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Abstract

Analyzing a vast amount of business and user data on big data analytics frameworks

is becoming a common practice in organizations to get a competitive advantage. These

frameworks are usually deployed in a computing cluster to meet the analytics demands

in every major domain, including business, government, financial markets, and health

care. However, buying and maintaining a massive amount of on-premise resources is

costly and difficult, especially for start-ups and small business organizations. Cloud

computing provides infrastructure, platform, and software systems for storing and pro-

cessing of data. Thus, Cloud resources can be utilized to set up a cluster with a required

big data processing framework. However, several challenges need to be addressed for

Cloud-based big data processing which includes: deciding how much Cloud resources

are needed for each application, how to maximize the utilization of these resources to

improve applications’ performance, and how to reduce the monetary cost of resource

usages. In this thesis, we focus on a user-centric view, where a user can be either an

individual or a small/medium business organization who want to deploy a big data

processing framework on the Cloud. We explore how resource management techniques

can be tailored to various user-demands such as performance improvement, and dead-

line guarantee for the applications; all while reducing the monetary cost of using the

cluster. In particular, we propose efficient resource allocation and scheduling mecha-

nisms for Cloud-deployed Apache Spark clusters.

This thesis advances the state-of-the-art by making the following contributions:

1. A comprehensive literature review on the resource management of big data ap-

plications in Cloud computing environments. In addition, a taxonomy on the

scheduling of big data applications in the Cloud environment while tackling vari-
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ous user demands.

2. A mathematical model to estimate an application’s completion time depending

on various configuration parameters and workload characteristics, and a resource

allocation mechanism to use the estimate for cost-efficient fine-grained Cloud re-

source allocation for big data applications.

3. Two dynamic job scheduling algorithms which can adapt to cluster resource changes,

prioritize time-critical jobs and minimize the Virtual Machine (VM) usage cost of

the whole cluster.

4. Two job scheduling algorithms which leverage the pricing model of Cloud VM

instances to minimize VM usage cost in a big data computing cluster deployed on

hybrid-cloud.

5. A Reinforcement Learning (RL) model of the job scheduling problem, reward for-

mulation for multiple-objectives, and Deep Reinforcement Learning (DRL) based

job scheduling agents which can automatically learn inherent cluster and job char-

acteristics to optimize multiple objectives.
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Chapter 1

Introduction

B IG Data [1, 2] has recently gained enormous popularity due to its potential appli-

cations in science, business, government, and health domains. Scientific applica-

tions generate a large amount of data which is used for discoveries and explorations.

Besides, social media data analysis, sentiment analysis and business data analysis are

crucial for the business organizations to adapt customer needs and gain more profits.

Therefore big data and analytics is becoming a common practice in organizations to get

a competitive advantage. However, big data is not only about a massive amount of data,

but it also covers the speed of incoming data and a variety of structured or unstructured

data. Hence, even though handling big data analytics is necessary for both research and

industry, putting them into practice is challenging.

Many prominent big data processing frameworks have emerged over the last decade.

Google has introduced the MapReduce [3] programming paradigm in 2004. The most

popular implementation of MapReduce was Apache Hadoop, and it was used almost

everywhere to process batch-based large-scale big data applications. However, for stream-

ing applications, frameworks like Apache s4 [4], Apache Storm [5] became popular. Re-

cently, some hybrid big data processing frameworks were invented like Apache Spark

[6] and Apache Flink [7], which support processing of both batch and streaming applica-

tions. To deploy a big data processing cluster, a huge amount of computing and storage

resources are needed. However, buying and maintaining a massive amount of local re-

sources is costly and difficult, especially for start-ups and small business organizations.

Cloud computing is an emerging platform which can provide infrastructure, plat-

form and software for storing and computing of data. Nowadays Cloud computing is

used in many small and large organizations like a utility [8] as it is more affordable to

1
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go for the pay per use service of Cloud service providers rather buying and maintaining

own computing resources. Therefore, Cloud computing is a viable option to deploy big

data processing clusters [9]. With this approach, a set of Virtual Machines (VMs) can

be hired from a Cloud service provider (CSP), then used to install a big data process-

ing framework of choice. Thus, the Cloud resources are now utilized to set up a cluster

which has a particular big data processing framework installed. Now, this cluster can

be used to run a one or more of analytics applications in parallel. Thus, the VMs work

as the worker nodes for the big data processing framework in the actual cluster.

Resource management is a broad term, which includes a lot of important elements

of maintaining a big data processing cluster for running the applications effectively. The

first key element is resource allocation, which means selecting and assigning the right

amount of resources (e.g., VMs, CPU cores, and Memory) to a particular application.

It is vital to allocate resources appropriately. Otherwise, the application might face se-

vere performance degradation. The next and most crucial component is the scheduling

of jobs. In a big data processing cluster, different users can have various applications

which need to be executed. For example, a user can have a Sort application which sorts

the words in a bunch of files. Each time this application is submitted, it is considered as a

new job in the cluster. Therefore, the same application can be submitted multiple times

as jobs, where each job can have varying resource demands or input data to process.

When one or more jobs are submitted to the cluster for processing, depending on the

resource allocation choices made before, the jobs need to be placed to actual machines.

Here, depending on the job order, job priority, and VM placement, the performance and

monetary cost of the cluster may vary. Other key elements of resource management

are resource monitoring and logging, to check whether the health and the performance

of the resources (VMs in this case for a Cloud-deployed) are degrading. Lastly, detect-

ing, preventing, and recovering from anomaly and failures is also an aspect of resource

management.

Even though the Cloud offers cheap, affordable and flexible resources, managing

Cloud resources for big data applications is difficult. Many challenges need to be ad-

dressed when an organization shifts big data processing on the Cloud. These challenges

include: deciding how much resources is needed for a job (a particular big data analytics
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application), how to maximize the utilization of these resources to improve applications’

performance, and how to reduce the monetary cost of resource usages. To meet these

challenges, organizations often require experts who have good practical experience of

managing Cloud resources as well as a proper understanding of that organization’s ap-

plication, data and various goals and objectives. In this thesis, we focus on a user-centric

view, where the user can be an individual or a small/medium business organization to

deploy a big data cluster on the Cloud. Specially, we explore how resource management

techniques can be tailored to various user-demands such as performance improvement

of the jobs, and deadline guarantee for the jobs; all while reducing the monetary cost of

the whole cluster.

1.1 Challenges in Cost-efficient Resource Management

Reducing the monetary cost of a Cloud-deployed big data processing cluster, while

maintaining a stable performance of the applications/jobs have brought many chal-

lenges. Here we discuss the key challenges addressed in the area of resource allocation

and scheduling.

1.1.1 Challenges in Resource Allocation

Allocating appropriate amount of resource for an application is crucial as it determines

whether a job has stable performance. In general, this is a manual task in a big data

processing framework, so the users have to select the number of resources to allocate

for each particular job. This often leads to over or under-provision of resources. In the

first case, if the cluster is deployed in a public Cloud, over-provisioning can lead to an

increase in monetary cost. In addition, for a cluster with a fixed set of resources, many

jobs may starve. In the second case, under-provisioning can lead to severe performance

degradation, along with the increase in deadline violations. Therefore, there is a need

to develop a resource allocation mechanism which has the capability to select the right

amount of resources to satisfy performance goals and deadline constraints, while re-

ducing the monetary cost of the big data processing cluster. In addition, the resource
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allocation mechanism needs to perform fine-grained resource allocation to maximize

the potential of cost optimization. For example, a resource allocation mechanism which

can allocate a varying chunk of resources (setting a different number of CPU cores and

memory to be used for a task), can reduce the cost further than the ones which only

choose a particular Virtual Machine (VM) to assign a task to.

1.1.2 Challenges in Dynamic Job Scheduling

Job scheduling is one of the most crucial components where a scheduler has to find

the placement for one or tasks/executors of all the jobs. In addition, the capability to

prioritize jobs based on their sensitivity (time-critical or not) is also crucial. Further-

more, if cluster resource availability changes, the scheduler needs to dynamically work

and update with whatever resources available to schedule the upcoming jobs. From

the users’ perspective, the goal is to have a satisfying performance while reducing the

monetary cost of the cluster. For example, tasks are generally placed in different Virtual

Machines (VM). Therefore, if the scheduler can utilize the pricing model of the Cloud

service provider, it can select cheaper VMs that provides an acceptable level of perfor-

mance. Therefore, there is a need to design scheduling algorithms which are adaptive

to cluster changes, can tackle the deadline of the time-critical jobs, and guarantee the

required resources for the jobs.

1.1.3 Challenges in Job Scheduling in Hybrid Cloud

Due to the popularity of the Cloud services, many organizations are moving towards a

Cloud deployment for their entire big data computing cluster. Although Cloud service

providers offer flexible and affordable computing resources, for small or medium busi-

ness organizations, moving everything towards the Cloud may not be ideal in terms of

cost reduction. On the contrary, having a cluster deployed only with the on-premise re-

sources would be difficult to scale, and also to adapt with peak demand surges. There-

fore, a hybrid deployment can be an alternative solution, where the local resources of

the cluster are used if the cluster is not overloaded and satisfactory performance can be

maintained. Otherwise, the Cloud-deployed part of the cluster can be used to schedule
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jobs. Therefore, there is a need to develop efficient scheduling algorithms which can

leverage various pricing models of Cloud VMs, while considering the resource capacity

of the local resources when scheduling jobs.

1.1.4 Challenges in Intelligent Learning of Job Scheduling Algorithms

To learn the workload and cluster characteristics, extensive job profiling information

generated from the real cluster plays a key role to build the performance model. Then

the performance models can be used in scheduling to match the workload type with the

allocated resources. However, job profiling is an added overhead, and if the cluster/job

characteristics change, the past performance models built from it will be obsolete. Thus,

a scheduler designed for a particular environment cannot be used as a general solution

to a wide variety of clusters due to the changing conditions of different resource avail-

ability, job demand and characteristics. As an example, a trivial heuristic or even an

optimal job scheduling algorithm can not decide the type of placement which will be

best suited for each particular job types. For example, a network-bound job may have

performance improvement if the tasks are consolidated in fewer nodes to reduce inter-

node communication delay. Therefore, a scheduler has to experience these issues and

learn from it, and the learning process should be autonomic.

1.2 Research Problems and Objectives

This thesis focuses on cost-efficient resource management in Cloud-deployed big data

processing clusters to maintain satisfactory performance. In order to address the chal-

lenges above, this thesis has identified and investigated the following research problems:

• How to allocate resources in a fine-grained manner for a job, which incurs a

lower monetary cost with a satisfactory level of performance? The most com-

mon approach used is the static resource allocation, where the users have to set

the resource requirements of each job manually. However, it leads to over or

under-provisioning of resources. There has been some attempt to build perfor-

mance models from job profiles. However, the existing techniques lack in fine-
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grained resource allocation for tasks in Cloud VMs. Thus, a resource allocation

mechanism is needed, which can utilize the Cloud VM pricing models, and allo-

cate fine-grained resources for each job in such a way that the job does not violate

the deadline constraint.

• How to schedule jobs dynamically in a Cloud-deployed cluster, while reduc-

ing the overall Virtual Machine (VM) usage cost of the cluster? The default

framework schedulers and the other existing works prioritized the performance

of the jobs, but not the monetary cost reduction of the whole cluster if Clouds VMs

are used as worker nodes. Besides, job arrival is often stochastic in nature, and a

scheduler has to make a fast decision. Thus, there is a need to design fast schedul-

ing algorithms which can adapt to dynamic cluster resource changes, utilize the

VM pricing models while placing tasks, all while maintaining a satisfactory per-

formance for each job.

• How to efficiently schedule jobs in a big data cluster deployed in the hybrid

Cloud while reducing the monetary cost? The framework scheduler assumes that

the deployment of a cluster is with homogeneous worker nodes (all the machines

have the same resource capacity). However, in a hybrid deployment, VMs can

be of different sizes along with various pricing models. Also, the cost of using a

local VM and a Cloud VM can be different even if they have similar performance.

Therefore, there is a need to devise scheduling algorithms which can leverage from

the pricing models of the Cloud service providers and utilize different VM instance

sizes to reduce the monetary cost of the hybrid Cloud-deployed cluster.

• How to design an intelligent scheduling algorithm which can automatically

learn the inherent job and cluster characteristics, while optimizing one or more

objectives? The heuristics and optimization model-based algorithms can only ad-

dress a specific target objective and cannot capture the inherent cluster and job

characteristics. Also, they require fine-tuning and human intervention depending

on different goals, scenario, and setup. Therefore, there is a need to design intelli-

gent scheduling algorithms, which can incorporate the power of modern AI-based

learning (specifically, Reinforce Learning or RL), to learn and utilize various inher-
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ent cluster characteristics while optimizing one or more target goals. Besides, there

is a need to reduce human intervention, and also a need for algorithms which can

be generalized to work in a wide range of scenarios.

1.3 Evaluation Methodology

To evaluate the effectiveness of the proposed approaches in the thesis, we have used the

Nectar1 Research Cloud to deploy our experimental big data processing cluster. Besides,

we have used real-world workload traces to extract job arrival times of the clusters to

incorporate various job scheduling scenario. The jobs used in different experiments are

real-world benchmark applications such as WordCount, Sort, and PageRank; where all

these applications have different performance requirements and show various perfor-

mance variability in the system.

For the efficacy of the experimental evaluation and comparison with the baseline al-

gorithms, we have developed different prototype systems for every piece of work. Also,

to test the scalability of the proposed algorithms, we have implemented simulation tools

that can be used to evaluate various scheduling policies. For the sake of repeatability of

the experiments, and also for the use of the research community, all of the implementa-

tions of the algorithms, tools, simulators, and framework are made open source2.

Recently, in-memory big data processing frameworks became popular due to their

speed of data processing capabilities. In particular, Apache Spark is the most popular

framework as it is more suited for Machine Learning (ML) and iteration-based analytics

jobs. Thus, our approaches focus on solving the resource management problems from

the perspective of Apache Spark’s architecture, and it’s deployment on the public Cloud

resources.

1.4 Thesis Contributions

The key contributions of this thesis are listed below:

1www.nectar.org.au
2https://github.com/tawfiqul-islam

www.nectar.org.au
https://github.com/tawfiqul-islam
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1. A survey and taxonomy on resource management of big data applications in the

Cloud environment, with a specific focus on resource allocation and job scheduling

algorithms.

2. A deadline-based cost-optimized Cloud resource allocation mechanism for big

data applications.

• A mathematical model that predicts the completion time of a big data appli-

cation based on the number of executors and other properties.

• A resource allocation model where a cost-effective, deadline-based Resource

Allocation Scheme (RAS) can be found for an application.

• A job profiler to profile any application concerning varying input workloads,

iterations, and resource allocation schemes.

3. Dynamic job scheduling algorithms for Cloud-deployed big data processing clus-

ters.

• Two job scheduling algorithms. The first algorithm is a greedy algorithm

adapted from the Best-Fit-Decreasing (BFD) heuristic, and the second algo-

rithm is based on Integer Linear Programming (ILP). Both of these algorithms

can improve the cost-efficiency of a Cloud-deployed cluster. Besides, the al-

gorithms also prioritize jobs based on their deadlines and enhance job perfor-

mance for network-bound jobs.

• A scheduling framework by utilizing Apache Mesos [10] cluster manager and

this framework can be used to implement scheduling policies for any Mesos

supported data processing frameworks.

4. SLA-based scheduling algorithms for big data computing clusters deployed on

hybrid Cloud.

• A mathematical model of SLA-based scheduling in a hybrid Cloud.

• Two job scheduling algorithms. The first algorithm is a modified version of

the First-Fit (FF) heuristic for solving bin packing problems. The second algo-

rithm uses a greedy approach to iteratively find the cost-optimal placement
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for each executor of a job. Both algorithms can improve the cost-efficiency of

a hybrid cluster.

• An event-based simulator that can be used to simulate, test, and compare

different job scheduling policies.

5. Intelligent scheduling algorithms that can automatically learn the inherent cluster

and job characteristics, and optimize one or more target objectives.

• An RL model of the job scheduling problem of big data applications in Cloud

computing environments. The reward formulation is also provided for the

training of DRL-based agents to satisfy resource constraints, optimize cost-

efficiency, and reduce average job duration of a cluster.

• A prototype of the RL model in a python environment which is plugged into

the TF-Agents3 framework.

• Two DeepRL-based agents, DQN and REINFORCE, which are trained as schedul-

ing agents in the TF-agents framework.

1.5 Thesis Organization

The structure of this thesis is shown in Figure 1.1. The remaining part of this thesis is

organized as follows:

• Chapter 2 presents a taxonomy and literature review on resource management

for big data applications in Cloud environments. It mainly focuses on various re-

source allocation and scheduling approaches. This chapter is derived from:

- Muhammed Tawfiqul Islam and Rajkumar Buyya, ”Resource Management and

Scheduling for Big Data Applications in Cloud Computing Environments”, Hand-

book of Research on Cloud Computing and Big Data Applications in IoT, B. Gupta and

D. Agrawal (eds), 1-23pp, ISBN-13: 978-1522584070, IGI Global, USA, 2019.

• Chapter 3 presents a cost-efficient, fine-grained, and deadline-aware resource allo-

cation mechanism. This chapter is derived from:

3https://www.tensorflow.org/agents

https://www.tensorflow.org/agents
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Figure 1.1: Thesis Organization

- Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya, ”dSpark:

Deadline-based Resource Allocation for Big Data Applications in Apache Spark”,

Proceedings of the 13th IEEE International Conference on e-Science (e-Science 2017),

Auckland, New Zealand, October 24-27, 2017.

• Chapter 4 presents dynamic cost-efficient scheduling algorithms to schedule jobs

in a Cloud-deployed big data processing cluster. This chapter is derived from:

- Muhammed Tawfiqul Islam, Satish N. Srirama, Shanika Karunasekera, and Ra-

jkumar Buyya, ”Cost-efficient Dynamic Scheduling of Big Data Applications in

Apache Spark on Cloud”, Journal of Systems and Software (JSS), Volume 162, Pages:

1-14, ISSN: 0164-1212, Elsevier Press, Amsterdam, The Netherlands, April 2020.

• Chapter 5 presents job scheduling algorithms to be used in a cluster deployed in

a hybrid Cloud, which leverage the pricing model and utilize the local and Cloud

VMs of a cluster effectively to reduce monetary cost. This chapter is derived from:

- Muhammed Tawfiqul Islam, Huaming Wu, Shanika Karunasekera, and Rajku-

mar Buyya, ”SLA-based Scheduling of Spark Jobs in Hybrid Cloud Computing
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Environments”, IEEE Transactions on Computers (TC) [Under 2nd Revision].

• Chapter 6 presents efficient Deep Reinforcement Learning (DRL) based scheduling

agents which can automatically learn various inherent cluster and job characteris-

tics to optimize one or multiple objectives. This chapter is derived from:

- Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya, ”Cost

and Performance-oriented Spark Job Scheduling in Cloud with Deep Reinforce-

ment Learning”, IEEE Transactions on Parallel and Distributed Systems (TPDS) [Un-

der Review].

• Chapter 7 concludes the thesis, summarizes the key contributions and highlights

future research directions.





Chapter 2

A Taxonomy and Systematic Review

This chapter presents software architectures of the big data processing frameworks. It also provides

in-depth knowledge on resource management techniques involved while deploying big data process-

ing frameworks in the Cloud environment. It starts from the very basics and gradually introduce the

core components of resource management which we have divided into multiple layers. It covers the

state-of-art practices and researches done in SLA-based resource management with a specific focus

on the job scheduling mechanisms.

2.1 Introduction

CLOUD Computing is an emerging platform which can provide infrastructure,

platform, and software for storing and computing of data. Nowadays Cloud

Computing is used in many small and large organizations like a utility [8] as it is more af-

fordable to go for the pay per use service of Cloud service providers instead buying and

maintaining own computing resources. While registering in any Cloud Service, both the

Cloud service customer and the Cloud service provider must agree on some predefined

policies which are called the Service Level Agreement (SLA). Violation of SLAs may af-

fect the proper execution and performance of an application of any customer, so it poses

a significant threat on a Cloud service provider’s business reputation. Therefore, it is

essential to manage the Cloud resources in such a way that it guarantees SLA.

This chapter is derived from:

• Muhammed Tawfiqul Islam and Rajkumar Buyya, ”Resource Management and Scheduling for Big
Data Applications in Cloud Computing Environments”, Handbook of Research on Cloud Computing and
Big Data Applications in IoT, B. Gupta and D. Agrawal (eds), 1-23pp, ISBN-13: 978-1522584070, IGI
Global, USA, 2019.

13
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Big Data [1, 2] is the recent hype in information technology. Scientific applications

generate a large amount of data which is used for discoveries and explorations. Besides,

social media data analysis, sentiment analysis, and business data analysis are crucial for

business organizations to adopt customer needs and gain more profits. Cloud comput-

ing can be an appropriate solution to host big data applications, but many challenges

need to be addressed to use the existing Cloud architectures for big data applications.

This chapter discusses the challenges of hosting big data processing framework in the

Cloud. Moreover, it also gives a comprehensive overview of Cloud resource manage-

ment for big data applications. Resource management is a broad domain that contains

many complex components. However, to make it easier to understand, we divide it as a

layered architecture and discuss the critical elements from each layer. Our focus will be

on resource allocation and scheduling mechanisms and how the existing research tried

to incorporate SLA in these components. We will also point out the limitations of the

current approaches and highlight future research directions.

In summary, the contributions of this chapter are as follows:

• Basic understanding of Cloud computing and big data processing framework.

• Knowledge about the software architectures and use-cases of different big data

processing frameworks.

• Knowing about the vital software and tools for successful deployment and man-

agement of big data clusters .

• Learning the key steps and significant components of resource management for

big data applications through a layered architecture.

• Focusing on the existing literature on SLA-based application/job scheduling mech-

anisms and finding the applicability of these techniques in different application

scenarios.

• Gaining insights about the research gaps and highlights on the future research

challenges.

The contents of this chapter are organized as follows. Section 2.2 provides back-

ground on Cloud computing, big data, big data processing frameworks and their archi-
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tectures and some popular cluster managers. Section 2.3 gives a layered overview of the

overall resource management process for big data applications on the Cloud. Section 2.4

presents a taxonomy of job scheduling mechanisms for big data applications. Finally,

section 2.5 concludes the chapter.

2.2 Background

In this section, we briefly discuss the key features of Cloud computing. Moreover, we

explain the architectures of the popular open-source software systems for processing big

data applications. Also, we provide an overview of some popular cluster managers. Fi-

nally, we conclude with explaining why the Cloud is a viable alternative to deploy a big

data processing software and how cluster managers can be used for efficient manage-

ment of the system.

2.2.1 Cloud Computing

Cloud computing delivers a shared pool of on-demand computing resources on a pay-

per-use basis. The main features of Cloud computing are:

1. Resource elasticity: Cloud resources can be easily scaled up or down to meet ap-

plication or user demands.

2. Metered service: users are billed based on what resources they used and how long

they have used them.

3. Easy access: the resources of Cloud can be easily accessed and can be provisioned

as a self-service manner.

There are three different types of Cloud. These are:

1. Public Cloud: There are many public Cloud service providers who offers com-

puting resources as a pay-per-use basis. Organizations can hire resources from

these service providers to deploy their own applications. It greatly reduces the

cost of buying computing hardware and removes the burdens of managing local

resources.
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2. Private Cloud: Many organizations setup an on-premise computing resource facil-

ity which is known as the private Cloud. The main reason for setting up a private

Cloud is to reduce the data transfer overhead to the public Cloud. In addition, it

also ensures that private and sensitive data are kept on the organization’s premises

to reduce security threats.

3. Hybrid Cloud: It is mix of both public and private Cloud. Sometimes organiza-

tions need to scale up their resources in public Cloud to be processed in the public

Cloud.

Cloud provides computing as a service, and we can divide Cloud services in three

ways:

1. Software as a Service (SaaS): SaaS can be used from any devices through the In-

ternet and typically these services are accessed via a web browser. The required

software needed by the user for any specialized task are already developed and

provided thorough different interfaces. Users just define the task, input data and

collect the results. Example: Google Apps

2. Platform as a Service (PaaS): A platform is provided for developing distributed,

scalable Cloud-based programs. It greatly reduces the hassle for managing the

underlying resources. Example: IBM Cloud

3. Infrastructure as a Service (IaaS): Computing and storage resources are provided

to setup a user’s own infrastructure to build platform and services. Reduces the

hassle of buying and managing own physical hardware, provides a scalable on

demand pool of resources. Example: Windows Azure, Amazon EC2.

2.2.2 Big Data

In today’s world, huge amount of data is being generated through social media, scien-

tific explorations and many other emerging applications like Internet of Things (IoT).

https://gsuite.google.com.au/intl/en_au/
https://www.ibm.com/cloud/
https://azure.microsoft.com/en-au/
https://aws.amazon.com/ec2/

https://gsuite.google.com.au/intl/en_au/
https://www.ibm.com/cloud/
https://azure.microsoft.com/en-au/
https://aws.amazon.com/ec2/
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Figure 2.1: Big Data 3V

The term ”Big data” is not about the size of data; rather it covers many other aspects.

For simplicity, we can define it in terms of the 3V as shown in Figure 2.1.

The volume of data can be small or large, from a few Megabytes to thousands of Ter-

abytes. Each day we are generating so much data that recently (in 2015) we have moved

into a Zettabyte era. Velocity represents the speed of incoming data. For example, some

applications need real-time or near real-time processing and comes with great speed.

These types of applications can be categorized as streaming applications. In contrast,

applications that need offline processing of huge volume of static data are called batch

applications. Finally, data can have many varieties such as structured, unstructured etc.

Storing and processing of data is often not possible by the traditional Database Manage-

ment Systems (DBMS) and NoSQL has greatly replaced SQL in many domains. There

are many other aspects of big data (many other Vs) depending on the specific domain.

2.2.3 Big Data Processing Frameworks

Processing big data is a difficult task, and it is not possible in a centralized system. There-

fore, distributed computing solutions are used for parallel processing of big data. Many

big data processing frameworks have emerged over the last decade. Figure 2 shows a

taxonomy on big data processing frameworks. As it shows, previously only batch-based

frameworks like Hadoop was mostly used. However, due to the discovery of many sci-

entific, business and social streaming applications, real-time processing became more
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Figure 2.2: A Taxonomy of Big Data Processing Frameworks

influential and dedicated stream processing frameworks like Strom, S4 were invented.

However, applications became more complex, and often organizations need to have

both batch and stream-based processing. Hence, some hybrid processing frameworks

like Apache Spark, Apache Flink are being used in the industry.

In this chapter, we only focus on batch and hybrid-based processing frameworks and

briefly discuss about some of the most popular ones.

Apache Hadoop

Apache Hadoop, introduced by Yahoo in 2005, is the open source implementation of the

MapReduce programming paradigm. The main feature of Hadoop is to use primarily

distributed commodity hardware to parallel processing of batch-based jobs. The core

of Hadoop is its fault-tolerant file system Hadoop Distributed File Systems (HDFS) [11]

that can be explicitly defined to span in many computers. In HDFS, the block of data is

much larger than a traditional file system (4KB versus 128MB). Therefore, it reduces the

memory needed to store the metadata on data block locations. Besides, it reduces the

seek operation in big files. Furthermore, it greatly enhances the use of the network as
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Figure 2.3: Apache Hadoop Architecture

only a fewer number of network connections are needed for shuffle operations. In the

architecture of HDFS, there are mainly two types of nodes: Name node and Data node.

Name node contains the metadata of the HDFS blocks, and the data node is the location

where the actual data is stored. By default, three copies of the same block are stored over

the data nodes to make the system fault tolerant. The resource manager of Hadoop is

called Yarn [12]. It is composed of a central Resource Manager who resides in the master

node and many Node Managers that live on the slave nodes. When an application is

submitted to the cluster, the Application Master negotiates resources with the Resource

Manager and starts container (where actual processing is done) on the slave nodes.

The main drawback of Hadoop was that it stored intermediate results in the disk, so

for shuffle-intensive operations like iterative machine learning, a tremendous amount

of data is stored in the disk and transferred over the network which poses a significant

overhead on the whole system.
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Figure 2.4: Apache Spark Architecture

Apache Spark

Apache Spark [13] is one of the most prominent big data processing frameworks. It is

an open source, general-purpose, large-scale data processing framework. It mainly fo-

cuses on high-speed cluster computing and provides extensible and interactive analysis

through high-level APIs. Spark supports batch or stream data analytics, machine learn-

ing and graph processing. It can also access diverse data sources like HDFS, HBase [14],

Cassandra [15], etc. and use Resilient Distributed Dataset (RDD) [16] for data abstrac-

tion.

As compared to the Hadoop system tasks, Apache Spark allows most of the com-

putations to be performed in memory and provides better performance for some ap-

plications such as iterative algorithms. When the results do not fit on the memory, the

intermediate results are written to the disk. Spark can run locally in a single desktop,

in a local cluster, and on the Cloud. It runs on top of Hadoop Yarn, Apache Mesos [10]

and the default standalone cluster manager. Jobs/applications are divided into multiple

sets of tasks called stages which are inter-dependent. All these stages make a directed

acyclic graph (DAG), where each stage is executed one after another.
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Apache Flink

Apache Flink [7] is an open-source stream processing framework. It executes data-flow

programs in data-parallel pipelines. Flink is fault-tolerant and treats batch data as a

form of a stream, therefore, it is a hybrid framework. Programs can be written in Java,

Scala, Python, and SQL. Flink does not provide any data storage mechanism. Instead,

it uses other data sources like HDFS, Cassandra, etc. During the execution stage, Flink

programs are mapped to streaming dataflows. Every dataflow starts with one or more

origins (input, queue or file system) and ends with one or more sinks (output, message

queue, database or file system). An arbitrary number of transformations can be done on

the stream. These dataflow streams are arranged as a directed acyclic dataflow graph,

allowing the flexibility for the applications to branch and merge dataflows. Flink is

relatively new and unstable as compared to the matured frameworks like Hadoop and

Spark. It is yet to be seen whether Flink can be scalable like Spark in a production-grade

cluster.

2.2.4 Cluster Managers

Apache Hadoop Yarn

Apache Hadoop Yarn [12] is the resource manager for Apache Hadoop. The core idea

of Yarn is to split up the mechanisms for resource management such as job scheduling,

monitoring, etc. into separate daemons. There is a global Resource-Manager in the mas-

ter node and Node Managers in each of the worker/slave nodes. Resource Managers

and Node Managers form the whole data-computation framework. Resource Manager

is the ultimate co-ordinate that can dictate resource provisioning and scheduling in the

entire system. Node Managers are responsible for running containers and monitor re-

source usages and reporting the resource usage statistics to the Resource Manager. Fur-

thermore, per-application Application-Manager negotiates with the Resource Manager

to reserve resources and collaborates with the Node Manager to run containers and mon-

itor the tasks.

The Resource Manager has two main components: Scheduler and Applications-
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Figure 2.5: Apache Hadoop Yarn Architecture

Manager. Scheduler tracks and maintains a queue of jobs set the order of the jobs and

allocate resources to each of the jobs before execution. The scheduler functions are based

on the implemented policies and SLA requirements of the applications. The scheduler

has a pluggable policy which makes it extendable to different scheduling policies. For

example, CapacityScheduler and FairScheduler are the example plugins implemented

and available with Yarn. Applications-Manager accepts job submission requests and

provides the service to restart failed jobs.

Apache Mesos

Apache Mesos [10] is said to be the data-center level cluster manager. Mesos was built

primarily to support multiple different big data processing frameworks to be running

in the same cluster. Mesos isolates the resources (e.g., CPU, Memory and disk) shared

by different framework tasks/executors and run them in the same physical/virtual ma-

chine. Schedulers from different frameworks negotiate with Mesos to reserve resources

for running tasks. Moreover, each application (of any big data processing system like

Spark, Hadoop, Storm) is called a framework and can have a custom implemented

scheduler that can negotiate with Mesos to set the required resources for that appli-
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Figure 2.6: Apache Mesos Architecture

cation.

Mesos send resource offers to each framework by using the Dominant Resource Fair-

ness (DRF) [17] resource allocator which tries to distribute the resources among multiple

frameworks equitably. However, Mesos has an advanced scheduler and operator HTTP

APIs and supports Dynamic Resource Reservation for any application. Therefore, by

using the scheduler/operator APIs, it is possible to build custom pluggable scheduler

with specific SLA requirements. Frameworks can also be assigned with particular roles

and set resource quotas to make the resource management flexible.

Google Kubernetes

Kubernetes is an open source container management platform which is designed to run

at production scale. It was built upon the foundations laid by Google. The architecture

of Kubernetes supports loosely-couped mechanism for service discovery. There are a

master and one or more computing nodes in a Kubernetes cluster. The master exposes

APIs, schedules workloads and controls the cluster. Each node runs a container runtime

like Docker or rkt agent that communicates with the master. A node also has additional

https://kubernetes.io/

https://kubernetes.io/
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components responsible for logging, monitoring, service discovery and optional add-

ons. A pod is a collection of containers that serve as a core unit of management. It

acts as logical isolation for containers sharing same context and resources. Replica sets

provide the required scale and availability of services by maintaining a pre-defined set

of pods. The deployment of an application can be scaled by using replica sets which

ensures an application has its desired number of pods running to meet the requirements.

The master node has etcd, which is an open-source distributed key-value database and

acts as the single point of truth for all components in a Kubernetes cluster. When an

application gets enough pods to run, the nodes pull images from the image registry and

works with the local container runtime to launch the container in each pod. Kubernetes

is flexible and provides a rich set of APIs for building custom container management

modules which are particularly useful in deploying efficient, large-scale IoT/Fog based

applications.

2.3 Resource Management for Big Data Applications

In this section, we will provide a brief overview of the significant components of re-

source management for Big Data applications. Many steps or components can be in-

cluded. However, the overall process of managing resources for big data applications

is a complex task, and many parts are inter-dependent thus it is hard to distinguish

them. Therefore, as shown in Figure 2.7, we have simplified the categorization in three

different layers and only discuss the key elements from each of these categories.

2.3.1 Setup Layer

The first layer of resource management is the Cluster Setup. In this layer, hardware or

virtualized resources are selected depending on the applications. Additionally, a cluster

manager is deployed to manage the resources and jobs from different big data process-

ing frameworks. Lastly, one or more big data processing frameworks are used.
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Figure 2.7: Key components of Resource Management in a Big Data Cluster

Resource Selection

Both physical or virtualized resources can be used to build a cluster. Generally, depend-

ing on the applications and analytics demands of any business organization, the hard-

ware resources are chosen. The setup can be done on-premise (local cluster or private

Cloud), deployed on Cloud resources (public Cloud) or a hybrid deployment (some

local resources with a pay-as-you-go subscription from a Cloud provider) can also be

made. The actual underlying hardware resources might vary with applications. How-

ever, CPU, RAM, Storage, and Network are the must no matter where the cluster is

deployed. Nowadays, GPU resources are gaining popularity due to the widespread use

in sophisticated machine learning (deep learning) algorithms running in platforms like

TensorFlow.

Cluster Manager Deployment

The next step is to choose a cluster manager to manage both the jobs and the resources. A

cluster manager also balances the workloads and resource shares in a multi-tenant envi-

https://www.tensorflow.org/

https://www.tensorflow.org/
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ronment. For containerized applications, Kubernetes or Docker Swarm can be deployed

to provide container management platform. Kubernetes excels as a complete manage-

ment system featuring scheduling, dynamic on-the-fly updates, auto-scaling, and health

monitoring. However, Docker Swarm features a system-wide view of the whole cluster

from a single Docker engine. Apache Hadoop Yarn is the cluster manager of choice if

all the applications of the cluster are only MapReduce or Hadoop-based. In contrast,

Apache Mesos is a better choice than Yarn as it supports efficient resource isolation for

multiple different big data processing frameworks and provides strong scheduling ca-

pabilities.

Big Data Processing Framework Deployment

Many big data processing frameworks are available which can run distributed applica-

tions across one or more clusters. The applications can be real-time, stream or batch and

for each type of applications, there are some frameworks which are capable of handling

the requirements efficiently. It is not possible to say which is the best possible framework

to deploy in general. Instead, each one has its own merits and suits a group of appli-

cations. For example, in the last decade, Hadoop was the most prominent framework

to process MapReduce based static batch jobs. However, due to the increasing popular-

ity of real-time systems and streaming applications; Apache Spark, Apache Flink, and

Apache Storm have become the standard choice to tackle them. Apache Storm is par-

ticularly useful for stream-based applications. Apache Spark is vastly replacing both

Hadoop and Storm, and it is a hybrid framework that supports both batch and stream

processing. Apache Flink is new a hybrid framework that needs to be more stable to

compete with the likes of Spark or Storm.

2.3.2 Operation Layer

The second layer of resource management is the operation layer. Here, performance

models are built to determine the set of resources to be allocated that is enough to meet

https://docs.docker.com/engine/swarm/

https://docs.docker.com/engine/swarm/
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user SLA and schedule multiple jobs in a multi-tenant setup. Moreover, the overall clus-

ter utilization is maximized, and each jobs performance is enhanced without interfering

with any other jobs SLA.

Performance Modelling

The performance of a job might vary depending on various aspects like allocated re-

sources, workload size, task placement, etc. Hence, before a complete deployment of

a job, performance models can be established which will be used in resource allocation

and job scheduling phase to choose an optimized set of resources to run the job with-

out sacrificing any performance constraints. Generally, performance modeling can be

done in two ways. First, running the job with different resource configurations and

workloads to build job profiles. Second, collecting historical data of jobs running in

the cluster. Both job profiles or historical data can be used to perform statistical analy-

ses, training machine learning algorithms or build mathematical models. These models

are then used to select optimal resource configurations and efficient scheduling strate-

gies. There are many existing researches that tried to model the performance of different

types of jobs running in both Spark or Hadoop based frameworks. [18] modelled the

performance of MapReduce workloads in a heterogeneous cluster (where resources are

different types, or the performance varies). This model is then used to predict the job

completion times. [19] proposed a simulation-based approach where they have used

different Apache Spark configuration parameters and modeled different stages of a job

to predict its completion time.

Resource Allocation

Resource allocation means reserving a set of resources for a job which will be used by

that job to run its tasks up to a specific period. Generally, resource allocation is of two

types.

1. Static: Manual resource allocation for each job by the user if the user has enough

knowledge on the application behavior on the cluster environment.
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2. Dynamic: The job is started with a few sets of resources. Based on the utilization

and to meet the SLA constraints, more resources might be allocated or deallocated

over time.

Choosing the right amount of resources to meet user SLA is crucial as improper

resource allocation might lead to either under-utilization or over-utilization problem.

Therefore, as mentioned in the previous step, performance models are used to determine

the optimal set of resources for each job. Resource allocation can be done from both big

data processing framework or cluster manager side. [20] modeled Spark jobs based on

different parameters such as input size, iteration, resource requirements to predict the

job runtime. Then an optimized resource configuration parameter is suggested based

on the models which is enough for that job to meet its deadline. [21] also suggested a

deadline-aware model to perform resource allocation which is also cost-effective. The

model is called OptEx and it estimates job runtime before resource allocation by using

the job profiles. [22] proposed a resource provisioning framework for MapReduce jobs

which also uses job profiles from jobs to estimate the required resources for jobs.

Job Scheduling

It is the most critical component of resource management. Job scheduling means settings

the order of the jobs in which they will run on the cluster. Additionally, the resources

can also be ordered before running any jobs. Both job and resource ordering depend on

the scheduling policy. The most straightforward scheduling policy that is used in all the

cluster managers and big data frameworks is the FIFO (First in First Out). Here, jobs are

ordered according to their arrival time; that means the job that comes first is executed

first in the cluster. If there are not enough resources in the cluster to run all the jobs,

then the remaining jobs are placed in a queue which is sorted based in increasing order

of their arrival time. In most cases, the FIFO scheduler under-performs with complex

SLA requirements in a multi-tenant cluster setup. Therefore, a vast amount of research

exists in this area that proposes efficient schedulers with optimal scheduling policies.

However, most of the scheduling algorithms are either application or the SLA-demand

specific. Also, the parameters that are considered vary greatly depending on the applica-
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tion or cluster setting. The more sophisticated schedulers tackle both resource allocation

and scheduling together to make it more efficient. First, these schedulers use some pre-

existed performance models for the jobs at hand or build it dynamically then decide

the resource configuration for a job before scheduling it. Moreover, the resource usages

of the currently executing jobs are tracked, and further resources will be reallocated or

deallocated to make it optimally achieve the SLA requirements. Job scheduling is a mas-

sively broad and explored topic in both big data and Cloud computing. We will provide

a detailed discussion and compare the existing works on job scheduling.

2.3.3 Maintenance Layer

It is the final layer of resource management for big data applications. The components

of this layer are responsible for maintaining an already deployed big data cluster.

Cluster Monitoring and Logging

Cluster Monitoring is crucial as it plays a vital role in the resource management life-

cycle. The cluster monitoring data can be logged and saved in persistent storage. This

data can be used to validate the performance of the resource allocation and scheduling

policies. Besides, if a feedback-based system is used (can be both feedback-based re-

source re-provisioning/ scheduling and machine learning models that are updated and

improved by using the current system status), it needs to use the cluster monitoring

data to improve the system performance. Popular big data processing frameworks like

Hadoop, Spark, and Storm provide cluster-wide monitoring data and web-UI to visu-

alize the health of the cluster. Besides, cluster monitoring data can also be found from

cluster/container management systems like Kubernetes, Mesos and Yarn. Sometimes

while building sophisticated application/user-specific resource management modules,

data from the underlying framework may not be enough. In those cases, the admin-

istrator or developer might need fine-grained resource usage and health data which is

possible by using tools such as Collectd or Prometheus . A cluster monitoring system

https://collectd.org/
https://prometheus.io/

https://collectd.org/
https://prometheus.io/
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like Prometheus not only provides cluster monitoring data, but it can also offer a time-

series database to store the monitoring data. The database is particularly useful for

applying advanced machine learning algorithms or performing time-series analysis on

the monitoring data.

Failure/Anomaly Detection & Mitigation

When a cluster is deployed, and in operation, jobs might fail due to an anomaly in

the system, hardware/software failure, resource over-utilization, resource-scarcity, etc.

By analyzing cluster-wide monitored log data, it is possible to detect the root cause of

failures in the system. It is important to solve the issue to keep the cluster healthy so that

the jobs can meet their SLAs. The most trivial way to solve the failure is to restart the

failed jobs. In the case of resource scarcity, jobs might fail due to a shortage of resource or

interference of co-located jobs. This problem can be solved by throwing more resources

in the cluster so that the jobs can run properly. In case of hardware or software failures,

the affected hardware that might be prone to failure can be avoided in scheduling to

avoid any further failures. Chronos [23] is a Hadoop-based failure-aware scheduler that

uses pre-emption on failed jobs. Then it recovers from failure by reallocating the failed

jobs with pre-empted resources to meet the SLA objectives. Fuxi [24] is a fault-tolerant

resource management and scheduling system that can predict and prevent failures in

large clusters to satisfy user performance needs.

Cluster Scaling

A big data processing cluster might need to be scaled up and down based on the current

usage. In a high-load hour, the currently running VMs might not be enough to run all

the jobs while satisfying all the users SLAs. Therefore, in this situation, the cluster needs

to be scaled up to satisfy the peak surge of resource demands. In contrast, in a light-load

hour, a cluster might go under-utilized. In this scenario, the existing cluster jobs can be

consolidated in fewer VMs so that the underutilized VMs can be freed and turned off.

Dynamically scaling up or down the cluster is possible by using elastic Cloud services

offered by Amazon AWS or Azure. [25] is a model-driven autoscaler for Hadoop clus-
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Figure 2.8: A Taxonomy of Scheduling of Big Data Applications on Cloud

ters. It uses novel gray-box performance models to predict job runtimes and resource

requirements to dynamically scale the cluster so that SLA is satisfied.

2.4 A Taxonomy on Scheduling of Big Data Applications

Many types of research have been done in the task and resource scheduling in the

Cloud computing environment. Researchers are trying to adapt existing scheduling ap-

proaches to facilitate the needs of big data applications. However, many challenges are

posed due to the different characteristics of big data applications. In this section, differ-

ent scheduling policies will be discussed. We have divided job scheduling approaches

for big data applications based on four aspects. Figure 2.8 exhibits a taxonomy of big

data job scheduling in the Cloud.

Based on the taxonomy, Table 2.1 shows a summary of comparison between the ex-

isting studies on Job scheduling for big data. In the following subsections, a detailed
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comparison will be provided between all these works regarding the critical aspects of

scheduling. When referring to a paper, we will follow the serial number of the corre-

sponding paper from Table 2.1.

2.4.1 Objective

The target of a scheduling algorithm to achieve is called the objective. A scheduler can be

single-objective or multi-objective, and it depends on the application scenario. Most of

the scheduling algorithms focus on improving application performance. Besides, mon-

etary cost reduction, handling soft or tight deadlines of jobs, energy-efficient placement

of jobs and scalability of the overall system are also important objectives. Generally, the

more objective is added to a scheduler, the more complex the decision-making progress

becomes. Sometimes, the overhead of the scheduling solution could be a bigger issue

rather than achieving the objects. Therefore, in real systems, different trade-offs are

made on the objectives to design fast schedulers with fewer overheads.

Now, each of the following subsections will provide a detailed study on the existing

literature from the perspective of the scheduling objectives.

Performance-oriented Scheduling

Performance improvement in scheduling can be achieved from two levels. First one is

from the application/job level; where the target is to minimize the execution time of a

job. The second one is from the cluster level; where a cluster scheduler has a global goal

to improve the performance of the whole cluster. The most optimized way of schedul-

ing is doing both. First, the job performance can be modeled by building mathematical

models, machine-learning models, using monitoring data, etc. to set the appropriate

resource requirement and configuration parameters for a job which is enough to main-

tain its SLA. Then, while each job is submitted, the cluster level scheduler improves the

performance of the job by various techniques such as task consolidations in the same

node to reduce network transfers, placing tasks close to data, order jobs based on their

priority or deadline, etc.
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Cost-efficient Scheduling

The monetary cost of running a big data processing cluster in a Cloud environment is

crucial. Improper resource selection and resource scheduling might lead to resource

wastage which intern increases the monetary cost of the cluster. If using VMs as the

worker nodes of a big data cluster, it is often useful to turn-off unused or underutilized

VMs to save cost if it does not affect performance/SLA of the jobs. Saving cost is mostly

comes with a sacrifice of performance guarantee as cost can be saved by using a smaller

number of resources in a cluster which might impact performance. Therefore, when

both cost and performance is considered, resources are saved/consolidated only after

ensuring a satisfying performance for all the jobs. In extremely scalable or fast schedul-

ing systems, improving performance is the only goal and cost saving is mostly ignored.

Some jobs are associated with deadlines, and some job is time-critical or real-time

and needs to be scheduled as soon as they arrive. Therefore, the deadline is an SLA

parameter, and many schedulers try to minimize deadline violations. There are several

techniques to achieve this first, the pre-emption mechanism where non-priority jobs

are killed when priority jobs need to be scheduled. Second, reserving some resources

that can be dedicated to time-critical or deadline-constrained jobs only. Lastly, ordering

the jobs beforehand based on their deadlines. However, maintain the job deadline while

handling other SLA constraints for jobs is difficult due to the presence of stragglers (large

periodic jobs that might hold a considerable chunk of resources), job inter-dependency

(a deadline-constrained job might wait for other critical or non-priority jobs), etc. When

multiple objects such as cost, deadline and performance are considered together, gen-

erally there are strict priorities between the objectives. For example, the first objective

is always ensuring a satisfiable performance of a job so that it meets its given deadline.

When these objectives are satisfied, only then cost-saving is considered.

Energy-efficient Scheduling

One of the significant challenges of running big data applications in Cloud deployed

cluster is minimizing their energy costs. Electricity used in the data centers in the USA

accounted for about 2% of the total electricity usage of the whole country in 2010. Fur-
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thermore, each year, the energy consumption by data-centers is increasing at over 15%.

Lastly, the energy costs can take up to 42% of a data-centers total operational cost. It is

predicted by IDC (Internet Data Corporation) that by the year 2020, big data analytics

market will surpass $200 billion. Therefore, more and more data-centers are made, and

these data-centers will consume a tremendous amount of energy soon. Consequently, it

is crucial to make the scheduling techniques energy-efficient from both the application

and the cluster side. Furthermore, from both the cluster and application side, consoli-

dating resources to save cost leads to energy saving as it helps to reduce the number of

active physical machines from the infrastructure side.

Scalable Scheduling

Scalable scheduling means that the resource management or scheduling algorithms are

scalable to large clusters and can perform in the presence of high number of schedul-

ing requests in a heterogeneous environment. Although the centralized approach of

scheduling is less complicated to handle the complex steps of scheduling at one place,

it is not as scalable as a distributed/hybrid approach of scheduling. It can be observed

that scheduler scalability is addressed in only a few works (2, 3, 4, 6, 11, 28, 30) which

mostly have distributed/hybrid architecture. However, as the existing cluster systems

are growing massively on size and scale to handle massive amounts of analytics de-

mands, future research should focus on the distributed or hybrid deployment of sched-

ulers to make them scalable.

2.4.2 Approach

The solution method towards the scheduling problem varies. Generally, a complete and

sophisticated scheduler has separate performance prediction and resource assignment

modules. The performance models are built from mathematical models to predict the

runtime of a job, cost of running a job, deadline violation, etc. in advance which helps

to make accurate scheduling decisions. Constraint programming-based approaches try

to minimize or maximize an objective by satisfying the constraint parameters set by

the job and the restrictions of resources on the cluster. However, for both resource as-
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signment/allocation and scheduling, the optimization problem is always modeled as an

NP-Hard problem. Therefore, even if exact algorithms or constraint solving approach

can find optimal scheduling decisions, it is not feasible in most of the case and only

applicable in small-scale clusters. In contrast, heuristics or meta-heuristics approaches

are faster, less-complicated and provided acceptable near-optimal solutions and can be

scalable to large clusters. Nowadays, machine learning approaches are also becoming

popular to build sophisticated and intelligent schedulers.

2.4.3 Architecture

Some scheduling designs are centralized, some are distributed. Recently, some hybrid

approaches have also been proposed which uses both a distributed or local scheduler

and a global scheduler. Generally, there are two levels in scheduling. One is at the clus-

ter manager level which manages and schedules all the jobs submitted from multiple

users. Another one is on the application level that schedules the tasks of a job to the

allocated resources by the cluster-level scheduler. A centralized cluster-level scheduler

design is less complicated as it controls all the jobs. However, for a massive cluster, a

centralized scheduler could be a single point of failure. This limitation is solved with ei-

ther having backup master nodes with the cluster manager (using tools like ZooKeeper)

or by designing a distributed scheduler where the worker nodes co-ordinate with each

other to manage the tasks from different jobs.

2.4.4 Framework

Most of the researches have tried to design efficient scheduling algorithms for Hadoop

MapReduce based clusters as it was the mostly used distributed data processing frame-

work in the last decade. However, as Apache Spark, Apache Storm, etc. are becoming

more popular and vastly replacing Hadoop these days, the researchers are focusing on

these frameworks now to devise scheduling algorithms. Lastly, due to the popularity of

the cluster managers that support multiple different big data frameworks at the same

time (Apache Mesos), or container-based platforms (Docker, Kubernetes); research has

been going on building cross-platform cluster-level schedulers that can work with a
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Table 2.1: Comparison between the existing job scheduling algorithms for big data

SL No. Literature Objective Approach Architecture Framework

1 [26] Deadline, Cost, Energy-efficiency ILP, Heuristic Centralized Cross-Platform

2 [27] Performance, Scalability Sampling, Late bind Distributed Spark

3 [28] Performance, Scalability Sampling, SRPT Hybrid Cross-Platform

4 [29] Cost, Scalability AKNN, Naive Bayes Hybrid Cross-Platform

5 [30] Deadline, Cost Greedy Heuristics, ILP Centralized Cross-Platform

6 [31] Cost, Scalability Prediction-based Centralized N/A

7 [32] Deadline, Cost Prune Tree, Greedy Heuristics Centralized Cross-Platform

8 [33] Performance, Deadline Constraint Programming Centralized Hadoop

9 [34] Deadline, Energy-efficiency EDF, Periodic-DVFS Centralized Spark

10 [35] Performance Genetic algorithm Centralized Hadoop

11 [36] Performance, Scalability Multiplexing Hybrid Hadoop

12 [37] Performance Reinforcement learning Centralized Hadoop

13 [38] Performance, Deadline Greedy, Negotiation Centralized Hadoop

14 [39] Performance, Deadline, Cost Pareto-Frontier Centralized Hadoop

15 [23] Performance Task pre-emption Centralized Hadoop

16 [40] Performance, Cost, Deadline Greedy Heuristics Centralized Hadoop

17 [21] Performance, Cost, Deadline Mathematical model, Prediction Centralized Spark

18 [41] Performance
Reservation aware,

Centralized Cross-Platform
Dependency-aware

19 [42] Performance, Deadline Graph Modelling Centralized Hadoop

20 [43] Cost, Energy-efficiency Reinforcement Learning Centralized Cross-Platform

21 [44] Performance, Energy-efficiency Machine Learning Classifiers Centralized Hadoop

22 [45] Performance, Cost Evolutionary algorithm Centralized Cross-Platform

23 [46] Performance, Energy-efficiency Time-series prediction, DVFS Centralized Spark

24 [47] Performance, Energy-efficiency Power profiles Centralized Cross-Platform

25 [48] Performance, Deadline Interference-aware Centralized Hadoop

26 [49] Deadline, Cost Pricing List, Bin Packing Centralized Hadoop

27 [50]
Performance, Deadline, Job Profiles, Task Packing

Centralized Hadoop
Scalability Resource Re-provision

28 [51] Performance, Scalability
Slot Management,

Centralized Hadoop
Speculative Execution

29 [52] Performance Reinforcement Learning Centralized Cross-Platform

30 [53] Performance, Scalability Job Profiles, Slot reconfiguration Centralized Hadoop

31 [54] Deadline Greedy Heuristic Centralized Hadoop
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cluster manager to effectively handle jobs from different frameworks.

To summarize, it is always a hard challenge to provide a general scheduling strategy

for all types of big data applications. To design a sophisticated scheduling algorithm, the

type of big data application needs to be detected. Furthermore, depending on the user

SLAs, the objectives should be chosen carefully. Then after setting the priority between

different objectives, a suitable scheduling strategy can be devised.

2.5 Summary

In this chapter, we have discussed the basics of Cloud computing, the emergence of

big data, processing frameworks and tools used to handle big data applications and an

overall view of resource management for big data applications in the Cloud. We have

specifically focused on the job scheduling aspect of resource management and provided

a detailed taxonomy of job scheduling for big data applications. Furthermore, we have

discussed the relevant research in scheduling and showed comparisons of various ap-

proaches regarding different aspects of scheduling. Lastly, we have highlighted some

new research directions that need to be investigated to cope with the advanced resource

management requirements in the modern era.





Chapter 3

Deadline-based Cloud Resource
Allocation for Big Data Applications

When an application is deployed in a Spark cluster, all the resources are allocated to it unless

users manually set a limit on the available resources. In addition, it is not possible to impose any

user-specific constraints and minimize the cost of running applications. In this chapter, we present

dSpark, a lightweight, pluggable resource allocation framework for Apache Spark. In dSpark, we

have modelled the application completion time with respect to the number of executors and appli-

cation input/iteration. This model is further used in our proposed resource allocation model where

a deadline-based, cost-efficient resource allocation scheme can be selected for any application. As

opposed to the existing frameworks that focus more on modelling the number of VMs to use for an

application, we have modelled both the application cost and completion time with respect to execu-

tors, hence providing a fine-grained resource allocation scheme. In addition, users do not need to

specify any application types in dSpark.

3.1 Introduction

NOWadays, huge amount of data is generated from social media, mobile devices,

IoT and many other emerging applications. Therefore, data processing and ana-

lytics have become really important in all the major domains, such as research, business

and industry. Apache Spark [6] is one of the most prominent big data processing plat-

This chapter is derived from:

• Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya, ”dSpark:
Deadline-based Resource Allocation for Big Data Applications in Apache Spark”,
Proceedings of the 13th IEEE International Conference on e-Science (e-Science 2017), Auckland,
New Zealand, October 24-27, 2017.
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forms. It is an open source, general purpose, large-scale data processing framework. It

mainly focuses on high speed cluster computing and provides extensible and interactive

analysis through high level APIs. Spark can perform batch or stream data analytics, ma-

chine learning and graph processing. It can also access diverse data sources like HDFS

[11], HBase [14], Cassandra [15] etc. and use Resilient Distributed Dataset (RDD) [16] for

data abstraction. Spark runs programs faster than Hadoop-MapReduce [3] by perform-

ing most of the computations in-memory. In addition, it caches intermediate results in

memory for faster re-processing of data. Spark can run locally in a single desktop, in a

local cluster and on the Cloud. It runs on top of Hadoop Yarn [12], Apache Mesos [10]

and the default standalone cluster manager.

In a Spark cluster, there are one or more worker nodes with the available resources

(CPU cores, memory and disk). In addition, there is a master node which is responsi-

ble for allocating these resources to the applications. Each application uses the allocated

resources to create executor processes where it can run tasks in parallel. Resource alloca-

tion in a Spark cluster can be done through the following three mechanisms: (1) Default

Resource Allocation. It is used when the applications are submitted in a Spark cluster

without specifying any resource allocation details. In this approach, all the applications

will run in a FIFO style and each application consumes all the worker nodes. Hence,

applications run one after another and when an application is running, it will use up all

the worker nodes to create executors. (2) Static Resource Allocation. When an application

is submitted, the user specifies how many executors, cores, memory etc. an application

can have. Therefore, resources can be shared among multiple applications from one or

more users. (3) Dynamic Resource Allocation. If this mode is turned on, applications may

release idle executors to give back some resources to the cluster which can also be taken

back in future if needed.

However, there are three major problems in these resource allocation mechanisms.

First, when a single application is running in the cluster with the default resource allo-

cation mechanism, it will consume all the resources. As a consequence, resource sharing

among applications will be prevented. Second, in static resource allocation, the user has

to manually set the amount of resources each application is going to use. Even with

dynamic resource allocation, the user still has to set the initial amount of resources. As a
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result, improper allocation of resources might lead to severe performance issues. Lastly,

if a production cluster has user-specific deadlines, default resource allocation mecha-

nism may not work since any application with a strict deadline might have to wait in

the FIFO queue. Furthermore, inappropriate resource allocation in both static and dy-

namic resource allocation techniques might affect the deadlines.

In this chapter, we propose a resource allocation framework for distributed batch-

based applications in Apache Spark. In addition, we propose an application completion

time prediction model which can be built from the application profiles. This model is

further used in the resource allocation model to select a deadline-based, cost-effective

resource allocation scheme.

The main contributions of this work are as follows:

• We design an automatic, light-weight, pluggable dSPark resource allocation frame-

work for Apache Spark that works from the master node along with the underlying

cluster manager.

• We propose a resource allocation model where a cost-effective, deadline-based Re-

source Allocation Scheme (RAS) can be found for an application.

• We propose a model that predicts the completion time of an application based on

the number of executors and properties of the application.

• We develop a Spark Profiler to profile any application with respect to varying input

workloads, iterations, resource allocation schemes etc.

• We propose a simple algorithm to generate Resource Allocation Schemes (RAS) which

can be used to deploy applications in an Apache Spark cluster.

• We implement the framework using the proposed models and algorithms. In ad-

dition, we run comprehensive experiments to show the accuracy and performance

benefits of our proposed models.

The rest of the chapter is organized as follows. In section 3.2, we discuss the back-

ground of Apache Spark. In section 3.3, we describe the existing works related to this
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chapter. In section 3.4, we formulate the resource allocation and application comple-

tion time prediction models. In section 3.5, we illustrate the architecture of the proposed

dSpark framework. In section 3.6, we evaluate the performance of our proposed models.

Section 3.7 concludes the chapter.

3.2 Background

As compared to the disk-based MapReduce tasks of a typical Hadoop system, Apache

Spark allows most of the computations to be performed in memory and provides better

performance for some applications such as iterative algorithms. The intermediate results

are written to the disk only when it cannot be fitted into the memory.

Fig. 3.1 shows a typical Apache Spark cluster. Applications are submitted through

a cluster manager to run in the cluster. Spark supports Apache Mesos or Hadoop Yarn as

cluster managers to allocate resources among applications. In addition, its own default

Standalone cluster manager is also sufficient to handle a production cluster. All these

cluster managers support both static and dynamic allocation of resources. In static re-

source allocation, each application is deployed with a fixed amount of resources which

cannot be changed during the life-cycle of that application. However, in dynamic re-

source allocation, idle resources can be released to the cluster and any other application

can use them. These resources can also be taken back from the cluster in future if needed.

Workers are the physical/compute nodes of an Apache Spark cluster where one or

more application processes can be created depending on the resource capacity. In Cloud

deployments, one or more worker nodes can be created inside each allocated Virtual

Machines (VM). A Spark cluster can have one or more worker nodes but there is only a

single Master node that is responsible for managing the worker nodes.

Each application in Spark has a SparkContext object in its main program (also called

the Driver Program) which creates and maintains Executor processes on worker nodes.

An application uses its own set of executors to run tasks in parallel, in multiple threads

and to keep data in memory and storage. In addition, these executors live for the whole

duration of that application. All the executors of the same application must be identical

in size. Hence, they will have same amount of resources (CPU cores, memory, disk).
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Figure 3.1: An Apache Spark Cluster

There are two benefits of isolating applications from each other. First, a driver pro-

gram can independently schedule its own tasks in the acquired executors. Second, each

worker can have multiple executors from different applications running in their own

JVM processes.

Spark uses Resilient Distributed Datasets (RDD) to hold data in a fault tolerant way.

Each job/application is divided into multiple sets of tasks called stages which are inter-

dependant. All these stages form a directed acyclic graph (DAG) and each stage is exe-

cuted one after another.

3.3 Related Work

A vast amount of research has been done in application performance modelling, re-

source provisioning and scheduling in Cloud-based systems. Here, we only focus on

discussing the related research works done for big data processing platforms. Most of

the research were done for MapReduce-based big data frameworks as it was the most

popular big data processing paradigm in the last decade. ARIA [55] was designed for
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MapReduce based environments where job profiles of map and reduce tasks of an ap-

plication are collected to build job profiles. A MapReduce performance model is built

from the job profiles which is used to estimate the required resources for a job com-

pletion given its Service Level Objective (deadline). In [18], performance modelling

of MapReduce jobs was done in heterogeneous Cloud environments. [56] proposed a

resource provisioning framework for MapReduce workloads. [57] showed a deadline-

based workload management for MapReduce workloads. [58] predicts the expected

performance of a big data workload from historical performance results using Support

Vector Machine (SVM). However, these approaches are not straight forward to apply in

Apache Spark as it is a DAG-based in-memory analytics platform.

[59] evaluated the performance of Apache Spark in MareNostrum supercomputer to

explore its efficiency and applicability in HPC setup. In addition, they have also devel-

oped a framework called Spark4MN to automate the use of a Spark cluster in HPC envi-

ronment. Furthermore, they have explored the impacts on performance by differernt pa-

rameters like worker size, tasks per core etc. Similar to this work, [60] also investigated

different configuration parameter tuning of Spark applications. They have identified a

set of important parameters and provided a trial-and-error based methodology to tune

these parameters for performance speed-ups. A machine learning based configuration

parameter tuning approach is proposed in [61]. Their method is composed of binary

classification and multi-classification. As Spark has a huge parameter space, they have

taken a random sample from the parameter space and generated a parameter list of 500

records for each type of workload. Then real execution data on these parameter lists is

taken to train their models. Their experimental results show that a Decision Tree (C5.0)

provides good accuracy and performance in diverse workloads.

[62] investigated the problem of resource waste that occurs while a Spark application

runs in all the nodes in a cluster. To address this problem, they have proposed dynamic

partitioning based solutions that tune the degree of parallelism of Spark application dur-

ing execution to reduce resource consumption. To achive this, they have to trade small

amount of running time. [63] built multiple polynomial regression models on the ap-

plication profile data and applied k-fold cross validation to choose the best model to

predict application execution time with unknown input data set or cluster configura-
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Table 3.1: Related Work

Parameter
Related Work

dSpark
[60] [61] [62] [63] [19] [21]

Framework 7 7 7 7 7 7 3

Performance Modelling 3 3 3 3 3 3 3

Executor Cost Modelling 7 7 7 7 7 7 3

Deadline 7 7 7 7 7 3 3

Cost Saving 7 7 7 7 7 3 3

Resource Saving 7 7 7 7 7 7 3

tion. [19] tried to model application performance in DAG-based in-memory analytics

platforms and they have used Apache Spark to validate their methods. In this work,

the execution times from different stage of an application is collected and then used to

predict the execution time of the application. However, these works did not consider

cost minimization and user-specific deadlines. In optEx [21], a deadline oriented cost

optimization model was proposed. However, in optEx, the user needs to specify the

type of the application before deployment.

In all these works related to Spark performance modelling, they have considered

VMs as the unit of resource of an application and tried to estimate application com-

pletion time with different number of VMs. However, in dSpark, we have considered

executor processes as a unit of resource for the application. For any size of machine

either in local or Cloud deployed cluster, our model is capable of finding more fine-

grained resource allocation schemes. Therefore, multiple applications will be able to

run executor processes in the same worker node depending on the worker and executor

size. Furthermore, dSpark also utilizes a flexible cost model that can be customized to

integrate user’s own pricing policies. Lastly, dSpark can provide efficient resource allo-

cation schemes under varying SLO deadlines. The summary of the comparison between

our work and other closely related works is given in Table 3.1.
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Table 3.2: Definition of Symbols

Symbol Definition

A a Spark application

E total number of executors

Pvm price (per second) of a VM

Me memory (GB) in each executor

Ce number of cores assigned to each executor

Pe price of one executor

Nw total number of workers in the cluster

Cw total number of cores in each worker

Mw total memory (GB) in each worker

Emax maximum possible executors in the cluster

T completion time of an application

D deadline of an application

I input size or iteration of an application

RAS resource allocation scheme

RASL list of resource allocation schemes

3.4 Problem Formulation

3.4.1 Cost-efficient Resource Allocation Model

An Apache Spark cluster comprising of master and worker nodes can be deployed on

Cloud Virtual Machines (VM). For simplicity of our proposed model, we assume that all

the VMs used as worker nodes are homogeneous. Therefore, each of the VM will have

same amount of CPU cores, memory and storage disk. To deploy an application in the

cluster, a Resource Allocation Scheme (RAS) needs to be defined. In each RAS, the total

number of executors, CPU cores in each executor and memory in each executor should

be specified. Our goal is to choose a cost-efficient RAS which ensures that an application

will be completed before the user-specified deadline.

Suppose, we have an Apache Spark cluster with Nw total number of worker nodes

and one (1) master node. In addition, all these nodes are created in distinct VMs. As



3.4 Problem Formulation 47

all the workers are homogeneous, each worker has Cw CPU cores and Mw total mem-

ory. Furthermore, the price of running each VM is Pvm ($) per second. For a particular

application (A), the user specifies a deadline (D) before which this application needs to

complete. In addition, the user also defines the cores per executor (Ce) value. If all the

memory of a worker (Mw) is evenly associated among all the cores (Cw), then (Mw/Cw)

amount of memory will be associated with each core. Therefore, memory in each ex-

ecutor (Me) will be Ce ∗ (Mw/Cw). In Apache Spark, for a particular application, all

the executors need to be identical. Therefore, our problem is now to find the number

of executors (E) to use with an application that meets the user deadline (D) and also

minimizes the total cost.

We model this problem as a constrained non-linear optimization problem as follows:

Minimize: Cost = Pe ∗ E ∗ T (3.1)

subject to:

1 ≤ E ≤ Emax (3.2)

T ≤ D (3.3)

where:

Pe = Ce ∗ (Pvm/Cw) (3.4)

Me = Ce ∗ (Mw/Cw) (3.5)

Emax = Nw ∗ (Cw/Ce) (3.6)

T = f (E, I) (3.7)

E, Ce, Me ∈ Z (3.8)

Cost Minimization: Eqn. 3.1 shows the objective function where Cost is the depen-

dent variable and executors (E) and application completion time (T) are the decision

variables. In addition, Pe is a constant value which represents the cost of running one (1)

executor.

Executor Capacity Constraint: As shown in Eqn. 3.2, we have a lower bound and

an upper bound on the number of executors of an application. The lower bound should
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be one (1) as each application needs at least 1 executor to process data and the upper

bound (Emax) depends on the available cluster resources as shown in Eqn. 3.6.

Application Deadline Constraint: As shown in Eqn. 3.3, application completion

time (T) of a selected configuration should meet the user specified deadline (D). In a

case where the model finds multiple resource configurations that satisfy the deadline

constraint, it will only select the one which has the lowest cost.

Executor Price Estimation: As we associate equal amount of memory with all the

CPU cores in a VM, the number of used CPU cores represents the price of a VM. There-

fore, we can find the price (per second) of a single CPU core from the actual VM price by

dividing the price for running each VM (Pvm ($)) with total number of available cores in

a VM (Cw). Eqn. 3.4 shows the price estimation function of an executor process. Pricing

policy of this model can be easily converted to a different scenario and allow users to

use their own VM pricing model.

Memory Capacity Constraint: The amount of memory for an executor (Me) depends

on the number of cores (Ce) in that executor. In addition, it is also capped by the total

memory of a worker as shown in Eqn. 3.5.

Application Completion Time Prediction: As shown in Eqn. 3.7, the proposed op-

timization model finds the value of completion time (T) as a function of executor (E)

and the total application input (I). We propose an application completion time predic-

tion model to be used as this function. This model will be discussed in detail in the

following subsection.

Integer Constraints: The number of executors (E), cores in each executor (Ce) and

memory in each executor (Me) must be integers as shown in Eqn. 3.8.

3.4.2 Application Completion Time Prediction Model

An Apache Spark application uses it’s allocated executors to process multiple chunks/splits

of the whole input in parallel. The partitioning or splitting of the input imposes a little

overhead on the actual running time. In addition, after all the processing is finished,

the result needs to be serialized which also adds up to the total execution time. If the

number of input chunks is more than the number of executors, these input chunks are
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processed like a batch in each executor. However, adding too many executors to achieve

more parallelism can cause overheads due to serialization, de-serialization and inten-

sive shuffle operations in the network. Therefore, when an application is given more

and more executors, performance boost can be significant at the start. However, after

some point, adding more executors does not give any performance benefit rather re-

sources are wasted. Therefore, for a fixed input (I) of an application, we can assume that

the relationship between executors (E) and completion time (T) can be modelled like a

power function as:

T(E) = α ∗ Eβ + γ (3.9)

where α, β and γ are the power model coefficients.

However, in reality, the application input is not a fixed parameter. Therefore, we

further assume that the coefficients in Eqn. 3.9 are determined by the application input

(I) and can be modelled like a power function as:

α(I) = uα ∗ Ivα + wα (3.10)

β(I) = uβ ∗ Ivβ + wβ (3.11)

γ(I) = uγ ∗ Ivγ + wγ (3.12)

where, {uα, vα, wα}, {uβ, vβ, wβ} and {uγ, vγ, wγ} are the power model coefficients in

Eqn. 3.10 Eqn. 3.11 and Eqn. 3.12, respectively. If we substitute α, β and γ of Eqn. 3.9,

we find:

T(E, I) = (uα ∗ Ivα + wα) ∗ E(uβ∗Ivβ+wβ) + uγ ∗ Ivγ + wγ (3.13)

Eqn. 3.13 establishes the relationship of application completion time (T) with respect

to both executor (E) and application input or iteration (I). Hence, it can be used in the

resource allocation model (Eqn. 3.7) to determine the completion time of an application.

In addition, this model can predict application completion time with any size of input/

iteration and any number of possible executors.

To determine the coefficients in Eqn. 3.13 for a particular application, we make n
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observations of the application with different inputs {I1 to In}. For each application in-

put, we measure the T values with respect to different E values and fit them to establish

a relationship as shown in Eqn. 4.6. Therefore, we will get three (3) set of coefficients:

{α1 to αn}, {β1 to βn}, {γ1 to γn} for n observations. Now, if we fit {α1 to αn} vs {I1 to In}
values as Eqn. 3.10, we will find {uα, vα, wα} coefficient values. Similarly, the values of

coefficient sets {uβ, vβ, wβ} and {uγ, vγ, wγ} can be found.

3.5 dSpark Framework Overview

A production cluster can be built with multiple computing nodes connected in a local

area network (LAN). However, we can avoid the hassle of maintaining local machines

by using Cloud services as it offers more affordable and flexible computing resources to

deploy a cluster. dSpark framework can be used both locally or in a Cloud-deployed

cluster.

Fig. 3.2 shows the proposed architecture of the dSpark Framework. We have two

(2) main modules: Profiler and Resource Allocator. These modules work collaboratively

on top of the cluster manager to generate a cost-effective, deadline-aware RAS for an

application. This RAS can be used for real deployment of this application in the cluster.

Resource Allocator

It is the main component of our system. Algorithm 1 shows the steps performed by this

module. As an input to this algorithm, the application program (A), input/iteration (I),

user-specific deadline (D) and VM price (Pvm) is given. At first, the Profiler module is

invoked to generate application profiles (line 3). Then the application completion time

prediction model is built (line 4) as discussed in section III.B. While building the model,

the algorithm finds all the coefficient values of Eqn. 4.10. The Find− RAS() procedure

called in line 5 implements the resource allocation model to select the optimal RAS.
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Figure 3.2: dSpark Architecture

Algorithm 1: Resource Allocator Algorithm
Input: A, I, D and Pvm
Output: Resource Allocation Scheme (RAS)

1 ApplicationPro f iles← PROFILER(A, I)
2 TIME-ESTIMATE-MODEL(ApplicationPro f iles)
3 RAS← FIND-RAS(D, I, Pvm, α, β, γ)
4 return RAS

Spark-Profiler

This module is controlled by the Resource Allocator module to generate application

profiles for an application. The profiler module runs the application with different RAS,

varying inputs or iterations (in case of iterative applications like PageRank) in the clus-

ter. After that, it uses a sub-module called LogParser to get the completion times of an

application from the logs in the master node. Finally, it generates the application pro-

files and sends to the Resource Allocator module. Spark-Profiler is configurable by the

user to set the portion of input that needs to be profiled before the actual deployment

of an application. By default it uses 10% of the input workload for profiling. As the ap-
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plication completion time prediction model uses multiple increasing input to build the

model, we used the initial chunk repeatedly to increase it to the desired size.

Algorithm 2: Resource Allocation Scheme (RAS) Generation
Input: Nw, Mw, Cw and Ce
Output: Resource Allocation Scheme List (RASL)

1 CALCULATE(Me) (Eqn. 3.5)
2 CALCULATE(Emax) (Eqn. 3.6)
3 E← 1
4 while E ≤ Emax do
5 RAS← {Ce, Me, E}
6 RASL← RASL + RAS
7 E← E + 1

8 return RASL

To submit an application to a Spark cluster, a RAS need to be specified as a limit on

the possible cores per executor (Ce), memory per executor (Me) and total executors (E)

per application. In order to generate the application profiles, we need to run the appli-

cation with different RAS and input/iteration. Algorithm 2 shows a simple Resource

Allocation Scheme (RAS) generation technique which is used by the Profiler module.

To generate the possible resource allocation schemes, knowledge on the total amount of

cluster resources is needed. As previously noted, we assume that all the worker nodes

(VM from Cloud perspective) are homogeneous in a Spark cluster. Therefore, as an in-

put to our algorithm, the total number of worker nodes and only the configuration of

a single worker node is given. At first the algorithm finds Me and Emax values. In the

next part of the algorithm (line 5 to line 8), the total number of executors per applica-

tion is varied to generate different RAS. All the generated RAS are added to a list called

Resource Allocation Scheme List (RASL).

dSpark can be installed as a small plug-in to the master node of an Apache Spark

cluster. First, the user needs to specify any required configurations in dSpark. Then,

the user should submit the applications directly to dSpark instead of the cluster. After

selecting the RAS for an application, dSpark automatically submits the application to

the production cluster with the selected RAS.
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Figure 3.3: Application completion time modelling.
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Figure 3.4: Accuracy of application completion time prediction for different applica-
tions.
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3.6 Performance Evaluation

3.6.1 Implementation

We have used Java programming language to develop the proposed framework. We

have implemented the Spark-Profiler module to profile any spark application with a

given input size and a RAS. This module uses SparkLauncher Java API [64] to sub-

mit applications to the cluster. After an application finishes its execution, a sub-module

called LogParser is used to parse the logs in the master node to retrieve the completion

time of that application. We have implemented Resource Allocator as a separate module

and it controls the Spark-Profiler module. At first this module reads the configuration

files to get the information about the cluster resources. As discussed in Algorithm 1,

this module implements both Application Completion Time Prediction Model and the Re-

source Allocation Model as two different procedures. To build up the application comple-

tion time prediction model, we have applied curve-fitting tools from Apache Commons

Maths Library [65]. For solving the constrained minimization problem in our resource

allocation model, we haved used JOptimizer Library [66].

3.6.2 Experimental Setup

Cluster Configuration

We have deployed an experimental Apache Spark cluster on Microsoft Azure Virtual

Machines (VM). For the master node, we have chosen ”standard D4” size VM instance

which has 8 cores and 28 GB memory. We have made two (2) worker nodes with ”stan-

dard D5v2” size VM instance each having 16 cores and 56 GB memory. For storage,

we have created an Azure Storage Account to deploy a shared storage device mounted

in all the VMs. The replication option chosen for this storage was ”Locally redundant

storage (LRS)”. In LRS, data is replicated three times within a single data center which

is located in a single region. All the volumes and VMs were created in the ”Australia

South-East” region. We have installed Ubuntu Server Version 16.04 LTS in all the nodes

and installed Apache Spark Version 2.0.1 on top of it. In addition, we have utilized the
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standalone cluster manager that comes by default with Apache Spark. We have kept 15

CPU cores and 45 GB of memory of a VM for each worker node. For OS specific daemons

and other application programs, we have left the rest of the CPU cores and memory. In

our experiments, we have defined the Ce value to be five (5) which is recommended by

the Spark developers because using large number of cores in a single executor results

bad I/O throughput and having more executors each with fewer cores results in high

garbage collection (GC) and scheduling overhead. However, this value can be config-

ured in dSpark by the user if required. The price (Pvm) of each ”standard D5v2” instance

was $0.0795 AUD at the time of the experiments.

Benchmarking Applications

We have used BigDataBench [67], a big data benchmarking suite to evaluate the perfor-

mance of our proposed models. We have chosen three different types of applications.

These are: (1) WordCount: compute intensive application, (2) Sort: memory and compute

intensive application and (3) PageRank: iteration based shuffle intensive application.

Application Profiles

We have used the Spark-Profiler module to collect application profiles for all the bench-

marking applications. For WordCount application, we have collected application pro-

files for 5 GB, 10 GB, 20 GB, 40 GB and 80 GB of input workloads. For Sort application

we have collected application profiles for 3.5 GB, 7 GB, 14 GB, 28 GB and 56 GB of input

workloads. Lastly, for PageRank application, we have collected application profiles for

5, 10, 15, 20 and 25 iterations for the same 4 GB input graph. We have built the appli-

cation completion time prediction model as discussed in section III.B and calculated all

the coefficients of Eqn. 4.10.
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Figure 3.5: Cost of resource usages by the proposed and the default approach for dif-
ferent applications.
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3.6.3 Analysis of Results

Accuracy of Application Completion Time Prediction

Fig. 3.3 shows E vs T curves for three (3) different applications: WordCount (3.3a), Sort

(3.3b) and PageRank (3.3c). For WordCount and Sort, we have used different size of

application inputs. For PageRank application, we have considered different iterations

on the same input graph. From these graphs, it can be observed that there is a decrease

in execution time when the number of executors is increased. However, the decrease

in execution time is steeper upto 3 or 4 executors. After this point, the execution time

does not decrease significantly even if more executors are used for an application. Due

to some performance limiting factors like: data serialization/de-serialization, network

I/O and shuffle operations, this behaviour was seen from the applications. As all the

curves shown in Fig. 3.3 follows a steady power model, it validates our assumption

of using power models to establish the relationship between executor (E) and applica-

tion completion time (T). While we built up the application completion time prediction

model, we have found steady power models for the input vs coefficient graphs.

Fig. 3.4 illustrates the difference between the predicted completion times and the

measured completion times of three (3) different applications. From all these graphs,

it can be clearly seen that the predicted completion time curves fall closely to the mea-

sured completion time curves. We have computed the relative error RE = (Tpredicted −
Tmeasured)/Tmeasured. We got a mean RE of 5%, 3% and 8% for WordCount, Sort and

PageRank applications respectively. As our proposed model has a lower mean RE val-

ues for all the experimented applications, it can be used with the resource allocation

model.

Cost Analysis

Fig. 3.4 compares the cost of running applications between the proposed resource al-

location model and the default Spark resource allocation. We have measured the cost

for both approaches with various user-specific deadlines. Fig. (3.5a-3.5c) illustrates cost

comparison of the WordCount application with 20 GB, 40 GB and 80 GB inputs respec-
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Figure 3.6: Comparison of resource usages between the proposed and the default ap-
proach
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tively. Fig. (3.5d-3.5f) illustrate cost comparison of the Sort application with 15 GB, 30

GB and 50 GB inputs respectively. Lastly, Fig. (3.5g-3.5i) illustrate cost comparison of

the PageRank application with 5, 10 and 20 iterations respectively. As seen from all these

graphs, cost for running application in the default approach shows a horizontal line in

the all cases. In the default approach, each application uses all the resources in the whole

cluster. Therefore, even for various user-specified deadlines, it gives the cost of using all

the resources. However, our proposed model tends to use more resources only when

an application has a strict deadline. In this case, the model utilizes more resources to

meet the deadline thus costs higher. When the deadline starts to become more flexi-

ble, our model uses a small set of resources to meet the deadline and reduces the cost

significantly.

Resource Usage Analysis

Fig. 3.6 compares the resource usage between the proposed approach and the default

approach. In our models, we have considered Executors (E) as a chunk of resource as the

actual VM resources (CPU cores, memory) are distributed among the executors. How-

ever, the size of the executors used by both of these approaches are not the same. In

default resource allocation technique, only one (1) executor is launched in each worker

node. Therefore, in our experimented cluster, the default approach makes two (2) execu-

tor each having fifteen (15) CPU cores. However, in our proposed approach, the cores

per executor (Ce) value is flexible and can be tuned according to the application needs.

As mentioned before, in our experimental setup, a developer recommended value is

used for (Ce). Therefore, we compare the default and proposed approach in terms of

CPU cores usage per application. Memory consumption is not shown because we evenly

associated all the memory in a VM with the CPU cores. Therefore, higher number of

CPU cores usage reflects high amount memory usage. Fig. (3.6a-3.6c) compares CPU

cores usage of WordCount application for different size of input workloads. In addition,

Fig. (3.6d-3.6f) compares CPU cores usage of Sort application for different size of input

workload. Lastly, Fig. (3.6g-3.6i) compares CPU cores usage of PageRank application for

different iterations of the same input graph. It can be observed from these graphs that,
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in all cases, default approach uses all the CPU cores available in the whole cluster to run

an application. As we have total 30 CPU cores in the whole cluster, in default approach,

all the applications have used 30 CPU cores. Variations in the user-specific deadline

does not change resource usages for default resource allocation. However, in the pro-

posed approach, our resource allocation model tries to meet user-specific deadline for

an application. If it is possible to use less resources to meet the user-specific deadline, to

minimize cost and resource usages, our model selects that resource allocation scheme.

Therefore, for the applications with strict deadlines, we observe high resource usages

and for the applications flexible deadlines, we see less resource usages.

From both Fig. 3.5 and Fig. 3.6 it can be observed that our model handles both strict

and flexible deadlines better than the default approach. As we discussed before, using

large executors poses performance overheads on the applications. Therefore, the default

approach shows poor performance and more deadline violation occurs with strict dead-

lines. In both of our analysis, we did not include the initial profiling cost as it needs to

be done only once for each application.

3.7 Summary

Distributed, large-scale processing of big data has a significant impact on both research

and industry. Apache Spark is becoming more popular as a cluster computing engine

due to its high-speed data processing capability, extensive applicability in various do-

mains and wide-range of high level APIs. To support user-specific SLA requirements

and to maximize an Apache Spark cluster utilization, our research focuses on proposing

a cost-effective resource allocation model. The aim is to allow the user a way of au-

tomatic and efficient deployments of applications in a local or Cloud cluster. We have

developed a profiler for Spark which can be used to profile an application in the real

cluster in terms of different resource allocation schemes and input workloads. More-

over, we have developed a light-weight resource allocation framework called dSpark

that can be plugged into the master node of an Apache Spark cluster. Applications can

be submitted to dSpark instead of directly submitting to the cluster. Based on the appli-

cation profiles received from the profiler, dSpark uses the proposed resource allocation
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model to select a deadline-based cost-effective resource allocation scheme to deploy an

application to the cluster.

We have conducted experiments to evaluate the efficiency of our proposed models.

In addition, we have shown the accuracy of the application completion time predic-

tion model for three (3) different applications. The mean relative error in the prediction

model was less than 7% for different types of applications. Furthermore, we have eval-

uated the effectiveness of the resource allocation model in terms of cost and resource

usage and compared the results with the default resource allocation approach in Spark.

We have showed that our model selects cost-effective resource allocation schemes that

effectively handles various user-specific deadlines. In addition, unlike some existing

works, dSpark does not require the users to specify application types as it would be dif-

ficult for an end-user to have proper understanding of the application to determine it’s

type.

As our application completion time prediction model is built by using knowledge

from the application profiles, the accuracy of this model depends on the intensity of

application profiling. The accuracy of this model increases with a higher number of

application profiles. Therefore, there is a clear trade-off between model accuracy and

the level of profiling. However, application profiles can be made from past application

runs to reduce profiling overhead.



Chapter 4

Scheduling Big Data Applications in
Cloud Computing Environments

Job scheduling is one of the most crucial components in managing resources, and efficient execu-

tion of big data applications. Specifically, scheduling jobs in a cloud-deployed cluster are challenging

as the cloud offers different types of Virtual Machines (VMs) and jobs can be heterogeneous. The

existing works in cluster scheduling mainly focus on improving job performance and do not leverage

from VM types on the cloud to reduce cost. In this chapter, we propose efficient scheduling algo-

rithms that reduce the cost of resource usage in a cloud-deployed Apache Spark cluster. In addition,

the proposed algorithms can also prioritize jobs based on their given deadlines. Besides, the proposed

scheduling algorithms are online and adaptive to cluster changes.

4.1 Introduction

B IG Data processing has become crucial due to massive analytics demands in all the

major business and scientific domains such as banking, fraud detection, health-

care, demand forecasting, and scientific explorations. Data processing frameworks such

as Hadoop, Storm, and Spark [6] are the most common choice when it comes to big

data processing. Large organisations generally run private compute clusters with one

or more big data processing frameworks on top of it. As public cloud services can pro-

This chapter is derived from:

• Muhammed Tawfiqul Islam, Satish N. Srirama, Shanika Karunasekera, and Rajkumar Buyya,
”Cost-efficient Dynamic Scheduling of Big Data Applications in Apache Spark on Cloud”, Journal
of Systems and Software (JSS), Volume 162, Pages: 1-14, ISSN: 0164-1212, Elsevier Press, Amsterdam,
The Netherlands, April 2020.

http://hadoop.apache.org/
http://storm.apache.org/
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vide infrastructure, platform, and software for storing and computing of data, it is also

becoming popular to deploy the big data processing clusters on public clouds. How-

ever, scheduling these big data jobs can be difficult in a cloud-deployed cluster since the

jobs can be of different types such as CPU-intensive, memory-intensive, and network-

intensive. Furthermore, jobs can also vary based on their resource demands to maintain

a stable performance. Moreover, various types of Virtual Machines (VM) instances avail-

able on the cloud make it difficult to generate cost-effective scheduling plans. Therefore,

in this chapter, we propose efficient job scheduling algorithms that reduce the cost of

using a cloud-deployed Apache Spark cluster while enhancing job performance.

To demonstrate the effectiveness of our scheduling algorithms, we have chosen Apache

Spark as our target framework because it is a versatile, scalable and efficient big data

processing framework and is rapidly replacing traditional Hadoop-based platforms used

in the industry. Spark utilizes in-memory caching to speed up the processing of appli-

cations. The resource requirements of a Spark job can be specified by using the number

of required executors for that particular job, where each executor can be thought of as

a process, having a fixed chunk of resources (e.g., CPU, memory and disk). However,

different jobs can have varying executor size requirements depending on the type of

workloads they are processing. Therefore, jobs exhibit different characteristics regard-

ing resource dependability.

The default scheduling mechanism for Spark job scheduling is First in First Out

(FIFO), where each job is scheduled one after another. If no resource limit is set, one job

might consume all the resources in the cluster. On the other hand, if the user sets a limit

on the required resources of a job, the remaining resources can be used to schedule the

next job in the queue. In addition to the FIFO scheduler, a Fair Scheduler is also available

to prevent resource contention among jobs. By default, both of these schedulers place

the executors of a job in a round-robin fashion in all the VMs/worker nodes for load-

balancing and performance improvement. However, when a cloud-deployed cluster is

not fully loaded with jobs, round-robin executor placement leads to resource wastage in

all the VM. Although Spark also has an option to consolidate the executor placements,

https://spark.apache.org/docs/latest/job-scheduling.html#
scheduling-across-applications

https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-across-applications
https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-across-applications
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the cluster manager does not consider the resource capacity and price of different cloud

VM instance types, and thus fails to make cost-efficient placement decisions. Most of

the existing scheduling techniques focus on Hadoop-based platforms [54, 68, 69, 70].

Nevertheless, these mechanisms cannot be directly applied to Spark job scheduling as

the architectural paradigm is different from in-memory computing frameworks. A very

few works have been done to tackle the scheduling problem of in-memory computing-

based frameworks like Apache Spark [71, 21, 50, 72]. However, most of these works

assume the cluster setup to be homogeneous (there is only one type of VM instance for

all the worker nodes) thus fail to make the scheduling technique cost-efficient from a

cloud perspective.

As a motivating example, consider a cluster having 2 homogeneous VMs each hav-

ing 8 CPU cores capacity. If a Spark job has 2 executors requirement with 2 cores for

each, the total CPU cores requirement is 4. However, most of the existing strategies will

use both the VMs to place these 2 executors which will lead to resource wastage and a

higher VM usage cost. On the contrary, if a scheduler can consider the VM pricing model

and different VM instance types in the cluster, executors from the jobs could be tightly

packed in fewer cost-effective VMs. Thus, the instances with more resource capacity

and higher price will be used only if there is a high load on the cluster. Therefore, in this

chapter, we formulate the scheduling problem of Spark jobs in a cloud-deployed cluster

as a variant of the bin-packing problem. Here, our primary target is to reduce the cost

of VM usage while maximizing resource utilization and improving job performance.

In summary, our work makes the following key contributions:

• We propose two job scheduling algorithms. The first algorithm is a greedy algo-

rithm adapted from the Best-Fit-Decreasing (BFD) heuristic, and the second algo-

rithm is based on Integer Linear Programming (ILP). Both of these algorithms can

improve cost-efficiency of a cloud deployed Apache Spark cluster. Besides, our

proposed algorithms also prioritize jobs based on their deadlines and enhance job

performance for network-bound jobs.

• We develop a scheduling framework by utilising Apache Mesos [10] cluster man-

ager and this framework can be used to implement scheduling policies for any
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Mesos supported data processing frameworks in addition to Spark.

• We implement the proposed algorithms on top of the developed scheduling frame-

work.

• We perform extensive experiments with real applications and workload traces un-

der different scenarios to demonstrate the superiority of our proposed algorithms

over the existing techniques.

The rest of the chapter is organized as follows. In section 4.2, we discuss the back-

ground of Apache Spark and Apache Mesos. In section 4.3, we describe the existing

works related to this chapter. In section 4.4, we show the motivating examples and for-

mulate the scheduling problem. In section 4.5, we demonstrate the implemented proto-

type system. In section 4.6, we evaluate the performance of our proposed algorithms,

show the sensitivity analysis of various system parameters and discuss the feasibility of

our proposed algorithms. Section 4.7 concludes the chapter and highlights future work.

4.2 Background

We use Apache Spark as the target big data processing framework and Apache Mesos

as the cluster manager where we implement our scheduling policies. In this section,

we briefly introduce the basic concepts, system architecture, resource provisioning and

scheduling mechanisms in these two frameworks.

4.2.1 Apache Spark

Apache Spark is one of the most prominent in-memory big data processing frameworks.

It is a multi-purpose open-source platform with high scalability. Spark supports appli-

cations to be built with various programming languages like Java, Scala, R, Python etc.

Besides, extensive and interactive analysis can be done using the available high-level

APIs. Furthermore, a variety of input data sources like HDFS [11], HBase [14], Cassan-

dra [15] etc. are supported by Spark. It outperforms traditional Hadoop-MapReduce

based platform by conducting most of the computations in memory. In addition, results
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from the intermediate stages are cached in memory for faster data re-processing. Spark

uses Resilient Distributed Dataset (RDD) [16] for data abstraction which is fault tolerant by

nature. In contrast to HDFS, Spark does not implement replication. Spark keeps track of

how a specific piece of data was calculated, so it can recalculate any lost RDD partitions

if a node fails or is shutdown by a scheduler. A Spark cluster follows a Master-Worker

model, where there should be at least one Master node and one or more Worker nodes.

However, multiple master nodes can be used by leveraging ZooKeeper [73]. From a

cloud perspective, each master/worker node can be deployed in a cloud VM. Spark has

its default standalone cluster manager which is sufficient to deploy a production-grade

cluster. Moreover, it also supports popular cluster managers like Hadoop Yarn [12],

Apache Mesos [10] etc.

When a Spark job/application is launched in a cluster, the Driver program of that

job creates one or more executors in the worker nodes. Executor is a process of an ap-

plication that holds a fixed chunk of resources (CPU cores, memory, and disk) and all

the executors from the same job have identical resource requirements. Tasks are run in

parallel in multiple threads inside each executor which lives during the entire duration

of that job. As all the jobs have an independent set of executors, jobs are isolated, and

each job’s driver program can create its own set of executors and schedule tasks in them.

Resource allocation in a Spark cluster can be done in three ways: (1) Default: the user

does not set any limits on the required resources for a job, and it uses all the resources

of the entire cluster. Therefore, only one job can run in the cluster at a time and even

if that job only requires a small chunk of resources, all the resources are allocated to it;

(2) Static: if a user sets a limit on the required resources for a job, only that amount of

resources will be allocated for that job, and any remaining resources can be assigned

to any future job. Therefore, in this mode, it is possible to run multiple applications

in the cluster and (3) Dynamic: resources are allocated similarly as the static allocation

mechanism, but if any resource (CPU core only) is not utilized, it could be released to

the cluster so that any other application can use it. Besides, this resource can be taken

back from the cluster in future if needed by the original job.

By default, Spark supports FIFO scheduling across jobs. Therefore, jobs wait in a

FIFO queue and run one after another. A new job is scheduled whenever any resources
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are available to create any executor for the next job. Besides, Spark also has a FAIR

scheduler, which was modelled after the Hadoop Fair Scheduler. Here, jobs can be

grouped into pools, and different scheduling options can be set for each pool. For ex-

ample, weight determines the priority of a job pool. By default, each pool has a weight

1, but if any pool is assigned 2 as the weight, it will get twice the resources than other

pools. Within each job pool, jobs are scheduled in a FIFO fashion. Each pool also has

a minimum share (minShare) of resources in the cluster, and a cluster manager only

assigns more resources to a highly weighted pool once all the pools have met their min-

imum share of resources. By default, Spark spreads the executors from the same job

into multiple workers for load balancing. In addition, the standalone cluster manager

can also consolidate executors into fewer worker nodes (by greedily using the current

worker node to place as many executors as possible). However, Spark assumes that

all the worker nodes are homogeneous (same resource capacity), and it also does not

consider the price of using a worker node (if it is deployed on cloud VM).

4.2.2 Apache Mesos

Apache Mesos is considered to be a data-center level cluster manager due to its capabil-

ity of efficient resource isolation and sharing across distributed applications. It resides

between the application and the OS layer and makes it easier to deploy and manage

large-scale clusters. In Mesos, jobs/applications are called frameworks and multiple

applications from different data processing frameworks like Spark, Strom, and Hadoop

can run in parallel in the cluster. Therefore, Mesos can be used to share a pool of het-

erogeneous nodes among multiple frameworks efficiently. Mesos utilizes modern ker-

nel features by using cgroups in Linux and zones in Solaris to provide isolation of CPU,

memory, file system etc.

Mesos introduces a novel two-level scheduling paradigm where it decides a possi-

ble resource provisioning scheme according to the weight, quota or role of a framework

and offers resources to it. The framework’s scheduler is responsible for either rejecting

or accepting those resources offered by Mesos according to its scheduling policies. If

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
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a framework’s scheduler accepts a resource offer from Mesos, the resources specified

by that offer can be used to launch any computing tasks. Mesos also provides flexible

Scheduler HTTP APIs which can be used to write custom user-defined scheduling poli-

cies on top of any big data processing platform. Besides, it provides Operator HTTP

APIs to control the resource provisioning and scheduling of the whole cluster. Mesos

supports dynamic resource reservation; thus resources can be dynamically reserved in a

set of nodes by using the APIs and then a job/framework can be scheduled only on those

resources. When a job is completed, resources can be taken back and reserved for any

future job. It is a significant feature of Mesos as any external scheduler implemented on

top of Mesos can have robust control over the cluster resources. Furthermore, the exter-

nal scheduler can perform fine-grained resource allocation for a job in any set of nodes

with any resource requirement settings. Lastly, various policies can be incorporated into

an external scheduler without modifying the targeted big data processing platform or

Mesos itself; so the scheduler can be extended to work with other big data processing

platforms. For the benefits mentioned above, we have built a scheduling framework on

top of Mesos to implement our proposed scheduling algorithms.

4.3 Related Work

Most of the data processing frameworks like Hadoop, Spark schedule jobs in a FIFO

manner and distributes the tasks/executors from each job in a distributed round-robin

fashion. To avoid resource contention FAIR scheduler was introduced for fair distribu-

tion of cluster resources among the jobs. In Mesos, scheduling is done by the Dominant

Resource Fairness (DRF) [17] scheduling algorithm, which identifies the dominant re-

source type (CPU/memory) of each job. Then it offers resources to each job in such a

way that overall use of cluster resources is well-balanced.

There has been a significant amount of research in the area of cluster scheduling.

However, most of these schedulers focused Hadoop-MapReduce based clusters. Kc

et al. [54] addressed the problems of Hadoop FIFO scheduler by introducing a dead-

http://mesos.apache.org/documentation/latest/scheduler-http-api/
http://mesos.apache.org/documentation/latest/operator-http-api/

http://mesos.apache.org/documentation/latest/scheduler-http-api/
http://mesos.apache.org/documentation/latest/operator-http-api/
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Table 4.1: Related Work

Features
Related Work

Our Work
DRF [17] Quasar [71] Morpheus [50] Justice [72] OptEx [21]

Frameworks 7 7 7 7 7 3

VM types 7 7 7 7 7 3

Job types 3 3 3 3 3 3

Cost-efficient 7 7 7 3 3 3

Performance 3 3 3 3 3 3

Self-adaptive 7 3 3 3 7 3

Deadline 7 3 3 3 3 3

line constraint scheduler that prioritizes map/reduce tasks from each job based on their

deadline. LATE [68] is a delay scheduler that targets to improve job throughput and re-

sponse times by considering data locality into the scheduler in a multi-user MapReduce

cluster. However, it treats the cluster setup to be homogeneous thus performs poorly

in heterogeneous environments. SAMR [69] proposed a self-adaptive scheduling algo-

rithm that classifies the performance of jobs from the historical data. It also identifies

slow nodes dynamically and creates backup tasks so that MapReduce jobs will have

a better performance in a heterogeneous environment. Tian et al. [70] considered job

heterogeneity and proposed a triple-queue scheduler to keep the CPU and I/O bound

applications isolated to improve the overall cluster performance. However, all of these

works are focused on Hadoop-MapReduce performance modelling and scheduling and

cannot be applied to an in-memory data processing framework like Spark.

As a platform like Spark has many configuration parameters, it is hard to set the

appropriate resource requirement for a job. Wang et al. [61] tried to fine-tune Spark

configuration parameters to improve the overall system performance. Gounaris et al.

[62] investigated the problem of resource wastage that happens when a Spark applica-

tion consumes all the nodes in a cluster. Gibilisco et al. [63] built multiple polynomial

regression models on the application profile data and selects the best model to predict

application execution time with unknown input data or cluster configuration. Wang

et al. [19] tried to model application performance in DAG-based in-memory analytics

platforms. Here, the execution times from multiple stages of a job are collected and then
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used to predict the execution time. Islam et al. [20] focused on fine-grained resource

allocation for Spark jobs with deadline guarantee. However, these works can only be

applied to predict job-specific resource demands under homogeneous cluster environ-

ments.

There are a very few cluster schedulers [74] that support Spark jobs focusing on per-

formance improvement and cost saving. Quasar [71] is a cluster management system

that minimizes resource utilisation of a cluster while meeting user-provided applica-

tion performance goals. It uses efficient classification techniques to find the impacts of

resources on an application’s performance. Then it uses this information for resource

allocation and scheduling. It also dynamically adjusts resources for each application

by monitoring resource usage. Morpheus [50] estimates job performance from histori-

cal data using performance graphs. Then it performs a packed placement of containers

where it places a job that results in the minimal cluster resource usage cost. Moreover,

Morpheus dynamically re-provisions failed jobs to improve overall cluster performance.

Justice [72] is a fair share resource allocator that uses deadline information of each job

and historical job execution logs in an admission control. It automatically adapts to

workload changes and provides sufficient resources to each job so that it meets dead-

lines just in time. OptEx [21] models the performance of Spark jobs from application

profiles. Then the performance model is used to schedule a cost-efficient cluster by de-

ploying each job as a service in the minimal set of nodes required to satisfy its deadline.

The problems with most of the cluster schedulers are that they do not consider

executor-level job placement. All of them only select the total number of resources or

nodes needed for each job while making any scheduling decision. However, our sched-

uler takes advantage of VM heterogeneity (different types of VM instances) and uses

smaller VMs for executor placement to minimize the overall resource usage cost of the

whole cluster. Besides, most of the cluster schedulers use the round-robin placement of

executors in the VMs while we consolidate the executors to use less number of VMs.

Therefore, it minimizes inter-node communications for network-bound jobs thus im-

proves the performance. A comparison of our approach with the existing works is illus-

trated in Table 4.1. It can be observed that our proposed solution considers multiple VM

types in the scheduling algorithm. Moreover, we also provide a scheduling framework
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to incorporate new scheduling policies.

Currently, commercial cloud service providers such as AWS and Windows Azure

provide clusters and big data analytics services on the Cloud. For example, Apache

Spark on Amazon EMR and Azure HDInsight. Besides job scheduling, there are many

other ways to reduce costs in a commercial cloud computing platform. For example,

EC2 spot instances and reserved instances have many features. Commercial cloud ser-

vice providers optimize instance usage costs from their side by turning off idle instances.

Our proposed approach complements these solutions by tight packing of executors in

fewer instances so that those instances can be turned off. Hence, even if all the nodes

are Spot instances, our approach is still cost-efficient as we use minimal number of in-

stances as compared to the default Spark scheduler. While the commercial cloud service

providers work on the VM instance level, our approach works on the executor level

scheduling which is more fine-grained. Therefore, for the most cost-benefit, job schedul-

ing from user-side also plays a vital role and while used in conjunction with commercial

cloud providers’ instance features, significant performance improvement and cost re-

duction can be achieved. Lastly, our approach can also be used for a local cluster which

is deployed with on-premise physical resources.

4.4 Cost-efficient Job Scheduling

In this section, we explain the motivations of this work, the problem formulation, the

proposed job scheduler and the executor placement algorithms and the complexity of

the proposed algorithms.

4.4.1 Motivation

The utilization of resources in a big data cluster varies at different times of the day. For

example, Fig. 4.1 depicts the job submission frequencies at different hours in a particular

day from a Facebook Hadoop workload trace. There are several hours in a day when

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html
https://azure.microsoft.com/en-au/services/hdinsight/
https://aws.amazon.com/emr/features/
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html
https://azure.microsoft.com/en-au/services/hdinsight/
https://aws.amazon.com/emr/features/
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
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Figure 4.1: Job submission frequencies in a single day (Facebook Hadoop Workload
Trace-2009)

the job submission rate is lower than usual. Therefore, if a big data processing cluster

is deployed in the public cloud, it would be costly to keep all the VMs turned on as the

cluster might not be fully utilised. However, the bill of using a VM is charged as pay-

per-use basis and most of the cloud providers per-second billing period. Hence, if a VM

is not used to schedule any jobs, it can be turned off to reduce the monetary cost of the

cluster. The turned off VMs can be turned on again in future depending on the overall

resource demands in the cluster.

Cloud service providers offer different types of VMs which have different pricing

model. In general a small VM with lower resource capacity is cheaper than a large VM

with high resource capacity. Therefore, if a cluster is deployed with different types of

VM instances, smaller VMs can be used in the low-load period of the cluster to save cost

whereas the bigger VMs can be utilized only in the high-load period.

Most of the cluster schedulers place the executors from each job in a distributed

(round-robin) fashion in the VMs which has the following problems:

• VMs are under-utilized, and resources are wasted in all the VMs. This problem

leads to a higher cost of using the whole cluster as most of the VMs are turned on

at all times.

https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes
https://aws.amazon.com/ec2/pricing/on-demand/

https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes
https://aws.amazon.com/ec2/pricing/on-demand/
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Figure 4.2: An example cluster with different types of Jobs and VMs
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• In the cloud, different types of VM instances are available to use as the worker

nodes and using only a single type of VM to compose a cluster might not be cost-

effective. For example, a cluster has only one type of VM (16 CPU core, 64GB

memory). If at a light-load hour only a single job is submitted (2 CPU core, 2GB

memory), even using one VM would be costly. Using only small VM instances to

compose a cluster would also fail as executors from different Spark jobs might have

different size (resource requirement), so executors with high resource requirement

will not fit in smaller VMs.

• For network-bound jobs, performance is reduced due to increased network trans-

fers among the executors due to the distributed placement of executors in different

VMs.

The consolidated executor placement option of Spark can not save cost as it does

not consider the prices of different workers (VMs), and may choose the biggest VM to

consolidate executors. Fig. 4.2 shows an example scheduling scenario where two jobs

(with different resource demand) are submitted to a cluster composed of four VMs (with

different resource capacity). For simplicity, let us assume that the executors from all the

jobs require only one type of resource (e.g., CPU cores). The total number of slots in

each VM represents its resource capacity. Similarly, the width of each executor of a job

represents its resource demand. Therefore, in our example, each executor from job-1

requires 1 CPU core, and each executor from job-2 requires 2 CPU cores. VM-1, VM-2,

VM-3, and VM-4 have a resource capacity of 2, 4, 6 and 8 CPU cores, respectively. In

addition, the cost of using each VM is equivalent to its size, hence VM-1 is the cheapest

VM whereas VM-4 is the costliest VM. Fig. 4.3a-4.3c depicts some of the possible ex-

ecutor placement strategies. Fig. 4.3a shows a distributed executor placement strategy

(round-robin) which is used by most of the scheduling policies. In this placement, all the

VMs are used but under-utilized. Therefore, this placement will lead to the highest VM

usage cost. An alternative strategy which can be used in Spark to consolidate executors

can be seen in Fig. 4.3b. However, as the cluster manager is unaware of the VM instance

pricing or resource capacity, if it chooses to place job-1 in VM-4, job-2 will also be placed

in VM-4 to consolidate executors from both jobs in fewer VMs. Even though Spark’s
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executor consolidation strategy provides a better VM usage cost than the round-robin

strategy, it can be further improved as shown in Fig. 4.3c. Here, when job-1 first arrives it

is placed in the cheapest VM (VM-1) where the executors of the current job fits properly.

Then, job-2 is placed into the 2nd cheapest VM (VM-2), as VM-1 is already used. This

strategy provides the cheapest VM cost usage even though executors are consolidated

in more than one VM.

4.4.2 Problem Formulation

In an Apache Spark cluster, the resource requirements of the executors from the job are

same. In addition, each worker node (VM) has a set of available resources (e.g., CPU

cores, memory) which can be used to place executors from any job if the resource re-

quirements are met. Therefore, for each submitted job in the cluster, the main problem is

to find the placement of all its executors to one or more available VMs. Besides, resource

capacity in each VM must not be exceeded while placing one or more executors in that

VM during the scheduling process. As the compact assignment of executors leads to cost

reduction due to fewer VM usages, we model the scheduling problem as a variant of the

bin-packing problem. Table 4.2 shows the notations we use to formulate the problem.

We consider the resource requirement of an executor in two dimensions – CPU cores

and memory. Therefore, each executor of a job can be treated as an item with multi-

dimensional volumes that needs to be placed to a particular VM (bin) in the scheduling

process. Suppose, we are given a job with E executors where each executor has CPU

and memory requirements of τ
cpu
i and τmem

i , respectively (i ∈ ξ). There are K types of

VM available each with a two-dimensional resource capacity (CPU, Mem) and incurs a

fixed cost Pk, if used. The problem is to select VMs and place all the executors into these

VMs such that the total cost is minimized and the resource constraints are met.
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Table 4.2: Definition of Symbols

Symbol Definition

job The current job to be scheduled

E Total executors required for job

ξ The index set of all the executors of job, ξ = {1, 2, 3, ..., E}

Ψ The index set of all the VM types, Ψ = 1, 2, ..., K

mk An upper-bound on the number of type k VMs

δk The index set for each type k VM; δk = {1, 2, ..., mk}, k ∈ Ψ

Pk Price of using a VM of type k

ω
cpu
jk Available CPU in the jth VM of type k, j ∈ δk, k ∈ Ψ

ωmem
jk Available Memory in the jth VM of type k, j ∈ δk, k ∈ Ψ

τcpu CPU demand of any executor of job

τmem Memory demand of any executor of job

RAjk Resource Availability metric of the jth VM of type k

RDjob Resource Demand metric for job

The optimization problem is:

Minimize: Cost = ∑
k∈Ψ

Pk

(
∑
j∈δk

yjk

)
(4.1)

∑
k∈Ψ

∑
j∈δk

xijk = 1 ∀i ∈ ξ (4.2)

∑
i∈ξ

(xijk ∗ τcpu) ≤ ω
cpu
jk ∗ yjk ∀k ∈ Ψ, j ∈ δk (4.3)

∑
i∈ξ

(xijk ∗ τmem) ≤ ωmem
jk ∗ yjk ∀k ∈ Ψ, j ∈ δk (4.4)

xijk, yjk ∈ {0, 1}, ∀i ∈ ξ, k ∈ Ψ, j ∈ δk

Cost Minimization: As shown in Eq. 4.1, our objective is to minimize the cost of

using the whole cluster while scheduling any job. The total cost is modelled as the

aggregated cost of using all the VMs. The binary decision variable yjk is used which
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controls whether VM j of type k is used or not.

yjk =

1 if the jth VM of type k is used;

0 otherwise.

Executor Placement Constraint: An executor can be placed only in one of the VMs and

this placement constraint is denoted in Eq. 4.2. The binary decision variable xijk is used

which controls whether executor i is placed on VM j of type k.

xijk =

1 if executor i is placed in jth VM of type k;

0 otherwise.

Resource Capacity Constraints: The total resource demands of all the executors

placed in a VM should not exceed the total resource capacity of that VM. The resource

constraints for CPU cores and memory are shown in Eq. 4.3 and 4.4, respectively.

Bin packing is a combinatorial optimization problem and has proved to be NP-Hard

[75]. The above optimization problem is an Integer Linear Programming (ILP) formula-

tion of the multi-dimensional bin packing problem. When the scheduler has to schedule

a job, the ILP model can be constructed by using the current job’s resource demand and

cluster resource availability. Then, it can be solved by exact methods such as Simplex

[76], Branch and Bound [77] to find the most cost-effective executor placement for that

job. However, constructing the ILP dynamically before scheduling each job can be time-

consuming. Especially, if the problem size goes bigger (large cluster, or jobs with many

executors), the ILP might not be feasible as it requires exponential time to solve. In this

case, efficient heuristic methods can be used for faster executor placement.

4.4.3 Job Scheduler

The proposed job scheduler exhibits the following characteristics:

• The scheduler is online, that means it has no prior knowledge of job arrival and

dynamically schedules jobs upon arrival
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• The scheduler prioritizes jobs based on their deadline

• The scheduler tries to minimize the cost of VM usage while placing the executors

of a job

Before discussing the scheduling algorithm, we introduce the important concepts

used to design the scheduler.

Resource Unification Thresholds (RUT): As we have two types of resources (e.g.,

CPU and memory), the resource capacity of a VM and resource demand of a job cannot

be represented with only one type of resource. Therefore, to holistically unify multi-

ple types of resources, we introduce RUT and use it as a system parameter. Each of

the thresholds acts as a weight for a single resource type, and the summation of these

threshold values is 1 (Eq. 4.5). In our case, α is the threshold associated with CPU and

β is the threshold associated with memory. Note that, this is a generalized unification

which can be extended to multiple resource types depending on the system needs. A

detailed discussion on how to assign Resource Unification Threshold (RUT) values is

provided in section 4.6.6.

Resource Availability (RAjk): It is a metric that represents the resource availability

of a VM in the unified form. Eq. 4.6 and Eq. 4.7 shows the formula to compute the total

amount of CPU and memory in the cluster, respectively. We use the formula shown

in Eq. 4.8 to calculate RAjk of a VM. Here, the currently available amount from each

resource type is converted to the percentage of resource w.r.t the total cluster resource (of

the same type) and then multiplied to the corresponding RUT. Then, the total resource

capacity is found by summing these values.
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α + β = 1 (4.5)

CPUtotal = ∑
k∈Ψ

∑
j∈δk

ω
cpu
jk (4.6)

MEMtotal = ∑
k∈Ψ

∑
j∈δk

ωmem
jk (4.7)

RAjk =
ω

cpu
jk

CPUtotal
∗ α +

ωmem
jk

MEMtotal
∗ β (4.8)

RDjob =

(
τcpu

CPUtotal
∗ α +

τmem

MEMtotal
∗ β

)
∗ E (4.9)

Resource Demand (RDjob): It is a metric that represents the resource demand of a

job in the unified form. We first find the resource demand of one executor, then multiply

it to the total executors to find the RDjob as shown in Eq. 4.9.

JobBuffer, JobQueue and DeadlineJobQueue: We use a JobBu f f er to hold all the

incoming jobs that are submitted to the scheduler. Moreover, two priority queues:

JobQueue and DeadlineJobQueue are used to keep regular and deadline-constrained

jobs, respectively. In JobQueue, jobs are kept sorted in descending order of their re-

source demand (RDjob). Jobs are kept sorted based on the Earliest Deadline First (EDF)

strategy in the DeadlineJobQueue. The scheduler can transfer jobs from the JobBu f f er

to the priority queues at any time.

Algorithm 3 shows the policy used by the proposed scheduler. When the sched-

uler starts, at first it fetches deadline-constrained jobs from the JobBu f f er (line 3). As

DeadlineJobQueue is kept sorted based on EDF, if a newly added deadline-constrained

job has a tighter deadline than the already awaiting jobs, it will be extracted from the

queue to be scheduled before any other jobs (line 7). If the PlaceExecutor() procedure

returns success in finding VMs to place the executors, the job will be launched in the

cluster (lines 8-9). The scheduler is not preemptive, so when a job is scheduled (whether

it is a regular or a deadline-constrained job), it will not be killed or suspended. There-

fore, while any deadline-constrained jobs are waiting and the cluster does not have suf-

ficient resources to execute them (PlaceExecutor() procedure returns failure), the sched-

uler does not fetch any regular jobs until all the deadline-constrained jobs are scheduled.
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Algorithm 3: Algorithm for the Job Scheduler
Input: JobBu f f er, JobQueue, DeadlineJobQueue

1 while SchedulerTerminationSignal 6= true do
2 while true do
3 FetchDeadlineJobs(JobBu f f er)
4 if DeadlineJobQueue = φ then
5 break
6 end
7 Job = ExtractJob(DeadlineJobQueue)
8 if PlaceExecutor(Job) is successful then
9 LaunchJob(Job, PlacementList)

10 end
11 end
12 while true do
13 FetchRegularJobs(JobBu f f er)
14 if DeadlineJobQueue 6= φ then
15 break
16 end
17 Job = ExtractJob(JobQueue)
18 if PlaceExecutor(Job) is successful then
19 LaunchJob(Job, PlacementList)
20 end
21 end
22 end
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If there are no deadline-constrained jobs to schedule (line 4), only then the scheduler

fetches regular jobs (line 13). Otherwise, it keeps trying to place executors for deadline-

constrained jobs.

Before scheduling any regular jobs, the scheduler always checks whether any new

deadline-constrained job has arrived. If so, it goes back to schedule those jobs (line 14-

15). Otherwise, it starts scheduling regular jobs (lines 17-19). In some cases, it might

be difficult to place a regular job with huge resource demand (as the JobQueue is kept

sorted in decreasing order of resource demand for jobs). In these cases, the scheduler

skips the current job and tries to schedule the next job from the JobQueue.

4.4.4 Executor Placement

We propose two algorithms for cost-effective executor placements for any job in the

cluster. The first algorithm constructs the Integer Linear Programming (ILP) model as

shown in section 4.4.2 and tries to solve the ILP problem to find the most cost-effective

executor placement for the current job. The second algorithm uses a greedy approach

which is a modified version of the Best Fit Decreasing (BFD) heuristic to solve bin pack-

ing problems. Both of these algorithms can be used as the PlaceExecutor() procedure of

Algorithm 3.

ILP-based Executor Placement:

Algorithm 4 shows the ILP-based executor placement approach. At first, the cluster sta-

tus is updated to obtain the latest resource availability of each VM. After this step, the

optimization target, executor placement constraints, and resource capacity constraints

are dynamically generated by using the current cluster resource availability and the re-

source demand for the executors of the current job. Then the constructed ILP problem

is solved (by an ILP solver). If a feasible solution is found, the PlacementList is returned

which contains the chosen VMs where the executors can be created. Otherwise, if the

modelled problem is not solvable, a failure is returned. Note that, when the constraints

of resource availability are generated before scheduling each job, the VMs which are al-

ready used by other jobs will be set (yjk = 1) so that the cost of using that machine will
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be taken into account in the optimization target. Therefore, if there are any free resources

available in the used VMs, the ILP solver will automatically try to fit as many executors

as possible in those VMs before using any new VM to optimize cost.

Algorithm 4: ILP-based Executor Placement Algorithm
Input: Job, the current job to be scheduled
Output: PlacementList, a list of VMs where the executors of Job will be placed

1 Procedure PlaceExecutor(Job)
2 PlacementList← φ
3 Update Cluster Resource Availability
4 Generate Optimization target (Eq. 4.1)
5 Generate Executor Placement Constraints (Eq. 4.2)
6 Generate Resource Capacity Constraints (Eq. 4.3,4.4)
7 Solve ILP Problem
8 if ILP is solved then
9 return PlacementList

10 end
11 return Failure
12 end

BFD Heuristic-based Executor Placement:

To find the VMs where a job’s executors can be placed, our proposed scheduler also uses

a greedy algorithm. Algorithm 5 shows the procedure PlaceExecutor() which can be

used to find the executor placement of any job. At first, the VMList (a list of used VMs in

the cluster) is sorted based on an ascending order of Resource Availability (RAjk) of the

VMs (line 3). Then, it iterates all the VMs (line 4) and checks whether the current VM’s

resource availability satisfies an executor’s resource demand (line 5). If so, it updates the

resource availability of that VM (line 6) and adds this VM to a list called PlacementList

(line 7). Instead of looking at the next VM, the current VM is greedily used to place as

many executors as possible so that we have a tight packing of the executors and use

a fewer number of VMs in the cluster. If this procedure finds placements for all the

executors of a given job, it returns the PlacementList (lines 8-9). If the VMs in VMList

are not sufficient to place all the executors, and the cluster has unused VM(s) (line 13),

the smallest VM that satisfies the resource constraints will be turned on (line 14) and
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Algorithm 5: BFD Heuristic-based Executor Placement Algorithm
Input: Job, the current job to be scheduled
Output: PlacementList, a list of VMs where the executors of Job will be placed

1 Procedure PlaceExecutor(Job)
2 PlacementList← φ
3 Sort(VMList)
4 forall VM ∈ VMList do
5 while Placement of an executor in VM satisfies the constraints (Eq. 4.3,4.4) do
6 Update Resource Availability in VM
7 PlacementList.add(VM)
8 if PlacementList.size = E then
9 return PlacementList

10 end
11 end
12 end
13 if Cluster has unused VM(s) then
14 Turn on the smallest VMnew that satisfies the constraints (Eq. 4.3,4.4)
15 VMList← VMList ∪VMnew
16 goto step 3
17 end
18 return Failure
19 end

added to the VMList (line 15). Then the placement finding steps will be repeated (line

16). Otherwise, if the cluster does not have sufficient resources to place all the executors

of the current job, a failure will be returned (line 18).

4.4.5 Complexity Analysis

To calculate the worst-case time complexity of Algorithm 3, we first assume that, p

and r is the total number of deadline-constrained and regular jobs, respectively that

need to be scheduled. If the total number of VM in the cluster is m, the time required

to sort the VMList is mlog(m). If an exact algorithm is used to solve the ILP model

built in Algorithm 4, the worst-case time complexity is O(2n) where n is the maxi-

mum number of slots available for placing executors across all the VMs. However, the

worst-case time complexity of the BFD-based greedy approach shown in Algorithm 5

is O(me), where e is the maximum number of possible executors for any job. There-
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fore, if ILP-based executor placement is used, the worst-case time complexity of Algo-

rithm 3 is, O((2nmlog(m))(p + r)). Thus, it might require exponential time to complete

the scheduling process for ILP based approach. In contrast, for the BFD-based executor

placement, Algorithm 3 has a polynomial worst-case time complexity of O((m2log(m))(p+

r)).

4.5 System Design and Implementation

We design a scheduler on top of the Mesos cluster manager instead of modifying the

native Spark scheduler to implement our scheduling algorithms. The benefit of keeping

a separate module for the scheduler without extending the existing framework is two-

fold. First, it can be extended to work with any other data processing frameworks sup-

ported by Mesos. Second, it can be used as a generic scheduling framework so that new

policies can be incorporated into the scheduler. The prototype scheduler can be treated

as an external scheduler in the system architecture as depicted in Fig. 4.4. The imple-

mentation of the prototype system is open-source so that it can be used or extended by

the research community.

The external scheduler can be installed in any VM, but in our case, we plugged it in

the Mesos master node and ran it as a separate application alongside with the Mesos

master process. Users submit jobs to the external scheduler and depending on the

scheduling policy, the scheduler provisions resources in the cluster and launch any job

with the help of Mesos master. In the architectural diagram shown in Fig. 4.4, dashed

lines represent job submission or executor creation flow where solid lines represent the

control flows of the scheduler. As discussed previously in the algorithm section, there

are three data structures to keep the jobs in the scheduler: Job buffer (to hold the incom-

ing jobs), deadline queue (to hold deadline-constrained jobs), and job queue (to hold

regular jobs). When the scheduler decides to schedule a job in the cluster, at first, it uses

the Mesos HTTP APIs and sends JSON formatted request messages to Mesos master

HTTP API endpoints to dynamically reserve resources. After getting the acknowledg-

ment of successful resource reservation by the Mesos master, it launches that job through

https://github.com/tawfiqul-islam/SLA-Scheduler

https://github.com/tawfiqul-islam/SLA-Scheduler
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Figure 4.4: The implementation of the prototype system on top of Apache Mesos

the Mesos cluster manager by using the SparkLauncher APIs. At this stage, the driver

program of the launched Spark job takes control and creates executor(s) in one or more

VMs by using the reserved resources only. At any point of the scheduling process, if a

VM is unused and no jobs are currently reserved on it for any future jobs to be sched-

uled, it is turned off by the scheduler to save resource usage cost. Additionally, the

scheduler can also turn on one or more VMs if the currently available resources in the

active VMs is not sufficient to schedule new jobs.

We have implemented this pluggable external scheduling framework in Java. We

have used SCPSolver API with LPSolve Solver Pack library to solve the proposed ILP-

based executor placement model in the scheduler. To implement the automatic VM turn

on/off mechanism from the scheduling process, we have developed a module by using

OpenStack Boto3 library. However, this module can be easily extended to support any

other cloud service providers by using their APIs. The scheduler also uses Mesos sched-

uler HTTP API and operator HTTP API to control the resource provisioning in the clus-

ter. The Mesos master accepts messages in JSON format while communicating through

http://scpsolver.org/
http://lpsolve.sourceforge.net/5.5/
https://boto3.readthedocs.io/en/latest/

http://scpsolver.org/
http://lpsolve.sourceforge.net/5.5/
https://boto3.readthedocs.io/en/latest/
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the HTTP APIs. Therefore, java-json API was used to construct/parse JSON formatted

messages. Furthermore, SparkLauncher API was used to automate Spark job submis-

sion from the scheduler. The scheduler accepts job submission requests from the users

through a job processor interface that listens on a configurable TCP port. Job submission

requests to the scheduler should be constructed in JSON format with some simple fields.

In a job submission request, the users have to specify the details of a job having the fol-

lowing fields: job-id, input-path, output-path, application-path, application-main-class,

resource requirement (CPU cores, memory in GB and total-executors) and an optional

application argument (e.g., iteration).

4.6 Performance Evaluation

In this section, we first provide the experimental setup details which includes the clus-

ter resource configurations, benchmark applications, and baseline schedulers. Then we

show the evaluations of the proposed algorithms in terms of cost, job performance,

deadline violations, and scheduling overhead. Moreover, we also provide a sensitivity

analysis of the system parameters and discuss the applicability of the proposed algo-

rithms.

4.6.1 Experimental Setup

Cluster Configuration:

We have used Nectar Cloud, a national cloud computing infrastructure for research in

Australia to deploy a Mesos cluster. It is a cluster consisting of three different types of

VM instances. The detailed VM configurations and quantity used from each type with

their similar pricing in Amazon AWS (Sydney, Australia) is shown in Table 4.3. In sum-

mary, our experimental cluster has 14 VMs with a total CPU (cores) of 100 and memory

of 400GB. In each VM, we have installed Apache Mesos (version 1.4.0) and Apache Spark

http://www.oracle.com/technetwork/articles/java/json-1973242.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/

launcher/package-summary.html
https://nectar.org.au/research-cloud/

http://www.oracle.com/technetwork/articles/java/json-1973242.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/launcher/package-summary.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/launcher/package-summary.html
https://nectar.org.au/research-cloud/
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(version 2.3.1). One m1.large type VM instance was used as the Mesos master while all

the remaining VMs were used as Mesos Agents. The external scheduler was plugged

into the Mesos master node. Spark supports different input sources as mentioned be-

fore, and the users can select which data sources they want to use. However, HDFS

is the most prominent distributed storage service as it is highly scalable, and provides

fault-tolerance through replication. Generally, HDFS keeps replica of a storage block in

3 datanodes. Hence, if any of these datanodes (VMs) are turned-off to save cost, HDFS

will automatically create replicas on the available VMs. However, a storage block might

be lost if all the 3 datanodes where its replicas reside are turned off. Therefore, in this

special case, the VM turn on/off module should be modified to allow HDFS to create

replicas before shutting down all the datanodes. For the simplicity of the current system

implementation to test our proposed approach, we have mounted a 1TB volume in the

master node and created a Network File System (NFS) to share this storage space with all

the Mesos agents. As the NFS server is running on the master node which will not be

turned off, the current implementation does not need to consider about data loss due to

VM turn off. In addition, the performance overhead due to fetching the input data from

the NFS server is negligible as it is only done once at the beginning of the jobs execution,

and all the intermediate results are stored in each VMs local storage which is managed

by Spark. For providing fault-tolerance, we plan to extend our implementation to work

with HDFS in the future. We have used Bash scripting to automate the cluster setup

process so that a large-scale deployment can also be conducted through these scripts.

Furthermore, an existing cluster can also be scaled up if more VMs are provisioned from

the Cloud service provider.

Table 4.3: Experimental Cluster Details

Instance Type CPU Cores Memory (GB) Pricing (AWS) Quantity

m1.large 4 16 $0.24/h 6

m1.xlarge 8 32 $0.48/h 5

m2.xlarge 12 48 $0.72/h 3
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Benchmarking Applications:

We have used BigDataBench [67], a big data benchmarking suite to evaluate the perfor-

mance of our proposed algorithms. We have chosen three different types of applications

from BigDataBench, namely WordCount (compute-intensive), Sort (memory-intensive)

and PageRank (network/shuffle-intensive). Each application was used to generate a

workload where each job in a workload has varying input size ranging from 1GB to

20GB (for WordCount and Sort) or iterations ranging from 5 to 15 (for PageRank). To

generate a heterogeneous workload, we have randomly mixed the previously men-

tioned different types of applications. We have extracted the job arrival times from two

different hours of a particular day from the Facebook Hadoop workload trace. From

a high-load hour, 100 jobs are used, and from a light-load hour, 50 jobs are used. The

arrival rate of jobs in the high-load hour is higher than the light-load hour. Therefore, in

the high-load hour, most of the resources are overwhelmed with jobs while in the light-

load hour, the cluster is slightly under-utilized. The job profiles are collected by first

submitting each job to run independently (without any interference from other jobs) in

the cluster. Then the job completion time is averaged from multiple runs (5 for each

job). While generating a workload, each job’s average completion time is used as a hard

deadline.

Baseline Schedulers:

The problem with most of the cluster schedulers for Spark jobs is that they do not con-

sider executor-level job placement. Most of these approaches only select the total num-

ber of resources or nodes (VMs) needed for each job while making any scheduling deci-

sions. However, our approach works on a fine-grained level by incorporating executor

placements in job scheduling. Therefore, the existing works can not be directly com-

pared with our proposed approach. The following schedulers are compared with our

proposed scheduling algorithms:

• FIFO: The default FIFO scheduler of Apache Spark deployed on top of Apache

Mesos. It schedules jobs on a first come first serve basis. We have used the con-

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
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solidation option of the scheduler so that it tries to pack executors in fewer VMs

instead of distributing executors on a round-robin fashion. As most of the existing

scheduling algorithms use this default approach for executor placement, and it is

also the common choice of a user with Spark jobs, we chose this scheduler to be

one of the baselines.

• Morpheus [50]: We have adapted the executor placement policy of Morpheus. In

this policy, lowcost packing is used for executor placement. Depending on the cur-

rent cluster load, this policy finds the scarce resource demand (e.g., memory or

CPU cores) of each job (Eq. 4.10). Then jobs are sorted in increasing order of their

scarce resource demands. Therefore, resources in the cluster are well-balanced

throughout the scheduling process so that more jobs can be executed in the long

run. As Morpheus also uses a packing based approach for executor placement, we

chose it as a baseline.

cjob = Max
(

CPUload + CPUjob

CPUtotal
,

MEMload + MEMjob

MEMtotal

)
(4.10)

Note that, Spark dynamic resource allocation feature was turned on for both the

baseline and the proposed scheduling algorithms.

4.6.2 Evaluation of Cost Efficiency

In this evaluation, we show the applicability of our proposed scheduling algorithms to

different types of applications while reducing the cost of using a big data cluster. To

calculate the total cost incurred by a scheduler, we save the status of a VM (whether it

was turned on or off) in each second. Lastly, all the per-second costs (costi, cost incurred

in ith second, i = 1, 2, 3, ...T ; T=total makespan of the scheduler) incurred by a scheduler

is calculated by using Eq. 4.1. Then all these per-second costs are summed for the whole

makespan of the scheduling process as shown in Eqn. 4.11 to find the Totalcost.

Totalcost = ∑
i∈T

Costi (4.11)
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Figure 4.5: Cost comparison between the scheduling algorithms under different work-
load types
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Fig. 4.5 depicts cost comparison between the scheduling algorithms under different

workload types. The bar charts in Fig. 4.5a and Fig. 4.5b show the total cost incurred

by different scheduling algorithms in the light-load and high-load hour, respectively. As

our proposed scheduling algorithms use bin packing to consolidate the executors to a

minimal set of VMs, the cost is reduced significantly as compared to other schedulers.

In general, the ILP-based scheduling algorithms incur slightly lower cost than the BFD-

based scheduling algorithm in all the scenarios as it can find the cost-effective executor

placement for a job. Moreover, Morpheus performs slightly better than FIFO to lower

the cost, because it prioritizes jobs in such a way that cluster resources are well-balanced

to execute more jobs in the overall scheduling process.

As shown in Fig. 4.5a, both BFD-based and ILP-based scheduling algorithms exhibit

significant cost reductions during the light-load hour. As compared to baseline schedul-

ing algorithms, BFD and ILP reduce the cluster usage cost by at least 30% and 34%,

respectively for WordCount and Sort applications. For PageRank application, BFD and

ILP reduce the resource usage cost by at least 12% as compared to FIFO. Moreover, BFD

and ILP reduce the resource usage cost by at least 5% as compared to Morpheus. As our

proposed scheduling algorithms try to place the executors from the same job in fewer

nodes (VMs), most of the shuffle operations happen intra-node thus improving job per-

formance which results in overall cost reduction for network-bound applications. In the

case of the mixed workload, BFD and ILP reduce the resource usage cost by 21% and

25%, respectively as compared to FIFO. Furthermore, BFD and ILP reduce the resource

usage cost by 17% and 22%, respectively as compared to Morpheus. In the case of the

high-load hour as shown in Fig. 4.5b, the cost reduction is smaller than the light-load

period as the cluster is over-utilized. In this scenario, BFD and ILP show about 5-20% of

cost reduction in different workloads.

Fig. 4.5c and Fig. 4.5d represents the cumulative VM cost by different scheduling

algorithms during the whole scheduling process for the mixed workload in the light

load and high load hours, respectively. It can be observed that in the high-load hour, the

cumulative cost graph of all the scheduling algorithms look similar as it is not possible

to reduce the cost significantly of an over-utilized cluster. However, in the light-load

hour, the cost savings can be observed to increase over time for both BFD and ILP.



4.6 Performance Evaluation 93

WordCount Sort PageRank Mixed
0

100

200

300

400

500

Ti
m

e(
se

co
nd

s)

FIFO
Morpheus
BFD
ILP

(a) Light Load
WordCount Sort PageRank Mixed

0

50

100

150

200

250

300

Ti
m

e(
se

co
nd

s)

FIFO
Morpheus
BFD
ILP

(b) High Load

Figure 4.6: Comparison between the scheduling algorithms regarding average job
completion times under different workload types

FIFO Morpheus BFD ILP
0

5

10

15

20

25

30

35

40

De
ad

lin
e 

Vi
ol

at
io

n 
Pe

rc
en

ta
ge

Figure 4.7: Comparison of deadline violations by different scheduling algorithms



94 Scheduling Big Data Applications in Cloud Computing Environments

4.6.3 Evaluation of Job Performance

Fig. 4.6a and 4.6b report the average job completion times for different scheduling al-

gorithms in light-load and high-load hours, respectively. It can be observed that for

WordCount and Sort applications, sometimes FIFO and Morpheus perform slightly bet-

ter than our proposed algorithms. As our algorithms use fewer VMs to place all the

executors, these VMs are stressed as both CPU cores, and memory resources are used at

full capacity. However, it is negligible as compared to the total resource cost usage by

the baseline schedulers. On the contrary, network-bound applications such as PageR-

ank reduces the performance of both FIFO and Morpheus due to excessive network

communications during the shuffle periods. Therefore, both BFD and ILP outperform

the baseline algorithms in case of PageRank and mixed applications. As all the algo-

rithms perform similarly for CPU/memory intensive applications, performance benefits

in mixed workload mainly depend on the proportion of network-intensive applications.

In the high-load hour, the cluster is overloaded with jobs so it might not be possible to

consolidate the executors from the same job in fewer VMs. Therefore, the performance

benefits can be observed to be higher in the light-load hour than the high-load hour for

the mixed and PageRank applications. In the light-load hour, our proposed algorithms

improve job completion time for at least 14% and 5% for PageRank and mixed applica-

tions, respectively. In the high-load hour, our algorithms improve job completion time

for at least 3% and 5% for PageRank and mixed applications, respectively.

4.6.4 Evaluation of Deadline Violation

In this evaluation, we compare the percentage of deadline violations of different schedul-

ing algorithms. This performance metric (θd) is found by using Eq. 4.12 where θm and θs

is the number of missed and satisfied deadlines by a scheduler, respectively.

θd =
θm

θs
× 100% (4.12)

Both FIFO and Morpheus do not consider deadline-constrained jobs. In FIFO, a high

priority job with the earliest deadline has to wait in the scheduling queue if it is sub-
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mitted after one or more non-priority jobs. It will be scheduled only after executing all

the previously arrived jobs. Morpheus determines the job priority by itself, where a job

which results in the most balanced distribution of resources in the cluster (if that job

is scheduled) will have the highest priority. However, in reality, top priority deadline-

constrained jobs might not provide balanced resource distributions upon placement.

Therefore, other non-priority jobs will be executed before these jobs. Both BFD and ILP

use a simple Earliest Deadline First (EDF) strategy. Thus, all the jobs are kept sorted

according to their deadlines, and the job with the earliest deadline is scheduled first.

Fig. 4.7 depicts the deadline violation percentage of different schedulers. For this exper-

iment, we have executed a heterogeneous mix (different application types) of priority

(strict deadline) and non-priority jobs to measure the deadline violations by each sched-

uler. For FIFO and Morpheus, deadline violation occurred for 41% and 35% of jobs,

respectively. However, both BFD and ILP were able to meet the deadlines for most of

the jobs and have deadline violation percentage of only 8% and 12%, respectively. ILP

has slightly higher deadline violation than the BFD because sometimes it takes a sig-

nificant time to find the most cost-effective placement by this approach which causes

deadline misses.

4.6.5 Evaluation of Scheduling Overhead

In this evaluation, we compare the scheduling delays caused by different scheduling

algorithms. It is found by measuring the time it takes to find the executor placements

of a job. Table 4.4 records the average scheduling delays by different scheduling algo-

rithms under different workload types in both high-load and light-load hours. It can be

observed that the native FIFO is the fastest among all the schedulers with scheduling

delays averaging only from 2ms to 4ms. Both Morpheus and BFD are also fast as their

average scheduling delay varies in the range from 3ms to 5ms and 4ms to 6ms, respec-

tively. In contrast, as the ILP tries to find the most cost-effective executor placement

for each job, in some cases it might require exponential time to complete. The results

also indicate the same as the average scheduling delay varied from 0.65 seconds to up

to 3.31 seconds for ILP. Although most of the jobs had a scheduling delay within 1 sec-
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Table 4.4: Comparison of Average Scheduling Delays (unit: seconds) of different
scheduling algorithms

Light-load High-load

Schedulers WC Sort PR Mixed WC Sort PR Mixed

FIFO 0.002 0.004 0.002 0.004 0.003 0.003 0.003 0.004

Morpheus 0.004 0.004 0.003 0.005 0.005 0.004 0.003 0.004

BFD-based 0.006 0.005 0.005 0.004 0.005 0.004 0.004 0.005

ILP-based 3.31 3 0.75 1.92 0.73 2.63 0.65 1.3

ond, for the ILP, the average is higher as for some jobs it took about 3-4 minutes. The

higher scheduling delay of ILP-based scheduling algorithm might cause some deadline

misses. It can also be observed in Fig. 4.7 that, ILP-based scheduling algorithm has

a slightly higher deadline miss percentage than the BFD-based algorithm. However,

this performance degradation is negligible as compared to the baseline scheduling algo-

rithms. Furthermore, for regular jobs or periodic jobs (e.g., long-running data analytics)

that do not have strict deadlines, using the ILP-based scheduling algorithm is preferred

as it can provide better cost reduction in the long run.

4.6.6 Effects of Resource Unification Thresholds (RUT)

RUT is a system parameter, and we have performed a sensitivity analysis to demonstrate

the effects of it on both cluster usage cost and job performance. In our experimental clus-

ter, we have two types of resources (e.g., CPU cores and memory). Resource unification

thresholds (RUT) play a vital role in the scheduling process by acting as a weight while

combining these two types of resources to determine the resource capacity of the VMs

or the resource demand of the jobs. We have associated α as the RUT for CPU cores and

β as the RUT for memory. The proper balance between RUT values depends on both the

VM instance types and the workload types. Fig. 4.8 represents the effects of different

RUT values on both average job completion time (Fig. 4.8a) and resource usage cost

(Fig. 4.8b). This analysis was done by running both BFD and ILP-based scheduling al-
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Figure 4.8: Effects of Resource Unification Threshold (RUT) values on average job com-
pletion time and cost

gorithms with the mixed workload. It can be observed from the figure that, decreasing

the α value and increasing the β value tends to increase both average job completion

time and resource usage cost in our experimental cluster. As using α = 0.8 and β = 0.2

gives us both lower cost and job completion time, we use these RUT values in our ex-

periments.

RUT values can also be tuned to give more priority to specific VMs or jobs. For

example, if a cluster has more memory-bound jobs, to prefer VMs which have more

memory to fit these jobs correctly, the β value can be increased, and α value can be

decreased so that VMs which have high memory capacity/availability are preferred in

the scheduling process. Similarly, jobs can also be prioritized based on their demand on

a particular resource-type by adjusting the corresponding RUT values.

4.6.7 Discussion

The proposed scheduling algorithms can be applied to optimize the cost of using a

cloud-deployed Apache Spark cluster. Our performance evaluation results show that

the BFD heuristic-based approach performs very close to the ILP-based approach in all

the cases. However, the ILP-based approach might have significant scheduling delays

for a large cluster (many VMs). Therefore, in this case, we recommended using the BFD-

based scheduling algorithm as it gives similar results with a small scheduling overhead
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identical to the native FIFO. Another approach could be using both algorithms and us-

ing a time-constraint in the ILP. If the ILP can be solved within the time-constraint, the

executor placements found by this approach will be used. Otherwise, the solution from

the BFD-based approach will be used.

The proposed approach can also be used with HDFS. As HDFS generally creates

replicas in 3 datanodes (VMs), if all these 3 VMs are selected to be turned off in the

scheduling process to save cost, a storage block which was only saved in these 3 VMs

will be lost. To mitigate this issue, it is not required to modify the scheduling algorithms.

However, the VM turn on/off module should be modified for allowing HDFS to create

replicas before shutting down a VM (datanode).

4.7 Summary

Scheduling is a challenging task in big data processing clusters deployed on the cloud.

It gets even harder in the presence of different types of VMs and job heterogeneity. Most

of the existing schedulers only target on improving job performance. In this chapter, we

have used bin packing to formulate the scheduling problem and proposed two dynamic

scheduling algorithms that enhance job performance and minimize resource usage cost.

We have built a prototype system on top of Apache Mesos which can be extended to

incorporate new scheduling policies. Therefore, this system can be used as a scheduling

framework. We have demonstrated the outcomes of our extensive experiments on real

datasets to prove the applicability of the proposed algorithms under various workload

types.

Moreover, we have compared our algorithms with the existing baseline schedulers.

The results suggest that our proposed scheduling algorithms reduce resource usage cost

up to 34% in a cloud-deployed Apache Spark cluster. Furthermore, both network-bound

and mixed jobs gain performance benefits (up to 14%) from tighter packing of executors

in fewer VMs. We have also done the sensitivity analysis of the system parameter and

discussed the effects of it on both cost and job performance. Lastly, we have discussed

the feasibility of the proposed approach.



Chapter 5

Scheduling Big Data Applications in
Hybrid Cloud

Due to the limited resource availability, the local or on-premise computing resources are often

not sufficient to run big data jobs. Therefore, public cloud resources can be hired on a pay-per-use

basis from the cloud service providers to deploy a Spark cluster entirely on the cloud. Nevertheless,

using only cloud resources can be costly. Hence, now-a-days, both local and cloud resources are used

together to deploy a hybrid cloud computing cluster. However, scheduling jobs in a cluster deployed

on hybrid cloud is challenging in the presence of various Service-Level Agreement (SLA) demands

such as cost minimization and job deadline guarantee. Most of the existing works either consider a

public or a locally deployed cluster and mainly focus on improving job performance in the cluster.

In this chapter, we propose efficient scheduling algorithms that leverage from different cost models in

a hybrid cloud deployed cluster to optimize the Virtual Machine (VM) usage cost for both local and

cloud resources and maximize the job deadline meet percentage.

5.1 Introduction

ANALYSING data at massive scale is becoming crucial due to the availability of

huge data in various domains such as scientific research, social media, business.

Several prominent big data processing platforms such as Hadoop [12], Spark [6], Storm

[78] are used to analyze this enormous volume of data. A big data processing platform

can be deployed in local-premises using computing resources owned by a company.

This chapter is derived from:

• Muhammed Tawfiqul Islam, Huaming Wu, Shanika Karunasekera, and Rajkumar Buyya, ”SLA-
based Scheduling of Spark Jobs in Hybrid Cloud Computing Environments”, IEEE Transactions on
Computers (TC) [Under 2nd Revision].

99
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Besides, as cloud service providers offer flexible, scalable, and affordable computing

resources on-demand, it is also becoming popular to deploy a big data processing cluster

in the cloud. Although most of the deployments of a big data computing cluster are

either local, or on the cloud, many organizations are also using a hybrid setup where

both local and cloud resources are used together to form the cluster. However, it is

challenging to schedule jobs in a cluster deployed on hybrid clouds while ensuring the

SLA parameters such as monetary cost minimization, and deadline. In this chapter, we

propose scheduling algorithms that can satisfy the SLA requirements of the jobs in a big

data processing cluster deployed in a hybrid-cloud.

We have chosen Apache Spark as our target big data processing platform as it is

vastly replacing traditional Hadoop-based platforms. Spark can utilize memory to store

intermediate results to speed up the processing. Moreover, it is more scalable than other

platforms and more suitable for running complex analytics jobs. Spark programs can

be written in many high-level programming languages, and it also supports diverse

data sources such as HDFS [11], Hbase[14], Cassandra[15] and Amazon S3. The data

abstraction of Spark is called Resilient Distributed Dataset (RDD) [16], which is fault-

tolerant. When a Spark job is launched, it creates one or more executors that use a

fixed chunk of resources in any cluster nodes. These executors are used by a job to run

multiple tasks in parallel at different stages of the data processing pipeline to work on

various partitions of the dataset.

The default scheduler of Spark is FIFO, which schedules the jobs on a first-come-first-

serve basis. The executors from a job are distributed in different nodes in a round-robin

fashion for balancing the cluster load and improve performance. In addition, it can also

consolidate the core usages and minimize the total number of nodes used in the cluster.

However, if the nodes (VMs) are deployed in a public cloud, distributing the executors

across different VMs can be costly as most of the VMs will be always turned on. In

addition, there will be free resources in these VMs in an off-peak period when not many

jobs are running in the cluster at the same time. Furthermore, if a hybrid cloud setup

is considered, challenges within inter-cluster scheduling exist which include: design

https://www.marketsandmarkets.com/PressReleases/hybrid-cloud.asp
https://aws.amazon.com/s3/
https://spark.apache.org/docs/latest/job-scheduling.html

https://www.marketsandmarkets.com/PressReleases/hybrid-cloud.asp
https://aws.amazon.com/s3/
https://spark.apache.org/docs/latest/job-scheduling.html
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issues for federated multi-cluster, latency issues between different regional sub-clusters,

and locality of the data. There are numerous works on inter-cluster schedulers [79, 80],

which focus on addressing these challenges from a performance standpoint. However,

these schedulers do not consider the VM usage cost of the Spark cluster deployed in

a hybrid cloud setup. In this chapter, we complement these works and address two

key objectives for hybrid cloud scheduling: cost-minimization and deadline violation

reduction. We propose scheduling algorithms which work on the cluster-scheduling

level, and utilize the pricing models of different VM instance types in a hybrid cloud to

effectively handle the following challenges:

• Performing cluster-level scheduling to make fine-grained decisions for executor

placements on a hybrid cloud environment.

• Minimizing the deadline violations for the jobs in the cluster.

• Minimizing the monetary cost of using the Virtual Machines (VMs) of the whole

cluster.

In summary, our work makes the following key contributions:

• We formulate an optimization problem for SLA-based scheduling of Spark jobs in

a hybrid cloud.

• We propose two job scheduling algorithms. The first algorithm is a modified ver-

sion of the First-Fit (FF) heuristic for solving bin packing problems. The second

algorithm uses a greedy approach to iteratively find the cost-optimal placement

for each executor of a job. Both algorithms can improve the cost-efficiency of a

hybrid Apache Spark cluster.

• We develop an event-based simulator in Java which can be used to simulate, test,

and compare different job scheduling policies.

• We implement both of the proposed algorithms on top of Apache Mesos [10] clus-

ter manager with separate extendable modules. Therefore, the implemented sys-

tem is pluggable to Mesos and can be easily deployed in a hybrid cloud setup.
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• We conduct extensive experiments in both simulated and real environments. Fur-

thermore, we use real applications and workload traces under different scenar-

ios to showcase the superiority of our proposed algorithms over the existing ap-

proaches.

The rest of the chapter is organized as follows. In section 5.2, we present the back-

ground to different frameworks and also the architectural considerations for a hybrid

cloud deployment. In section 5.3, we discuss the existing works related to this chap-

ter. In section 5.4, we show the system model and formulate the scheduling problem.

In section 5.5, we present the proposed algorithms. In section 5.6, we show the simu-

lation experiment setup, baseline algorithms and experimental results for simulation-

based experiments. In section 5.7, we showcase the implemented prototype system in

real platforms, discuss the benchmark applications and real experimental cluster setup,

and demonstrate the feasibility of the proposed algorithms with performance evaluation

from real experimental results. Section 5.8 concludes the chapter and highlights future

work.

5.2 Background

5.2.1 Apache Spark

As compared to the disk-based MapReduce tasks of a typical Hadoop system, Apache

Spark allows most of the computations to be performed in memory and provides better

performance for some applications such as iterative algorithms. The intermediate results

are written to the disk only when it cannot be fitted into the memory. Spark uses Resilient

Distributed Datasets (RDD) to hold data in a fault-tolerant way. Each job/application is

divided into multiple sets of tasks called stages which are inter-dependant. All these

stages form a directed acyclic graph (DAG) and each stage is executed one after another.

In a typical Apache Spark cluster, applications are submitted through a cluster manager

to run in the cluster. Spark supports Apache Mesos, or Hadoop Yarn, or Kubernetes as

cluster managers to allocate resources among applications. In addition, its own default

Standalone cluster manager is also sufficient to handle a production cluster. All these
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cluster managers support both static and dynamic allocation of resources.

Workers are the physical/compute nodes of an Apache Spark cluster where one or

more application processes can be created depending on the resource capacity. In cloud

deployments, one or more worker nodes can be created inside each Virtual Machines

(VM). A Spark cluster can have one or more worker nodes but there is only a single Mas-

ter node that is responsible for managing the worker nodes. Each application in Spark

has a SparkContext object in its main program (also called the Driver Program) which cre-

ates and maintains Executor processes on worker nodes. An application uses its own set

of executors to run tasks in parallel, in multiple threads and to keep data in memory and

storage. In addition, these executors live for the whole duration of that application. All

the executors of the same application must be identical in size. Hence, they will have the

same amount of resources (CPU cores, memory, disk). There are two benefits of isolat-

ing applications from each other. First, a driver program can independently schedule its

own tasks in the acquired executors. Second, each worker can have multiple executors

from different applications running in their own JVM processes.

5.2.2 Apache Mesos

Apache Mesos is considered to be a data-center level cluster manager due to its capabil-

ity of efficient resource isolation and sharing across distributed applications. In Mesos,

jobs/applications are called frameworks and multiple applications from different data

processing frameworks like Spark, Storm, and Hadoop can run in parallel in the cluster.

Mesos introduces a novel two-level scheduling paradigm where it decides a possible re-

source provisioning scheme according to the weight, quota or role of a framework and

offers resources to it. The framework’s scheduler is responsible for either rejecting or

accepting those resources offered by Mesos according to its scheduling policies. Mesos

provides HTTP APIs to control the resource provisioning and scheduling of the whole

cluster. Mesos supports dynamic resource reservations, thus resources can be dynam-

ically reserved in a set of nodes by using the APIs and then a job/framework can be

scheduled only on those resources. When a job is completed, resources can be taken

http://mesos.apache.org/documentation/latest/operator-http-api/

http://mesos.apache.org/documentation/latest/operator-http-api/
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back and reserved for any future job. It is a significant feature of Mesos as any exter-

nal scheduler implemented on top of Mesos can have robust control over the cluster

resources. Furthermore, the external scheduler can perform fine-grained resource al-

location for a job in any set of nodes with any resource requirement settings. Lastly,

various policies can be incorporated into an external scheduler without modifying the

targeted big data processing platform or Mesos itself; so the scheduler can be extended

to work with other big data processing platforms. For the benefits mentioned above, we

have built a prototype system on top of Mesos to implement our proposed scheduling

algorithms. However, the proposed scheduling algorithms can be plugged to work with

other modern cluster managers, such as Kubernetes, which also supports fine-grained

resource allocation for containers (e.g, pods from Kubernetes terms).

5.2.3 Scheduling Levels

From the above discussion, we can observe that there are two levels of scheduling in the

cluster. These are (1) Cluster Level: decision to select an appropriate VM to create an ex-

ecutor for a Spark job. From the cluster manager perspective, a container can be created

and allocated with a fixed set of resources and then this container can be assigned to a

job’s executor. (2) Application Level: The Spark application driver process is responsi-

ble for scheduling tasks in the provisioned executors for a job. This scheduler should

consider the locality of the data to improve the performance of a job. In this chapter, we

work on the cluster level to decide in which VM each executor of a job should be created

so that we can optimize the overall cluster usage cost. In addition, we also consider the

deadline constraint to prioritize jobs with tight deadlines. As our proposed approaches

work on a higher level, it can be applied to the Hadoop jobs as well. For example, a

cluster manager such as Mesos supports jobs from different types of frameworks such

as Hadoop and Spark. Thus, the proposed scheduling algorithms can be extended to

support Hadoop jobs, where each Mesos container should be provisioned for a map or

a reduced task.
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5.2.4 Hybrid Cloud Deployment

There are different architectural considerations regarding the deployment of a hybrid

cloud. For example, in a true multi-cluster setup, all the executors of a job should be

placed in the same cluster. However, in a multi-cluster federation, there is a central

point of control and the same job’s executors can be distributed across multiple clusters.

The latter approach may result in locality and latency issues, as the executors from the

same job have to communicate over different regional boundaries. However, in a multi-

cluster federation, there is only one cluster (although over multiple regions) from the

job’s perspective. In addition, there is more room for cost-efficiency as it is possible to

squeeze out the free resources in the cheapest VMs across multiple clusters. Thus, in

this chapter, we choose a federated multi-cluster setup, where a central Mesos cluster

manager is responsible to manage all the VMs across two different regions. The Mesos

cluster manager is deployed in the local region to work as the central point of control.

In addition, the external scheduler and other resource reservation modules are also run

locally for faster communication with the cluster manager. Although there can be la-

tency and performance issues caused by this setting, we try to capture these issues in

the system model by considering the increase in job completion times caused by these

issues.

5.3 Related Work

The default framework scheduler for Spark is FIFO, which places the executors of a job

in a round-robin fashion to balance the load in the cluster and improve performance.

In addition, it can also consolidate the core usage to minimize the total nodes used in

the cluster. However, it does not consider the pricing model of VM instances in either

a single or a hybrid cluster setup. Fair and DRF [17] based schedulers can be used to

improve the fairness among multiple jobs in a cluster, but they do not improve the cost-

efficiency of the cluster.

There is some existing research for SLA-based job scheduling, which only focuses

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
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on Hadoop MapReduce based jobs. Hwang et al. [49] proposed a resource provisioning

model that can minimize the VM cost for deadline-constrained MapReduce applications

in cloud. Mashayekhy et al. [26] proposed a greedy algorithm that finds the assignments

of the map and the reduce tasks in machine slots to minimize the energy consumption

of a Hadoop cluster. Nayak et al. [38] proposed a negotiation-based adaptive scheduler

for scheduling Hadoop jobs in cloud. Cheng et al. [81] have considered future resource

availability to improve job performance and reduce job deadline violations. Zeng et

al. [82] proposed a greedy algorithm that reduces the monetary cost of using the public

cloud while satisfying job deadlines. ChEsS [39] is a Pareto-based job-to-cluster assign-

ment framework for cost-effective job scheduling across multiple MapReduce clusters.

However, most of these works either consider a single cluster setup or tries to improve

job performance. Moreover, these approaches are applicable to Hadoop jobs only as the

architecture paradigm of Hadoop is different from Spark.

There are a few works that tried to improve different aspects of scheduling for Spark-

based jobs. Sparrow [27] tried to improve the performance of the default Spark schedul-

ing by using a decentralized, randomized sampling-based scheduler. Wu et al. [83] pro-

posed a framework that provides the capability to perform large-scale data analytics

across multiple-clusters. Maroulis et al. [34] provided an energy-efficient scheduler that

uses the DVFS technique to tune the CPU frequencies for the workloads to reduce en-

ergy consumption. However, as our main target is cost-effectiveness, this approach can

not be applied to our problem. Li et al. [84] also provided an energy-efficient scheduler.

However, it does not consider cost as an objective. In addition, the algorithm assumes

each job has the same executor size, which is equal to the total resource capacity of

a VM. However, in reality, each job can have different resource requirements, and the

VM instance size can also vary. Liu et al. [85] proposed a hierarchical multi-cluster big

data framework for Apache Spark, which only focuses on improving job performance

when the cluster is deployed in a hybrid-cloud. However, they do not consider any cost-

efficiency in these clusters, and job deadlines. Sidhanta et al. [86] provided a mathemat-

ical model to estimate job completion times of a Spark job given its input size, iteration,

and job type. In addition, they provide an optimal cluster composition technique which

utilizes the default FIFO scheduler. However, this work does not consider different VM
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pricing models in a hybrid-cloud setup. In addition, it is assumed that each job has the

same executor size, which is the total resource capacity of a VM. However, we model the

executor sizes at a more fine-grained level, so that multiple executors from one or more

jobs can be co-located inside a single VM.

MCTE [87] is a cloud task scheduling strategy to minimize the task completion time

and execution cost for the smart grid cloud. However, this work did not consider a hy-

brid cloud setup and cost minimization as an objective. AsQ [88] is also a task schedul-

ing algorithm that places the task in either local or cloud VMs. Peláez et al. [89] intro-

duced the problem of managing virtual machines and scheduling jobs in a cost-efficient

way while meeting the deadlines. In the bag of tasks model, the tasks are independent

of each other so the run-time of an individual task does not depend on whether another

task from the same bag is placed in the cloud or local VM. However, in our work, we fo-

cus on the cluster-level scheduling where an executor runs one or more interdependent

tasks that follows a DAG model.

If a cluster is deployed in a hybrid cloud, some of the VMs reside in the local premises

and the rest of the VMs are hired from a cloud service provider. Thus, the cloud portion

of the cluster can be considered to be in a different region. Therefore, challenges within

inter-cluster scheduling exist which include: choosing a proper federated multi-cluster

setup that determines how the clusters should be managed, increased latency between

different executors deployed in different regions, and locality of the data required for a

job. There are numerous works on inter-cluster schedulers, e.g., Yarn Federation, Ku-

bernetes Federation, Medea [79] and Hyrda [80], which focused on addressing these

challenges with objectives to improve the overall performance of the production cluster.

Because for multiple regional clusters, it is more critical to focus on performance im-

provement and load-balancing. However, if a hybrid cloud setup is created with the use

of public cloud VMs, minimizing cluster resource usage cost should be a key objective,

along with maintaining an acceptable performance for the applications.

In summary, most of the existing approaches focus mainly on performance improve-

ment. In addition, they do not consider a fine-grained level of executor placement while

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
Federation.html

https://kubernetes.io/blog/2018/12/12/kubernetes-federation-evolution/

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/Federation.html
https://kubernetes.io/blog/2018/12/12/kubernetes-federation-evolution/
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scheduling jobs. In contrast, our approach guarantees to launch a job on its required

resources, tries to minimize deadline violations, can handle different sizes of executors

of jobs and different VM instance sizes, and can reduce the overall cost of VM usage of

a hybrid cloud deployed cluster by utilizing different pricing models.

5.4 SLA-based Job Scheduling

In this section, we describe the hybrid cloud model and formulate the problem of dy-

namic job scheduling between local VMs and cloud VMs. Major notations and descrip-

tions presented in this chapter are listed in Table 5.1.

5.4.1 System Model

When a hybrid cloud setup is considered, both local and cloud VM instances can be

chosen to be identical in resource capacity. However, when the target objective is to

reduce cost, having a setup with different types of VM instances is more cost-effective,

because jobs with fewer resource requirements can be fitted into small VMs to optimize

cost. In addition, if the local part of the cluster is made with commodity resources,

it is not possible to create similar VM instances with a set of heterogeneous physical

hosts. Therefore, to tackle the scheduling problem more efficiently, the scheduler has

to consider different VM instance sizes (as depicted in Fig. 5.1) to optimize cost. We

consider a federated multi-cluster deployment where the cluster manager is the central

point of control. The cluster manager controls both the local and the cloud VMs. The

resource managers track the resource availability of the cluster and dynamically feed

the updated status of the cluster to the scheduler. Thus, the scheduler has to match the

resource requirement of the jobs with the resource availability in the cluster while trying

to meet the target objectives. In our implemented prototype, we deploy the external

scheduler, both of the resource managers, and the cluster manager in the local cloud.

In an Apache Spark cluster, each job consists of a set of executors with the same re-

source requirement. Furthermore, each VM/worker node has a set of available resources

(e.g., CPU and memory) which can be used to place executors. However, executors from
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Table 5.1: Definition of Symbols

Symbol Definition

J The current job to be scheduled

E Total executors required for J

ξ The index set of all the executors of J, ξ = {1, 2, 3, ..., E}

TL
C Profiled completion time for J for local-only placement of executors

TH
C Profiled completion time for J for hybrid placement of executors

TC Estimated completion time for J

TD Deadline for J

TA Arrival time for J

TS Start time for J

TW TS − TA, waiting time for J

M The total number of local VMs

N The total number of cloud VMs

δL The index set for all the local VMs; δL = {1, 2, ..., M}

δC The index set for all the cloud VMs; δC = {1, 2, ..., N}

PL
j The Price for a local VM; j ∈ δL

PC
j The Price for a cloud VM; j ∈ δC

CL
j Available CPU in a local VM, j ∈ δL

CC
j Available CPU in a cloud VM, j ∈ δC

ML
j Currently available Memory in a local VM, j ∈ δL

MC
j Currently available Memory in a cloud VM, j ∈ δC

Cτ
i CPU demand of any executor of J, i ∈ ξ

Mτ
i Memory demand of any executor of J, i ∈ ξ

tL
j Remaining active time for a VM before placing executor(s) of J, j ∈ δL

tC
j Remaining active time for a VM before placing executor(s) of J, j ∈ δC

∆tL
j Change in remaining active time after executor(s) of J is placed, j ∈ δL

∆tC
j Change in remaining active time after executor(s) of J is placed, j ∈ δC
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different jobs can have different sizes. For example, suppose the CPU and memory re-

quirements of an executor of job-1 are 2 cores and 4GB, respectively. Thus, if job-1 has 5

executors, all the executors must follow this resource requirement (e.g., 2 cores and 4GB

memory). However, job-2 can have different resource requirements for its executors. For

example, 4 cores, and 8GB of memory for each executor, which is different from the size

of the executors from job-1.

For each submitted job in the cluster, the main problem is to find the mapping of

all its executors to one or more available VMs. Besides, the combined resource require-

ments of all the placed executors in a VM is bound by its resource capacity. Therefore,

resource constraints in each VM must be met while making any scheduling decisions.

We consider a multi-tenant case where multiple jobs from different users can run on the

cluster at the same time. Thus, if one or more executors from different jobs are placed

in the same VM, then the resource capacity constraints of that VM must be satisfied by

considering all the different sizes of executors from multiple jobs. This problem can be

simplified by tracking the resource availability of VMs dynamically. Thus, the resource

availability of the VMs can be presented to the scheduler, instead of the resource capac-

ity. Initially, the resource capacity and resource availability of a VM will be the same.

Although the resource capacity of a VM is always fixed, the resource availability of a

VM will be reduced over time if one or more executors from one or more jobs are placed

in it. In addition, if one or more jobs complete execution that had executor(s) in this VM,

then the resource availability of the VM will be increased.

We consider the resource requirement of an executor in two dimensions – CPU cores

and memory. Suppose, we are given a job with E executors where each executor has

CPU and memory requirements of τ
cpu
i and τmem

i , respectively. Furthermore, each job

has a deadline that needs to be met by the scheduler. After handling all the constraints,

the scheduler should try to reduce the resource (or VM) usage cost of the cluster. In

our case, we have a hybrid cloud setup where some VMs are located in local-premises

and some VMs are hired from the cloud on a pay-per-use basis. We assume that if the

resource requirements are met, the performance of all the executors from the same job is

similar regardless of whether they are placed on local or cloud VMs.

Suppose J is the current job to be scheduled in the cluster. If one or more previous
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Figure 5.1: Proposed Hybrid Cloud Model. The resource managers (cloud and local)
are controlled by the scheduler to create executors of job in VMs, turn on/off VMs, and
to monitor the cluster states.

jobs are still running in the cluster, the scheduler has to make a decision on whether to

utilize the spare resources on the already active VMs to place one or more executors of J,

or turn on new local/cloud VMs. Therefore, to make a cost-optimal scheduling decision

for each job, the scheduler should use a combination of both local/cloud VMs.

In our proposed model, the scheduler uses a queue which follows the EDF (earli-

est deadline first) order of jobs, to reduce deadline violations. The scheduler iterates

over each job, dynamically observes the latest cluster resource availability, and makes

scheduling decisions to place the executors for that job. For simplicity, we present the

model on a per-job basis, which means the model represents what the scheduler ob-

serves for making decisions for the next job in the scheduling queue. In the following

subsections (5.4.2, 5.4.3), we model the cost and resource constraints for both local and

cloud VMs. Then in subsection 5.4.4, we combine the resource models and constraints

to formulate the scheduling problem.
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5.4.2 Local Resource Model

Definition-1 (Local VM Set): Consider a set δL = {1, 2, · · · , M}, where M is the total

number of local VMs, 1 ≤ j ≤ M is the jth VM deployed locally.

The expression of local cost for the current job, J is derived as follows:

CostL = ∑
j∈δL

xj × PL
j × ∆tL

j , (5.1)

where PL
j is the unit price for a local VM; we define a binary decision variable xj to

indicate whether a local VM is active or not, i.e.,

xj =

1 if ∑i∈ξ uij > 0;

0 otherwise.
(5.2)

where we define a binary decision variable uij to indicate whether executor i is placed

in a local VM j or not, i.e., ∀j ∈ δL, we have

uij =

1 if executor i is placed in the local VM j;

0 otherwise.
(5.3)

∆tL
j is the change in the remaining active time for a local VM j if any executor of J is

placed in it, which is calculated by:

∆tL
j =

(TC − tL
j ) if TC > tL

j ;

0 otherwise.
(5.4)

Here, tL
j is the remaining active time for a local VM before placing any executor of the

current job. TC is the estimated completion time of the current job, J. We assume that the

TC can be provided for each job, which is generally measured from the job profile infor-

mation. Now, the executors of the job can be placed only on the local VMs, or in a hybrid

manner where both local and cloud VMs can be used. However, if any cloud VMs are

used for executor placements, TC will be higher than local-only placements, due to local



5.4 SLA-based Job Scheduling 113

to Cloud data transmissions and network latency. Suppose, the job is profiled in both

settings, and TL
C indicates the profiled completion time for the job for local-only place-

ment. In addition, TH
C indicates the profiled job completion time for a hybrid setting.

Thus, for the local model, TC can be defined as:

TC =

TL
C if ∑ ui,j == E ∀i ∈ ξ, ∀j ∈ δL;

TH
C otherwise.

(5.5)

Here, E is the total number of executors required by the job, so if the summation of

all the local placements equals E, it indicates that the job will be running entirely in the

local VMs.

Furthermore, the total resource demands of all the executors placed in a VM should

not exceed the total resource capacity of that VM. Note that, this can be done simply if

the current resource availability of the VM is checked against the resource demands of

executor(s) of the current job. Suppose, Cτ
i and Mτ

i are the CPU and memory resource

demands for each executor of the current job, respectively. Thus, the resource constraints

for local VMs must be satisfied as follows:

∑
i∈ξ

(uij × Cτ
i ) ≤ xj × CL

j , ∀j ∈ δL, (5.6)

∑
i∈ξ

(uij ×Mτ
i ) ≤ xj ×ML

j , ∀j ∈ δL. (5.7)

where CL
j and ML

j are the currently available CPU and memory resources in the local

VM j, respectively. Therefore, the scheduler can choose to place one or more executors

from the current job in the same VM if the current resource availability permits.

5.4.3 Cloud Resource Model

Definition-2 (Cloud VM Set): Consider a set δC = {1, 2, · · · , N}, where N is the total

number of cloud VMs, 1 ≤ j ≤ N is the jth VM deployed on the cloud.
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Similarly, the expression of cloud cost for the current job, J is derived as follows:

CostC = ∑
j∈δC

yj × PC
j × ∆tC

j , (5.8)

where PC
j is the unit price for a cloud VM; we define a binary decision variable yj to

indicate whether a cloud VM is active or not, i.e.,

yj =

1 if ∑i∈ξ vij > 0;

0 otherwise.
(5.9)

where we define a binary decision variable vij to indicate whether executor i is placed in

a cloud VM j or not, i.e., ∀j ∈ δC, we have

vij =

1 if executor i is placed in the cloud VM j;

0 otherwise.
(5.10)

∆tC
j is the change in the remaining active time for a cloud VM if any executor of the

current job is placed in it, which is calculated by

∆tC
j =

(TH
C − tC

j ) if TH
C > tC

j ;

0 otherwise.
(5.11)

where TH
C is the estimated completion time of the current job, when one or more cloud

VMs are used; and tC
j is the remaining active time for a cloud VM before placing any

executor of the current job. Further, the resource constraints for cloud VMs must be

satisfied as follows:

∑
i∈ξ

(vij × Cτ
i ) ≤ yj × CC

j , ∀j ∈ δC (5.12)

∑
i∈ξ

(vij ×Mτ
i ) ≤ yj ×MC

j , ∀j ∈ δC (5.13)

On the one hand, because the total number of the local VMs might be limited, we can
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use the cloud VMs for computing. Therefore, we can assume that M < N. On the other

hand, however, the usage cost of the VMs in local VMs is usually lower than that on the

cloud; hence we can assume that PL
j < PC

j . Therefore, similar VM instances deployed in

local-premises cost lower than cloud VM instances.

5.4.4 Problem Formulation

Based on the system model, we now formulate the job scheduling problem to minimize

the cost of using the whole cluster while scheduling the current job. The total cost is

modeled as the aggregated cost of using all the VMs from both local and cloud.

Executor Placement Constraint: An executor can be placed only in one of the VMs

and this placement constraint is denoted as:

∑
j∈δL

uij + ∑
j∈δC

vij = 1, ∀i ∈ ξ. (5.14)

Resource Capacity Constraints: The total resource demands of all the executors

placed in a VM should not exceed the total resource capacity of that VM. These con-

straints are described in (5.6), (5.7), (5.12) and (5.13).

Job Deadline Constraint: If the job deadline is considered, whether a job fails to

complete before the given deadline can be predicted by using Eq. 5.15.

TC < TD − TW , (5.15)

where TW = TS − TA is the waiting time for the current job to be scheduled. Note that,

if the executors are not placed entirely in the local VMs, then TC will be set to TH
C in the

local resource model.

On the one hand, if the job deadlines are not considered in the scheduling algorithm,

a job which is predicted to fail will be scheduled, only to waste resources which could

be used by any future job to successfully complete before their deadlines. On the other

hand, if a job is predicted to violate its deadline, it can be discarded without passing to

the scheduling algorithms. Thus, more resources will be freed to ensure that more jobs

can be successfully finished before the deadline. In the experiment section, we show the
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impact on deadline violations by the scheduling algorithms for both cases.

Therefore, the job scheduling problem can be formulated as Cost-Min:

min : Costtotal = CostL + CostC, (5.16)

s.t. : (5.6), (5.7), (5.12), (5.13), (5.14), (5.15).

The above problem is mixed-integer linear programming (MILP) [90] and non-convex

[91], generally known as NP-hard problem [92]. The computational complexity will sig-

nificantly increase due to the binary variables.

5.5 Proposed Job Scheduling Algorithms

We try to maximize the deadline met percentage by two ways: (1) by following an Ear-

liest Deadline First (EDF) order to schedule jobs, so that if multiple jobs are waiting to

be scheduled at the same time, jobs with tighter deadlines will have higher priority, and

(2) before passing the job specifications to the scheduler, we utilize a job’s completion

time estimate (TC) to check whether the job has a chance of violating the deadline. If so,

we remove this job from the queue and do not schedule it. In this way, we keep some

resources free in the cluster for future jobs to increase the overall deadline met num-

bers. The job queue is maintained externally from the scheduling algorithm, along with

the cluster resource availability. Both the job queue and the cluster states are updated

dynamically. Only the current job’s specification and the cluster states are passed to a

scheduling algorithm to make placement decisions. In this way, we reduce the overhead

on the scheduling algorithm. If it is estimated that the job will be completed before the

deadline, it is passed to the scheduler to make cost-effective executor placement deci-

sions. We propose two algorithms to solve the scheduling problem. The first algorithm

is a modified version of the First Fit (FF) heuristic algorithm for bin packing optimiza-

tion problem. The second algorithm has a greedy approach and iteratively places all the

executors of a job in the most cost-optimal position.
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5.5.1 First Fit (FF) Heuristic-based Algorithm

In the bin packing problem, items of different volumes must be packed into a finite

number of bins or containers each of a fixed given volume in a way that minimizes the

number of bins used. In our case, we have a similar problem where the executors can

be considered as the items which need to be packed into a finite number of VMs (bins).

Thus, the scheduling problem formulated in Section 5.4.4 can be thought of as a two-

dimensional (2D) vector bin packing problem, where each of the VM is a bin having two

dimensions, i.e., CPU cores and memory. Each executor from a job has a fixed resource

requirement in these two dimensions; thus, an executor can be thought of as an item.

Therefore, the objective is to minimize the total number of bins (VMs) used to pack

(place) a given set of items (executors) for each job. Algorithm 6 shows the modified

version of the First Fit (FF) heuristic [75] algorithm, which can be used for executor

placement in the scheduling process.

Algorithm 6: First Fit (FF) Heuristic Algorithm
Input: Job {E, ξ, Cτ

i , Mτ
i , TC}: The current job to be scheduled, ActiveVMList:

The list of all the active VMs (includes both cloud and local VMs)
Output: PlacementList, a list of VMs where the executors of Job will be placed

1 Procedure FF(Job, ActiveVMList)
2 PlacementList← φ
3 forall vm ∈ ActiveVMList do
4 while Placement of an executor in vm satisfies all the resource constraints do
5 Update(vm)
6 PlacementList.add(vm)
7 if PlacementList.size = E then
8 return PlacementList

9 if Cluster has unused VM(s) then
10 Turn on the cheapest vmnew that satisfies all the resource constraints of an

executor
11 ActiveVMList← ActiveVMList ∪ vmnew
12 goto step 3

13 return Failure

The input to this algorithm is the specification of the current job (E, ξ, Cτ
i , Mτ

i , TC) to

be scheduled, and a list of currently active VMs (either in local or cloud) in the cluster.
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The output is the PlacementList, which is a list of VMs where the executors of the current

job should be placed. For each active VM, the algorithm first checks whether the place-

ment of an executor of the current job will satisfy the resource constraints (lines 3-4). If

so, the resource capacity of the current VM is updated (line 5), and the current VM is

added to the PlacementList. The algorithm tries to place as many executors as possible

in the same VM if the resource requirements are met. Otherwise, it tries the next active

VM. If the total number of added VMs to the PlacementList reaches the total required

number of executors for the current job, the algorithm returns with the placement list. If

the currently active VMs are not sufficient to place any executor, then the cheapest VM

is turned on (if available) and is added to the active VM list (lines 12-14). Then, steps

3-10 are repeated again. If the cluster does not have sufficient resources to place all the

executors of the current job, the algorithm returns failure (line 17).

5.5.2 Greedy Iterative Optimization (GIO) Algorithm

The aforementioned MILP problem can be solved in polynomial time if the problem is

relaxed from a per-job basis (finding the most cost-optimal placements of all the execu-

tors of the current job) to a per-executor basis (only find the most cost-effective place-

ment of one executor from the current job). Although solving the relaxed problem will

provide near-optimal results as compared to the original problem, it can be solved in

polynomial time. We propose a greedy iterative optimization (GIO) algorithm, which

utilizes the pricing model of different VM instances and the estimated completion time

of each job to find cost-efficient executor placement (on a per-executor basis).

Suppose, the executor(s) from one or more jobs are running in a vm (deployed either

in the cloud or in the local part of the cluster). Let Tvm be the active remaining time of the

vm. If any executor of the current job J is placed in vm, the additional active remaining

time of vm due to this placement is ∆Tvm, which can be found in Eq. 5.17.

∆Tvm = max(0, TC − Tvm). (5.17)

Now, if the cluster has sufficient local resources to place all the executors from the

current job, then TC can be set to TL
C , otherwise it can be set to TH

C (Eq. 5.5). Hence, we
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can calculate the cost incurred by placing an executor of J in vm by using Eq. 5.18.

CostJ
e = ∆Tvm × Pvm. (5.18)

Here, if vm is deployed locally, then Pvm = PL
j (j ∈ δL). Otherwise, if vm is deployed on

cloud, then Pvm = PC
j (j ∈ δC). Suppose, vm is already in use and has some free resources

to place one or more executors for the current job. If placing the new job’s executor(s) in

it does not make it run longer than before (if TC ≤ Tvm), or only makes it run further for

a short period of time (TC − Tvm approaches 0), we can save cost by placing the current

job’s executor(s) in it.

Algorithm 7: Greedy Iterative Optimization (GIO) Algorithm
Input: Job {E, ξ, Cτ

i , Mτ
i , TC}: The current job to be scheduled, LocalVMList: The

list of all the local VMs, CloudVMList: The list of all the Cloud VMs
Output: PlacementList, a list of VMs where the executors of Job will be placed

1 Procedure GIO(Job, LocalVMList, CloudVMList)
2 VMList← φ
3 if LocalAvailability(Job, LocalVMList) == true then
4 VMList← LocalVMList

5 else
6 VMList← LocalVMList ∪ CloudVMList

7 PlacementList← φ

8 Sort(VMList) // Sort the VMs in an increasing order of CostJ
e

(Eq. 5.18)
9 forall vm ∈ VMList do

10 while Placement of an executor in vm satisfies all the resource constraints do
11 Update(vm)
12 PlacementList.add(vm)
13 if vm was unused then
14 Turn on vm

15 if PlacementList.size == E then
16 return PlacementList

17 return Failure

Algorithm 7 shows the proposed GIO algorithm. The input to this algorithm is the

current job to be scheduled, and a list of all the local VMs, and the list of all the cloud
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VMs. The output is the PlacementList, which is a list of VMs where the executors of

the current job should be placed. At first, we check whether the current local resource

availability is sufficient to place all the executors of the current job (line 3). If yes, we

only utilize the local VMs (line 4), otherwise all the VMs (line 5). Then, the VMList is

sorted in an increasing order of CostJ
e values (line 10). If the resource constraints are

met, then the current vm is greedily used to place as many executors as possible (lines

12-14). If the currently chosen vm was inactive, it is turned on (lines 15-16). The steps

for executor placement are repeated until all the executors of the current job are placed

(lines 18-19). If the cluster does not have sufficient resources to place all the executors

for the current job, a failure is returned (line 23).

Note that, for both FF and GIO algorithms, if there are not enough resources for the

current job (a failure is returned by the algorithms), the scheduler will wait until more

resources are freed so that it can schedule the current job.

5.5.3 Complexity Analysis

To calculate the worst-case time complexity of the proposed algorithms, we first as-

sume that the total number of VMs in the cluster is m, which includes both cloud and

local VMs. In the worst-case scenario, for every executor, the scheduler has to iterate

through each and every VM to find its placement. Hence, if the current job’s total

number of executor requirement is e, the worst-case time complexity of Algorithm 6

is O(me). For Algorithm 7, the time required to check the local resource availability is

m. In addition, the time required to sort the VMList (which may contain all the m VMs

in worst-case) is mlog(m). Therefore, the worst-case time complexity of Algorithm 7 is

O(m + mlog(m) + me).

5.6 Performance Evaluation - Simulation

We have used both simulation and real experiments to compare our proposed schedul-

ing algorithms with the baseline algorithms. In this section, we discuss the experimental

setup for simulation experiments, baseline scheduling algorithms used to compare our
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Table 5.2: Simulation Cluster Details

Instance Type CPU Cores Memory (GB) Quantity (small-scale) Quantity (large-scale)

m1.large 4 16 Local=1; Cloud=2 Local=10; Cloud=50

m1.xlarge 8 32 Local=1; Cloud=2 Local=10; Cloud=50

m2.xlarge 12 48 Local=1; Cloud=2 Local=10; Cloud=50

Table 5.3: VM Instance Pricing Models

Pricing Model 1 Pricing Model 2 Pricing Model 3 Pricing Model 4 Pricing Model (Real)

Instance Type
Price

(Cloud)

Price

(Local)

Price

(Cloud)

Price

(Local)

Price

(Cloud)

Price

(Local)

Price

(Cloud)

Price

(Local)

Price

(Cloud)

Price

(Local)

m1.large $0.004/s $0.001/s $0.002/s $0.001/s $0.002/s $0/s $0.002/s $0.002/s $0.24/h $0.12/h

m1.xlarge $0.008/s $0.002/s $0.004/s $0.002/s $0.004/s $0/s $0.004/s $0.004/s $0.48/h $0.24/h

m2.xlarge $0.012/s $0.003/s $0.006/s $0.003/s $0.006/s $0/s $0.006/s $0.006/s $0.72/h $0.36/h

proposed algorithms, and the results from the simulation experiments.

5.6.1 Simulation Setup

Table 5.2 shows the simulation cluster details. We have used three types of VMs, each

having different resource capacities. We have designed the clusters for both small-scale

and large-scale experiments. Generally, we have more resources on the cloud than the

local part of the cluster. Therefore, the small-scale cluster contains 3 VMs from each type

of VM instance, where 1 VM is considered to be deployed locally, and 2 VMs are con-

sidered to be deployed on cloud. For the large-scale experiment, 60 VMs from each type

of VM instance are used, where 10 VMs are considered to be deployed locally, and 50

VMs are considered to be deployed on cloud. We have designed different pricing mod-

els so that the effects of a pricing model in any scheduling algorithm can be evaluated.

As shown in Table 5.3, the price of the same instance type in cloud is four times higher

than local in pricing model 1, but only two times higher in pricing model 2. In pricing

model 3, the price of using any local instance is 0. Lastly, in pricing model 4, the price of

using the same type of instance is equal regardless of whether the instance is in cloud or

locally deployed.
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The job arrival times are generated from a Poisson distribution. We have designed

our experiment to simulate both a high-load and a light-load period of the cluster. A

Poisson mean of 5 and 100 is used to generate the job arrival rates for the high-load and

light-load period, respectively. These mean values for Poisson distribution are chosen

to reflect job arrival rates in real clusters in both low load and high load period, which

is observed in Facebook Hadoop workload trace. The estimated job completion time for

each job is generated using an exponential distribution with lambda (λ = 0.01). In addi-

tion, if a scheduler places the executors in a hybrid setting, where one or more executors

are placed in the cloud VMs, then the simulation environment dynamically increases the

job completion times by 30%. This is due to the fact that inter-cluster latency between

executors and data locality issues will cause performance degradation for the jobs. A re-

laxed deadline for each job is generated by adding the job’s estimated completion time

with a threshold value (1000 seconds for the light-load period, 5000 seconds for the high-

load period). All the resource requirements for each job are generated randomly within

a range of 1-6 (for CPU cores), 1-10 (for memory in GB), and 1-8 (for total executors). All

the simulation experiments are repeated 5 times to accommodate the randomness while

calculating the statistics.

We have implemented an event-based simulator in Java to simulate the job schedul-

ing in a hybrid cloud setup. We have implemented the proposed and baseline algo-

rithms in this simulator to evaluate and compare them regarding different aspects. The

simulator is open-source, and can be used to simulate new scheduling policies.

5.6.2 Baseline Schedulers

• First in First out (FIFO): It is used as a default scheduler in many big data process-

ing frameworks including Apache Spark. Here, the executors of a job are placed

in a round-robin fashion. However, as this default FIFO scheduler does not con-

sider pricing models or different instance types in the hybrid cloud, resources are

wasted if the cluster is not fully loaded with jobs.

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/tawfiqul-islam/RM-Simulator

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://github.com/tawfiqul-islam/RM-Simulator
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• First in First out Consolidate (FIFO-C): Another round-robin approach used by

the Spark scheduler to minimize the total number of VMs used. Note that, it works

by packing executors on the already running VMs to avoid choosing the unused

VMs.

• AsQ [88]: This scheduler addresses the task scheduling problem in hybrid cloud

and has similar objectives as our work. AsQ considers the deadline constraint and

tries to minimize the cost of the public cloud by maximizing the utilization of the

private cloud. In addition, to avoid network latency issues between the public and

private cloud, AsQ places the tasks for a job either in a local-only or in a cloud-only

manner.

• Mixed-Integer Linear Programming (MILP): We have designed a MILP-based

scheduler that generates the optimal cost-efficient placements for all the execu-

tors of each job. We have used SCP Solver API to solve the MILP problem in this

scheduler. SCP solver uses a revised branch-and-cut [93] based approach for solv-

ing the MILP problem. However, the solver can take a significantly long time to

solve the scheduling problem if the problem size is big (large cluster with many

VMs, or jobs with many executors).

5.6.3 Simulation Results

In this subsection, we demonstrate the results from the simulation experiments with

both small-scale and large-scale setups. However, as the MILP-based algorithm is not

scalable and becomes infeasible when the problem size goes bigger, it is excluded from

the large-scale simulation experiments. The small-scale experiment is used to compare

the proposed algorithms with the baseline algorithms regarding cost-efficiency, schedul-

ing overhead, and deadline violation. Furthermore, the large-scale setup is used to show

the scalability of the proposed algorithms.

http://scpsolver.org/

http://scpsolver.org/
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Figure 5.2: Cost comparison between the scheduling algorithms under different VM
instance pricing models in a lightly loaded cluster (the lower the better). The schedul-
ing delay is omitted to show how close the schedulers perform to the MILP solution
regarding true cost calculation.
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Figure 5.3: Cost comparison between the scheduling algorithms under different VM
instance pricing models in a highly loaded cluster (the lower the better). The schedul-
ing delay is omitted to show how close the schedulers perform to the MILP solution
regarding true cost calculation.
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Figure 5.4: Comparison of deadline met percentage between the scheduling algorithms
in both high load and light load period of the cluster (the higher the better). (a) and (b)
shows the result when the deadline constraint is not considered. (c) and (d) shows the
result when the deadline constraint is considered, and the jobs which are predicted to
fail are removed from the job queue.
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Evaluation of Cost Efficiency

In this evaluation, we have measured the cost of using the whole cluster to calculate the

cost incurred by a specific scheduling algorithm. We save the turn-on or turn-off status

of every VM in each second. Then we use one of the pricing models to calculate the

cost incurred by using each VM during the whole scheduling process. Lastly, the total

cost is calculated by summing up the cost of all the VMs. Note that, the MILP-based

algorithm sometimes take exponential time to complete. Therefore, for fair cost com-

parison and to show how close the proposed schedulers performed to the MILP-based

algorithm, the increased amount of VM usage cost due to the scheduling overhead is

excluded. Figs. 5.2 and 5.3 depict the comparison of cost between different schedul-

ing algorithms under different pricing models in both lightly loaded and highly loaded

clusters, respectively. It can be observed that, under any pricing models, the proposed

FF and GIO scheduling algorithms significantly reduce the cost usage of the cluster than

the default FIFO and FIFO-C scheduling algorithms. The GIO scheduling algorithm can

reduce the cost up to 25%, whereas the FF scheduling algorithm can reduce the cost up

to 15% than the FIFO and FIFO-C algorithms. Although FIFO-C utilizes a round-robin

approach, it tries to do so in the active VMs only. Thus, this approach reduces the cost

as compared to the naive FIFO. The AsQ algorithm only places the executors from the

same job either in a local-only or cloud-only fashion. However, the proposed FF and

GIO algorithms utilize both cloud and local VMs, thus, can reduce the cost further. The

FF algorithm starts the cheapest VM when the current set of VMs do not have sufficient

resource capacity to schedule a new job. When placing executors, it does not consider

VM prices and job runtimes in VMs, but selects the first available VM which satisfies the

resource constraints. However, as the GIO algorithm takes the job duration and pricing

models into consideration, it always performs slightly better than the FF. In addition,

it considers network latency and data transmission issues into consideration, and only

goes for a hybrid placement if there are not sufficient local resources available. How-

ever, even for hybrid placement, it uses the spare resources from both local and cloud

VMs to reduce cost significantly. As the MILP algorithm solves the scheduling problem

optimally before placing the executors of each job, it provides the most cost-efficient so-

lution. However, both FF and GIO algorithm reduces the cost significantly and operates
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very close to the ILP solution. Both algorithms only incur 8%-10% more cost than the

ILP algorithm under different pricing models in both lightly loaded and highly loaded

clusters.

Evaluation of Job Deadline

This evaluation is done by taking the percentage of jobs that finish before the given dead-

line. We have done experimentation in two cases. In the first case, we have recorded the

deadline met percentage when all the algorithms do not use deadline as a constraint. In

the second case, all the algorithms consider the deadline as a constraint, and if it can be

predicted from the job estimation time that a job is going to fail to meet its deadline, that

job is not scheduled. The reason to conduct experiments in both cases is to observe the

effects of freeing up resources from the failed jobs (estimated), which creates more room

for future jobs so that they can meet the deadline.

Figs. 5.4a and 5.4b depict the deadline met percentage by all the scheduling algo-

rithms in light load and high load clusters, respectively, when the deadline is not used

as a constraint. The deadline met percentage is lower in case of high load scenarios as the

cluster is over-utilized, and there is a shortage of resources which causes many jobs to vi-

olate the deadline. For the light load case, the deadline met percentage is higher as there

are more resources to accommodate the jobs whenever they arrive. In both cases, the

MILP algorithm performs the best as it creates the least amount of resource fragments

by tightly packing the executors. However, the FIFO algorithm distributively places

executors that create many resource fragments in the cluster, which causes resource

scarcity and more deadline violations. The FIFO-C algorithm performs slightly better

than FIFO due to the consolidated approach. However, the AsQ algorithm chooses ei-

ther local-only or cloud-only mode for placement. Thus, when the cluster is overloaded

with many jobs at the same time, there is an increase in deadline violations due to re-

source scarcity. Both the proposed algorithms perform closely to the MILP-based algo-

rithm where the GIO and FF algorithms are behind in the deadline met percentage by

5% and 8%, respectively. Figs. 5.4c and 5.4d exhibit the deadline met percentage by all

the scheduling algorithms in both light load and high load clusters when the deadline
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constraint is used. It can be observed that, as many predicted to be failed jobs are not

scheduled in the cluster, the overall deadline met percentage improved significantly for

all the scheduling algorithms. The MILP-based algorithm performs the best in this case

as well, followed by the GIO and FF algorithm, while the AsQ performs the worst.

Evaluation of Scheduling Delay

The scheduling delay is the time an algorithm takes to make scheduling decisions for all

the executors of a job. We have measured it by measuring the time it takes from calling

a particular scheduling algorithm up to the return from the scheduling algorithm with

all the executor placement decisions for a job. The average scheduling delay for an

algorithm is calculated by taking the average of the scheduling delays for all the jobs

scheduled by that algorithm.

Table 5.4: Average Scheduling Delay (small-scale)

Algorithm Average Scheduling Delay

FIFO 0.18 µs

FIFO-C 0.20 µs

AsQ 0.31 µs

FirstFit 0.28 µs

GIO 0.40 µs

ILP 1.85 s

Table 5.4 shows the average scheduling delay by each algorithm in the small-scale

setup. As the FIFO and FIFO-C algorithms follow a round-robin approach while placing

the executors, the decision time is the shortest. Thus these algorithms have the lowest

scheduling overheads. AsQ, FF and GIO are heuristic-based approaches, so these algo-

rithms also showcase low scheduling delays which are closed to the native schedulers

(FIFO and FIFO-C). However, the MILP-based solution takes as long as 10-minutes in

the worst-case even in the small-scale cluster setup and has an average scheduling de-
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lay of 1.85 s. Therefore, even though this algorithm can find the optimal cost-efficient

executor placements, it is not scalable. Thus, it is only applicable to small-scale clusters.

Evaluation of Scalability

We have performed simulation on a large-scale setup where the cluster has 60 VMs (10

local VMs and 50 cloud VMs). We simulated the scheduling of 10,000 jobs in one whole

day. As the MILP-based algorithm is not scalable, we only conducted the experiments

with FIFO, FIFO-C, AsQ, FF, and GIO algorithms.
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Figure 5.5: Cost comparison in large-scale simulation (the lower the better). FIFO in-
curs a very high cost as round-robin placements of executors lead to many active VMs
simultaneously.

Fig. 5.5 shows the cost comparison results between the scheduling algorithms in both

light load and high load scenarios for the large-scale experiment. It can be seen that both

FF and GIO outperform the default FIFO and FIFO-C by a significant margin and reduce

the cost up to 80%. The AsQ algorithm also tries to find cost-efficient placements in local-

only or cloud-only settings. However, as our approaches leverage the hybrid setting to

squeeze out spare resources in all the VMs across the cluster, the FF and GIO algorithms

reduce the cost up to 15% as compared to the AsQ. Note that, for the small-scale setup,

AsQ algorithm performed poorly as compared to the FIFO-C, this is due to the fact that

there is limited resource availability in a small cluster, so local-only or cloud-only mode

of placement is heavily punished in a higher load. However, for the large-scale setup,
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both the local and cloud portion of the cluster have sufficient resources, thus the AsQ

outperforms the FIFO-C.

Table 5.5: Average Scheduling Delay (large-scale)

Algorithm Average Scheduling Delay

FIFO 0.20 µs

FIFO-C 0.24 µs

AsQ 0.0.47 µs

FirstFit 0.33 µs

GIO 0.83 µs

Table 5.5 presents the average scheduling delay for all the algorithms. It can be

observed that even for a large-scale setup with many jobs, all the algorithms have a

scheduling overhead in µs level thus making all of them extremely scalable.

5.7 Performance Evaluation - Real Experiments

To show the applicability of the proposed algorithms in a real scenario and to validate

the results from the simulation experiments, we have conducted real experiments on

a Mesos cluster. This section presents the implemented system, experimental setup,

benchmark applications and experimental results regarding different aspects of job schedul-

ing.

5.7.1 System Implementation

We have developed a prototype system to evaluate the performance of the proposed job

scheduling algorithms in a real hybrid cloud setup. Fig. 5.6 shows the architecture of

the system. To implement any scheduling policy, the capability of placing an executor

in any VM is needed. Apache Mesos [10] cluster manager provides this functionality by

dynamic resource reservations, where any type of resource (e.g., CPU cores or memory)
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Figure 5.6: System Architecture. The resource managers communicate with the Mesos
cluster manager through the REST APIs. The Mesos master is deployed in the local
part of the cluster (local VM-1).

can be reserved in any VM so that only the desired executor can run with the reserved

resources. Mesos provides HTTP APIs to control dynamic resource reservation of a

cluster. Therefore, a scheduler can dynamically place executors in any VM during the

scheduling process. As we have a hybrid cluster comprising of both local and cloud

VMs, a Mesos cluster can be set up using these VMs, where each VM works as a Mesos

agent. Here, each Spark executor runs inside a Mesos container in a Mesos agent.

As shown in the system architecture, we have implemented three additional mod-

ules (grey boxes) that work in collaboration with the Mesos master. All these modules

are deployed into a local VM along with the Mesos master, which works as a central

point of control for both the local and cloud VMs. Thus, from a job’s perspective, there

is a single cluster. However, the local and cloud VMs are deployed in different regions to

http://mesos.apache.org/documentation/latest/operator-http-api/

http://mesos.apache.org/documentation/latest/operator-http-api/
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exhibit a true hybrid cloud setup. There are two resource managers in the implemented

system - Cloud and Local; for managing the VMs. Each resource manager can communi-

cate with the Mesos master using the HTTP APIs for performing resource provisioning.

Furthermore, resource managers can fetch cluster states (e.g., job and resource status)

from the Mesos master. The scheduling module controls the resource manager modules

to perform resource provisioning for any executor. Moreover, it can also instruct the

resource managers to turn on/off any VM. When the resources are reserved for all the

executors of a job, the scheduling module can directly launch a Spark job in the cluster

by using the SparkLauncher API. The developed modules are not extended from the

default Spark’s framework scheduler. Therefore, it is pluggable to the Mesos cluster

manager and can be extended to work with any other Mesos-supported big data frame-

works. We have implemented our proposed and baseline scheduling algorithms in the

scheduler module. Java programming language was used to implement the proposed

modules and scheduling algorithms. OpenStack Boto API was used to automate the VM

turn on/off mechanisms.

5.7.2 Real Experiment Setup

We have used Nectar Cloud, a national cloud computing infrastructure for research in

Australia to deploy a Mesos cluster. It is a cluster consisting of three different types of

VM instances. The detailed VM configurations and quantity used from each type is the

same as the small-scale setup shown in Table 5.2. However, the pricing model is differ-

ent from the simulation pricing models. As shown in Table 5.3 (Pricing Model (Real)),

the pricing of the real cloud instances is similar to the VM instance pricing in Amazon

AWS (Sydney, Australia). Also, the price of a locally deployed instance is set to be half

of the same instance price deployed in cloud. We set up a true hybrid cluster by de-

ploying the VMs in two different regions: Melbourne and Tasmania. We have used the

VMs deployed in Melbourne as the local VMs, and the VMs deployed in Tasmania as

the cloud VMs. The end-to-end delay between VMs within the same regional boundary

https://spark.apache.org/docs/2.3.0/api/java/index.html?org/apache/spark/
launcher/package-summary.html

https://pypi.org/project/boto/
https://nectar.org.au/research-cloud/

https://spark.apache.org/docs/2.3.0/api/java/index.html?org/apache/spark/launcher/package-summary.html
https://spark.apache.org/docs/2.3.0/api/java/index.html?org/apache/spark/launcher/package-summary.html
https://pypi.org/project/boto/
https://nectar.org.au/research-cloud/
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is approximately 10ms, whereas, the end-to-end delay between VMs from different re-

gional boundaries is approximately 40ms. In addition, we have performed iperf testing

to measure the bandwidth between the VMs. Within the same regional boundary, the

bandwidth between the VMs is approximately 2Gbps, whereas, the bandwidth between

two VMs from different regional boundaries is around 600Mbps.

Our experimental cluster has 10 VMs with a total of 76 CPU (cores) and 304GB of

memory. In each VM, we have installed Apache Mesos (version 1.4.0) and Apache Spark

(version 2.3.1). One m1.large type VM instance was used as the Mesos master while all

the remaining VMs were used as Mesos Agents. The Mesos master node is deployed

locally in the Melbourne region. The implemented scheduler and resource manager

modules were plugged into the Mesos master node. The developed pluggable modules

and the scheduling algorithms are open source and can be used to implement and test

new scheduling policies.

5.7.3 Benchmarking Applications

We have used BigDataBench [67] benchmarking suite for the real experiments. We

have taken three types of applications from this benchmark, which are: WordCount

(compute-intensive), Sort (memory-intensive), and PageRank (network-intensive). We

have randomly mixed all these three applications mentioned above to generate the

workload. The job arrival times from the Facebook Hadoop workload trace is extracted

for an hour. Collecting job profiles to estimate the completion times is a well-known

mechanism. In our experiments, each job is profiled in the real cluster for 10 times, and

the average job completion time is taken to use as the estimated job completion time

(TC). These estimated job completion times are used in the problem model by the pro-

posed scheduling algorithms to make scheduling decisions. However, to determine the

schedulers performance regarding cost optimization in the real experiment, we mea-

sure both the job completion time and the use of VM resources in real-time during the

scheduling process for rigorous performance evaluation. The active time remaining for

either a cloud or local VM (∆tL
j for local and ∆tC

j for cloud) can be calculated by using

https://github.com/tawfiqul-islam/Hybrid-Cloud-Scheduler
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

https://github.com/tawfiqul-islam/Hybrid-Cloud-Scheduler
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
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Figure 5.7: Cost Comparison between different scheduling algorithms (the lower the
better). (a) shows the total cost incurred over a scheduling period, (b) shows the cumu-
lative cost incurred over time.
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Figure 5.8: Comparison of deadline met percentage between the scheduling algorithms
(the higher the better).

the job completion time estimates (TC) for the jobs which have one or more executors

placed in a particular VM. The maximum estimated completion time is taken among

these jobs and is subtracted from the current clock time to get an estimate on a VMs

active remaining time.

5.7.4 Real Experiment Results

We have evaluated the proposed algorithm regarding cost efficiency, job deadline, and

average job completion time. For these experiments, we have used Pricing Model (Real)

as shown in Table 5.3 for the VM pricing, which is similar to the Amazon AWS pricing

scheme for the cloud instances. The price of the same instance type deployed locally is

considered to be half of the cloud instance price.

Evaluation of Cost Efficiency

In this evaluation, we show the cost efficiency of different scheduling algorithms in the

real experimental setup. Both the total cost and the cumulative cost is collected while

running 100 jobs (mix of WordCount, Sort, and PageRank) for one hour. Fig. 5.7a ex-

hibits the total cost incurred and Fig. 5.7b shows the cumulative cost incurred by dif-

ferent scheduling algorithms. It can be observed that the default FIFO and FIFO-C al-

gorithms have the highest VM usage cost which increases linearly over time. However,

the MILP and the proposed FF and GIO algorithms reduce the cost significantly as they
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Figure 5.9: Comparison of average job duration between the scheduling algorithms for
different types of jobs (the lower the better).

utilize the pricing model of VMs and uses the cheaper VMs for executor placement. Al-

though the AsQ algorithm utilizes the pricing model, it restricts executor placements

to local or cloud only. Thus, in a peak load where the cluster does not have sufficient

resources, AsQ algorithm fails to utilize the spare resources in VMs by avoiding hybrid

placement. The MILP algorithm finds the most cost-optimal placement of executors for

each job, due to the scheduling overhead of MILP (computational complexity in some

cases), the GIO algorithm performs slightly better and provides a lower cost. Further-

more, the MILP algorithm is only applicable to a small cluster as it is not scalable due to

the exponential increase in decision making for a large cluster.

Evaluation of Job Deadline

In this evaluation, we compare the deadline met percentage from different scheduling

algorithms. As the FIFO and FIFO-c algorithms do not consider the EDF strategy, they

have higher deadline violations as compared to the other algorithms. Although AsQ

gives a better deadline met percentage than the default algorithms, it shows a lower

deadline met percentage in a peak load, as jobs have to wait longer for a local-only or

a cloud-only placement. The proposed FF and GIO algorithms show a higher deadline

met percentage due to tight packing of executors and utilizing spare resources in the

hybrid setting. Although hybrid placement increases job duration, the jobs do not have

to wait longer as the algorithms schedule the jobs as soon as the combined resource
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(in both local and cloud VMs) are sufficient to place all the executors. MILP algorithm

solves the executor placement in the most cost-efficient way. However, in many cases, it

takes a lot of time to find a solution (high scheduling delay), which causes jobs to wait

longer and violate deadlines.

Effects on Job Performance

Although it is possible to minimize the cost of using a hybrid cluster by packing more ex-

ecutors in fewer nodes, it causes some performance overhead for CPU/memory-bound

jobs. However, when the executors from the same job are distributed over multiple

regional VMs, the job completion time increases due to network latency and data trans-

mission delays. As shown in Fig. 5.9, the default FIFO and FIFO-C algorithms always

distribute the executors, so most of the placements are hybrid which causes a high av-

erage job duration. Network-bound jobs (PageRank) suffer the most, where a lot of

network communications take place. The AsQ algorithm provides the lowest average

job duration for different types of jobs, as the data transmissions between executors only

occur within the same regional boundary. Although the FF, GIO, and MILP algorithms

utilize hybrid placement to reduce cost, they have a slightly higher average job duration

than the AsQ algorithm. However, due to the tight packing of executors, sometimes

these algorithms also place executors in a single region, thus the performance overhead

is not as extreme as the FIFO and FIFO-C. Nevertheless, this slight performance degra-

dation is negligible as compared to the cost-saving in the hybrid cluster.

5.8 Summary

In this chapter, we have formulated the SLA-based Spark job scheduling problem in a

hybrid cloud as an optimization problem. We have proposed two greedy heuristics-

based algorithms to solve the scheduling problem. Besides, we have implemented the

proposed algorithms on top of Apache Mesos to show the applicability in real environ-

ments. We have compared the proposed approaches in both simulated and real experi-

ments to show the superiority of them over the baseline approaches. The results show
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that our proposed algorithms can significantly reduce VM usage costs in a hybrid cloud.

Although there are performance overheads due to data transmission delays caused by

hybrid placements, it is negligible as compared to the cost-saving benefits. Moreover,

the proposed approaches are highly scalable and have low scheduling overhead, which

is similar to the native Spark schedulers.

This chapter focuses more on the user’s perspective, and when a user submits a

Spark job, they do not provide network or disk as resource constraints. Thus, we work

on a higher level where we consider resource capacity/demand constraints which are

required at the executor creation stage. However, we try to capture the network trans-

mission issues by considering the job duration increase in the problem model. In future,

we plan to investigate more on the performance impacts caused by hybrid placements.

In addition, we plan to investigate the trade-offs between cost-efficiency and job perfor-

mance. A more sophisticated model needs to be devised, which can consider both objec-

tives together to generate efficient job schedules. In addition, we would like to explore

deeper into the effects of VM turn on/off mechanisms on job performance and cost-

efficiency. As Fog computing and Edge computing are becoming increasingly popular,

we plan to extend the scheduling algorithms to work with a multi-tier Fog-Edge-Cloud

deployed cluster.





Chapter 6

Learning Scheduling Algorithms with
Deep Reinforcement Learning (DRL)

Many organizations are shifting towards a cloud deployment of their big data computing clusters.

However, job scheduling is a complex problem in the presence of various Service Level Agreement

(SLA) objectives such as monetary cost reduction, and job performance improvement. Most of the

existing research does not address multiple objectives together and fail to capture the inherent cluster

and workload characteristics of a Spark cluster. In this chapter, we formulate the job scheduling

problem of a cloud-deployed Spark cluster and propose a novel Reinforcement Learning (RL) model to

accommodate the SLA objectives mentioned earlier. Besides, we develop the RL cluster environment

on top of TensorFlow (TF) and implement two Deep Reinforce Learning (DRL) based schedulers in

TF-Agents framework. The proposed DRL-based scheduling agents work at a fine-grained level to

place the executors of jobs while leveraging from the pricing model of cloud VM instances.

6.1 Introduction

B IG data processing frameworks such as Hadoop [12], Spark [6], Storm became ex-

tremely popular due to their use in the data analytics domain in many significant

areas such as science, business, and research. These frameworks can be deployed in

both on-premise physical resources or on the cloud. However, cloud service providers

(CSPs) offer flexible, scalable, and affordable computing resources on a pay-as-you-go

https://storm.apache.org/
This chapter is derived from:

• Muhammed Tawfiqul Islam, Shanika Karunasekera, and Rajkumar Buyya, ”Cost and Performance-
oriented Spark Job Scheduling in Cloud with Deep Reinforcement Learning”, IEEE Transactions on
Parallel and Distributed Systems (TPDS) [Under Review].
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https://storm.apache.org/
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model. Furthermore, cloud resources are easy to manage and deploy than physical re-

sources. Thus, many organizations are moving towards the deployment of big data

analytics cluster on the cloud to avoid the hassle of managing physical resources. In the

job scheduling problem of a big data computing cluster, the most important objective

is the performance improvement of the jobs. However, when the cluster is deployed

on the cloud, job scheduling becomes more complicated in the presence of other crucial

Service Level Agreement (SLA) objectives such as the monetary cost reduction.

In this work, we focus on the SLA-based job scheduling problem for a cloud-deployed

Apache Spark cluster. We have chosen Apache Spark as it is one of the most promi-

nent frameworks for big data processing. Spark stores intermediate results in mem-

ory to speed up processing. Moreover, it is more scalable than other platforms and

suitable for running a variety of complex analytics jobs. Spark programs can be im-

plemented in many high-level programming languages, and it also supports different

data sources such as HDFS [11], Hbase [14], Cassandra [15], Amazon S3. The data ab-

straction of Spark is called Resilient Distributed Dataset (RDD) [16], which by design is

fault-tolerant.

When a Spark cluster is deployed, it can be used to run one or more jobs. Generally,

when a job is submitted for execution, the framework scheduler is responsible for allo-

cating chunks of resources (e.g., CPU, memory), which are called executors. A job can

run one or more tasks in parallel with these executors. The default Spark scheduler can

create the executors of a job in a distributed fashion in the worker nodes. This approach

allows balanced use of the cluster and results in performance benefits to the compute-

intensive workloads as interference between co-located executors are avoided. Also,

the executors of the jobs can be packed in fewer nodes. Although packed placement

puts more stress on the worker nodes, it can improve the performance of the network-

intensive jobs as communication between the executors from the same job becomes

intra-node. However, depending on the target objective, the users have to determine

what type of executor placement should the scheduler use, which often requires inherent

knowledge on both the resources and the workload characteristics. Besides, addressing

additional SLA objectives such as cost and performance is not possible by the framework

https://aws.amazon.com/s3/

https://aws.amazon.com/s3/
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scheduler. There are a lot of existing works [27, 71, 50, 72, 21, 34, 84, 94, 95, 96, 97, 98] that

focused on various SLA objectives. However, these works do not consider the implica-

tion of executor creations along with the target objectives. Most of the works also assume

the cluster setup to be homogeneous. However, this is not the case for a cloud-deployed

cluster, where different sizes of the VM instances can be used to deploy the cluster to

leverage from the pricing model to reduce the monetary cost. Finally, heuristic-based

and performance model-based solutions often focus on a specific objective, and can not

be generalized to adapt to a wide range of objectives while considering the inherent

characteristics of the workloads.

Recently, Deep Reinforcement Learning (DRL) based approaches are used to solve

complex real-world problems [99], where a DRL agent does not have any prior knowl-

edge of the environment. Instead, it interacts with the real environment, explores dif-

ferent situations, and gathers rewards based on its actions. These experiences are used

by the agent to build a policy which maximizes the overall reward. The reward is noth-

ing but a model of the desired objectives. In this chapter, we propose DRL-based job

scheduling agents for Apache Spark, which addresses the challenges mentioned above.

We formulate the scheduling problem and propose an RL model for the job scheduling

problem. We also formulate the reward in a way that it can reflect the target SLA ob-

jectives such as monetary cost and average job duration reductions. We implement a

Q Learning-based agent (Deep Q Learning or DQN), and a policy gradient-based agent

(REINFORCE), which automatically learn to schedule jobs efficiently while considering

different SLA objectives and the inherent features of the workloads. We also develop a

scheduling environment for the cloud-deployed Spark cluster to train the DRL agents.

Both the scheduling environment and the agents are developed on top of TensorFlow

(TF) Agents. The scheduling agents can interact with the environment to learn about

the basics of scheduling, such as satisfying resource capacity and demand constraints

for the jobs. Besides, we also train the agents to minimize the monetary cost of VM us-

age and improve the average job duration of jobs. The environment states and reward

signals drive the learning for an agent. When the agent interacts with the scheduling

environment, it gets a reward depending on the chosen action. In our proposed RL

model for the scheduling problem, an action is a selection of a worker node (VM) for the
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creation of an executor of a specific job.

In summary, the contributions of this work are as follows:

• We provide an RL model of the Spark job scheduling problem in cloud computing

environments. We also formulate the rewards to train DRL-based agents to satisfy

resource constraints, optimize cost-efficiency, and reduce average job duration of

a cluster.

• We develop a prototype of the RL model in a python environment and plug it to

the TF-Agents framework.

• We implement two DeepRL-based agents, DQN and REINFORCE, and train them

as scheduling agents in the TF-agent framework.

• We conduct extensive experiments with real-world workload traces to evaluate

the performance of the DRL-based scheduling agents and compare them with the

baseline schedulers.

The rest of the chapter is organized as follows. In section 6.2, we discuss the existing

works related to this chapter. In section 6.3, we formulate the scheduling problem. In

section 6.4, we show the proposed RL model. In section 6.5, we describe the proposed

DRL-based scheduling agents. In section 6.6, we exhibit the implemented RL environ-

ment. In section 6.7, we provide the experimental setup, baseline algorithms, and the

performance evaluation of the DRL-based agents. In section 6.7.7, we discuss different

strategies learned by the DRL agents and their limitations. Section 6.8 concludes the

chapter and highlights future work.

6.2 Related Work

6.2.1 Framework Schedulers

Apache Spark uses the (First in First out) FIFO scheduler by default, which places the

executors of a job in a distributed manner (spreads out) to reduce overheads on sin-

gle worker nodes (or VMs if cloud deployment is considered). Although this strategy
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can improve the performance of compute-intensive workloads, due to the increasing

network shuffle operations, network-intensive workloads can suffer from performance

overheads. Spark can also consolidate the core usage to minimize the total nodes used

in the cluster. However, it does not consider the cost of VMs and the runtime of jobs.

Therefore, costly VMs might be used for a longer period, incurring a higher VM cost.

Fair and DRF [17] based schedulers improve the fairness among multiple jobs in a clus-

ter. However, these schedulers do not improve SLA-objectives such as cost-efficiency in

a cloud-deployed cluster.

6.2.2 Performance model and Heuristic-based Schedulers

There are a few works which tried to improve different aspects of scheduling for Spark-

based jobs. Most of these approaches build performance models based on different

workload and resource characteristics. Then the performance models are used for re-

source demand prediction, or to design sophisticated heuristics to achieve one or more

objectives.

Sparrow [27] is a decentralized scheduler which uses a random sampling-based ap-

proach to improve the performance of the default Spark scheduling. Quasar [71] is a

cluster manager that minimizes resource utilization of a cluster while satisfying user-

supplied application performance targets. It uses collaborative filtering to find the im-

pacts of different resources on an application’s performance. Then this information

is used for efficient resource allocation and scheduling. Morpheus [50] estimates job

performance from historical traces, then performs a packed placement of containers to

minimize cluster resource usage cost. Moreover, Morpheus can also re-provision failed

jobs dynamically to increase overall cluster performance. Justice [72] uses deadline con-

straints of each job with historical job execution traces for admission control and re-

source allocation. It also automatically adapts to workload variations to provide suffi-

cient resources to each job so that the deadline is met. OptEx [21] models the perfor-

mance of Spark jobs from the profiling information. Then the performance model is

used to compose a cost-efficient cluster while deploying each job only with the minimal

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
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set of VMs required to satisfy its deadline. Furthermore, it is assumed that each job has

the same executor size, which is the total resource capacity of a VM. Maroulis et al. [34]

utilize the DVFS technique to tune the CPU frequencies for the incoming workloads to

decrease energy consumption. Li et al. [84] also provided an energy-efficient scheduler

where the algorithm assumes that each job has an equal executor size, which is equiva-

lent to the total resource capacity of a VM.

The problems with the performance model and heuristic-based approaches are: (1)

they only work on specific SLA objectives and can not be generalized to multiple ob-

jectives (2) the performance models depend heavily on the past data, which sometimes

can be obsolete due to various changes in the cluster environment (3) it is difficult to

tune or modify heuristic-based approaches to incorporate workload and cluster changes.

Therefore, recently many researchers are focusing on RL-based approaches to tackle the

scheduling problem in a more efficient and scalable manner.

6.2.3 DRL-based Schedulers

The application of Deep Reinforcement Learning (DRL) for job scheduling is relatively

new. There are a few works which tried to address different SLA objectives of scheduling

cloud-based applications.

Liu et al. [85] developed a hierarchical framework for cloud resource allocation while

reducing energy consumption and latency degradation. The global tier uses Q-learning

for VM resource allocation. In contrast, the local tier uses an LSTM-based workload

predictor and a model-free RL based power manager for local servers. Wei et al. [100]

proposed a QoS-aware job scheduling algorithm for applications in a cloud deployment.

They used DQN with target network and experience replay to improve the stability of

the algorithm. The main objective was to improve the average job response time while

maximizing VM resource utilization. DeepRM [94] used REINFORCE, a policy gradient

DeepRL algorithm for multi-resource packing in cluster scheduling. The main objec-

tive was to minimize the average job slowdowns. However, as all the cluster resources

are considered as a big chunk of CPU and memory in the state space, the cluster is as-

sumed to be homogeneous. Decima [95] also uses a policy gradient agent and has a
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similar objective as DeepRM. Here, both the agent and the environment was designed

to tackle the DAG scheduling problems within each job in Spark, while considering in-

terdependent tasks. Li et al. [101] considered an Actor Critic-based algorithm to deal

with the processing of unbounded streams of continuous data with high scalability in

Apache Storm. The scheduling problem was to assign workloads to particular worker

nodes, while the objective was to reduce the average end-to-end tuple processing time.

This work also assumes the cluster setup to be homogeneous and does not consider cost-

efficiency. DSS [96] is an automated big-data task scheduling approach in cloud comput-

ing environments, which combines DRL and LSTM to automatically predict the VMs to

which each incoming big data job should be scheduled to improve the performance of

big data analytics while reducing the resource execution cost. Harmony [102] is a deep

learning-driven ML cluster scheduler that places training jobs in a way that minimizes

interference and maximizes average job completion time. It uses an Actor Critic-based

algorithm and job-aware action space exploration with experience replay. Besides, it has

a reward prediction model, which is trained using historical samples and used for pro-

ducing reward for unseen placement. Cheng et al. [97] used a DQN-based algorithm for

Spark job scheduling in Cloud. The main objective of this work is to optimize the band-

width resource cost, along with node and link energy consumption minimization. Spear

[103] works to minimize the makespan of complex DAG-based jobs while considering

both task dependencies and heterogeneous resource demands at the same time. Spear

utilizes Monte Carlo Tree Search (MCTS) in task scheduling and trains a DRL model to

guide the expansion and roll-out steps in MCTS. Wu et al. [104] proposed an optimal

task allocation scheme with a virtual network mapping algorithm based on deep CNN

and value-function based Q-learning. Here, tasks are allocated onto proper physical

nodes with the objective being the long-term revenue maximization while satisfying the

task requirements. Thamsen et al. [98] used a Gradient Bandit method to improve the

resource utilization and job throughput of Spark and Flink jobs, where the RL model

learns the co-location goodness of different types of jobs on shared resources.

In summary, most of these existing approaches focus mainly on performance im-

provement. Furthermore, these works also assume that each job/task will be assigned

to one VM or worker-node only. Moreover, many works also assume the cluster nodes to
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be homogeneous, which may not be the case when the cluster is deployed on the cloud.

Thus, these works do not consider a fine-grained level of executor placement in Spark

job scheduling. In contrast, our agent can place executors from the same job in different

VMs (when needed, to optimize for a specific policy), and guarantees to launch all of

the executors of a job on the required resources. In addition, our scheduling agents can

handle different sizes of executors of jobs, and different VM instance sizes with a pric-

ing model. Furthermore, our agent can be trained to optimize a single objective such as

cost-efficiency or performance improvement. In addition, our agent can also be trained

to balance between multiple objectives. Lastly, the proposed scheduling agents can learn

the inherent characteristics of the jobs to find the proper placement strategy to improve

the target objectives, without any prior information on the job or the cluster.

6.3 Problem Formulation

We consider a Spark cluster set up using cloud Virtual Machines (VM) as the worker

nodes. Generally, Cloud Service Providers (CSPs) offer different instance types for VMs

where each type varies on resource capacity. For our problem, we assume that any type

or a mix of different types of VM instances can be used to deploy the cluster.

In the deployed cluster, one or more jobs can be submitted by the users; and the users

specify the resource demands for their submitted jobs. The job specification contains the

total number of executors required and the size of all these executors in-terms of CPU

and memory. A job can be of different types and can be submitted at any time. There-

fore, job arrival times are stochastic, and the job scheduler in the cluster has no prior

knowledge about the arrival of jobs. The scheduler processes each job on an FCFS (First

Come First Serve) basis, which is the usual way of handling jobs in a big data cluster.

However, the scheduler has to choose the VMs where the executors of the current job

should be created. The target of the scheduler is to reduce the overall monetary cost of

the whole cluster for all the jobs. In addition, it has an additional target of reducing job

completion times. The notation of symbols for the problem formulation can be found in

table 6.1.

Suppose N is the total number of VMs that were used to deploy a Spark cluster.
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Table 6.1: Definition of Symbols

Symbol Definition

N The total number of VMs in the cluster

M The total number of jobs in the cluster

E The current total number of executors running in the cluster

ψ The index set of all the jobs, ψ = 1, 2, ..., N

δ The index set of all the VMs, δ = 1, 2, ..., M

ω The index set of all the current executors, ω = 1, 2, ..., E

vmi
cpu CPU capacity of a VM, i ∈ δ

vmi
mem Memory capacity of a VM, i ∈ δ

vmi
price Unit price of a VM, i ∈ δ

vmi
T The total time a VM was used, i ∈ δ

ek
cpu CPU demand of an executor, k ∈ ω

ek
mem Memory demand of an executor, k ∈ ω

jobj
T The completion time of a job, j ∈ ψ
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These VMs can be of any instance types/sizes (which means the resource capacities may

vary in-terms of CPU and memory). M is the total number of jobs that needs to be sched-

uled during the whole scheduling process. When a job is submitted to the cluster, the

scheduler has to create the executors in one or more VMs and has to follow the resource

capacity constraints of the VMs and the resource demand constraints of the current job.

The users submit the resource demand of an executor in two dimensions – CPU cores

and memory. Therefore, each executor of a job can be treated as a multi-dimensional box

that needs to be placed to a particular VM (bin) in the scheduling process. Therefore, the

CPU and memory resource demand and capacity constraints can be defined as follows:

∑
k∈ω

(ek
cpu × xki) ≤ vmi

cpu ∀i ∈ δ (6.1)

∑
k∈ω

(ek
mem × xki) ≤ vmi

mem ∀i ∈ δ (6.2)

where xki is a binary decision variable which is set to 1 if the executor k is placed in

the VM i; otherwise it is set to 0.

When an executor for a job is created, resources from only 1 VM should be used and

the scheduler should not allocate a mix of resource from multiple VMs to one executor.

This constraint can be defined as follows:

∑
i∈δ

xki = 1 ∀k ∈ ω (6.3)

After the end of the scheduling process, the cost incurred by the scheduler for run-

ning the jobs can be defined as follows:

Costtotal = ∑
i∈δ

(vmi
price × vmi

T) (6.4)

Additionally, we can define the average job completion times for all the jobs as fol-

lows:

AvgT = (∑
j∈ψ

jobj
T)/M (6.5)

As we want to minimize both the cost of using the cluster and the average job com-
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pletion time for the jobs, the optimization problem is to minimize the following:

β× Cost + (1− β)× AvgT (6.6)

where β ∈ [0, 1]. Here, β is a system parameter which can be set by the user to specify

the optimization priority for the scheduler. Note that, equation 6.6 can be generalized to

address additional objectives if required.

The above optimization problem is a mixed-integer linear programming (MILP) [90]

and non-convex [91], generally known as the NP-hard problem [92]. To solve this prob-

lem optimally, an optimal scheduler needs to know the job completion times before

making any scheduling decisions. This makes the scheduler design extremely difficult

as it requires the collection of job profiles and the modeling of job performance which

depends on various system parameters. Furthermore, if the number of jobs, executors

and the total cluster size increase, solving the problem optimally may not be feasible.

Although, heuristics-based algorithms are highly scalable to solve the problem, they do

not generalize over multiple objectives and also do not capture the inherent characteris-

tics of both the cluster and the workload to improve the target goal.

6.4 RL Model

Reinforcement learning (RL) is a general framework where an agent can be trained to

complete a task through interacting with an environment. Generally, in RL, the learning

algorithm is called the agent, whereas the problem to be solved can be represented as

the environment. The agent can continuously interact with the environment and vice

versa. During each time step, the agent can take an action on the environment based

on its policy (π(at|st)). Thus, the action (at) of an agent depends on the current state

(st) of the environment. After taking the action, the agent receives a reward rt+1 and the

next state (st+1) from the environment. The main objective of the agent is to improve the

policy so that it can maximize the sum of rewards.

In this chapter, the learning agent is a job scheduler which tries to schedule jobs in a

Spark cluster while satisfying resource demand constraints of the jobs, and the resource
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Figure 6.1: The proposed RL model for the job scheduling problem, where a schedul-
ing agent is interacting with the cluster environment.

capacity constraints of the VMs. The reward it gets from the environment is directly as-

sociated with the key scheduling objectives such as cost-efficiency, and the reduction of

average job duration. Therefore, by maximizing the reward, the agent learns the policy

which can optimize the target objectives. Fig. 6.1 shows the proposed RL framework of

our job scheduling problem. We treat all the components as part of the cluster environ-

ment (highlighted with the big dashed rectangle), except the scheduler. The cluster man-

ager monitors the state of the cluster. It also controls the worker nodes (or cloud VMs)

to place executor(s) for any job. In each time-step, the scheduling agent gets an observa-

tion from the environment, which includes both the current job’s resource requirement,

and also the current resource availability of the cluster (exposed by the cluster monitor

metrics from the cluster manager). An action is the selection of a specific VM to create

a job’s executor. When the agent takes an action, it is carried out in the cluster by the

cluster manager. After that, the reward generator calculates a reward by evaluating the

action on the basis of the predefined target objectives. Note that, in RL environment, the

reward given to agent is always external to the agent. However, the RL algorithms can
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have their internal reward (or parameter) calculations which they continuously update

to find a better policy.

We assume the time-steps in our model to be discrete, and event driven. Therefore,

the state-space moves from one time-step to the next only after an agent takes an action.

The key components of the RL model are specified as follows:

Agent: The agent acts as the scheduler which is responsible to schedule jobs in the

cluster. At each time step, it observes the system state and takes an action. Based on the

action, it receives a reward and the next observable state from the environment.

Episode: An episode is the time interval from when the agent sees the first job and

the cluster state to when it finishes scheduling all the jobs. In addition, for certain bad

action taken by the agent can also mean the end of an episode.

State Space: In our scheduling problem, the state is observation an agent gets af-

ter taking each action. The scheduling environment is the deployed cluster where the

agent can observe the cluster state after taking each action. However, only at the start

of the scheduling process or an episode, the agent receives the initial state without tak-

ing any action. The cluster states have the following parameters: CPU and memory

resource availability of all the VMs in the cluster, the unit price of using each VM in

the cluster, and the current job specification which needs to be scheduled. Actions are

the decisions or placements the agent (scheduler) makes to allocate resources for each of

the executors of a job. Resource allocation for each executor is considered as one action,

and after each action, the environment returns the next state to the agent. The current

state of the environment can be represented using a 1-dimensional vector, where the

first part of the vector is the VM specifications: [vm1
cpu, vm1

mem, ...vmN
cpu, vmN

mem], and the

second part of the vector is the current job’s specification: [jobID, ecpu, emem, jE]. Here,

vm1
cpu, ...vmN

cpu represents the current CPU availability of all the N VMs of the cluster,

whereas vm1
mem, ...vmN

mem represents the current memory availability of all the N VMs of

the cluster. jobID represents the current jobID, ecpu and emem represents the CPU and

memory demand of one executor of the current job. As all the executors for one job have

the same resource demand, the only other required information is the total number of

executors that has to be created for that job, which is represented by jE. Therefore, the

state-space goes larger only with the increase of the size of the cluster (total number of
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Figure 6.2: Example scenarios for state transitions in the proposed environment.
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VMs), and does not depend on the total number of jobs. Each job’s specification is only

sent to the agent as part of the state after its arrival if all the previous jobs are already

scheduled. After each successive action, the cluster resource capacity will be updated

due to the executor placement. Therefore, the next state will reflect the updated cluster

state after the most recent action. Until all the executors of the current job is placed, the

agent will keep receiving the job specification of the current job, with the only change

being the jE parameter which will be reduced by 1 after each executor placement. When

it becomes 0 (the job is scheduled successfully), only then the next job specification will

be presented along with the updated cluster parameters as the next state.

Action Space: The action is the selection of the VM where one executor for the cur-

rent job will be created. If the cluster does not have sufficient resources to place one or

all the executors of the current job, the agent can also do nothing and wait for previously

scheduled jobs to be finished. In addition, to optimize a certain objective (e.g, cost, time),

the agent may decide not to schedule a job right after it arrives. Therefore, if there are N

number of VMs in the cluster, there are N + 1 number of possible discrete actions. Here,

we define Action 0 to specify that the agent will be waiting and no executor will be cre-

ated, where action 1 to N specifies the index of the VM chosen to create an executor for

the current job.

Reward: The agent receives a reward whenever it takes an action. There can be either

a positive or a negative reward for each action. Positive reward motivates the agent

to take a good action and also to optimize the overall reward for the whole episode.

In contrast, negative rewards generally train the agent to avoid bad actions. In RL,

when we want to maximize the overall reward at the end of each episode, an agent

has to consider both the immediate and the discounted future reward to take an action.

The overall goal is to maximize the cumulative reward over an episode, so sometimes

taking an action which incurs immediate negative reward might be a good step towards

a bigger positive rewards in future steps. Now, we define both the immediate reward

and episodic reward for an agent.

Suppose, in the worst case, all the VMs are turned on for the whole duration of the

episode, where each job took its maximum time to complete because of bad placement

decisions. Thus it gives us the maximum cost that can be incurred by a scheduler in an
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episode as:

Costmax = ∑
j∈ψ

jobj
Tmax ×∑

i∈δ

vmi
price (6.7)

Therefore, if we find the episodic VM usage Costtotal incurred by an agent (as shown

in Eqn. 6.4), the normalized episodic cost can be defined as:

Costnormalized =
Costtotal

Costmax
(6.8)

Depending on the priority of the cost objective, the β parameter can be used to find

the episodic cost as:

Costepi = β× (1− Costnormalized) (6.9)

In an ideal case where all the jobs’ executors are placed according to the job type, we

can get the minimum average job completion time for an episode as follows:

AvgTmin = (∑
j∈ψ

jobj
Tmin)/M (6.10)

Similarly, if all the jobs’ executors are not placed according to the job characteristics,

we can get the maximum average job completion time for an episode as follows:

AvgTmax = (∑
j∈ψ

jobj
Tmax)/M (6.11)

Therefore, if we find the episodic average job completion time for an agent (as shown

in Eqn. 6.5), the normalized episodic average job completion time can be defined as:

AvgTnormalized =
AvgT − AvgTmin

AvgTmax − AvgTmin
(6.12)

Depending on the priority of the average job duration objective, the β parameter can

be used to find the episodic average job duration as:

AvgTepi = (1− β)× (1− AvgTnormalized) (6.13)
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Let R f ixed is a fixed episodic reward which will be scaled up or down based on how

the agent performs in each episode to maximize the objective function. Thus the final

episodic reward Repi can be defined as:

Repi = R f ixed × (Costepi + AvgTepi) (6.14)

Note that, β ∈ [0,1]. In addition, both Costepi and AvgTepi ∈ [0,1]. Therefore, the sum

of Costepi and AvgTepi can be at most 1, which will lead to a reward of exactly R f ixed.

For example, if β is chosen to be 0, it means an agent will be trained to reduce average

job duration only. In the best case scenario, if an agent can achieve AvgT to be equal

to AvgTmin, the value of AvgTepi will be 1 and the value of Costepi will be 0. Therefore,

the value Repi will be equal to R f ixed which indicates the agent has learned the most

time-optimized policy.

Example workout of the state-action-reward space: We show an example workout

of the state, action and reward of the proposed RL model in Fig. 6.2. In this example

scheduling scenarios, the cluster is composed with 2 VMs with specifications: VM1 →
{cpu = 4, mem = 8}, and VM2 → {cpu = 8, mem = 16}. In addition, two jobs arrive

one after another with specifications: job1 → {jobID = 1, ecpu = 4, emem = 8, jE = 2},
and job2 → {jobID = 2, ecpu = 6, emem = 10, jE = 1}. Now, Fig. 6.2a shows a scenario

where the agent has chosen VM1 twice to place both of the executors of job1. After the

first placement, the agent received a positive reward R0 = 1 as it was a valid placement.

As VM1 did not have any space left to accommodate anything, the second action taken

by the agent was invalid, thus the environment did not execute that action. Instead,

the episode was terminated and the agent was given a high negative reward (-200). In

the second scenario shown in Fig. 6.2b, the agent successfully placed all the executors

for job 1. Then as there was not sufficient resources to place the executor of the job 2,

the agent has chosen to wait (Action 0) for resources to be freed. After job 1 is finished,

resources are freed. Then the agent successfully placed the executor for job 2, ends the

episode and gets the episodic reward.
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6.5 DeepRL Agents for Job Scheduling

To solve the job scheduling problem in the proposed RL environment, we use two DRL-

based algorithms. The first one is Deep Q Learning (DQN), which is a Q-Learning based

approach. The other one is a policy gradient algorithm which is called REINFORCE.

Both of the algorithms work with any RL environment with discrete state and action

spaces.

6.5.1 DQN Agent

Q-Learning:

Q-Learning works by finding the Quality of a state-action value, which is called Q-

function. Q-function of a policy π, Qπ(s, a) measures the expected sum of rewards

acquired from state s by taking action a first and then using policy π at each step af-

ter that. The optimal Q-function Q∗(s, a) is defined as the maximum return that can be

received by an optimal policy. The optimal Q-function can be defined as follows by the

Bellman optimality:

Q∗(s, a) = E

[
r + γ max

a′
Q∗(s′, a′)

]
(6.15)

Here, γ is the discount factor which determines the priority of a future reward. For

example, a high value of γ helps the learning agent to achieve more future rewards,

while a low value in γ motivates to focus only on the immediate reward. For the optimal

policy, the total sum of rewards can be received by following the policy until the end of

a successful episode. The expectation is measured over the distribution of immediate

rewards of r and the possible next states s′.

In Q-Learning, the Bellman optimality equation is used as an iterative update Qi+1(s, a)←
E [r + γ maxa′ Qi(s′, a′)], and it is proved that it converges to the optimal function Q∗, i.e.

Qi → Q∗ as i→ ∞ [105].
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Deep Q-Learning (DQN):

Q-learning can be solved as dynamic programming (DP) problem, where we can repre-

sent the Q-function as a 2-dimensional matrix containing values for each combination of

s and a. However, in high-dimensional spaces (the total number of state and action pairs

are huge), the tabular Q-learning solution is infeasible. Therefore, a neural is generally

trained with parameters θ, to approximate the Q-values, i.e., Q(s, a; θ) ≈ Q∗(s, a). Here,

the following loss at each step i needs to be minimized:

Li(θi) = Es,a,r,s′∼ρ(.)
[
(yi −Q(s, a; θi))

2] (6.16)

where yi = r + γ maxa′ Q(s′, a′; θi−1).

Here, ρ is the distribution over transitions {s, a, r, s′} sampled from the environment.

yi is called the Temporal Difference (TD) target, and yi −Q is called the TD error.

Note that the target yi is a changing target. In supervised learning, we have a fixed

target. Therefore, we can train a neural net to keep moving towards the target at each

step by reducing the loss. However, in RL, as we keep learning about the environment

gradually, the target yi is always improving, and it seems like a moving target to the

network, thus making it unstable. A target network has fixed network parameters as it

is a sample from the previous iterations. Thus, the network parameters from the target

network are used to update the current network for stable training.

Furthermore, we want our input data to be independent and identically distributed

(i.i.d.). However, within the same trajectory (or episode), the iterations are correlated.

While in a training iteration, we update model parameters to move Q(s, a) closer to the

ground truth. These updates will influence other estimations and will destabilize the

network. Therefore, a circular replay-buffer can be used to hold the previous transi-

tions (state, action, reward samples) from the environment. Therefore, a mini-batch of

samples from the replay buffer is used to train the deep neural network so that the data

will be more independent and similar to i.i.d.

DQN is an off-policy algorithm that it uses a different policy while collecting data

from the environment. The reason is if the ongoing improved policy is used all the time,

the algorithm may diverge to a sub-optimal policy due to the insufficient coverage of the
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state-action space. Therefore, an ε-greedy policy is used that selects the greedy action

with probability 1− ε and a random action with probability ε so that it can observe any

unexplored states, which ensures that the algorithm does not get stuck in local maxima.

The DQN [106] algorithm we use with replay buffer and target network is summarized

in Algorithm 8.

Algorithm 8: DQN Algorithm

1 foreach iteration 1 ... N do
2 Collect some samples from the environment by using the collect policy

(ε-greedy), and store the samples in the replay buffer
3 Sample a batch of data from the replay buffer
4 Update the agent’s network parameter θ (Using Eqn. 6.16)

6.5.2 REINFORCE Agent

DQN optimizes for the state-action values, and by doing so, it indirectly optimizes for

the policy. However, the policy gradient methods operate on modelling and optimizing

the policy directly. The policy is usually modelled with a parameterized function with

respect to θ, written as πθ . Accordingly, π(at|st) is the probability of choosing the action

at given a state st at time step t. The amount of the reward an agent can get depends on

this policy.

In a conventional policy gradient algorithm, a batch of samples is collected in each

iteration, then the update shown in Eqn. 6.17 is applied to the policy using the collected

samples.

OθEπθ

[
T

∑
t=0

γtrt

]
= Eπθ

[
T

∑
t=0

Oθ logπθ(at|st)Rt

]
(6.17)

Here, γ is the discount factor, whereas st, at, and rt are used to represent the state,

action, and reward at time t, respectively. T is the length of any single episode. Rt is the

discounted cumulative return, which can be computed as shown in Eqn. 6.18.

Rt =
T

∑
t′=t

γt′−trt (6.18)
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Here, t′ starts from the current time step t, which means that if the current action is taken,

we will get an immediate reward of rt, which also influences on how much reward we

can accumulate up to the end of the episode.

The expected return is shown in Eqn. 6.17 uses the maximum log-likelihood, which

measures the likelihood of an observed data. In RL context, it means how likely we can

expect the current trajectory under the current policy. When the likelihood is multiplied

with the reward, the likelihood of a policy is increased if it generates a positive reward.

On the other hand, the likelihood of the policy is decreased if it gives a less or a negative

reward. In summary, the model tries to keep the policy which worked better and tends

to throw away policies which did not work well. However, as the formula is shown as

an expectation, it cannot be used directly. Therefore, a sampling-based estimator is used

instead, which is shown in Eqn. 6.19.

Oθ J(θ) ≈ 1
N

N

∑
i=1

(
T

∑
t=1

Oθ logπθ(ai,t|si,t)

)(
T

∑
t=1

r(si,t, ai,t)

)
(6.19)

Algorithm 9: REINFORCE Algorithm

1 foreach iteration 1 ... N do
2 Sample τi from πθ(at|st) by following the current policy in the environment
3 Find the policy gradient Oθ J(θ) (Using Eqn. 6.19)
4 θ ← θ + αOθ J(θ)

Here, Oθ J(θ) is the policy gradient of the target objective J, parameterized with θ.

We also assume that in each iteration, N trajectories are sampled ( τ1, ..., τN), where each

trajectory τi is a list of states, actions, and rewards: τi = si
t, ai

t, ri
t for time-steps t = 0 to t =

Ti. In this work, we use the REINFORCE [107] algorithm, as shown in Algorithm 9. This

algorithm works by utilizing Monte Carlo roll-outs (learning by computing the reward

after executing a whole episode). After the collection step (line 2), the algorithm updates

the underlying network using the updated policy gradient with a learning parameter α

(line 4). Note that, while sampling a trajectory, the ε-greedy policy is used.
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6.6 RL Environment Implementation

We have developed a simulation environment in Python to represent a cloud-deployed

Spark cluster. The environment holds the state of the cluster, and an agent can interact

with it by observing states, and taking any action. Whenever an action is taken, the im-

mediate reward can be observed, but the episodic reward can only be observed after the

completion of an episode. The episodic reward may be positive or negative depending

on whether an episode was completed successfully or terminated early following a bad

action taken by the agent. The features of our developed environment are summarized

as follows:

1. The environment exposes the state (comprised of the latest cluster resource statis-

tics and the next job), to the agent in each time step.

2. After an action is taken by an agent, the environment can detect valid/invalid

placements and assign positive/negative rewards accordingly.

3. Based on the agent’s performance in an episode, the environment can award the

episodic reward (the environment acts as a reward generator). Therefore, for a

simulated cluster with a workload trace, the environment can derive the cost and

time values which are required to find the episodic reward.

4. The environment can also vary the job durations from the goodness of an agent’s

executor placement.

As mentioned before, instead of representing fixed intervals of real-time; the time-

steps refer to arbitrary progressive stages of decision-making and acting. We have in-

corporated TF-agents API calls to return the transition or termination signals after each

time step. Fig. 6.3 shows the workflow of the environment during the agent training

process. The red and green circles indicate the events which trigger negative and pos-

itive rewards, respectively, from the environment. A summary of the ’action leading to

the event and reward’ is summarized in Table 6.2. In this table, the serial No. of each

reward corresponds to the red/green circle shown in Fig. 6.3. The implemented envi-

ronment can be used with TF-agents to train one or more DRL agents. Specifically, the
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Table 6.2: The action-event-reward mapping of the proposed RL environment.

No. Action Event Reward

1 0
Previously placed 1 or more executors of the current job,

but now waiting to place any remaining executor (s)
-200

2 0 No placement -1

3 1 ... N Proper placement of one executor of the current job +1

4 1 ... N
Improper placement of an executor: resource capacity or

resource demand constraints violation
-200

5 1 ... N All jobs are scheduled, a successful completion of an episode Repi (Eqn. 6.14)

agents can be trained to achieve one or more target objectives such as cost-efficiency,

performance improvement. As discussed before, we have designed the reward signals

to achieve both cost-efficiency and average job duration reduction. The implemented

environment can be extended to change or incorporate one or more rewards/objectives.

We call the implemented environment RM DeepRL, which is an open-source RL-based

cluster scheduling environment with TensorFlow-Agents as the backend.

6.7 Performance Evaluation

In this section, we first discuss the experimental settings which include the cluster re-

source details, workload generation, and baseline schedulers. Then, we present the eval-

uation and comparison of the DRL agents with the baseline scheduling algorithms.

6.7.1 Experimental Settings

Cluster Resources: We have chosen different VM instance types with various pricing

models so that we can train and evaluate an agent to optimize cost while the cluster

is deployed on public cloud. The cluster resource details are summarized in Table 6.3.

Note that, the pricing model of the VM instances is similar to the AWS EC2 instance

pricing (in Australia).

https://github.com/tawfiqul-islam/RM_DeepRL

 https://github.com/tawfiqul-islam/RM_DeepRL
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Table 6.3: Cluster Resource Details

Instance Type CPU Cores Memory (GB) Quantity Price

m1.large 4 16 4 $0.24/h

m1.xlarge 8 32 4 $0.48/h

m2.xlarge 12 48 4 $0.72/h

Table 6.4: Hyper-parameters for DRL-agents and the environment parameters.

Parameter Value Parameter Value

R f ixed 10000 Optimization Priority (β) [0.0,0.25,0.50,0.75,1.00]

Batch Size 64
No. of Fully Connected Layers

for Q-Network
200

No. of Evaluation Episodes 10 Policy Evaluation Interval 1000

Epsilon (ε) 0.001 Training Iteration
10000 (Normal)

20000 (Burst)

Learning Rate (α) 0.001 Optimizer AdamOptimizer

Discount Factor (γ) 0.9
Job duration increase

for a bad placement
30%

Collect Steps per Iteration (DQN)

Collect Episodes per Iteration (RE)

10

10
AvgTmin, AvgTmax

Profiled from real runs of the

corresponding job

Replay Buffer Size 10000 AvgT, Costmax
Dynamically calculated by the environment

depending on the cluster and workload specs

Workload: We have used the BigDataBench [67] benchmark suite and took 3 differ-

ent applications from it as jobs in the cluster which are: WordCount (CPU-intensive),

PageRank (Network or IO intensive) and Sort (memory-intensive). We have randomly

set job requirements within a range of 1-6 (for CPU cores), 1-10 (for memory in GB),

and 1-8 (for total executors) and then profiled each job in the real Spark cluster 10 times

to find the average job duration. Note that, the real cluster also has the same cluster

resources as mentioned in Table 6.3.

The job arrival times: Job arrival rates of 24 hours is extracted from the Facebook

Hadoop Workload Trace to be used as the job arrival times in the simulation. We have

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository


166 Learning Scheduling Algorithms with Deep Reinforcement Learning (DRL)

chosen job arrival patterns: normal (50 jobs arriving in a 1-hour time period), and burst

(100 jobs arriving in only 10 minutes).

Baseline Schedulers: We have used 4 different baselines to compare with the DRL-

based algorithms. These are:

1. Round Robin (RR): The default approach of the Spark Scheduler to distributively

place the executors in VMs.

2. Round Robin Consolidate (RRC): Another round-robin approach of the Spark

scheduler to minimize the total number of VMs used. Note that it works by pack-

ing executors on the already running VMs to avoid launching unused VMs.

3. First Fit (FF): We develop this baseline to place as many executors as possible to

the first available VM to reduce cost.

4. Integer Linear Programming (ILP): This algorithm uses a Mixed ILP solver to

find optimal placement of all the executos of the current job. During each deci-

sion making step, the whole optimization problem is dynamically generated by

using the current cluster state and the job specification. In addtion, to improve

the performance we have used job profile information to include the estimated job

completion time within the model so that the problem can be solved optimally.

Note that, all the baseline schedulers, and our proposed scheduling agents make

dynamic decisions from the current view of the cluster, and do not have a global

view of the whole problem. In addition, the schedulers have no knowledge about

the job characteristics which determine the placement goodness for a particular

type of job.

TensorFlow Cluster details: We have used 4 VMs (each with 16 CPU cores and 64GB

of memory) from the Nectar Research Cloud to train the DRL agents. The TensorFlow

version 2.0, and TF-Agent version 0.5.0 were installed along with python 3.7 in each of

the VMs.

Hyperparameters: Hyper-parameters settings for both DQN and REINFORCE agents,

along with other environment parameters are listed in Table 6.4.

www.nectar.org.au

www.nectar.org.au
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6.7.2 Convergence of the DRL Agents

Fig. 6.4 and Fig. 6.5 represent the convergence of the DQN and REINFORCE algo-

rithms, respectively. We have trained the DRL-agents with varying β parameter values

to showcase the effects of single or multiple reward maximization. The evaluation of the

algorithms is done after every 1000 iterations, where we calculate the average rewards

from the 10 test runs of the trained policy. For the normal job arrival pattern, we have

trained the agents for 10000 iterations, and for the burst job arrival pattern, we have

trained the agents for 20000 iterations.

A higher value of β indicates that the agent is rewarded more for optimizing VM

usage cost. In contrast, a lower value of β indicates the agent is optimized more for the

reduction of average job duration. We have varied the values of β from 0 to 1, where

value 1 indicates that the agent is optimized for cost only. Thus the reward for opti-

mizing average job duration is ignored in the episodic reward. In contrast, a value of 0

of β indicates that the agent is optimized for reducing average job duration only. Any

value of β excluding 0 and 1 indicates a mix-mode of operation, where an agent tries

to optimize both rewards with different priorities (for values 0.25 and 0.75) or with the

same priority (for the value of 0.50). Note that, the episodic rewards can vary and are

calculated based on the cluster resource state, job specifications and arrival rates. Ad-

ditionally, the final episodic reward varies between different optimization targets, so

various training settings result in distinctive maximal rewards for an episode.

Fig. 6.4a and 6.4b represent average rewards accumulated by the DQN agent in train-

ing for the normal and burst job arrival patterns, respectively. Similarly, Fig. 6.5a and

6.5b represent average reward accumulation in training iterations by the REINFORCE

agent. Note that, the average rewards are made up with both fixed rewards received for

each successive executor placement and the final episodic reward, and is not the same

as the actual VM usage cost or average job duration values. However, accumulating

higher total reward implies the agent has learned a better policy which can optimize the

actual objectives. Initially, both agents receive negative rewards and gradually start re-

ceiving more rewards after exploring the state-space over multiple iterations. Due to the

randomness induced by the ε-greedy, sometimes the rewards drop for both algorithms.

However, the training of REINFORCE agent is more stable than the DQN agent. Both
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Figure 6.4: Convergence of the DQN algorithm.
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Figure 6.5: Convergence of the REINFORCE algorithm.
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agents required more time to converge with the workload with burst job arrival pattern

as there are more jobs (large state-action space), and the agents have to learn to wait (ac-

tion 0) when the cluster does not have sufficient resources to accommodate the resource

requirements of a burst of jobs.

6.7.3 Learning Resource Constraints

It can be also observed from both Fig. 6.4 and Fig. 6.5 that the training environment

works properly to train the agent to avoid bad actions such as violating resource capac-

ity and demand constraints with the use of huge negative rewards. Therefore, at the start

of the training process, both the algorithms incur huge negative rewards. However, af-

ter taking some good actions (executor placements while satisfying the constraints), the

environment awards small immediate rewards, which motivates the agents to eventu-

ally complete the episode by scheduling all the jobs successfully. After the agents learn

to schedule properly without violating the resource constraints, it can start learning to

optimize the target objectives as it can observe different episodic reward depending on

all the actions taken over a whole episode.

6.7.4 Evaluation of Cost-efficiency

We evaluate the proposed DRL-based agents and the baseline scheduling algorithms re-

garding VM usage cost over a whole scheduling episode. In particular, we calculate the

total usage time of each VM in the cluster and find the total cost of using the cluster.

Fig. 6.6a exhibits the comparison of the scheduling algorithm while minimizing the VM

usage cost with a normal job arrival pattern. As the job arrivals are sparse, the algo-

rithms significant job duration increase due to improper placements. Therefore, tight

packing on fewer VMs results in lower VM usage cost. The ILP algorithm outperforms

all the other algorithms and incurs the lowest VM usage cost (0.84$), as it utilizes the job

completion time estimates to find the cost-optimal placements of executors. Both REIN-

FORCE (β=1.0, cost-optimized), and REINFORCE (β=0.75) performs closely to the ILP

algorithm, and incur 0.91$ and 0.95$, respectively. Therefore, these agents have only a

slight increase in cost from the ILP algorithm, which is 8% and 12%, respectively.
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Figure 6.6: Comparison of the total VM usage cost incurred by different scheduling
algorithms in a scheduling episode.
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6.7.5 Evaluation of Job Duration

For the burst job arrival pattern, often there are not enough cluster resources to schedule

all the jobs, so the scheduling algorithms have to wait until resources are freed up by

the already running jobs. In addition, as the job arrival is dense, there can be a lot of job

duration increase due to the bad placements for a particular type of job. For example, if

a network-bound job is scheduled across multiple VMs, the job run-time will increase,

which might lead to an increasing VM usage cost. Although the ILP algorithm utilizes

job completion time estimates, it still suffers from job duration increase if the job place-

ment is not matched with the job characteristics, which is reflected in Fig. 6.6b. The

REINFORCE agents achieve a significant cost-benefit, where three REINFORCE agents

(β values of 0.75, 1.00 and 0.50) incur only 0.78$, 0.81$, and 0.83$, respectively. In com-

parison, the best baseline ILP incurs 1.12$, which is 30% more than the best REINFORCE

agent (β = 0.75). Although surprising, the REINFORCE agent with β = 0.75 optimizes

VM costs better than the β = 1.0 version, because for a burst job arrival, taking both ob-

jectives into consideration trains a better policy which in the long-run can optimize cost

more effectively. The RR algorithm does not perform well because it cares only about

distributing the executors, which results in higher VM usage cost. Although both FF and

RRC algorithms try to minimize VM usages, for network-bound jobs, restricting to use

only a few VMs can instead increase the cost due to the job duration increase. The DQN

agents show a mediocre performance while minimizing VM usage cost, as the trained

policy is not as good as the REINFORCE to learn the underlying job characteristics to

minimize VM usage time.

We calculate the average job duration for all the jobs scheduled in an episode to

compare the performance of the scheduling algorithms. Fig. 6.7a shows the comparison

between the scheduling algorithms while reducing the average job duration. For the

normal job arrival pattern, the RR algorithm performs the best as it cares only about

distributing the jobs among multiple VMs. As there are more memory-bound and CPU-

bound jobs combined than the network-bound jobs, the RR algorithm does not acquire

significant job duration penalties due to distributed placement of network-bound jobs.

RR algorithm is closely followed by the time-optimized versions of the DQN (β=0.0

and β=0.25) and the REINFORCE (β=0.0 and β=0.25) agents, respectively. The DQN
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Figure 6.7: Comparison between the scheduling algorithms regarding the average job
duration in a scheduling episode.
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Figure 6.8: Comparison of good placement decisions made by each scheduling algo-
rithm in a scheduling episode.



6.7 Performance Evaluation 175

(β=0.0) only increases the average job duration by 1%, whereas the REINFORCE (β=0.25)

increases the average job duration by 4% when compared with the RR algorithm.

For the burst job arrival pattern, jobs often have to wait before more resources are

available. In addition, if the job placement is not matched with the job characteristics, the

completion time of the jobs will increase, which results in a higher average job duration.

In this scenario, our proposed REINFORCE and DQN agents can capture the underlying

relationship between job duration and job placement goodness and incorporates this

information as a strategy to reduce job duration in the trained policy. As shown in Fig.

6.7b, REINFORCE (β=0.0) outperforms the best among the baseline algorithms RR and

reduces the average job duration by 2%.

The underlying job characteristics reflect the ideal placement for a particular type

of job. In addition, it impacts both the cost-minimization and job duration reduction

objectives. Therefore, we also measured the number of good placements by each algo-

rithm. Fig. 6.8a and 6.8b represents the good placement decisions made by all the algo-

rithms in normal and burst job arrival patterns, respectively. As the baseline scheduling

algorithms operate on a fixed objective and can not capture workload characteristics,

the number of good placement decisions are fixed for each of the baseline algorithms.

Therefore, the β parameter does not affect these algorithms, so the results from these

algorithms appear as horizontal lines. However, both DQN and REINFORCE agents

can be tuned to be cost-optimized, time-optimized or a mix of both. There is a decreas-

ing trend in the number of good placements seen for both agents while the β parameter

is increased (while moving towards cost-optimized from time-optimized version). The

performance of DQN and REINFORCE discussed for average job duration reduction

can be explained from these graphs. It can be observed that the DQN agent makes more

good placements than the REINFORCE agent for the normal job arrival pattern, which

results in lower average job duration for the DQN agents. In contrast, the REINFORCE

agent makes more good placement decisions for the burst job arrival pattern, thus re-

ducing the average job duration better than the DQN agent.
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Figure 6.9: The effects of the β parameter while using a multi-objective episodic re-
ward in the RL environment. β=0.0 means time optimized only. β=1.0 means cost opti-
mized only. Rest of the values represent a mix mode where both rewards have shared
priority.
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6.7.6 Evaluation of Multiple Reward Maximization

Fig. 6.9a and 6.9b exhibits the effects of the β parameter while optimizing multiple

rewards. The solid lines represent the normal job arrival pattern, whereas the dashed

lines represent the burst job arrival pattern. In addition, if a line is in blue colour, it

represents the effect on time, whereas a red line reflects the effect on cost. It can be

observed that both DQN and REINFORCE agents show stable results while maximizing

one or more objectives. With the increase of β value, the agents are trained more towards

optimizing the cost instead of the time reduction. While multiple rewards need to be

optimized, the β parameter can be tuned to train the agents to learn a balanced policy

which prioritizes both objectives. For example, in Fig. 6.9a, the solid blue and red lines

at β=0.50 represents a DQN agent which provides a balanced outcome while optimizing

both cost and time.

6.7.7 Learned Strategies

Here, we summarize the different strategies learned by the agents:

1. The DRL agents learn the VM capacity and job demand constraints through the

negative reward from the environment when taking bad actions such as constraint

violation or partial executor placements.

2. The DRL agents learn to optimize cost by packing executors in fewer VMs. How-

ever, depending on the job characteristics, they also learn to spread out executors

to avoid job duration increase, which in turn results in better cost and time rewards

(as showcased in the placement goodness evaluation graphs).

3. The agents can learn to handle both normal or burst job arrival patterns. The DRL

agents decide to wait by choosing action 0 continuously when no cluster resources

are available to run any more jobs. Although the agents incur a negative immedi-

ate reward (-1) while waiting to schedule, they choose it to avoid invalid or partial

executor placement, which will lead to high negative rewards.

4. The agents can also learn a stable policy which balances multiple rewards (as

shown from the β parameter tuning graphs).
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6.8 Summary

Job scheduling for big data applications in the cloud environment is a challenging prob-

lem due to the many inherent VM and workload characteristics. Traditional frame-

work schedulers, LP-based optimization, and heuristic-based approaches mainly fo-

cus on a particular objective and can not be generalized to optimize multiple objectives

while capturing or learning the underlying resource or workload characteristics. In this

chapter, we have introduced an RL model for the problem of Spark job scheduling in

the cloud environment. We have developed a prototype RL environment in TF-agents

which can be utilized to train DRL-based agents to optimize one or multiple objectives.

In addition, we have used our prototype RL environment to train two DRL-based agents,

namely DQN and REINFORCE. We have designed sophisticated reward signals which

help the DRL agents to learn resource constraints, job performance variability, and clus-

ter VM usage cost. The agents can learn to optimize the target objectives without any

prior information about the jobs or the cluster, but only from observing the immediate

and episodic rewards while interacting with the cluster environment. We have shown

that our proposed agents can outperform the baseline algorithms while optimizing both

cost and time objectives, and also showcase a balanced performance while optimizing

both targets. We have also discussed some key strategies discovered by the DRL agents

for effective reward maximization.

Currently, we have not included the co-location goodness of different jobs which

may affect the job duration further. In addition, we have not included the implications

of turning the VMs on or off. However, we plan to incorporate these features with a

more sophisticated reward design in the future. In addition, we want to explore how

the agents behave in the actual environment with variable cluster dynamics.



Chapter 7

Conclusions and Future Directions

This chapter concludes the thesis and discusses a summary of works and key contributions. Then,

it highlights several future research directions for further improvement of various resource manage-

ment aspects for big data applications in Cloud environments.

7.1 Summary of Contributions

MANY prominent big data processing frameworks have emerged over the last

decade due to the surge of demand for data analytics across many sectors.

However, executing big data applications in the local cluster have many limitations,

which can be mitigated by deploying the cluster in the Cloud. Although Cloud offers

flexible, on-demand resources; shifting a big-data cluster entirely to the Cloud can be

challenging as big data applications may have varying resource and performance con-

straints. Also, the Cloud offers a variety of VMs which varies in size and cost. Therefore,

users need to be careful about managing the Cloud resources for big data applications.

In a Cloud-deployed big data processing framework, these issues can be resolved by cre-

ating sophisticated resource management techniques which address various challenges.

In this thesis, we have investigated resource allocation and job scheduling approaches

that reduce the monetary cost of the Cloud-deployed cluster while satisfying various

user and application constraints.

Chapter 1 discussed the basic concepts of big data applications and highlighted the

research challenges that need to be addressed while shifting the processing of big data

applications to the Cloud environment. Chapter 2 presented a taxonomy and a literature

review on resource management for big data applications in Cloud environments. It

179
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mainly focused on various resource allocation and scheduling approaches and discussed

the research gaps in the existing works.

Chapter 3 presented a cost-efficient, fine-grained, and deadline-aware resource al-

location mechanism. The application profiling information can be used to build the

performance model of an application. This performance model can then be used to

estimate an application’s completion time under different parameters changes such as

resource demands and input data. The chapter proposed mathematical models to build

such a performance model and estimate the completion time of an application. Then

this estimate was used to choose a cost-efficient resource allocation scheme.

Chapter 4 exhibited dynamic cost-efficient scheduling algorithms to schedule jobs in

a Cloud-deployed big data processing cluster. It showed the optimization model which

tackles all the resource capacity and demand constraints of the cluster, while the ob-

jective was to minimize cost. Then the chapter proposed two efficient job scheduling

algorithms. The first algorithm utilizes the Integer Linear Programming (ILP) model to

build the scheduling problem dynamically and choose the most cost-efficient schedul-

ing decision in each scheduling iteration. The second algorithm uses a resource unifi-

cation metric to find the resource capacity and demands of the VMs and jobs, respec-

tively. Then it makes fast, cost-effective scheduling decisions by using both the resource

constraints and the pricing model of the VMs. Lastly, this chapter also discussed the

proposed scheduling framework for implementing new scheduling policies.

Chapter 5 presented job scheduling algorithms to be used in a cluster deployed in

a hybrid Cloud, which utilizes both the pricing model and the local and Cloud VMs of

a cluster effectively to reduce the monetary cost. It proposed two job scheduling algo-

rithms. The first algorithm is based on a fast heuristic, which greedily packs executors

in fewer VMs to reduce cost. The second algorithm utilizes both the pricing model and

the job profile information to reduce the cost of VMs further. This chapter also showed

a prototype architecture of the hybrid deployment of a big data cluster, which utilizes

both local and Cloud VM effectively to reduce cost and leverage Cloud VMs in high load

period of the cluster.

Chapter 6 presented efficient Deep Reinforcement Learning (DRL) based scheduling

algorithms which can automatically learn various inherent cluster and job characteris-
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tics to optimize one or multiple objectives. It formulated the job scheduling problem

with a Reinforce Learning (RL) model. Besides, it showed how such an environment

can be designed, and how the rewards can be injected into the system to accommodate

multiple objectives. This chapter also used two classic DRL agents to train in the im-

plemented prototype RL environment, to show the efficacy of the algorithms in such a

cluster scheduling scenario.

7.2 Future Research Directions

In this thesis, we addressed several challenges of Cloud resource management for big

data applications. However, there exist a few issues that need a more comprehensive

investigation. This section gives insights into these challenges for future work in this

research area.

7.2.1 Intelligent Resource Management

Machine learning algorithms are becoming more accurate and suitable for solving com-

plex problems. Specifically, it is useful in resource management across all the different

components. The resource usage statistics, system status, and the configuration pa-

rameters can be used to predict system performance. Additionally, machine learning

can be used for predicting anomaly, resource demand, peak usage period, which will

help to build sophisticated scheduling, resource scaling, and load-balancing algorithms.

Lastly, small applications focusing on resource monitoring, performance analysis, local

scheduling can be packaged as containers in a system that runs through a containerized

management system to push small resource management components on the fog/Edge

level for achieving faster and flexible services.

7.2.2 Application Performance Modelling in Heterogeneous Resources

The use of commodity hardware increases the availability of resources. Besides, har-

nessing a multi-tier deployment between Edge and Cloud can enable having emerging

real-time applications. However, having a heterogeneous set of resources in a compute
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cluster can be difficult to manage. Especially, the same application can behave or per-

form differently depending on the Edge or Cloud placement. Therefore, there is an in-

creasing need to devise sophisticated application performance profiling methodologies

and tools to investigate the effect of heterogeneous resources on each application.

7.2.3 Energy-efficient Management of Big Data Processing Systems

As big data applications use huge amount of resources, the energy consumption in the

data centers is massive. To reduce the global carbon footprint, the resources in the data

centers should be managed in such a way that less energy is consumed, and if possi-

ble, the use of renewable energy should be prioritized. Therefore, resource manage-

ment techniques should also focus on reducing energy-consumption while managing

resources for running big data applications. One approach could be the use of dy-

namic voltage and frequency scaling (DVFS) techniques to adjust the speed and power

of servers to match with the workload demands, so that it reduces the overall energy-

consumption.

7.2.4 AI-enhanced Autonomous Resource Selection and Allocation

In this thesis, we have proposed RL-based intelligent scheduling agent that can auto-

matically learn to schedule jobs and optimize one or more target goals. However, AI-

enhanced autonomic decision making has to span across different layers of resource

management. In particular, AI-based approaches can be developed for resource se-

lection and allocation, so that the resource management process can adapt to dynamic

changes in the environment. Besides, we need the same AI-based solution that can be

applicable to a wide range of problems, not just one.

7.2.5 Straggler Detection and Mitigation in Job Scheduling

Long jobs which may have underlying issues with performance can block a big portion

of the overall resources in the cluster. In this way, it affects running the other short or

critical jobs. Therefore, identifying stragglers and reducing their performance overhead
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on the whole cluster is a key research area. However, stragglers can have severe per-

formance impacts on a Cloud-deployed big data cluster as the Cloud VMs are generally

heterogeneous in a sense they have diverse resource availability. In addition, having

stragglers in a Cloud-deployed cluster can increase the monetary cost significantly.

7.2.6 Resource Management in Multi-tier Edge and Cloud Deployed Cluster

Many emerging applications are being developed by harnessing the potential of Edge

devices. However, a huge amount of data is being generated from these devices, which

is difficult to process on the Edge due to limited computing capabilities. In addition,

pushing all the data to Cloud for analytics is also inefficient due to the increased latency,

which might affect time-critical or real-time applications. Therefore, in a multi-tier setup

spanning from Cloud to Edge, new scalable and efficient resource management tech-

niques need to be designed to address the new challenges.

7.2.7 Improving Energy Efficiency

Fog/IoT is going to become the most investigated area in the next decade because of

the availability of a vast number of wearable devices, smartphones, and smart sensors.

Therefore, the distributed deployment of data processing applications will be typical.

However, it is not efficient to send all the data to process in the Cloud data-centres

as it might impose excessive network/transmission/bandwidth overhead in the whole

system and increase the energy consumption of the data-centres. Therefore, energy-

efficient software systems need to be developed that can process and analyze data on

the Edge/fog level to reduce energy consumption and boost the performance of time-

critical applications. Also, it will help to meet the SLA requirement through multi-tiered

resource management over the Cloud data-centre, fog nodes, and mobile devices.

7.2.8 Scheduling Jobs in Geo-distributed Big Data Clusters

In this thesis, we have addressed the job scheduling problem in a cluster deployed in

hybrid-Cloud. However, this problem can be further extended to a global scenario,
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where the analytics jobs can be scheduled to a geo-distributed cluster. As Cloud re-

source pricing may vary in different regions, the monetary cost can be reduced further if

the cluster is not bound to a specific region. In addition, a business spanning into mul-

tiple regions might benefit from using each region’s local Cloud services. Lastly, data

sensitivity and region-locks due to various company and government policies may lead

to running a particular job only in a specific region.

7.2.9 Shared-sensing in Internet of Things (IoT)

As the number of IoT and mobile devices is increasing, a vast amount of resources from

multiple users can be underutilized which is neither energy-efficient nor cost-effective.

Therefore, IoT devices from various service providers and customers can be used col-

laboratively to provide efficient services. However, the software architecture should be

made in such a way that it is both secure and beneficial for the collaborating partners.

Besides, new protocols need to be designed on how to set the monetary cost and dis-

count in a shared IoT infrastructure.

7.2.10 Fault Tolerant Resource Management

For time-critical applications, resource management techniques need to be fault-tolerant.

If multi-tier, hybrid, heterogeneous setup are concerned, the offered flexibility and avail-

ability of resources comes with a price; increasing the chance of failures in the system.

Therefore, monitoring and managing the health and condition of the cluster is impor-

tant. In addition, the key metrics which indicate failure should be detected early with

carefully designed Machine Learning (ML) based approaches.

7.2.11 Integrating Multiple Big Data Platforms

Depending on the diverse user demands, any application can be suitable only to a par-

ticular big data framework. Therefore, it may not be possible to port an existing appli-

cation for running in a different framework. Thus, there is a need for co-existence of

multiple big data processing frameworks in the same cluster. Although there are a few
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cluster managers that can support multiple frameworks together within the same clus-

ter, reource management tasks can become challenging due to the varying performance

requirements of different frameworks’ applications.

7.3 Final Remarks

The widespread use of big data analytics frameworks has created a massive need to de-

ploy computing clusters in Cloud environments. In addition, Cloud service providers

are also offering various types of resources and services to cater to the data analytics ap-

plications. Therefore, there is a need to create novel resource management solutions

to provide monetary cost reduction while maintaining a satisfactory level of perfor-

mance. In this thesis, we have proposed various resource management approaches that

reduce the monetary cost of using a Cloud-deployed big data computing cluster, while

satisfying various user demands such as deadline and performance constraints of the

applications. In particular, we have explored resource allocation and job scheduling

mechanisms that can tackle a variety of user demands and works under different cluster

scenarios. The research outcomes of this thesis will also provide new opportunities to

innovate robust resource management techniques for the next generation Cloud-based

big data processing frameworks.
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