Figure 6.7: GTR-LSTM triple encoder

lem more difficult to model. GTR-LSTM also differs in handling multi-hop relationships

between entities in a KG from GCN [68], which is a state-of-the-art graph neural network

model. GCN requires multiple layers to capture multi-hop relationships, which makes

GCN vulnerable to out-of-memory issues. In contrast, GTR-LSTM requires less mem-

ory via recurrent units with a supervised topological traversal algorithm to effectively

capture multi-hop relationships.

Our GTR-LSTM triple encoder overcomes the difficulty as follows. It receives a di-

rected graph G = 〈V, E〉 as the input, where V is a set of vertices that represent entities

or literals, and E is a set of directed edges that represent predicates. Here, a vertex (and

an edge) may contain multiple words. A vertex (i.e., entity) consists of a local entity

identifier eid, a global identifier gid, and an entity type, while the edge (i.e., predicate)

may consist of multiple words, e.g., "birth date". Hence, to represent a vertex (or an

edge), we use a linear transformation as follows.

x = tanh(W[w1; w2; ...; wj] + b) (6.8)

where [;] indicates vector concatenation, b indicates bias vector, wj indicates the embed-

dings of a word in a vertex (or en edge), and W is a learned parameter.

124 Description Generation for Arbitrary-Shaped Graphs

GTR-LSTM Unit

Different from the Graph LSTM, our GTR-LSTM model computes a hidden state by tak-

ing into account the processed entity and its edge (the edge pointing to the current entity

from the previous entity) to handle multiple relationships between entities in a knowl-

edge graph. Thus, our GTR-LSTM unit (cf. Figure 6.7) receives two inputs, i.e., the entity

and its relationship. We propose the following model to compute the hidden state of each

GTR-LSTM unit.

it = σ

(
∑

e

(
Uiexte + Wiex′t−1

))
(6.9)

fte = σ
(

U f xte + W f xt−1

)
(6.10)

ot = σ

(
∑

e

(
Uoexte + Woex′t−1

))
(6.11)

gt = tanh

(
∑

e

(
Ugexte + Wgex′t−1

))
(6.12)

ht =

(
ht−1 ∗∑

e
fte

)
+ (gt ∗ it) (6.13)

x′t = tanh(ht) ∗ ot (6.14)

Here, U and W are learned parameter matrices, σ denotes the sigmoid function, ∗ de-

notes element-wise multiplication, x is the input at the current time-step, and x′t−1 is the

hidden state of the previously processed vertex. The input gate i determines the weight

of the current input. The forget gate f determines the weight of the previous state. The

output gate o determines the weight of the cell state forwarded to the next time-step.

The state g is the candidate hidden state used to compute the internal memory unit h

based on the current input and the previous state. The subscript t is the time-step. The

subscript/superscript e is the input element (an entity or a predicate). Following Tree

LSTM [147] and Graph LSTM [76], we also use a separate forget gate for each input that

allows the GTR-LSTM unit to incorporate information from each input selectively.

6.2 Proposed Model 125

Input Graph Visiting Order

To establish an order of feeding the vertices into a GTR-LSTM unit for computing their

hidden states, we use a supervised topological traversal over the input graph. The traver-

sal decides which hidden state to be computed by sequentially taking a vertex with

zero in-degree until all vertices are processed. Our intuition is that the order of entity

mentions in a sentence follows the direction of the edge. For example, given a triple

〈John, birth place, London〉, the graph representation contains a directed edge

birth place from John to London, and a common sentence to describe the graph is

"John was born in London".

Since the input graph may contain cycles (e.g., Figure 6.6), there could be no vertices

with zero in-degree to be visited by the topological traversal. In this case, we need to pro-

vide supervision signals to help break ties (i.e., tie-breaking procedure) in the traversal.

The supervision signal comes from the learned embeddings, which preserve the infor-

mation about the order of entity mention in a sentence (cf. Section 6.2.3). Given two

vertices v1 and v2, the entity to be processed earlier is decided based on their precedence

computed by their embeddings. Intuitively, if there is a PRE relationship between the en-

tities e1 and e2 that correspond to v1 and v2, then v1 should be processed first. Otherwise,

we process v2 first. We use a function fpre to denote the computation of the vertex to be

processed first between v1 and v2:

fpre(v1, v2) =

v1, if cos(Mpw1 − ppre, M‘pw2) ≥ 0

v2, otherwise
(6.15)

where Mp is the larned projection matrix, ppre is the embeddings of predicate PRE (i.e.,

a predicate that indicates the relative position between two entities, cf. Section 6.2.3) and

cos(x, y) is a cosine similarity between two vector x and y. If there are more than two ver-

tices that have the same smallest in-degree, the function in Eq. (6.15) is run recursively,

e.g., fpre(fpre(v1, v2), v3). When a vertex vi is visited, the hidden states of all adjacent ver-

tices of vi are computed (or updated if the hidden state of the vertex is already computed

in the previous step).

126 Description Generation for Arbitrary-Shaped Graphs

x'1 x'2 x’t

Decoder

c

Decoder previous hidden state hdk-1

Attention model

…

α = {α1, α2, …, αt }
k

..

Figure 6.8: GTR-LSTM attention mechanism

Take the graph in Figure. 6.6 as an example. The order of hidden state computation

is as follows. The process starts with a vertex with zero in-degree. Because there is no

such vertex, we use Eq. (6.15) to determine the next vertex to be processed. Suppose that

John is chosen as the starting vertex. Then x′john is computed using x0 as the previous

hidden state, and all directed edges started from John are removed. Next, x′1967 and

x′London are computed consecutively (the vertex 1967 is selected by Eq. (6.15), and the

vertex London is selected in the next topological traversal step) by passing x′john as the

previous hidden state. Next, all directed edges started from london are removed (no

directed edges started from 1967). In the last step, x′′john is updated. Figure. 6.7 illustrates

the overall process.

Capturing Global Information of the Input Graph

From Figure. 6.7, we can see that the traversal creates two branches, one ended in x′1967,

and the other ended in x′′john. After the encoder computes the hidden states of each ver-

tex, x′′john does not include the information of x′1967 and vice versa. Moreover, the graph

can contain cycles that cause difficulty in determining the starting and ending vertices.

Our traversal procedure ensures that the hidden states of all vertices are updated based

6.2 Proposed Model 127

on their adjacent vertices (local neighbors). To further capture the global information

of the graph, we apply an attention model [87] on the GTR-LSTM triple encoder. The

attention model takes the hidden states of all vertices computed by the encoder and the

previous hidden state of the decoder to compute the context vector of the decoder in each

time-step. Figure 6.8 illustrates the attention model of GTR-LSTM. We use the following

equation to compute the weights of each vertex.

αt =
exp(hd

k−1
ᵀWx′t)

∑|X|j=1 exp(hd
k−1

ᵀWx′j)
(6.16)

Here, hd
k−1 is the previous hidden state of the decoder, |X| is the total number of entities

(vertices) in the input triples, W is a learned parameter matrix, x′ is the hidden state of a

vertex, and α = {α1, α2, ..., αt} are the weights of each vertex. Then the context vector of

the decoder for each time-step can be computed as follows.

ck =
|X|

∑
t=1

αtx′t (6.17)

Note that the adapted BLSTM encoder and the adapted triple encoder also use attention

mechanisms. However, there are differences between these attention mechanisms. In

the BLSTM encoder and the adapted triple encoder, the attention is applied at the word-

level and triple-level, respectively. Meanwhile, in the GTR-LSTM encoder, the attention

is applied at the entity-level. Attention at the entity-level is more intuitive in selecting

the order of entity mention in the target sentence.

6.2.7 Decoder

The decoder of the proposed framework is a standard LSTM. It is trained to generate the

output sequence by predicting the next output word yk conditioned on the hidden state

hd
k. The current hidden state hd

k is conditioned on the hidden state of the previous time-

step hd
k−1, the output of the previous time-step yk−1, and a context vector ck. The hidden

state and the output of the decoder at time-step k are computed as:

hd
k = f (hd

k−1, yk−1, ck) (6.18)

128 Description Generation for Arbitrary-Shaped Graphs

ŷk = so f tmax(Mhd
k) (6.19)

Here, ŷk is the output probability distribution over the vocabulary, f is a single LSTM

unit, and M is the hidden-to-output weight matrix. The encoder and the decoder are

trained to maximize the conditional log-likelihood:

p(Sn | Tn) = ∑
k

j=|V|

∑
j=1

y′ l,j × log ŷk,j (6.20)

Hence, the training objective is to minimize the negative conditional log-likelihood:

J =
1
D

D

∑
d=1
− log p(Sn | Tn) (6.21)

where (Sn, Tn) is a pair of output word sequence and input triple set given for the train-

ing, y′ is the matrix of the target sentence over the vocabulary V, and |D| is the number

of training samples.

6.3 Experiments

We evaluate our framework on two datasets. The first is the dataset from the WebNLG

challenge [45]. We call it the WebNLG dataset. This dataset contains 25,298 triples-text

pairs, with 9,674 unique sets of triples. The dataset consists of a Train+Dev dataset and

a Test Unseen dataset. We split Train+Dev into a training set (80%), a development set

(10%), and a Seen testing set (10%) (denoted by Seen test dataset). The Train+Dev dataset

contains triples in ten categories (topics, e.g., astronaut, monument, food, etc.), while

the Test Unseen (denoted by Unseen test dataset) dataset has five other unseen cate-

gories. The maximum number of triples in each triple set is seven. The triples in the

Seen test dataset are manually ordered such that the order of the entity in a set of triples

follows the order of entity mention in the target sentence. In real applications where the

triples are automatically gathered (e.g., for question answering), the entities and triples

may not follow their order of appearance in the target sentence. To evaluate the robust-

6.3 Experiments 129

ness of our model against such scenarios, we randomly shuffled the triple of the Seen

dataset (denoted by Shuffled test dataset). For the second dataset, we collected data

from Wikipedia pages regarding landmarks. We call it the GKB dataset. We first extract

triples from Wikipedia infoboxes and sentences from the Wikipedia text that contain en-

tities mentioned in the triples. Human annotators then filter out false matches to obtain

1, 000 triples-text pairs. This dataset is split into the training and development set (80%)

and the testing set (20%) (denoted by GKB test dataset). The triples in the GKB dataset

are unordered. Table 6.1 illustrates an example of the data pairs of WebNLG and GKB

dataset.

We implement the existing models, the adapted model, and the proposed model us-

ing Keras. We use three common evaluation metrics, including BLEU [108], METEOR [31],

and TER [133]. For the metric computation and significance testing, we use MultEval [24].

6.3.1 Baseline Models

We compare our proposed GTR-LSTM triple encoder with five existing models, includ-

ing:

• BLSTM encoder, which is the adapted Bi-directional LSTM as described in Sec-

tion 6.2.4.

• TFF encoder, which is a triple encoder using feed-forward neural networks [159].

• SMT encoder, which is an adapted statistical machine translation [54] model for

triple-to-text generation.

• TLSTM encoder, which is the adapted triple encoder using LSTM as described in

Section 6.2.5.

• GCN encoder, which is a state-of-the-art triple encoder based on the graph convo-

lution network [68, 89].

130 Description Generation for Arbitrary-Shaped Graphs

6.3.2 Hyperparameters

We use grid search to find the best hyperparameters for the neural networks. For the em-

bedding model, we choose the embeddings dimensionality among {50, 75, 100, 200}, the

learning rate of the optimizer among {0.001, 0.01, 0.1}, and the margin γ among {1, 5, 10}.

We train the embedding model with a batch size of 100 and a maximum of 400 epochs.

For the proposed encoder model, we use 512 hidden units for both encoder and decoder.

We use a 0.5 dropout rate for regularization on both encoder and decoder to avoid over-

fitting. We train our model on NVIDIA Tesla K40c. We find that using adaptive learning

rates for optimization is efficient and leads to faster converge. Thus, we use Adam [67]

with a learning rate of 0.0002 instead of stochastic gradient descent. The update of pa-

rameters in training is computed using a mini-batch of 64 instances.

6.3.3 Effect of Entity Masking

Table 6.2 shows the overall comparison of model performance. It shows that entity mask-

ing gives a consistent performance improvement for all models. Generalizing the input

triples and target sentences helps the models to learn the relationships between entities

from their types. This is particularly helpful when there is limited training data. We

use a combination of exact matching, n-gram matching, and parse tree matching to find

the entity mentions in the sentence. The entity masking accuracy for WebNLG dataset is

87.15%, while for the GKB dataset is 82.45%.

Entity masking improves the BLEU score of the proposed GTR-LSTM model by 8.5%

(from 53.9 on the Entity Unmasking model to 58.5 on the Entity Masking model), 8.7%,

17.6%, and 17.4% on the Seen, Shuffled, Unseen, and GKB test datasets, respectively. Us-

ing the entity masking not only improves the performance by recognizing the unknown

vocabulary via eid masking but also improves the running time by requiring a smaller

vocabulary.

6.3 Experiments 131

Table 6.2: Performance comparisons of sentence generation models for generating sen-
tences from an arbitrary-shaped graph

Model
BLEU ↑ METEOR ↑ TER ↓

Seen Shuffled Unseen GKB Seen Shuffled Unseen GKB Seen Shuffled Unseen GKB

Entity Unmasking

BLSTM 43.4 43.0 24.0 27.4 35.3 35.1 28.9 26.6 56.0 56.4 69.2 67.0
SMT 41.4 40.2 24.0 27.0 32.5 31.9 28.0 26.7 57.4 58.0 70.1 63.1
TFF 45.5 45.2 26.9 26.3 33.8 33.7 28.8 27.7 52.5 52.5 63.1 60.9
TLSTM 45.0 45.0 27.1 27.3 34.6 34.6 29.4 28.3 51.0 51.2 61.8 59.4
GCN 51.5 51.4 28.9 30.9 36.7 36.1 29.9 29.5 46.6 47.1 62.4 58.9
GTR-LSTM 53.9 53.7 31.2 38.4 37.3 37.1 28.3 30.7 44.6 44.8 59.1 54.5

Entity Masking

BLSTM 49.5 48.2 27.2 29.1 39.2 38.1 28.6 29.6 49.6 50.0 65.3 66.4
SMT 47.0 46.8 25.7 27.2 36.6 36.1 28.3 30.0 51.6 51.8 62.7 67.5
TFF 46.9 47.1 28.1 30.0 35.5 35.6 31.3 29.5 49.2 49.2 61.2 57.8
TLSTM 51.7 51.6 31.4 32.5 38.6 38.4 31.2 28.9 46.7 46.4 58.7 56.4
GCN 56.1 55.8 32.3 41.3 39.0 38.6 30.9 32.7 42.5 42.8 58.5 52.0
GTR-LSTM 58.5 58.4 36.7 45.1 40.9 40.6 32.3 35.3 40.7 40.9 57.1 50.3

6.3.4 Effect of Models

Table 6.2 also shows that the proposed GTR-LSTM triple encoder achieves a consistent

improvement over the baseline models, and the improvement is statistically significant,

with p < 0.05 based on the t-test of all metrics. We use MultEval to compute the p-value

based on approximate randomization [24]. The improvement in the BLEU score indicates

that the model reduces the errors in the generated sentence. Our manual inspection con-

firms this result. The better (lower) TER score suggests that the model generates a more

compact output (i.e., better aggregation).

Table 6.3 shows a sample output of all models. From this table, we can see that all

baseline models produce sentences that contain wrong relationships between entities

(e.g., the BLSTM output contains a wrong relationship "the elizabeth tower is

located in the city of england"). Moreover, the baseline models generate sen-

tences with a weak aggregation (e.g., Elizabeth Tower and Wembley Stadium are

in separate sentences for TLSTM). The proposed GTR-LSTM model successfully avoids

these problems.

132 Description Generation for Arbitrary-Shaped Graphs

Model Training Time

GTR-LSM is slower in training than the baseline models, which is expected as it needs

to encode more information. However, its training time is no more than twice as that of

any baseline models tested, and the training can complete within one day, which seems

reasonable. Meanwhile, the number of parameters trained for GTR-LSTM is up to 59%

smaller than those of the baseline models, which saves the space cost for model storage.

6.3.5 Human Evaluation

To complement the automatic evaluation, we conduct human evaluations for all of the

masked models. We manage to get ten human annotators. Each of them has studied En-

glish for at least ten years and completed education in a fully English environment for at

least two years. We provide a website that shows them the triples and the generated text.

The annotators are given training on the scoring criteria. We also provide scoring exam-

ples. We randomly selected 200 sets of triples along with the output of each model. We

only select the sets of triples that contain more than two triples. We use three evaluation

metrics [46], including correctness, grammaticality, and fluency. For each pair of a triple set

and generated sentences, the annotators are asked to give a score between one to three

for each metric.

Correctness is used to measure the semantics of the output. A score of 3 is given to the

generated sentences that contain no errors in the relationships between entities; a score of

2 is given to the generated sentences that contain one error in the relationship; a score of 1

is given to the generated sentences that contain more than one errors in the relationships.

Grammaticality is used to rate the grammatical and spelling errors of the output. Similar

to the correctness metric, a score of 3 is given to generated sentences with no grammatical

and spelling errors; a score of 2 is given to generated sentences with one error; and a score

of 1 for the others. The last metric, fluency, is used to measure the fluency of the output.

The annotators give a score based on the aggregation of the sentences and the existence

of sentence repetition. The total time spent for these evaluations is around 300 hours.

Table 6.4 shows the results of human evaluations. The results confirm the automatic

6.3 Experiments 133

Table 6.3: Sample output of the sentence generation models. The error is highlighted in
bold.

Input
〈Elizabeth Tower, location, London〉,
〈Wembley Stadium, location, London〉,
〈London, capital of, England〉,
〈Theresa May, prime minister, England〉

Reference
london , england is home to wembley stadium and the
elizabeth tower. the name of the leader in england is
theresa may.

BLSTM
england is lead by theresa may and is located in the
city of london . the elizabeth tower is located in the
city of england and is located in the wembley stadium.

SMT wembley stadium is located in london , elizabeth tower .
theresa may is the leader of england , england.

TFF
the elizabeth tower is located in london , england ,
where wembley stadium is the leader and theresa may is
the leader.

TLSTM
the wembley stadium is located in london , england
. the country is the location of elizabeth tower .
theresa may is the leader of london.

GCN the elizabeth tower, wembley stadium, and london is in
england , where theresa may is the leader .

GTR-LSTM
the wembley stadium and elizabeth tower are both located
in london , england . theresa may is the leader of
england.

Table 6.4: Human evaluation of sentence generation model for generating sentences from
an arbitrary-shaped graph

Model
Seen Unseen GKB

Correctness Grammar Fluency Correctness Grammar Fluency Correctness Grammar Fluency

BLSTM 2.13 2.27 2.14 1.44 1.82 1.58 1.48 1.97 1.74
SMT 1.98 2.04 1.86 1.34 1.52 1.35 1.67 2.09 1.79
TFF 1.82 1.74 1.63 1.31 1.58 1.55 1.72 1.87 2.06
TLSTM 2.32 2.42 2.45 1.52 1.62 1.79 2.13 2.31 2.21
GCN 2.54 2.50 2.31 1.65 1.87 1.91 2.20 2.36 2.15
GTR-LSTM 2.69 2.58 2.52 1.87 2.01 2.03 2.28 2.52 2.37

evaluation in which our proposed model achieves the best scores.

134 Description Generation for Arbitrary-Shaped Graphs

Error Analysis

We further perform a manual inspection of 300 randomly selected output sentences of

GTR-LSTM and BLSTM on the Seen and Unseen test data. We find that 35% of BLSTM

output contains wrong relationships between entities. In comparison, only 9% of GTR-

LSTM output contains such errors. Besides, we find duplicate sub-sentences in the output

of GTR-LSTM (14%). The following output is an example: "beef kway teow is a

dish from singapore, where english language is spoken and the

leader is tony tan. the leader of singapore is tony tan". While the

duplication is not wrong, it affects the reading experience. We conjecture that the LSTM

in the decoder caused such an issue. We aim to solve this problem in future work.

6.3.6 Ablation Tests

We further perform ablation tests on the proposed encoder model. All compared models

use a topological sort to establish an order to encode the input graph. They differ in the

tie-breaking procedure as follows.

• GTR-LSTM-Random that randomly selects any entity on its tie-breaking procedure.

• GTR-LSTM-SentenceOrder that breaks ties based on the order of entity mentions

in the target sentence from the input triples. When such an order is unknown, it

falls back to a random ordering.

• GTR-LSTM-TransE that uses the same tie-breaking procedure as the proposed full

GTR-LSM model, but it learns the entity embeddings using TransE [11] instead of

TransR in GTR-LSTM-Full.

• GTR-LSTM-Full that uses all proposed features, which is detailed in Section 6.2.6

Our proposed embedding model is designed to capture the relationships between

both entities and words while preserving the order of entity mention in a sentence. The

latter feature helps the tie-breaking procedure of our proposed GTR-LSTM encoder model

(detailed in Section 6.2.6). The results of the ablation tests show the effectiveness of the

6.3 Experiments 135

Table 6.5: Ablation test results of the proposed model

GTRLSTM
Model

BLEU ↑ METEOR ↑ TER ↓
Seen Shuffled Unseen GKB Seen Shuffled Unseen GKB Seen Shuffled Unseen GKB

Entity Unmasking

TransE 52.8 52.3 30.1 37.0 36.8 35.1 27.9 30.3 45.1 45.5 60.3 56.2
Random 50.9 50.7 24.0 30.8 34.8 34.5 24.2 27.3 46.8 47.4 62.0 58.6
SentenceOrder 54.0 51.6 29.2 37.1 37.3 35.2 27.8 30.6 45.3 46.8 59.8 55.1
Full 53.9 53.7 31.2 38.4 37.3 37.1 28.3 30.7 44.6 44.8 59.1 54.5

Entity Masking

TransE 56.7 56.4 35.4 44.3 40.2 40.1 31.7 34.7 41.4 41.2 57.9 50.8
Random 55.6 55.4 31.1 40.4 38.8 38.4 30.7 31.8 42.6 42.9 58.3 54.8
SentenceOrder 58.6 56.2 35.6 44.7 40.9 39.1 32.0 35.1 40.6 42.1 57.8 50.9
Full 58.5 58.4 36.7 45.1 40.9 40.6 32.3 35.3 40.7 40.9 57.1 50.3

proposed tie-breaking procedure. Table 6.5 shows that our proposed model outperforms

the GTR-LSTM-Random and GTR-LSTM-TransE models consistently. This demonstrates

the effectiveness of our model in learning the order of the entities to be mentioned in the

target sentences, as neither GTR-LSTM-Random nor GTR-LSTM-TransE considers such

order. The GTR-LSTM-TransE model, in particular, only handles one-to-one relation-

ships. Compared to TransE, the performance of TransR in predicting the entity order in a

sentence is significantly improved. The precision of TransR is 87.3%, while the precision

of TransE is 75.8%.

Comparing with GTR-LSTM-SentenceOrder, GTR-LSTM-Proposed also yields better

scores in all three metrics for most cases except for the Seen test data. These results

are expected since the triples in the Seen test dataset are ordered according to the entity

mentions in the target sentences. However, on the Shuffled and GKB test dataset, the

performance of the GTR-LSTM-SentenceOrder model drops substantially. In contrast,

our proposed model is robust to such data and generates sentences of higher quality.

6.3.7 Discussions

We also perform further experiments to compare our model with attention-based sequence-

to-sequence models, i.e., Transformer model [153]. In machine translation, this model

136 Description Generation for Arbitrary-Shaped Graphs

outperforms LSTM based models. To adapt Transformer for triple-to-text generation, we

use the same two strategies as in the LSTM adaptation. The first is transforming the in-

put as a sequence of words, as describes in Section 6.2.4. We call this adaption the adapted

standard transformer. The second is grouping the elements of each triple, as describes in

Section 6.2.5. We call this adaptation the adapted triple transformer. However, these mod-

els have the same problem as the adaptation of LSTM based models (cf. Section 6.2.1).

The experimental results on the Seen test dataset with entity masking confirm that these

models fail to capture inter-triple relationships. The adapted standard transformer and

the adapted triple transformer achieve 50.7 and 53.2 BLEU scores, respectively.

6.4 Summary

We proposed a novel graph-based triple encoder GTR-LSTM to generate sentence (entity

description) from knowledge base triples for enriching a knowledge base. The proposed

model maintains the structure of input triples as a graph to optimize the amount of in-

formation preserved in the input of the model. The proposed model can handle cycles

to capture the global information of a knowledge graph and also handle multiple rela-

tionships between entities of a knowledge graph. We improve the encoding process by

devising a supervised topological traversal that replaces a random process in the existing

encoder, which makes the encoding process more robust. Our supervised traversal pro-

cedure helps to encode a knowledge graph in more natural order by taking supervision

signals on the processing order from entity-order aware embeddings that trained over a

word-entity graph.

The experimental results show that the GTR-LSTM model offers better performance

than all the baselines. On the Seen WebNLG dataset, our proposed model outperforms

the best existing model, the GCN model, by up to 4.3%, 5.0%, and 4.2% in terms of BLEU,

METEOR, and TER scores, respectively. On the GKB dataset, our model outperforms the

GCN model by up to 9.2%, 8.0%, and 3.3% in these three metrics, respectively.

Chapter 7

Conclusions

7.1 Summary

IN this thesis, we studied the problem of knowledge base enrichment. Specifically,

we study three common methods to enrich a knowledge base, including knowledge

bases alignment, relation extraction, and description generation.

In Chapter 3, we study the problem of knowledge bases alignment and propose an

embedding model for aligning entities from two different KBs. The proposed model is

an embedding-based alignment model built on top of a knowledge graph embedding

model that learns entity embeddings to capture the semantic similarity between entities

in the different knowledge bases. Embedding-based entity alignment models require

both predicate and entity embeddings of two knowledge graphs to fall in the same vector

space. For predicate embeddings, our model exploits a predicate proximity graph. For

entity embedidngs, our model exploits large numbers of attribute triples existing in the

knowledge graphs and generates attribute character embeddings. The attribute character

embedding shifts the entity embeddings from two knowledge graphs into the same space

by computing the similarity between entities based on their attributes. We further use a

transitivity rule to enrich the number of attributes of an entity to enhance the attribute

character embedding. Experiments using real-world knowledge bases show that our

proposed model achieves consistent improvements over the baseline models by over 40%

in terms of hits@1 on the entity alignment task.

In Chapter 4, we study the problem of relation extraction and propose an end-to-end

relation extraction for knowledge base enrichment model that integrates the extraction

137

138 Conclusions

and canonicalization tasks. Our model thus reduces the error propagation between re-

lation extraction and Named Entity Disambiguation that existing approaches are prone

to. Our proposed model is an end-to-end relation extraction model based on a neural

encoder-decoder model. We collect high-quality training data by distant supervision

with co-reference resolution and paraphrase detection. We propose an n-gram based at-

tention model that captures multi-word entity names in a sentence. Our model employs

jointly learned word and entity embeddings to support named entity disambiguation.

Finally, our model uses a modified beam search and a triple classifier to help generate

high-quality triples. Our model outperforms state-of-the-art baselines by 15.51% and

8.38% in terms of F1 score on two real-world datasets.

In Chapter 5, we study the problem of description generation from a set of triples in

the form of a star-shaped-graph and propose an order-agnostic data-to-text generation

model. The generated description can be used to enrich information about entities in a

knowledge base, which later can be used in many downstream applications. For exam-

ple, in question answering, the generated sentence can be used to describe the entity in

the answer. Previous studies use encoder-decoder frameworks where the encoder treats

the input as a linear sequence and uses LSTM to encode the sequence. However, lin-

earizing a set of attributes may not yield the proper order of the attributes, and hence

leads the encoder to produce an improper context to generate a description. To han-

dle disordered input, recent studies propose two-stage neural models that use pointer

networks to generate a content-plan (i.e., content-planner) and use the content-plan as

input for an encoder-decoder model (i.e., text generator). However, in two-stage models,

the content-planner may yield an incomplete content-plan, due to missing one or more

salient attributes in the generated content-plan. This will, in turn, cause the text generator

to generate an incomplete description. To address these problems, we propose a novel at-

tention model that exploits content-plan to highlight salient attributes in a proper order.

The challenge of integrating a content-plan in the attention model of an encoder-decoder

framework is to align the content-plan and the generated description. We handle this

problem by devising a coverage mechanism to track the extent to which the content-plan

is exposed in the previous decoding time-step. Hence, it helps our proposed attention

7.2 Future Work 139

model select the attributes to be mentioned in the description in a proper order. Exper-

imental results show that our model outperforms state-of-the-art baselines by up to 3%

and 5% in terms of BLEU score on two real-world datasets, respectively.

In Chapter 6, we study the problem of description generation from arbitrary-shaped

graphs as opposed to a star-shaped-graph and propose a novel graph-based triple en-

coder. Our proposed model computes the hidden state of each entity in a graph that

preserves the relationships both within a triple and between the triples, which helps

to achieve more accurate sentences. The graph encoder uses entity traversal scheme

guided by the entity order in natural sentences that are learned by our entity-order aware

translation-based graph embedding model. Experimental results show that the proposed

encoder achieves improvements over the baselines by up to 4.3%, 5.0%, and 4.2% in three

common metrics BLEU, METEOR, and TER, respectively.

7.2 Future Work

In the problems of knowledge bases alignment, relation extraction, and description gen-

eration, the proposed models outperform the state-of-the-art methods. However, the

performance of the proposed models can be further improved. Possible future research

directions for each of the problems are as follows.

7.2.1 Future Work for Knowledge Bases Alignment

• Our proposed model is built on top of translation based KG embedding models,

e.g., TransE. The main challenge addressed is to exploit attribute triples in such an

embedding model for entity alignment. Recently, graph neural networks (GNN)

KG embedding models are proposed and achieve a better performance than the

translation based models in node and graph classification. We plan to integrate the

attribute character embedding into such models to achieve better alignment results.

• Auxiliary information, such as predicate and entity descriptions, can be further

integrated into the model to compute the predicate add entity similarities.

140 Conclusions

• Another interesting future work is to adopt an iterative training procedure. For

example, the resulting alignments may be used as additional data for an iterative

training procedure to get better performance.

7.2.2 Future Work for Relation Extraction

• We plan to generalize the model for extracting new entities and relationships rather

than only enriching relationships between existing entities in a knowledge base.

This capability is essential since there are lots of new information in the form of

new entities, and their relationships can be added to the knowledge base to keep

the knowledge base updated.

• We also plan to complement the n-gram attention model with context information

such as the surrounding entities in a sentence. In this way, our model can better

recognize multi-word entity names disambiguation.

• Another future work is to combine the modified beam search and the triple classi-

fier in a single supervised model to reduce error propagation between them.

7.2.3 Future Work for Description Generation

• We plan to combine the content-plan based attention model into the graph encoder.

The content-plan based attention can further help the graph-based encoder in se-

lecting the entities to be mentioned in the target sentence.

• We also plan to employ context similarities for improving the current content-plan

extraction that only considers the exact string matching. The combination of context

and string similarities can help to extract a more accurate content-plan.

• Another interesting work is to employ a copy mechanism that copies the entity

name into the target sentence to replace the masking model. The masking model

requires extensive pre-processing work that relies on many external tools such as

named entity recognizer, dependency parser, etc., which may propagate some er-

7.2 Future Work 141

rors into the text generator. Hence, integrating a copy mechanism into the text

generator helps reduce error propagation.

This page intentionally left blank.

Bibliography

[1] G. Angeli, P. Liang, and D. Klein, “A simple domain-independent probabilistic

approach to generation,” in Proceedings of Empirical Methods in Natural Language

Processing, 2010, pp. 502–512.

[2] G. Angeli, M. J. J. Premkumar, and C. D. Manning, “Leveraging linguistic structure

for open domain information extraction,” in Proceedings of Association for Computa-

tional Linguistics, 2015, pp. 344–354.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives, “Dbpe-

dia: A nucleus for a web of open data,” in Proceedings of International Semantic Web

Conference, 2007, pp. 722–735.

[4] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-

ing to align and translate,” Proceedings of International Conference on Learning Repre-

sentations, 2015.

[5] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, “Open in-

formation extraction from the web,” in Proceedings of International Joint Conference

on Artifical intelligence, 2007, pp. 2670–2676.

[6] J. Bao, D. Tang, N. Duan, Z. Yan, Y. Lv, M. Zhou, and T. Zhao, “Table-to-text: De-

scribing table region with natural language,” in Proceedings of AAAI Conference on

Artificial Intelligence, 2018, pp. 5020–5027.

[7] R. Barzilay and M. Lapata, “Collective content selection for concept-to-text gener-

ation,” in Proceedings of Empirical Methods in Natural Language Processing, 2005, pp.

331–338.

143

144 BIBLIOGRAPHY

[8] A. Belz, “Automatic generation of weather forecast texts using comprehensive

probabilistic generation-space models,” Natural Language Engineering, vol. 14, no. 4,

pp. 431–455, 2008.

[9] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language

model,” Journal of machine learning research, vol. 3, pp. 1137–1155, 2003.

[10] K. Bontcheva and Y. Wilks, “Automatic report generation from ontologies: The

miakt approach,” in Proceeding of International Conference on Applications of Natural

Language to Information Systems, 2004, pp. 324–335.

[11] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translat-

ing embeddings for modeling multi-relational data,” in Proceedings of International

Conference on Neural Information Processing Systems, 2013, pp. 2787–2795.

[12] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured embeddings

of knowledge bases,” in Proceedings of AAAI Conference on Artificial Intelligence, 2011,

pp. 301–306.

[13] S. Brin, “Extracting patterns and relations from the world wide web,” in Proceedings

of World Wide Web and Databases International Workshop, 1998, pp. 172–183.

[14] Y. Cao, Z. Liu, C. Li, J. Li, and T.-S. Chua, “Multi-channel graph neural network for

entity alignment,” in Proceedings of Association for Computational Linguistics, 2019,

pp. 1452–1461.

[15] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell, “To-

ward an architecture for never-ending language learning,” in Proceedings of AAAI

Conference on Artificial Intelligence, 2010, pp. 1306–1313.

[16] M. Chaves, M. Silva, and B. Martins, “A geographic knowledge base for semantic

web applications,” in Proceedings of Brazilian Symposium on Databases-SBBD, 2005.

[17] F. Che, D. Zhang, J. Tao, M. Niu, and B. Zhao, “Parame: Regarding neural network

parameters as relation embeddings for knowledge graph completion,” in Proceed-

ings of AAAI Conference on Artificial Intelligence, 2020.

BIBLIOGRAPHY 145

[18] M. Chen, Y. Tian, K.-W. Chang, S. Skiena, and C. Zaniolo, “Co-training embeddings

of knowledge graphs and entity descriptions for cross-lingual entity alignment,” in

Proceedings of International Joint Conference on Artificial Intelligence, 2018, pp. 3998–

4004.

[19] M. Chen, Y. Tian, M. Yang, and C. Zaniolo, “Multilingual knowledge graph embed-

dings for cross-lingual knowledge alignment,” in Proceedings of International Joint

Conference on Artificial Intelligence, 2017, pp. 1511–1517.

[20] M. Chen, T. Zhou, P. Zhou, and C. Zaniolo, “Multi-graph affinity embeddings for

multilingual knowledge graphs,” in Proceedings of NIPS Workshop on Automated

Knowledge Base Construction, 2017.

[21] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for

statistical machine translation,” in Proceedings of Empirical Methods in Natural Lan-

guage Processing, 2014, pp. 1724–1734.

[22] J. Christensen, S. Soderland, O. Etzioni et al., “Semantic role labeling for open in-

formation extraction,” in Proceedings of Workshop on Formalisms and Methodology for

Learning by Reading, 2010, pp. 52–60.

[23] P. Cimiano, J. Lüker, D. Nagel, and C. Unger, “Exploiting ontology lexica for gen-

erating natural language texts from rdf data,” in Proceedings of European Workshop

on Natural Language Generation, 2013, pp. 10–19.

[24] J. H. Clark, C. Dyer, A. Lavie, and N. A. Smith, “Better hypothesis testing for sta-

tistical machine translation: Controlling for optimizer instability,” in Proceedings of

Association for Computational Linguistics, 2011, pp. 176–181.

[25] K. Clark and C. D. Manning, “Deep reinforcement learning for mention-ranking

coreference models,” in Proceedings of Empirical Methods in Natural Language Pro-

cessing, 2016, pp. 2256–2262.

146 BIBLIOGRAPHY

[26] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natu-

ral language processing (almost) from scratch,” Journal of Machine Learning Research,

vol. 12, pp. 2493–2537, 2011.

[27] L. D. Corro and R. Gemulla, “Clausie: clause-based open information extraction,”

in Proceedings of International Conference on World Wide Web, 2013, pp. 355–366.

[28] L. Cui, F. Wei, and M. Zhou, “Neural open information extraction,” in Proceedings

of Association for Computational Linguistics, 2018, pp. 407–413.

[29] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy,

A. Smola, and A. McCallum, “Go for a walk and arrive at the answer: Reason-

ing over paths in knowledge bases using reinforcement learning,” in Proceedings of

International Conference on Learning Representations, 2018.

[30] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the em algorithm,” Journal of the Royal Statistical Society, vol. 39, pp.

1–22, 1977.

[31] M. J. Denkowski and A. Lavie, “Meteor 1.3: Automatic metric for reliable optimiza-

tion and evaluation of machine translation systems,” in Proceedings of Workshop on

Statistical Machine Translation, 2011, pp. 85–91.

[32] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional 2d knowl-

edge graph embeddings,” in Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding,” in Proceedings of North Ameri-

can Chapter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[34] P. A. Duboue and K. R. McKeown, “Empirically estimating order constraints for

content planning in generation,” in Proceedings of Association for Computational Lin-

guistics, 2001, pp. 172–179.

BIBLIOGRAPHY 147

[35] P. A. Duboue and K. R. McKeown, “Content planner construction via evolution-

ary algorithms and a corpus-based fitness function,” in Proceedings of International

Conference on Natural Language Generation, 2002, pp. 89–96.

[36] P. A. Duboue and K. R. McKeown, “Statistical acquisition of content selection rules

for natural language generation,” in Proceedings of Empirical Methods in Natural Lan-

guage Processing, 2003, pp. 121–128.

[37] D. Duma and E. Klein, “Generating natural language from linked-data: Unsuper-

vised template extraction,” in Proceedings of International Conference on Computa-

tional Semantics, 2013, pp. 83–94.

[38] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for open information

extraction,” in Proceedings of Empirical Methods in Natural Language Processing, 2011,

pp. 1535–1545.

[39] C. Fellbaum, WordNet: An Electronic Lexical Database. MIT Press, 1998.

[40] D. Ferrucci, A. Levas, S. Bagchi, D. Gondek, and E. T. Mueller, “Watson: beyond

jeopardy!” Artificial Intelligence, vol. 199, pp. 93–105, 2013.

[41] J. L. Fleiss, “Measuring nominal scale agreement among many raters.” Psychological

bulletin, vol. 76, no. 5, p. 378, 1971.

[42] L. Galárraga, G. Heitz, K. Murphy, and F. M. Suchanek, “Canonicalizing open

knowledge bases,” in Proceedings of International Conference on Information and

Knowledge Management, 2014, pp. 1679–1688.

[43] L. Galarraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Fast rule mining in on-

tological knowledge bases with amie,” Very Large Data Bases, vol. 24, pp. 707–730,

2015.

[44] J. Ganitkevitch, B. V. Durme, and C. Callison-Burch, “Ppdb: The paraphrase

database,” in Proceedings of North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, 2013, pp. 758–764.

148 BIBLIOGRAPHY

[45] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini, “Creating train-

ing corpora for nlg micro-planners,” in Proceedings of Association for Computational

Linguistics, 2017, pp. 179–188.

[46] C. Gardent, A. Shimorina, S. Narayan, and L. Perez-Beltrachini, “The webnlg chal-

lenge: Generating text from rdf data,” in Proceedings of International Conference on

Natural Language Generation, 2017, pp. 124–133.

[47] K. Gashteovski, R. Gemulla, and L. D. Corro, “Minie: Minimizing facts in open

information extraction,” in Proceedings of Empirical Methods in Natural Language Pro-

cessing, 2017, pp. 2620–2630.

[48] A. Grycner and G. Weikum, “Poly: Mining relational paraphrases from multilin-

gual sentences,” in Proceedings of Empirical Methods in Natural Language Processing,

2016, pp. 2183–2192.

[49] J. Gu, Z. Lu, H. Li, and V. O. Li, “Incorporating copying mechanism in sequence-to-

sequence learning,” in Proceedings of Association for Computational Linguistics, 2016,

pp. 1631–1640.

[50] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the unknown

words,” in Proceedings of Association for Computational Linguistics, 2016, pp. 140–149.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

770–778.

[52] L. He, K. Lee, O. Levy, and L. Zettlemoyer, “Jointly predicting predicates and ar-

guments in neural semantic role labeling,” in Proceedings of Association for Computa-

tional Linguistics, 2018, pp. 364–369.

[53] Q. He, L. Wu, Y. Yin, and H. Cai, “Knowledge-graph augmented word representa-

tions for named entity recognition,” in Proceedings of AAAI Conference on Artificial

Intelligence, 2020.

BIBLIOGRAPHY 149

[54] H. Hoang and P. Koehn, “Design of the moses decoder for statistical machine trans-

lation,” in Proceeding of Software Engineering, Testing, and Quality Assurance for Nat-

ural Language Processing, 2008, pp. 58–65.

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,

vol. 9, pp. 1735–1780, 1997.

[56] J. Hoffart et al., “Robust disambiguation of named entities in text,” in Proceedings of

Empirical Methods in Natural Language Processing, 2011, pp. 782–792.

[57] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2: A spatially and

temporally enhanced knowledge base from wikipedia,” Artificial Intelligence, vol.

194, pp. 28–61, 2013.

[58] R. Hoffmann, C. Zhang, and D. S. Weld, “Learning 5000 relational extractors,” in

Proceedings of Association for Computational Linguistics, 2010, pp. 286–295.

[59] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely connected con-

volutional networks,” in Proceedings of Conference on Computer Vision and Pattern

Recognition, 2017, pp. 2261–2269.

[60] G. Ji, K. Liu, S. He, and J. Zhao, “Knowledge graph completion with adaptive

sparse transfer matrix,” in Proceedings of AAAI Conference on Artificial Intelligence,

2016, pp. 985–991.

[61] G. Ji, K. Liu, S. He, and J. Zhao, “Distant supervision for relation extraction with

sentence-level attention and entity descriptions,” in Proceedings of AAAI Conference

on Artificial Intelligence, 2017, pp. 3060–3066.

[62] R. Jia and P. Liang, “Data recombination for neural semantic parsing,” in Proceed-

ings of Association for Computational Linguistics, 2016, pp. 12–22.

[63] X. Jiang, Q. Wang, P. Li, and B. Wang, “Relation extraction with multi-instance

multi-label convolutional neural networks,” in Proceedings the International Confer-

ence on Computational Linguistics, 2016, pp. 1471–1480.

150 BIBLIOGRAPHY

[64] L. Jin, L. Song, Y. Zhang, K. Xu, W. yun Ma, and D. Yu, “Relation extraction exploit-

ing full dependency forests,” in Proceedings of AAAI Conference on Artificial Intelli-

gence, 2020.

[65] M. Kathuria, C. Nagpal, and N. Duhan, “Journey of web search engines: Mile-

stones, challenges & innovations,” International Journal of Information Technology and

Computer Science, vol. 12, pp. 47–58, 2016.

[66] J. Kim and R. J. Mooney, “Generative alignment and semantic parsing for learning

from ambiguous supervision,” in Proceedings International Conference on Computa-

tional Linguistics, 2010, pp. 543–551.

[67] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in Pro-

ceedings of International Conference on Learning Representations, 2015.

[68] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-

tional networks,” in Proceedings of International Conference on Learning Representa-

tions, 2017.

[69] A. Kobren, T. Logan, S. Sampangi, and A. McCallum, “Domain specific knowledge

base construction via crowdsourcing,” in Proceedings of Neural Information Process-

ing Systems Workshop on Automated Knowledge Base Construction, 2014.

[70] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity linking.” in

Proceedings of Conference on Computational Natural Language Learning, 2018, pp. 519–

529.

[71] D. Kurita, B. Roengsamut, K. Kuwabara, and H.-H. Huang, “Knowledge base re-

finement with gamified crowdsourcing,” in Proceedings of Asian Conference on Intel-

ligent Information and Database Systems, 2016, pp. 33–42.

[72] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from structured data

with application to the biography domain,” in Proceedings of Empirical Methods in

Natural Language Processing, 2016, pp. 1203–1213.

BIBLIOGRAPHY 151

[73] C. Li, P. Zhao, V. S. Sheng, X. Xian, J. Wu, and Z. Cui, “Refining automatically

extracted knowledge bases using crowdsourcing,” Computational Intelligence and

Neuroscience, vol. 2017, pp. 1–17, 2017.

[74] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural net-

works,” in Proceedings of AAAI Conference on Artificial Intelligence, 2018, pp. 3546–

3553.

[75] Y. Li, G. Long, T. Shen, T. Zhou, L. Yao, H. Huo, and J. Jiang, “Self-attention en-

hanced selective gate with entity-aware embedding for distantly supervised rela-

tion extraction,” in Proceedings of AAAI Conference on Artificial Intelligence, 2020.

[76] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with graph

lstm,” in Proceedings of European Conference on Computer Vision, 2016, pp. 125–143.

[77] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph reasoning with

reward shaping,” in Proceedings of Empirical Methods in Natural Language Processing,

2018, pp. 3243–3253.

[78] Y. Lin, Z. Liu, and M. Sun, “Neural relation extraction with multi-lingual atten-

tion,” in Proceedings of Association for Computational Linguistics, 2017, pp. 34–43.

[79] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings

for knowledge graph completion,” in Proceedings of AAAI Conference on Artificial

Intelligence, 2015, pp. 2181–2187.

[80] Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun, “Neural relation extraction with se-

lective attention over instances,” in Proceedings of Association for Computational Lin-

guistics, 2016, pp. 2124–2133.

[81] T. Liu, S. Ma, Q. Xia, F. Luo, B. Chang, and Z. Sui, “Hierarchical encoder with

auxiliary supervision for table-to-text generation: Learning better representation

for tables,” in Proceedings of AAAI Conference on Artificial Intelligence, 2019, pp. 6786–

6793.

152 BIBLIOGRAPHY

[82] T. Liu, K. Wang, L. Sha, Z. Sui, and B. Chang, “Table-to-text generation by structure-

aware seq2seq learning,” in Proceedings of AAAI Conference on Artificial Intelligence,

2018, pp. 4881–4888.

[83] W. Liu, P. Zhou, Z. Zhao, Z. Wang, Q. Ju, H. Deng, and P. Wang, “K-bert: Enabling

language representation with knowledge graph,” in Proceedings of AAAI Conference

on Artificial Intelligence, 2020.

[84] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, “Geniepath: Graph neural

networks with adaptive receptive paths,” Proceedings of AAAI Conference on Artifi-

cial Intelligence, pp. 4424–4431, 2019.

[85] W. Lu and H. T. Ng, “A probabilistic forest-to-string model for language genera-

tion from typed lambda calculus expressions,” in Proceedings of Empirical Methods

in Natural Language Processing, 2011, pp. 1611–1622.

[86] W. Lu, H. T. Ng, and W. S. Lee, “Natural language generation with tree conditional

random fields,” in Proceedings of Empirical Methods in Natural Language Processing,

2009, pp. 400–409.

[87] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based

neural machine translation,” in Proceedings of Empirical Methods in Natural Language

Processing, 2015, pp. 1412–1421.

[88] C. Malaviya, C. Bhagavatula, A. Bosselut, and Y. Choi, “Commonsense knowledge

base completion with structural and semantic context,” in Proceedings of AAAI Con-

ference on Artificial Intelligence, 2020.

[89] D. Marcheggiani and L. Perez-Beltrachini, “Deep graph convolutional encoders for

structured data to text generation,” in Proceedings of International Conference on Nat-

ural Language Generation, 2018, pp. 1–9.

[90] Mausam, “Open information extraction systems and downstream applications,” in

Proceedings of International Joint Conference on Artificial Intelligence, 2016, pp. 4074–

4077.

BIBLIOGRAPHY 153

[91] Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni, “Open language learn-

ing for information extraction,” in Proceedings of Empirical Methods in Natural Lan-

guage Processing, 2012, pp. 523–534.

[92] K. R. McKeown, D. A. Jordan, S. Pan, J. Shaw, and B. A. Allen, “Language gener-

ation for multimedia healthcare briefings,” in Proceedings of Conference on Applied

Natural Language Processing, 1997, pp. 277–282.

[93] H. Mei, M. Bansal, and M. R. Walter, “What to talk about and how? selective gen-

eration using lstms with coarse-to-fine alignment,” in Proceedings of North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

2016, pp. 720–730.

[94] C. Mellish, A. Knott, J. Oberlander, and M. O’Donnell, “Experiments using stochas-

tic search for text planning,” in Proceedings of ACL Workshop on Natural Language

Generation, 1998, pp. 98–107.

[95] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-

sentations of words and phrases and their compositionality,” in Proceedings of Inter-

national Conference on Neural Information Processing Systems, 2013, pp. 3111–3119.

[96] D. Milne and I. H. Witten, “An effective, low-cost measure of semantic relatedness

obtained from wikipedia links,” in Proceedings of AAAI Workshop on Wikipedia and

Artificial Intelligence, 2008, pp. 25–30.

[97] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision for relation ex-

traction without labeled data,” in Proceedings of Joint Conference of Association for

Computational Linguistics and International Joint Conference on Natural Language Pro-

cessing of the AFNLP, 2009, pp. 1003–1011.

[98] M. Miwa and M. Bansal, “End-to-end relation extraction using lstms on sequences

and tree structures,” in Proceedings of Association for Computational Linguistics, 2016.

154 BIBLIOGRAPHY

[99] N. Nakashole, G. Weikum, and F. M. Suchanek, “Patty: A taxonomy of relational

patterns with semantic types,” in Proceedings of Empirical Methods in Natural Lan-

guage Processing, 2012, pp. 1135–1145.

[100] T. Nayak and H. T. Ng, “Effective modeling of encoder-decoder architecture for

joint entity and relation extraction,” in Proceedings of AAAI Conference on Artificial

Intelligence, 2020.

[101] A.-C. N. Ngomo and S. Auer, “Limes: a time-efficient approach for large-scale link

discovery on the web of data,” in Proceedings of International Joint Conference on Ar-

tificial Intelligence, 2011, pp. 2312–2317.

[102] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Q. Phung, “A novel embedding

model for knowledge base completion based on convolutional neural network,” in

Proceedings of North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, 2018, pp. 327–333.

[103] T. H. Nguyen and R. Grishman, “Relation extraction: Perspective from convolu-

tional neural networks,” in Proceedings of Workshop on Vector Space Modeling for Nat-

ural Language Processing, 2015, pp. 39–48.

[104] M. Nickel, L. Rosasco, and T. A. Poggio, “Holographic embeddings of knowledge

graphs,” in Proceedings of AAAI Conference on Artificial Intelligence, 2016, pp. 1955–

1961.

[105] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing yago: scalable machine learning

for linked data,” in Proceedings of International Conference on World Wide Web, 2012,

pp. 271–280.

[106] X. Niu, S. Rong, H. Wang, and Y. Yu, “An effective rule miner for instance match-

ing in a web of data,” in Proceedings of International Conference on Information and

Knowledge Management, 2012, pp. 1085–1094.

[107] H. Pal et al., “Demonyms and compound relational nouns in nominal open ie,” in

Proceedings of Workshop on Automated Knowledge Base Construction, 2016, pp. 35–39.

BIBLIOGRAPHY 155

[108] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic

evaluation of machine translation,” in Proceedings of Association for Computational

Linguistics, 2002, pp. 311–318.

[109] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation,” in Proceedings of Empirical Methods in Natural Language Processing,

2014, pp. 1532–1543.

[110] M. Pershina, M. Yakout, and K. Chakrabarti, “Holistic entity matching across

knowledge graphs,” in Proceedings of International Conference on Big Data, 2015, pp.

1585–1590.

[111] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,

“Deep contextualized word representations,” in Proceedings of North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies, 2018,

pp. 2227–2237.

[112] R. Puduppully, L. Dong, and M. Lapata, “Data-to-text generation with content se-

lection and planning,” in Proceedings of AAAI Conference on Artificial Intelligence,

2019, pp. 6908–6915.

[113] P. Qin, X. Wang, W. Chen, chunyun zhang, W. Xu, and W. Y. Wang, “Generative

adversarial zero-shot relational learning for knowledge graphs,” in Proceedings of

AAAI Conference on Artificial Intelligence, 2020.

[114] Y. Raimond, C. Sutton, and M. B. Sandler, “Automatic interlinking of music

datasets on the semantic web.” in Proceedings of Linking Data on the Web Workshop,

2008.

[115] D. Ravichandran and E. Hovy, “Learning surface text patterns for a question an-

swering system,” in Proceedings of the Annual Meeting of The Association for Compu-

tational Linguistics, 2002, pp. 41–47.

[116] E. Reiter and R. Dale, Building natural language generation systems. Cambridge

University Press, 2000.

156 BIBLIOGRAPHY

[117] S. Riedel, L. Yao, and A. McCallum, “Modeling relations and their mentions with-

out labeled text,” in Proceedings of European Conference on Machine Learning and

Knowledge Discovery in Databases, 2010, pp. 148–163.

[118] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin, “Relation extraction with matrix

factorization and universal schemas,” in Proceedings of North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, 2013, pp.

74–84.

[119] E. Rivas and S. R. Eddy, “A dynamic programming algorithm for rna structure

prediction including pseudoknots,” Journal of Molecular Biology, vol. 285, no. 5, pp.

2053–2068, 1999.

[120] B. Roengsamut, K. Kuwabara, and H.-H. Huang, “Toward gamification of knowl-

edge base construction,” in Proceedings of International Symposium on Innovations in

Intelligent SysTems and Applications, 2015, pp. 1–7.

[121] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, pp. 696–699, 1988.

[122] C. D. Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang, “Incremen-

tal knowledge base construction using deepdive,” Very Large Data Bases Journal,

vol. 26, no. 1, pp. 81–105, 2017.

[123] F. Scharffe, F. L. Yanbin, and C. Zhou, “Rdf-ai: an architecture for rdf datasets

matching, fusion and interlink,” in Proceedings of IJCAI Workshop on Identity and

Reference in Knowledge Representation, 2009.

[124] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling,

“Modeling relational data with graph convolutional networks,” in Proceedings of

International Conference on Extended Semantic Web Conference, 2018, pp. 593–607.

[125] A. S. Schwartz and M. A. Hearst, “A simple algorithm for identifying abbreviation

definitions in biomedical text,” Biocomputing, pp. 451–462, 2002.

BIBLIOGRAPHY 157

[126] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization with pointer-

generator networks,” in Proceedings of Association for Computational Linguistics, 2017,

pp. 1073–1083.

[127] I. V. Serban, A. Garcı́a-Durán, C. Gulcehre, S. Ahn, S. Chandar, A. Courville, and

Y. Bengio, “Generating factoid questions with recurrent neural networks: The 30M

factoid question-answer corpus,” in Proceedings of Association for Computational Lin-

guistics, 2016, pp. 588–598.

[128] L. Sha, L. Mou, T. Liu, P. Poupart, S. Li, B. Chang, and Z. Sui, “Order-planning

neural text generation from structured data,” in Proceedings of AAAI Conference on

Artificial Intelligence, 2018, pp. 5414–5421.

[129] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, “End-to-end structure-aware

convolutional networks for knowledge base completion,” in Proceedings of AAAI

Conference on Artificial Intelligence, 2019, pp. 3060–3067.

[130] W. Shen, J. Wang, and J. Han, “Entity linking with a knowledge base: Issues, tech-

niques, and solutions,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,

pp. 443–460, 2015.

[131] Y. Shinyama and S. Sekine, “Preemptive information extraction using unrestricted

relation discovery,” in Proceedings of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 2006, pp. 304–311.

[132] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum, “Express: a data

extraction, processing, and restructuring system,” ACM Transactions on Database

Systems, vol. 2, pp. 134–174, 1977.

[133] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, “A study of trans-

lation edit rate with targeted human annotation,” in Proceeding of Association for

Machine Translation in the Americas, 2006, pp. 223–231.

158 BIBLIOGRAPHY

[134] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with neural tensor

networks for knowledge base completion,” in Proceedings of International Conference

on Neural Information Processing Systems, 2013, pp. 926–934.

[135] D. Sorokin and I. Gurevych, “Context-aware representations for knowledge base

relation extraction.” in Proceedings of Empirical Methods in Natural Language Process-

ing, 2017, pp. 1784–1789.

[136] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “Linkedgeodata: A core for a web

of spatial open data,” Semantic Web, vol. 3, p. 333–354, 2012.

[137] G. Stanovsky, J. Michael, I. Dagan, and L. Zettlemoyer, “Supervised open infor-

mation extraction,” in Proceedings of North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 2018, pp. 885–895.

[138] G. Stoica, O. Stretcu, A. Platanios, T. Mitchell, and B. Poczos, “Contextual param-

eter generation for knowledge graph link prediction,” in Proceedings of AAAI Con-

ference on Artificial Intelligence, 2020.

[139] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,”

in Proceedings of International Conference on World Wide Web, 2007, pp. 697–706.

[140] F. M. Suchanek, M. Sozio, and G. Weikum, “SOFIE: a self-organizing framework

for information extraction,” in Proceedings of International Conference on World Wide

Web, 2009, pp. 631–640.

[141] Z. Sun, W. Hu, and C. Li, “Cross-lingual entity alignment via joint attribute-

preserving embedding,” in Proceedings of International Semantic Web Conference,

2017, pp. 628–644.

[142] Z. Sun, W. Hu, Q. Zhang, and Y. Qu, “Bootstrapping entity alignment with knowl-

edge graph embedding,” in Proceedings of International Joint Conference on Artificial

Intelligence, 2018, pp. 4396–4402.

BIBLIOGRAPHY 159

[143] Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang, and Y. Qu, “Knowledge graph

alignment network with gated multi-hop neighborhood aggregation,” in Proceed-

ings of AAAI Conference on Artificial Intelligence, 2020.

[144] M. Surdeanu and M. Ciaramita, “Robust information extraction with perceptrons,”

in Proceedings of the Automatic Content Extraction Workshop, 2007.

[145] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning, “Multi-instance multi-

label learning for relation extraction,” in Proceedings of Empirical Methods in Natural

Language Processing, 2012, pp. 455–465.

[146] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Proceedings of Neural Information Processing Systems, 2014, pp. 3104–

3112.

[147] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from

tree-structured long short-term memory networks,” in Proceedings of International

Joint Conference on Natural Language Processing, 2015, pp. 1556–1566.

[148] R. Takanobu, T. Zhang, J. Liu, and M. Huang, “A hierarchical framework for rela-

tion extraction with reinforcement learning,” in Proceedings of AAAI Conference on

Artificial Intelligence, 2019, pp. 7072–7079.

[149] Z. Tu, Y. Liu, L. Shang, X. Liu, and H. Li, “Neural machine translation with recon-

struction,” in Proceedings of AAAI Conference on Artificial Intelligence, 2017.

[150] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neural machine

translation,” in Proceedings of Association for Computational Linguistics, 2016, pp. 76–

85.

[151] K. van Deemter, E. Krahmer, and M. Theune, “Real versus template-based natural

language generation: A false opposition?” Computational Linguistics, vol. 31, no. 1,

pp. 15–24, 2005.

160 BIBLIOGRAPHY

[152] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, and P. Talukdar, “Interacte: Improv-

ing convolution-based knowledge graph embeddings by increasing feature inter-

actions,” in Proceedings of AAAI Conference on Artificial Intelligence, 2020.

[153] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proceedings of Neural Information

Processing Systems, 2017, pp. 5998–6008.

[154] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph

attention networks,” in Proceddings of International Conference on Learning Represen-

tations, 2018.

[155] A. P. B. Veyseh, F. Dernoncourt, M. Thai, D. Dou, and T. Nguyen, “Multi-view con-

sistency for relation extraction via mutual information and structure prediction,”

in Proceedings of AAAI Conference on Artificial Intelligence, 2020.

[156] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to sequence for

sets,” in Proceedings of International Conference on Learning Representations, 2016.

[157] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proceedings of Inter-

national Conference on Neural Information Processing Systems, 2015, pp. 2692–2700.

[158] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov, “Discovering and maintaining links

on the web of data,” in Proceedings of International Semantic Web Conference, 2009,

pp. 650–665.

[159] P. Vougiouklis, H. Elsahar, L.-A. Kaffee, C. Gravier, F. Laforest, J. Hare, and E. Sim-

perl, “Neural wikipedian: Generating textual summaries from knowledge base

triples,” Journal of Web Semantics, vol. 52-53, pp. 1 – 15, 2018.

[160] D. Vrandecic and M. Krötzsch, “Wikidata: a free collaborative knowledgebase,”

Communications of the ACM, vol. 57, pp. 78–85, 2014.

[161] P. Wang, Q. Wu, C. Shen, A. Dick, and A. van den Hengel, “Fvqa: Fact-based visual

question answering,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

pp. 2413–2427, 2018.

BIBLIOGRAPHY 161

[162] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by trans-

lating on hyperplanes,” in Proceedings of AAAI Conference on Artificial Intelligence,

2014, pp. 1112–1119.

[163] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge graph alignment

via graph convolutional networks,” in Proceedings of Conference on Empirical Methods

in Natural Language Processing, 2018, pp. 349–357.

[164] Z. Wang and J. Li, “Text-enhanced representation learning for knowledge graph,”

in Proceedings of International Joint Conference on Artificial Intelligence, 2016, pp. 1293–

1299.

[165] P. Werbos, “Backpropagation through time: what it does and how to do it,” Pro-

ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[166] S. J. Wiseman, S. M. Shieber, and A. S. M. Rush, “Challenges in data-to-document

generation,” in Proceedings of Empirical Methods in Natural Language Processing, 2017,

pp. 2253–2263.

[167] Q. Wu, C. Shen, P. Wang, A. Dick, and A. v. d. Hengel, “Image captioning and vi-

sual question answering based on attributes and external knowledge,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pp. 1367–1381, 2018.

[168] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao, “Relation-aware entity align-

ment for heterogeneous knowledge graphs,” in Proceedings of International Joint

Conference on Artificial Intelligence, 2019, pp. 5278–5284.

[169] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey

on graph neural networks,” arXiv preprint arXiv:1901.00596, 2019.

[170] Y. Xiao, C. Tan, Z. Fan, Q. Xu, and W. Zhu, “Joint entity and relation extraction with

a hybrid transformer and reinforcement learning based model,” in Proceedings of

AAAI Conference on Artificial Intelligence, 2020.

162 BIBLIOGRAPHY

[171] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning of knowledge

graphs with entity descriptions,” in Proceedings of AAAI Conference on Artificial In-

telligence, 2016, pp. 2659–2665.

[172] K. Xu, liwei wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu, “Cross-lingual

knowledge graph alignment via graph matching neural network,” in Proceeddings

of Association for Computational Linguistics, 2019, pp. 3156–3161.

[173] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, “Joint learning of the embedding

of words and entities for named entity disambiguation.” in Proceedings of Conference

on Computational Natural Language Learning, 2016, pp. 250–259.

[174] Z. Yang, P. Blunsom, C. Dyer, and W. Ling, “Reference-aware language models,” in

Proceedings of Conference on Empirical Methods in Natural Language Processing, 2017,

pp. 1850–1859.

[175] R. Ye, X. Li, Y. Fang, H. Zang, and M. Wang, “A vectorized relational graph convo-

lutional network for multi-relational network alignment.” in Proceedings of Interna-

tional Joint Conference on Artificial Intelligence, 2019, pp. 4135–4141.

[176] D. Zeng, K. Liu, Y. Chen, and J. Zhao, “Distant supervision for relation extraction

via piecewise convolutional neural networks,” in Proceedings of Empirical Methods

in Natural Language Processing, 2015, pp. 1753–1762.

[177] D. Zeng, K. Liu, S. Lai, G. Zhou, and J. Zhao, “Relation classification via convolu-

tional deep neural network,” in Proceedings International Conference on Computational

Linguistics, 2014, pp. 2335–2344.

[178] X. Zeng, S. He, D. Zeng, K. Liu, S. Liu, and J. Zhao, “Learning the extraction order of

multiple relational facts in a sentence with reinforcement learning,” in Proceedings

The Conference on Empirical Methods in Natural Language Processing, 2019, pp. 367–

377.

BIBLIOGRAPHY 163

[179] X. Zeng, D. Zeng, S. He, K. Liu, and J. Zhao, “Extracting relational facts by an

end-to-end neural model with copy mechanism,” in Proceedings of Association for

Computational Linguistics, 2018, pp. 506–514.

[180] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D. yan Yeung, “Gaan: Gated attention

networks for learning on large and spatiotemporal graphs,” in Proceedings of The

Conference on Uncertainty in Artificial Intelligence, 2018, pp. 339–349.

[181] Z. Zhang, J. Cai, Y. Zhang, and J. Wang, “Learning hierarchy-aware knowledge

graph embeddings for link prediction,” in Proceedings of AAAI Conference on Artifi-

cial Intelligence, 2020.

[182] Z. Zhang, F. Zhuang, H. Zhu, Z. Shi, H. Xiong, and Q. He, “Relational graph neural

network with hierarchical attention for knowledge graph completion,” in Proceed-

ings of AAAI Conference on Artificial Intelligence, 2020.

[183] Z. Zhang, X. Shu, B. Yu, T. Liu, J. Zhao, Q. Li, and L. Guo, “Distilling knowl-

edge from well-informed soft labels for neural relation extraction,” in Proceedings

of AAAI Conference on Artificial Intelligence, 2020.

[184] G. Zhou, J. Su, J. Zhang, and M. Zhang, “Exploring various knowledge in relation

extraction,” in Proceedings of the Annual Meeting of The Association for Computational

Linguistics, 2005, pp. 427–434.

[185] P. Zhou, J. Xu, Z. Qi, H. Bao, Z. Chen, and B. Xu, “Distant supervision for relation

extraction with hierarchical selective attention,” Neural Networks, vol. 108, pp. 240–

247, 2018.

[186] H. Zhu, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via joint knowledge

embeddings,” in Proceedings of International Joint Conference on Artificial Intelligence,

2017, pp. 4258–4264.

[187] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-based semi-

supervised classification,” in Proceedings of International World Wide Web Conferences,

2018, pp. 499–508.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Trisedya, Bayu Distiawan

Title:

Knowledge base enrichment via deep neural networks

Date:

2020

Persistent Link:

http://hdl.handle.net/11343/258706

File Description:

Final thesis file

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

	Introduction
	Approaches and Contributions
	Knowledge Bases Alignment
	Relation Extraction for Knowledge Base Enrichment
	Description Generation
	Summary of Contributions

	Thesis Outline

	Literature Review
	Knowledge Base Development
	Knowledge Base Enrichment
	Traditional Methods of Knowledge Base Enrichment
	Neural Networks for Knowledge Base Enrichment

	Knowledge Bases Alignment
	String-Similarity-based Entity Alignment
	Embedding-based Entity Alignment

	Relation Extraction
	Open Information Extraction
	Entity-aware Relation Extraction

	Description Generation
	Traditional Text Generation
	Neural Text Generation

	Summary

	Fully Automatic and Effective Embedding-Based Entity Alignment
	Introduction
	Preliminary
	TransE

	Proposed Model
	TransAlign Overview
	Predicate Embedding
	Structure Embedding
	Attribute Character Embedding
	Joint Learning Embedding Model
	Entity Alignment
	Triple Enrichment via Transitivity Rule

	Experiments
	Dataset
	Hyperparameters
	Compared Models
	Entity Alignment Results
	Predicate Alignment Methods Comparison
	Discussion

	Summary

	An End-to-end Relation Extraction and Canonicalization Model for Knowledge Base Enrichment
	Introduction
	Proposed Model
	Solution Framework
	Dataset Collection
	Joint Learning of Word and Entity Embeddings
	N-gram Based Attention Model
	Triple Generation

	Experiments
	Hyperparameters
	Baseline Models
	Results

	Summary

	Description Generation for Star-Shaped Graphs
	Introduction
	Preliminary
	Encoder-Decoder Framework

	Proposed Model
	Solution Framework
	Dataset Collection
	Content-plan Generation
	Description Generation

	Experiments
	Hyperparameters
	Baseline Models
	Results

	Summary

	Description Generation for Arbitrary-Shaped Graphs
	Introduction
	Proposed Model
	Solution Framework
	Entity Masking
	Entity-order Aware Embedding Model
	Adapted BLSTM Encoder
	Adapted Triple Encoder
	GTR-LSTM Triple Encoder
	Decoder

	Experiments
	Baseline Models
	Hyperparameters
	Effect of Entity Masking
	Effect of Models
	Human Evaluation
	Ablation Tests
	Discussions

	Summary

	Conclusions
	Summary
	Future Work
	Future Work for Knowledge Bases Alignment
	Future Work for Relation Extraction
	Future Work for Description Generation

