
Resource Efficient Machine Learning Techniques for

Monitoring Repetitive Activities through Wearable Devices

in Real-time

by

Yousef Kowsar
https://orcid.org/0000-0001-7606-0171

Submitted in total fulfillment of the requirements of the degree of
Doctor of Philosophy

at the

School of Computing and Information Systems

The University of Melbourne

March 2020

Copyright ©2020 Yousef Kowsar

All rights reserved. No part of the publication may be reproduced in any form by print,

photo-print, microfilm or any other means without written permission from the author.

2

Abstract

Weight training activities have become an inseparable part of an athlete’s training

to reach their maximum performance. However, at the same time, weight training is

considered as the fifth costliest sport in terms of injuries [1]. Studies have shown that

monitoring weight training performance is one of the most effective ways of reducing

injuries caused by this type of exercise. Given the complexity of weight training exercises,

it is a challenge for trainees to know whether they are performing their exercises correctly

or not. Considering the fact that incorrect performance of a weight training exercise

can result in life-long injuries, which may cost athletes their professional careers, it is of

utmost importance to design systems that can detect incorrect performance of weight

training activities.

In this thesis, we motivate the importance of personalised monitoring of weight train-

ing performance using wearable devices. We show why current supervised approaches

for monitoring weight training routines fail to address the needs of professional athletes.

We discuss the emerging need for resource efficient machine learning techniques to

monitor weight training activities in real-time, using a wearable device. We then present

a novel workflow to detect weight training performance anomalies from observing only

the correct performance of an exercise by the trainee. Our workflow motivates two funda-

mental questions to be addressed in the time series domain: (1) Identifying a trainee’s

weight training performance from the incoming stream of data generated from wearable

devices efficiently and in real-time, (2) Analysing a trainee’s weight training performance

efficiently.

We address the first question of identifying the trainee’s weight training performance

using wearable devices by formally defining weight training activities as intervals of

recurrence—short bursts of consecutive repeating signals—from the incoming time

series data. We present an efficient, online, one-pass and real-time algorithm for finding

and tracking intervals of recurrence in a time series data stream. We provide a detailed

3

theoretical analysis of the behaviour of any interval of recurrence, and derive fundamental

properties that can be used on real world data streams. We demonstrate the robustness

of our method to variations in repetitions of the same pattern adjacent to each other.

We then advance our signal processing approach to monitoring weight training ex-

ercises by addressing the shape analogy of signals. Shape analogy is a technique where

signals in the form of time series waveforms are compared in terms of how much they

look alike. This concept has been applied for many years in geometry. Notably, none

of the current techniques describe a time series as a geometric curve that is expressed

by its relative location and form in space. To fill this gap, we introduce Shape-Sphere, a

vector space where time series are presented as points on the surface of a sphere. We

prove a pseudo-metric property for distances in the Shape-Sphere. We show how to

describe the average shape of a time series set using the pseudo-metric property of the

Shape-Sphere by deriving a centroid from the set. We demonstrate the effectiveness of

the pseudo-metric property and its centroid in capturing the shape of a time series set,

using two important machine learning techniques, namely: Nearest Centroid Classifiers

and K-Means clustering, through 48 publicly available data sets. Our results show that

Shape-Sphere significantly improves the efficiency of both techniques. Shape-Sphere im-

proves the nearest centroid classification results when shape is the differentiating feature,

while keeping the quality of clustering equivalent to current state-of-the-art techniques.

We subsequently design and develop LiftSmart: a novel smart wearable to detect,

track and analyse weight training activities. LiftSmart is the first wearable for weight

training that is based on unsupervised machine learning techniques designed in this

thesis to eliminate reliance on labelled data. We developed LiftSmart with the ultimate

goal of personalised monitoring of professional weight trainers. LiftSmart is tailored to

the needs of individual professional weight trainers to monitor their performance by

automatically adapting the standard performance of an exercise, which is set for each

individual athlete.

4

In summary, in this thesis we design resource efficient machine learning techniques

for monitoring weight training activities in real-time using a wearable device. We demon-

strate the effectiveness of our technique in monitoring weight training activities in real-

time by designing the first wearable device that automatically detects, tracks and provides

feedback about any weight training activity that an athlete performs in a gym.

5

Declaration

This is to certify that:

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

6

Preface

The core chapters of this thesis, Chapters 3 to 6, are based on the following papers. I

declare that for each paper I am the main author who has contributed over 50%. Chapters

3 to 6 are respectively based on the articles A, C, D, and B.

Published papers

A) Kowsar, Y., Moshtaghi, M., Velloso, E., Kulik, L., Leckie, C. (2016, November).

Detecting unseen anomalies in weight training exercises. In Proceedings of the

28th Australian Conference on Computer-Human Interaction (pp. 517-526).

B) Kowsar, Y., Velloso, E., Kulik, L., Leckie, C. (2019, September). LiftSmart: a monitor-

ing and warning wearable for weight trainers. In Adjunct Proceedings of the 2019

ACM International Joint Conference on Pervasive and Ubiquitous Computing and

Proceedings of the 2019 ACM International Symposium on Wearable Computers

(pp. 298-301).

In revision following peer review:

C) Kowsar, Y., Moshtaghi, M., Velloso, E., Kulik, L., Leckie, C. An Online Unsuper-

vised Dynamic Window Method to Track Repeating Patterns from Sensor Data.

IEEE Transactions on Cybernetics.

D) Kowsar, Y., Velloso, E., Kulik, L., Bezdek, J. C., Leckie, C. (2019, September). Shape-

Sphere: A metric space for analysing time series by their shape. Pattern Recognition.

7

8

Acknowledgement

As my PhD journey comes to an end, there are many people who I need to acknowl-

edge who have made this journey possible and helped me along the way.

I am very grateful to my supervisors, Professor Chris Leckie, Professor Lars Kulik, and

Doctor Eduardo Velloso for their continuous support during my Ph.D. Thank you for your

time and guidance to undertake my studies. Your professional and personal advice will

always be with me and always guide me in my future endeavours.

I would like to thank Professor Frank Vetere and the IDL lab (formerly SocialNUI) for

partially funding my project and providing me with the necessary resources to undertake

my studies.

I would like to thank my advisory chair, Professor Tony Wirth for his insightful com-

ments and taking the time to provide me feedback.

I would like to thank Doctor Massud Moshtaghi for encouraging me to turn my

passion in sports and machine learning into my Ph.D. project and supporting me to

define my research. I would also like to thank Professor James C. Bezdek for his research

collaboration and professional advice during my studies. I would like to acknowledge Mr.

Gabriele Marini for his help in developing the LiftSmart android application in my PhD.

I would like to thank my parents and my in-laws for their continuous support to me

and my wife during my Ph.D. Their support was a comfort in the time we needed most.

I am deeply grateful to my wife, Mahtab Mirmomeni, for her continuous support

and encouragement during my Ph.D. I am grateful for all her patience and support in

challenging times and her positive attitude and thoughts that kept me going through my

Ph.D.

I would also like to thank my son Kiyan whose presence always brings me smiles and

hope to my heart. I started my PhD when he was 3 months old and he has been a delight

when our family needed it most.

9

10

Contents

1 Introduction 23

1.1 Monitoring weightlifting moves in real-time 25

1.1.1 A trainee-trainer scenario . 25

1.1.2 Challenges . 29

1.2 Problem statement . 30

1.3 Contributions . 31

2 Weight training activity monitoring methods: background review 35

2.1 Monitoring settings: How to monitor trainees? 35

2.1.1 Instrumented settings . 36

2.1.2 Ubiquitous settings . 38

2.2 Approaches to analysing trainees’ performance 41

2.2.1 Monitoring from pre-recordings: A posteriori approach 42

2.2.2 Monitoring using weight training insights: A priori approach 44

2.2.3 Detecting exercise sets within a time series—A time series segmenta-

tion problem . 48

2.2.4 Evaluating trainees’ performance from a time series—A time series

analogy problem . 52

2.2.5 Computing the correct performance of an exercise—A time series

averaging problem . 56

11

2.2.6 Overview of current time-series analysis methods for addressing

real-time and online exercise monitoring 58

2.3 Timing the feedback: When to provide the feedback to the trainee? 60

2.3.1 Offline feedback . 60

2.3.2 Online feedback . 62

2.4 Summary of state-of-the-art technologies for our design goals 63

3 A workflow to detect incorrect performances in weight training activities 67

3.1 Introduction . 67

3.2 Workflow . 68

3.2.1 Segmenting repetitions . 69

3.2.2 Deriving a ground truth model . 77

3.3 Discussion . 82

3.4 Conclusion . 83

4 Detecting and tracking exercises in real-time 85

4.1 Introduction . 85

4.2 Problem statement . 88

4.3 Finding IoR . 89

4.4 Identifying and tracking IoR online . 90

4.5 Multiple peaks: an efficiency problem . 94

4.5.1 Complexity . 96

4.6 The effect of noise . 98

4.7 Implementation of OToR on a wearable device 101

4.8 Experimental evaluation . 102

4.8.1 Offline tracking . 102

4.8.2 Online tracking (counting repeats) . 109

4.9 OToR parameters . 112

12

4.10 Conclusion . 114

4.11 Appendix . 114

4.11.1 Linearity property of periodic points from the autocorrelation of a

continuous IoR . 114

4.11.2 Noise analysis . 118

4.11.3 Impact of noise on OToR . 122

4.11.4 Detecting local maxima from autocorrelation 123

4.11.5 Visualising OToR algorithm’s behaviour for finding new IoR 124

5 Analysing waveforms by their shape 127

5.1 Introduction . 127

5.2 Problem statement . 131

5.3 Shape similarity . 133

5.3.1 The metric property of ASD . 137

5.4 Computing the average shape—Contour prototypes 138

5.4.1 Complexity . 140

5.5 Comparison of centroids . 141

5.5.1 Baseline methods: DBA, cDBA and K-Shape 142

5.6 Experimental evaluation . 144

5.6.1 NCC classifier . 146

5.6.2 K-Means clustering . 147

5.6.3 Complexity . 148

5.7 Discussion . 151

5.8 Conclusions . 155

5.9 Appendix . 156

5.9.1 The impact of noise . 156

5.9.2 One Nearest Neighbour classifier . 159

5.9.3 Comparing One Nearest Neighbour to Nearest Centroid Classifier . 160

13

5.10 Experimental results . 161

6 LiftSmart: The wearable that monitors weight training activities in real-time,

without the use of labelled data 165

6.1 Introduction . 165

6.2 LiftSmart . 166

6.3 Method . 167

6.4 Application . 168

6.4.1 Feedback to athletes while training 169

6.4.2 Offline analysis of trainee’s performance 170

6.4.3 Demo . 170

6.5 Conclusions . 170

7 Future work and Conclusions 173

7.1 Conclusions . 173

7.2 Future work . 177

7.2.1 Application extensions . 177

7.2.2 Theoretical extensions . 178

14

List of Tables

1.1 Our design goals and their impact on the system for monitoring repetitive

movement patterns in weight training exercises. The Chapter column indi-

cates the corresponding chapter in the thesis that addresses each design

goal. 24

2.1 Comparison of current state-of-the-art methods for identifying and tracking

weight training activities from incoming streams of data from wearable

devices in terms of design goals from Chapter 1 59

2.2 Comparison of current state-of-the-art technologies for identifying and

tracking weight training activities in terms of design goals from Chapter 1. 65

3.1 Average precision and recall for segmenting the biceps curl routine using

change point detection . 75

3.2 The average precision of the classification task as a percentage. The top

row is from data segmented by our method. The bottom row is from a fixed

window size. 76

3.3 True Positive (TP) and False Positive (FP) rate for anomaly detection algo-

rithm. The cells with bold font show the winner algorithm for detecting

anomalies. 82

15

4.1 Design goals and their impact on the system for detecting and tracking

Intervals of Recurrence. The Section column indicates the section in this

chapter that addresses each design goal. 87

4.2 Segmentation results from OToR in comparison with other methods for the

four datasets described in Section 4.8. 106

4.3 Online tracking. Exact: the percentage of training sets that were counted

precisely. Within-1: the percentage of training sets that had an error of up

to 1 count. Within-2: the percentage of training sets that had an error of up

to 2 counts. NA means the result is not available. 110

5.1 ARIs for our experiments using NCC and K-Means. 162

16

List of Figures

1-1 Unilateral biceps curl performance. Top pictures show correct performance.

Bottom row shows two variations. Left is a correct variation (with a green

tick) and right is an incorrect variation (with a red cross). 30

1-2 A recorded sample of motion data from three weight lifting exercises. The

three sets are shown with the recurring exercise in red in each set. 31

2-1 A recorded sample of motion data from three weight training exercises. The

three sets are shown with the recurring exercise highlighted in red. 45

2-2 A sample time series (the black graph) and its Piecewise Aggregation Ap-

proximation representation (PAA) shown in red. 47

3-1 Workflow for finding incorrect moves in a weight training exercise. 69

3-2 Illustration of unilateral biceps curl performance. 70

3-3 Smoothing accelerometer data with a Kalman Filter. Top figure shows the

raw data from an accelerometer. Bottom figure shows the result of applying

Kalman Filter on the same data. 72

73

3-5 Motion sensors show a repetitive pattern for weight training exercises. In

this figure, the repetitive pattern is clear from the accelerometer attached

to the trainee’s forearm while performing a unilateral biceps curl. 74

17

3-6 y-axis is the Axis-of-Effect (AoE) in unilateral biceps curl. The main motion

occurs in the y direction (drawn in red). 74

3-7 Outline of workflow for finding weight training anomalies. (A) Collecting

raw data for correct performance. (b) Smoothing the raw data. (c) Creating

a homogenous cluster of correct segments. (d) Deriving the ground truth

(red line). (e) Calculating standard deviation for the ground truth (dashed

line) . 81

4-1 Intervals of recurrence in a time-series. Three intervals of recurrence (IoR)

are shown with the recurring signals in red. 86

4-2 An example of a periodic function f (bottom figure) and its autocorrelation

function f̂ (top figure). The line that passes through all the maxima in f̂ is

dashed. 90

4-3 Flowchart for online tracking of IoR in real-time. W is the dynamic sliding

window. 91

4-4 Online tracking of IoR in real-time. The red flat line shows the state of the

sliding window. The signal in the top figures is the incoming data stream

and the bottom signal is its autocorrelation of the window. The black line

shows the found IoR. 92

4-5 Multiple maxima from a non-convex SoR. 95

4-6 Systematic error results in changes of SoR in the IoR, which breaks the

linearity property of local maxima from the autocorrelation of the IoR . . . 100

4-7 The changes in the slope of the line from IoR can show an inconsistency in

the performance. The region where the trainee’s performance was inconsis-

tent is highlighted. 101

4-8 The designed wearable device. 101

4-9 Example time series in the datasets: (a) Synthetic idealised dataset; (b)

Synthetic data with variations; (c) HAR dataset; and (d) Weight lifting dataset.103

18

4-10 Algorithms’ results in segmenting a real gym session. Regions in red corre-

spond to inferred IoR (GT ground truth). 109

4-11 Performance of OToR in real-time. 111

4-12 The effect of OToR parameters on its performance. 112

4-13 A synthetic IoR with ten repetitions of a SoR. The SoR (the red signal) is

generated from two signals with the same period but different amplitude. 122

4-14 Maximum number of consecutive peaks detected and tracked by OToR in

the presence of noise. 123

4-15 The effect of neighbourhood size (N) in detecting local maxima in the

presence of noise. 124

4-16 Signal of recurrence with identical signals. On the left an IoR with three rep-

etitions of the SoR (shown in red) is plotted. On the right the autocorrelation

of the IoR is shown. 125

4-17 OToR tracks SoR in the detected IoR from Figure 4-16. On the left the same

IoR with four repetitions of the SoR (shown in red) is plotted. On the right

the autocorrelation of the IoR is shown. OToR tracks the IoR by l2 extension

which is shown in dashed. 125

4-18 Signal of recurrence generated from two signals with same period but differ-

ent amplitude. On the left an IoR with three repetitions of the SoR (shown

in red) is plotted. On the right the autocorrelation of the IoR is shown. . . 126

5-1 Abnormal and normal waveforms of heartbeats from ECG200 data set [2]. 128

5-2 Shapes are described by the amount of curvature (defined by the radius (r)

of the tangent circle) they have at any point. 129

5-3 Steps to compute a Shape-Series for a given time series. First, we compute

the curvature of each point. Second, we compute Equation 5.2 for each point.133

5-4 Shape-Sphere for time series analysis. 136

5-5 ARIP diagrams and boxplot for the NCC experiments. 147

19

5-6 ARIP diagrams and boxplot for the K-Means experiments. 149

5-7 CPU times the four algorithms for computing a prototype from a single set

of data points. 151

5-8 Average fitting time (log-scale) for each algorithm in both experiments. . . 151

5-9 The four classes in Diatom Size Reduction data set. Geometric shape is a

distinguishing feature. 152

5-10 The two classes in Wine data set. Geometric shape is not a distinguishing

feature of the subsets. 153

5-11 The two classes in Sony AI Robot data set. Alignment of waveforms is an

essential part in comparing them. 154

5-12 Samples of images and time series from BirdChicken data set. 154

5-13 K-Means ARS result for different algorithms after adding various types of

coloured noise to the Plane data set. 157

5-14 The effect of different coloured noise types on a sample data point from the

Plane data set. 158

5-15 K-Means ARS result for different algorithms on the Plane dataset with miss-

ing samples where n is the percentage of missing samples from each item

in the data set. 159

5-16 Comparison of ARS results of 1NN classifier using different distance/similarity

measures. 160

5-17 Comparison of 1NN classifier through SBD and DTW to NCC classifier using

Shape-Sphere. 161

6-1 The wearable monitors and evaluates the performance in real-time. It

warns the user when deviating from the correct posture. 167

20

6-2 Two applications of LiftSmart in offline mode. The application shows each

repetition in a colour coded manner. The colour of the repetition results

from its comparison to the reference. (a) Trainees can use the application

to set the reference repetition and compare the other repetitions to the ref-

erence repetition. The application shows the comparison of the repetitions

(the speed ratio and Range of Motion (ROM) ratio). (b) Trainers and expert

users can select multiple repetitions of the same set using TickBoxes to

analyse the performance of the set. By selecting multiple repetitions, any

anomalies can be found. 168

6-3 The workflow for unsupervised evaluation of a weight training exercise.

First, a detection method is required to detect the exercise from the in-

coming data stream. Second, a repetition from the detected exercise set is

selected as the reference set. Third, each new repetition of the same set is

evaluated using the selected signal of repeat. 169

21

22

Chapter 1

Introduction

Wearable sensors that can monitor and analyse the activity of an individual have the

potential to provide real-time insights about an individual’s health. For example, wearable

sensors can be used to monitor athletes while performing exercises. This monitoring

can provide feedback to athletes and their trainers [3] to help prevent injuries, which

currently cost over a billion dollars to treat each year worldwide [4]. An open challenge

is how to extract such feedback from the data provided by wearable sensors. These

sensors generate streams of motion/biomedical data in a time series form, which can be

generated by sampling an underlying continuous signal, such as the movement patterns

of an athlete while performing an exercise.

Analysing the captured data in real-time on wearable devices plays a key role in

developing warning systems that can detect abnormal activities as they occur, which is

crucial in applications such as detecting abnormal performance by athletes to prevent

injuries. The challenge with designing methods that can run on a wearable device is that

they must be sufficiently efficient to run on a device with limited computing resources [5].

The current state-of-the-art for detecting and tracking the repeating movement pat-

tern on a wearable device is based on supervised methods, where a classifier is trained

using labelled data [6, 7, 8]. However, labelled data is expensive to collect and the training

23

itself is also computationally intensive, requiring the tuning of multiple hyper parame-

ters [9]. Moreover, supervised methods fall short in detecting unseen repeating patterns

or variations of the same repeating pattern. Thus, we require unsupervised methods

that can adapt to personalised routines and unseen exercises without the need for ex-

tensive labelled training data. Moreover, any model that is used to learn the movement

patterns of repetitive exercises must also be robust to environmental noise, such as slight

variations in normal movement, variations in the positions on the body of the wearable

devices, and noise in the readings of the wearable device.

In summary, a successful machine learning approach that can run on a wearable

device to provide meaningful feedback to its user about their repetitive exercises must

satisfy the requirements in Table 1.1. These requirements are the basis for the design

goals of such a monitoring system, and these goals motivate the research questions that

we address in this thesis.

Table 1.1: Our design goals and their impact on the system for monitoring repetitive
movement patterns in weight training exercises. The Chapter column indicates the
corresponding chapter in the thesis that addresses each design goal.

G# Design Goal Impact Chapter

1 Detects and tracks in real-time Real-time monitoring 4
2 Analyse in real-time Real-time feedback 5
3 Runs on wearable devices Ubiquitous usage 6
4 Performs analysis unsupervised Adapt to new/unseen routines 3
5 Adapts to variations Personalised 4
6 Handles environmental noise Robust to environmental noise 4

Next, we discuss our design goals for the weight training application: the real-life

application that derives from our research using two real-life weight training scenarios.

We elaborate on the challenges that arise from our design goals. We define the problem of

monitoring weight training activities in real-time using a wearable device in Section 1.2.

In Section 1.3 we provide an overview of this thesis in terms of how each chapter is

designed to address our design goals.

24

1.1 Monitoring weightlifting moves in real-time

Free weight training is the process of building muscles using weights such as dumbbells,

barbells, kettlebells and sand bags. It has become a common form of strength training

that has been advocated globally by medical authorities. For example, at least two

sessions of 45 minute strength training per week is recommended by the American Heart

Association [10], the Australian Government Department of Health [11] and the World

Health Organisation (WHO) [12]. In free weight training, a session consists of a few

(often six to ten) sets of different exercises. Each exercise is designed by an expert and

focuses on strengthening a single or a group of muscles through muscular contraction. A

weight training exercise is a particular movement that makes muscles work against the

weight, which results in strengthening the muscle. Each set consists of the continuous

and uninterrupted performance of a repetitive exercise for at least three repetitions.

Repetitions in a set are performed consecutively (with no rest in between them). The

trainee rests after each set to allow the activated muscle(s) to recover before starting the

next set. The goal in strength training is to increase the intensity of each set gradually

(increasing the weight and/or the number of repeats), which in turns results in increasing

the strength capacity of the muscle group involved in the exercise. However, Drew and

Finch [13] showed that strength training injuries are highly correlated to increasing the

intensity of the sets, even in expert trainees. Gabbett [14] showed that incorrect posture

and inappropriate load are the two main reasons behind most injuries. Therefore, the

consensus among experts in weight training is that it is of the utmost important to

monitor athletes’ performance during their training to prevent injuries [15, 16, 17].

1.1.1 A trainee-trainer scenario

Monitoring a trainee is an important strategy to ensure that the trainee performs the

exercises correctly. At present, this monitoring is performed by the trainers. This trainer-

25

trainee interaction usually follows a cyclical loop [18]. First, the trainer designs a program

for the trainee based on the trainee’s personal needs. The trainee performs the routine for

several sessions under the trainer’s supervision. The trainer identifies further strengths

and weaknesses in the trainee’s performance, which are then taken into consideration to

design the next exercise routine for the trainee. The practice is to increase the intensity

of the exercises gradually under the trainer’s supervision to achieve the trainee’s weight

training goals.

However, increasing training loads are a major cause of a large portion of soft tissue

injuries, as shown by Gebbett [14]. These changes result in muscle fatigue, which shows

itself through the following signals [19]:

1. Decreasing the maximum performance that is observed;

2. Decreasing load tolerance;

3. Extending the recovery time needed;

4. Disrupting the correct posture for the exercise by the trainee.

Thus, a real-time monitoring platform that can warn a trainee as soon as the early signs

of muscle fatigue appear is an essential step in helping both elite athletes and beginners

to avoid injuries. This platform is currently implemented manually through the personal

trainers’ supervision.

In the following two scenarios, we discuss why it is essential for both novice and elite

trainees to access a monitoring platform during their weight training routines.

Mark joins a gym for the first time. At the gym, he meets Jane, who was assigned

as his personal trainer for his first session. Knowing that Mark’s goals include

increasing his overall strength, Jane designs a 6-week program including six differ-

ent free-weight exercises, each to be performed in three sets of ten repetitions. She

demonstrates the correct execution of each exercise and after each demonstration

she asks Mark to do a few repetitions to ensure that he understood it. She gives

26

him feedback to improve his technique until reaching an acceptable performance

level. After going over all the exercises, Mark feels confident that he understood

them. However, next time Mark comes to the gym, without Jane’s supervision, he

is not quite sure whether his performance is correct.

This scenario demonstrates how essential it is to monitor novice trainees. An in-place

feedback system can alert both the trainee and their trainers about incorrect performance

of a routine, and helps guide beginners to ensure they are on track to achieve their healthy

lifestyle.

The next scenario illustrates how an expert trainee, without adequate monitoring, is

prone to mistakes.

Ronnie is an experienced weight lifter. He is constantly trying to push his limits at

every gym session, progressively increasing the weights in his exercises. Though he

demonstrates complete mastery of the technique using light weights, the heavier

the weight, the more difficult it is to maintain a proper technique. The physical

and cognitive overload of the heavy weights makes it very difficult to perform

the full range of motion while performing a deadlift. As a result, he gradually

bent his spine and he ended up straining his back. This scenario shows that de-

pending on the weight being lifted, even an experienced lifter, who has previously

shown correct performance on a given exercise, can make mistakes in subsequent

exercises.

This scenario illustrates the necessity of an in-place and real-time monitoring system

that can be used by elite athletes to avoid unwanted injuries and help them stay focused

in achieving their goals.

Research has identified many factors to monitor during an athlete’s performance of

an exercise, which can be categorised as follows [19]

1. Internal—related to biological measurements such as heart rate, blood pressure or

oxygen consumption.

27

2. External—objective measurements of the work performed, such as acceleration,

distance or power output.

Although internal measurements are an accurate indicator of the overall health of the

athlete and how they cope with the workload, they cannot provide any insights into the

accuracy of the athlete’s posture. This feedback to an athlete about their posture has been

shown to have tremendous impact on both learning a task and excelling in the task [20].

A common approach for monitoring an individual is through the use of a personal

trainer (PT) where a PT monitors the trainee while performing an exercise to ensure they

adhere to correct technique throughout the workout. However, accessing a PT is not

a feasible long term solution. First, hiring a PT is expensive, e.g., between $50 to $100

per session. Thus, even adhering to minimum recommendations for strength training

can cost up to $1000 per month in addition to the cost of gym membership and extra

equipment. Second, working out with a PT means that trainees must arrange their time

around their PT, which can be a nuisance. Third, working out with a PT often means

binding the trainee to work out in a specific gym or place, which restricts the trainee’s

freedom to perform their exercise wherever they want, whenever they want.

The ubiquity of motion sensors makes them an appealing solution to provide au-

tomated feedback on a user’s free weight exercise technique. Users can access motion

sensors from off-the-shelf utilities, such as phones, headphones and smart watches. This

accessibility has increased the capacity to continuously and ubiquitously collect data

from individuals while performing an exercise. The collected data can be used to provide

in-place and real-time feedback to the trainees and thus address the scenarios described

above.

28

1.1.2 Challenges

A major challenge in automatically monitoring weight lifting exercises arises from the

human body’s large number of degrees-of-freedom in movement. The large number of

degrees-of-freedom in movement creates a huge potential for possible incorrect postures

for any given exercise. In addition, these degrees-of-freedom result in multiple variations

of any exercise that targets specific muscle fibres, where these variations do not necessar-

ily represent a mistake. For example, the exercise in Figure 1-1 could also be performed

by twisting the dumbbell while lifting. Any monitoring platform must be able to consider

these variations and be able to differentiate them from an incorrect performance of the

exercise. A successful system must be robust to variations of patterns so that trainees

can achieve their personal goals.

Another challenge arises from the nature of weightlifting exercises. In weightlifting,

sets are often performed in three-to-many repetitions of a single exercise, with each

repetition being the unit of analysis. Each repeat takes at most ten seconds. Each set

lasts at most one minute, which is surrounded by a rest period of a few minutes duration

where the trainee is free to perform any activity, such as sitting on a bench resting,

going for a walk or drinking some water. Thus, a successful method should be robust to

environmental noise and able to differentiate the weight training intervals from other

activities that a trainee might perform at a gym.

In summary, any online and real time monitoring system for weight lifting must be

robust to variations of an exercise, while being efficient enough to identify when the

trainee starts performing an exercise, as well as efficiently detecting and qualifying each

repetition of an exercise in the set.

29

(a) Biceps curls starting position (b) Biceps curls movement

(c) Correct variation (d) Incorrect movement

Figure 1-1: Unilateral biceps curl performance. Top pictures show correct performance.
Bottom row shows two variations. Left is a correct variation (with a green tick) and right
is an incorrect variation (with a red cross).

1.2 Problem statement

To illustrate the characteristics of weightlifting data, Figure 1-2 illustrates a sample data

stream recorded for three different weight training exercises, performed by a trainee using

a motion sensor attached to his wrist. The data is recorded in quaternion units that show

rotation in space. Each exercise set is delineated from the rest of the data stream using

vertical bars. The repeated pattern, which shows the exercise performed by the trainee, is

shown in red for each set. Comparing each exercise set, Figure 4-1 shows how much each

30

75000 80000 85000 90000 95000 100000
Time

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Ve
rs
or

IoR 1
Signal:380mSec

IoR 2
Signal:780mSec

IoR 3
Signal:1000mSec

Wrist motion

Quaternion Motion

Figure 1-2: A recorded sample of motion data from three weight lifting exercises. The
three sets are shown with the recurring exercise in red in each set.

repetition (red segments from each exercise interval) changes from one set to another in

both shape and frequency. We see that the shape of the data not only varies from one set

to the next (as indicated by the numbered regions), but also from one repetition to the

next (with different levels of amplitude). We can also see how the data corresponding to

the rest periods is substantially different to the data during the exercises.

Our focus in this research is to design machine learning methods that can help people

with knowledge of weight training. The common characteristics of this focus group is that

they all know how to perform an exercise. Thus, they can perform the first few repeats

of their exercise with no problems. However, as they progress towards the end of their

set they can face muscle fatigue, which can cause trainees to deviate from their routine

to finish their set. Our goal in our research is to design machine learning techniques

that can detect the personally correct performance of an exercise and then track each

performance of the exercise according to the trainees’ personal best. Examples of such

deviations can include a smaller range of motion while progressing through an exercise

set, or the existence of fundamental coloured noise in the signal recorded from the set

that gradually changes the shape or frequency of the detected signal after a few repetitions

of the exercise.

1.3 Contributions

In this thesis, our focus is on designing resource efcient machine learning techniques

that can run on wearable devices to analyse human movement in-real time and in-place.

31

We focus on the limitations of current machine learning techniques in this context, in

terms of achieving the design goals for such a wearable device as listed in Table 1.1. In

Chapter 2 we describe in detail the currently available systems for tracking and evaluating

weightlifting exercises (Section 2.1). We examine each system’s underlying machine

learning techniques and their limitations in terms of addressing our design goals in

Table 1.1, i.e., robust, unsupervised learning for real-time, personalised monitoring.

Therefore, our goal in this thesis is to design machine learning techniques that address

these machine learning challenges. We showcase the usability of our techniques through

a proof-of-concept wearable that can detect, track and evaluate weightlifting movements

in real-time and in-place. We showcase the potential our machine learning techniques

create for future research in Human Computer Interaction (HCI), which enables warning

systems for weightlifting movements in this context. However, further HCI research on

this proof-of-concept is outside the scope of this thesis and is left for future research.

In Chapter 2 we overview the current state of the art techniques for monitoring weight

training activities. Since our machine learning techniques are motivated through the

weight training monitoring application, we first discuss the state-of-the-art systems that

address our motivation. We go into details of how each method performs the monitoring

task and discuss its pros and cons in regards to satisfying our design goals discussed in

Table 1.1. We then review the machine learning techniques that address our analytical

challenges and discuss how each of the current methods fails to satisfy all our design

goals discussed in Table 1.1.

In Chapter 3 we present a novel workflow to detect performance anomalies of weight

training activities from observing only the correct performance of an exercise by the

trainee. We evaluate our method on a benchmark data set for the biceps curl exercise

and evaluate our system with a publicly available dataset, and show that our workflow

detects unseen incorrect weight lifting performance with 98 percent accuracy. The result

of this chapter is published in paper A in the Preface.

32

In Chapter 4 we formally define weight training activities in terms a burst of con-

secutive recurring signals from a time series data stream which we called an Interval

of Recurrence. We present an efficient, online, one-pass and real-time algorithm for

finding and tracking intervals of recurrence in a time series data stream. We provide a

detailed theoretical analysis of the behaviour of any interval of recurrence, and derive

fundamental properties that can be used on real world data streams. We show why our

method, unlike current state-of-the-art techniques, is robust to variations in repeats of

the same pattern adjacent to each other. We also discuss how the applications of the

interval of recurrence goes beyond weight training activities and can be seen in various

fields of research, such as the energy consumption of air conditioning in data centres

can be modelled as intervals of recurrence, or in seismology where different stages of

earthquakes can be modelled by intervals of recurrence. We test our algorithm on real-

world weight training datasets, which showed that our method can detect intervals of

repeating activities on wearable device with high accuracy (over 70% F1-Score) and in

a real time environment with only a 1.5-second lag. Our experimental results from real

world datasets demonstrate that our approach outperforms state-of-the-art algorithms

in both accuracy and robustness to variations of the signal of recurrence. The results of

this chapter are under review as paper C in the Preface.

In Chapter 5 we continue modelling weight lifting exercises using signal processing

theories from Chapter 4. We model repetitions of an exercise using signals in the form of

time series data. Thus weight lifting exercises and repetitions can be compared through

their signal properties. We investigate the Shape analogy technique in geometry that

concerns comparing geometric objects by their shape. We introduce this geometric

‘shape’ analogy into time series analysis by describing time series data as a geometric

curve that is expressed by its relative location and form in space. We then transform the

computed curve into a vector space where each time series is presented as points on

the surface of a sphere (Shape-Sphere). We prove a pseudo-metric property of shape

33

distances in Shape-Sphere and show how to compute the average shape in this space.

We demonstrate the effectiveness of these two properties in analysing time series data

by applying them into a Nearest Centroid Classifier and K-Means clustering, through 48

publicly available data sets. Our results show Shape-Sphere improves the classification

results when shape is the differentiating feature, while keeping the quality of clustering

equivalent to current state-of-the-art techniques. The results of this chapter are under

review as paper D in the Preface.

In Chapter 6 The outcome of this chapter is to build a proof-of-concept wearable

that can be used in the future of sport science. The wearable can be tuned to detect

and evaluate different exercises based on their recorded signal. However, the correct

levels of thresholds for warning a trainee requires interdisciplinary research between

sport science, physiology and machine learning that goes beyond the scope of this thesis

and has been left as future research. In this chapter we present LiftSmart, a novel smart

wearable to detect, track and analyse weight training activities. LiftSmart is the first

wearable for monitoring weight training activities that is based on unsupervised machine

learning techniques to eliminate the use of labelled data, which is expensive to collect,

computationally intensive, and requires the tuning of multiple key parameters. LiftS-

mart, uses the workflow from Chapter 3 to monitor weight training activities. LiftSmart

accomplish its monitoring goals using the techniques in Chapter 4 and 5 to detect, track

and analyse weight training activities in real-time, on the wearable device. Thus, it is the

first wearable that monitors (i.e., detects, tracks and evaluates) weight training activities

without the use of labelled data online and in real-time. The results of this chapter have

been published as paper B in the Preface.

In Chapter 7 we elaborate the final conclusions of this thesis. We discuss what has

been achieved in this thesis and leave a research blueprint that can be regarded as a

starting point for future researchers.

34

Chapter 2

Weight training activity monitoring

methods: background review

As we discussed in Chapter 1, the main focus of this thesis is to design machine learning

techniques that can address the shortcomings of current learning techniques to fulfil our

design goals mentioned in Table 1.1. As such, in this chapter, we review both current

weight training systems that are designed to detect, track and evaluate weight training

movements. We discuss the machine learning techniques used in these systems, and

discuss why none of the current machine learning techniques is capable of addressing our

design goals. After reviewing the available systems for tracking weight training activities,

we continue by reviewing the available machine learning techniques that have been used

in the literature to design the weightlifting systems in more detail. We discuss in detail

the shortcomings of these techniques in answering our design goals.

2.1 Monitoring settings: How to monitor trainees?

Monitoring settings define the tools and the environment that are used to monitor

trainees. It comprises the types and amount of data available for analysis, the computing

resources that can be used, as well as the place where trainees’ performance is monitored.

35

The monitoring setting can be divided into two categories: (1) Instrumented settings, and

(2) Ubiquitous settings.

2.1.1 Instrumented settings

An Instrumented setting is a physical area where monitoring tools are installed. Trainees

must perform their routines in this area to be able to receive their performance feedback.

Since the space is dedicated to performance monitoring, it can have access to sufficent

computing facilities to analyse the trainees’ performance. As a result, computationally

intensive machine learning techniques can be routinely applied to analyse trainees’ per-

formance. Common technologies that have been used in instrumented spaces are: digital

photo/video cameras, augmented reality cameras and motion-sensing devices such as the

Microsoft Kinect (https://azure.microsoft.com/en-us/services/kinect-dk/).

Method: Capturing the trainee’s body image (human figure) is the main approach used

in instrumented spaces that are dedicated to exercise monitoring. Video or still-image

cameras are used to capture the body figure of the trainees to detect and track their

activities. The main challenge in these methods is to accurately identifying the trainee’s

figure in an image, and then follow it in the future frames to track their performance. The

use of photo cameras was made possible by Israd and Blake [21] who designed the first

method to extract a continuous curve around an object from the recorded video and

track the curve in the future frames. Rittscher et al. [22] used this contour tracking ap-

proach for detecting activities such as jumping, star-jumping and ball-throwing activities.

Other approaches have been studied, such as movement capture from an object’s mesh

extracted from a video recording [23, 24, 25], or capturing joint movements from multiple

camera angles[26, 27]. Deep neural networks have provided more accurate methods to

detect multiple rigid bodies from video, which allows more advance systems to be used

in practice for detecting and tracking exercise activities. Adversarial neural networks

36

for pose estimation of multiple people in a crowd [28], convolutional neural networks

for tracking multiple people’s pose in a crowd [29], and statistical inference to associate

body parts to their related rigid body in real time regardless of the number of people

in the video frame [30], are examples of pattern recognition techniques that allow the

use of video capture devices to detect and track multiple trainees in a gym. Khurana et

al.[31] introduced the first system (GymCam—2018) that successfully combined neural

networks and rigid object trajectory extraction to detect, recognise and track weight

training activities in a gym. They used a traditional trajectory and movement tracking

method [32] to detect movement from a gym scene, and clustered the trajectories into

different activities. This data was then analysed by a multi-layer perceptron to accurately

identify and track each movement.

As mentioned, the main challenge for video analysis is to detect and track multiple

rigid bodies in a captured video. In another approach to solve this problem, Microsoft

introduced the Kinect to automatically detect and track rigid bodies in front of its motion-

sensing camera. This extraction of a rigid body makes Kinect a more approachable

solution for designing weight training activity trackers. For example, one of the earliest

use cases of the Kinect was MotionMA [18], which was designed to guide a trainee while

they performed an exercise in front of a Kinect camera. The system learns the correct

performance from an expert by capturing the skeletal figure of the expert, and then guides

the user through the exercise by showing them how to move different parts of their body.

In another approach, YouMove [33] was designed with the goal of learning moves by

breaking down each move into simple components. Zhao et al. [34] used the Kinect to

automatically evaluate physiotherapy exercises performed by patients in the home.

Strengths and Shortcomings: The main strength of instrumented spaces comes from

the quantity and quality of data available for analysis. These areas are pre-designed for

particular exercises. As a result, cameras can be installed to capture the most informative

37

views of trainees’ performance. This particular factor makes instrumented spaces an

ideal environment for elite professional athletes, where cost is less of an issue.

The main challenge in instrumented spaces is that analysing their data requires pow-

erful computing resources, which can be considered as invasive to the user’s privacy.

In these techniques, the analysis is based on capturing the full figure/silhouette of the

trainee, which requires substantial computing facilities for analysis and thus can re-

veal unwanted/unnecessary information. Although these techniques are popular with

elite/Olympic athletes, they are limited to situations where users sign consent forms and

are willing to share this information because of the performance benefits they can receive

and the trust they have in the system.

The instrumented space fails to address the ubiquity requirement of our design

goals. This limitation stops the user from being able to exercise wherever they want. For

example, the ability to monitor the same person after switching from one gym to another

or exercising by the beach is limited with the use of these technologies.

2.1.2 Ubiquitous settings

To relax the need to restrict the trainees’ monitoring to a particular location, ubiquitous

systems have been designed. The unique characteristic of these systems is their portabil-

ity, i.e., trainees can easily move or wear them in a range of locations. In order to achieve

the portability design goal for these methods, they must address the challenge of being

able to extrapolate movements from limited data that does not capture the entire trainee’s

body figure. Inference from the impact force on a surface and inertial measurements are

two common methods that have been studied in this category of systems.

Method: Impact of force is based on the idea that trainees can use some specific appara-

tus such as standing on a mat or wearing a glove, which can sense the amount of force

applied to its surface. Examples include standing on a mat or holding a specific piece of

38

equipment like a chin up bar. The equipment then provides feedback to the trainee by

analysing the forces that can be captured from its surface. SmartMat [35] was designed

based on this idea through capturing the pressure from a user’s body on the mat’s surface

during exercise. The mat identifies 10 pre-trained exercises by analysing the pressure

it receives from the trainees body. In a closely related approach, Smart-Surface [36]

classifies Yoga movements by using surface pressure sensors. Zhou et al. [37] designed

a fabric as a wearable to detect leg exercises by observing leg muscle activities through

surface pressure. In this approach, repetitive activation of the leg muscle is considered an

exercise. Other related activity tracking approaches are the use of textile deformation [38]

to identify movements from texture deformation. Alternatively, textile movement from a

glove [39] senses pressure on a glove to detect and analyse indoor activities.

Inertial measurement is based on local features extracted from a trainee’s limb move-

ments during an exercise. Inertial Measurement Units (IMU) are the main type of sensor

that has been used for capturing these features. IMU sensors are popular because of

their ability to observe the movement without depending on any external sources such

as cameras, and thus can operate in a non-invasive way. These methods use only limited

movement measurements rather than external imaging and thus provide both greater

privacy as well as a ubiquitous systems that are accessible to a wider range of users in a

variety of settings. These sensors generate streams of motion data in a time series form.

These time series are generated by sampling the underlying continuous movement as

a waveform, such as the arm movement of a trainee while performing an exercise. For

example, a gyroscope can sample the angular rotation of the limb it is attached to in

3-directions, which can be used to monitor arm or leg exercises.

One of the earliest use cases of IMU sensors for weight training was by Chang et

al. who tried to detect weight training exercises [40]. They achieved 80% accuracy in

detecting what a trainee has performed during a weight training scenario, and were able

to count the number of repetitions by training a Support Vector Machine (SVM). Many

39

studies have applied the same techniques to detect and count the number of repetitions

of an exercise. RecoFit tried to detect multiple weight training exercises using a wearable

sensor on the trainee’s wrist [6], using an extensive set of statistical features extracted from

the recorded time series. They trained a Support Vector Machine (SVM) that achieved over

90% accuracy for 13 predefined exercises. In another approach, NuActiv was designed to

answer the problem of finding unseen weight training activities [41] through semantic

attributes of predefined exercises. In recent years there have been many attempts in

improving detection and counting accuracy of exercise repetitions in weight training

scenarios. Pruthi et al. [7] designed Maxxyt, a heuristic sensor fusion approach to extract

unknown exercises from recorded sensor data. They reported a “within 2 repetition”

accuracy of 98% for 10 different exercises in an offline scenario. Shen et al. [8] designed

MilFit, a smart watch that can classify weight training activities from other exercises such

as running (aerobic activities), and count the number of repetitions from the weight

training exercises in an offline mode. Advances in deep neural networks opened the

opportunity to achieve higher accuracy. Um et al. [42] used a convolutional neural

network (CNN) to classify 50 different weight training activities. They reported 92.1%

accuracy in classifying the exercises. Skawinski et al. [43] used a CNN to count the

repetitions of an exercises, which reported 97.9% accuracy in counting the repetitions of

an exercise set.

Strengths and weaknesses The main disadvantage of ubiquitous systems comes from

their compact design. These devices are designed to be portable, and thus rarely have

access to powerful computing resources. As a result, resource efficient machine learning

techniques are needed that can run on these devices.

However, the small size of ubiquitous systems gives them a portability and affordabil-

ity advantage over instrumented spaces. Wearable watches are now off-the-shelf devices,

which can be purchased from less than one hundred dollars. Trainees can easily buy and

40

wear these devices at a wide variety of times and locations. The ubiquity and affordability

of these devices not only make them a flexible tool to monitor trainee’s everyday activities,

such as running by the beach or training at the park, but also give them the advantage of

being able to provide a low-cost warning system for a wide variety of trainees.

Ubiquitous methods are also popular because of their ability to observe the movement

of a trainee without depending on any external sources such as cameras, in a non-invasive

way. This not only reduces cost and ease-of-use, but also helps protect the privacy of the

trainee through the use of more limited sensing, in contrast to video-based approaches

that capture detailed images of the trainee.

2.2 Approaches to analysing trainees’ performance

Our aim in monitoring a trainee is to check whether they are performing their exercise

correctly. This process involves observing and recording a trainee’s activity and then

checking whether they have performed the exercise to a desired standard. As discussed

in Section 1.2, this process starts by detecting the exact time a trainee starts performing

an exercise, based on the observed data. Then, each repetition of the exercise needs to

be identified and tracked throughout the exercise set from the observed data. The final

step is to evaluate each repetition. Machine learning techniques to perform detection,

identification, tracking and evaluation of exercises can be categorised using the type of

knowledge they require to analyse the data:

1. Posteriori knowledge: knowledge that is derived from experience after the analysis

of data collected in a controlled environment, and

2. A priori knowledge: knowledge that is based on general principles of the analysis

task, rather than being extracted from empirical analysis of training data.

We discuss the trainees’ monitoring steps according to these two categories of knowledge.

41

2.2.1 Monitoring from pre-recordings: A posteriori approach

Machine learning techniques that fall into this category are based on data sets that

are pre-recorded in a laboratory/simulated environment. In these settings, researchers

acquire the required data in a controlled environment. They first select a set of activities

to monitor. The next step is to recruit people who perform the activities in the controlled

environment. During this step, researchers collect the same type of data that is available

from the final product. The next step is to label the collected data. In this step researchers

and field experts must work together to label the data, where the data is analysed by the

expert to (1) label the segmentation of the exercise set, i.e., identify that an exercise is

happening; (2) label each exercise performance within a set; i.e., segment the detected

exercise set into repetitions; and (3) evaluate each repetition; i.e., evaluate the accuracy,

intensity, etc of the repetitions.

Method: One of the earliest studies of weight training activity detection and recognition

was by Chang et al. who tried to detect weight training exercises [40]. They selected

nine different weight training exercises to monitor. For data collection they used eight

male and two female subjects who each perform the nine exercises in a laboratory. Each

subject performs each exercise for three sets of fifteen repetitions. Their subjects were

allowed to perform more repetitions if they want to or stop if they feel tired or pressured.

The researchers manually segmented the data by starting and stopping the recording

of data when subjects were performing the exercises. In summary, they were able to

collect 4925 repetitions, which were performed over 162 minutes. They manually count

the repetitions within each set and used this as the label of that set, together with the

exercise type. They used a Naive Bayesian Classifier to classify the data. They achieved

90% accuracy in detecting what a trainee has performed during a weight training scenario.

They were able to count the number of repetitions using a Hidden Markov Model (HMM),

which achieved an average 5% miss-count with a maximum miss-count of 17%.

42

In another study, Morris et al. [6] presented RecoFit, a wearable tuned for weight

training exercises. They collected a dataset from 94 participants in a laboratory environ-

ment to train an SVM. They use expert personal trainers to watch the participants while

they perform the exercises. The trainers label the dataset in terms of detecting the start

and end of each set, identifying each repetition and counting them. They collected 126

sessions of data before being able to train a SVM. They used an extensive set of statistical

features extracted from the recorded IMU data to train the SVM, which achieved over

90% accuracy for 13 predefined exercises.

In another approach, NuActiv was designed based on the idea of classifying activities

using simple limb movement features. In this method an activity is defined by a vector

of simple limb movements [41]. The idea is that by learning this set of features, NuActiv

can detect complex activities through these features. They selected seven features to

learn by collecting data from 20 subjects. They showed that their system can achieve 70%

accuracy in detecting 10 different exercises. However, they reported that the system can

tend to be confused between similar exercises that differ in only one feature.

Strength and weaknesses The main strength of posteriori approaches is that they learn

a specific exercise in detail. As a result, these systems are useful to monitor a set of

predefined exercises that are often given to new gym trainees. In this scenario, novice

trainees are given a set of certain exercises that help them learn wight training, build

necessary strength and flexibility.

However, after a few months of training, trainees require more personalised routines

that are tuned for their personalised needs and goals. Thus, trainers change the stan-

dard routine for their trainees, i.e., variations of the same exercises, more compound

exercises or new specific routines are designed for trainees. As discussed and shown by

different studies, the existing pre-trained classifiers fail to account for these personalised

changes [40, 44].

43

Studying different weight training databases reveals that even a simple database can

include over a thousand exercises (e.g., bodybuilding.com has 1000 exercises, jefit.com

has 1309 exercises, and ExRx.net has 1800 exercises). Adding the variations of each

exercise to this list together with personal variations means that it is both costly and

time consuming to collect, label and learn every exercise (if possible at all in a timely

manner). Further, it has been shown that supervised template boundaries for weight

training are not easily generalisable to thousands of exercises [45]. To the best of our

knowledge there is no research showing a supervised classifier can detect hundreds of

weight training exercises. Thus, methods based on posterior knowledge fall short in

detecting and tracking all possible exercises for a trainee.

2.2.2 Monitoring using weight training insights: A priori approach

An a priori approach is a method that rests on an insight from the problem domain. For

example, in weight training we might consider any repetitive movement to be an exercise

routine. However, this intuition fails in certain situations, hence such a naive approach

will fail. Nevertheless, if analysis can be applied to data that is assured to be received from

a weight training routine, then many of the posteriori challenges can be solved, such as

limited availability of labelled data and personalisation of exercises. To the best of our

knowledge, no method has been designed to detect, track and analyse weight training

routines using purely a priori knowledge. Thus, in this section we present methods that

can be used to perform each task without requiring the use of labelled data. Since our

focus is on approaches to analyse time series data received from IMU sensors, we focus

on these methods.

IMU sensors generate streams of motion data in a time series form. This time series

is generated by sampling the underlying continuous movement as a waveform, such as

arm movements while performing an exercise. For example, a gyroscope can sample the

angular rotation of the limb it is attached to in three directions.

44

75000 80000 85000 90000 95000 100000
Time

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Ve
rs
or

IoR 1
Signal:380mSec

IoR 2
Signal:780mSec

IoR 3
Signal:1000mSec

Wrist motion

Quaternion Motion

Figure 2-1: A recorded sample of motion data from three weight training exercises. The
three sets are shown with the recurring exercise highlighted in red.

A time series is a set of sequential observations collected over time. The main char-

acteristic of this set is that the value of each observation is related to its index in the set

and the previous observations [46, 47]. Time series analysis is concerned with extracting

these relations to infer information from the available time series within a data set. To

capture these relations we first need to represent the time series, which we discuss in the

next section.

In the Problem Statement in Section 1.2, we discussed that weight training exercises

manifest as consecutive repeating patterns within the time series received from an IMU

sensor (see Figure 2-1). This figure shows three sets of different weight training exercises.

The start and end of each set is shown by vertical black lines. The waveform associated

with the exercise performed in each set is shown in red. A closer look at Figure 2-1 reveals

that detecting the start of an exercise is equivalent to finding the starting point of each set

from the time series—a problem studied under time series segmentation in the literature.

Identifying and tracking the exercise within a set is equivalent to identifying the repeating

waveform inside the set. Finally, evaluating a trainee’s performance is equivalent to

evaluating the repeating waveform inside the set, which is studied as finding the time

series similarity in the literature. Next, we discuss methods to represent time series data

in the computer and then review current time series methods that address each step of

the exercise monitoring workflow.

45

Time series representation

Capturing and analysing time series data can be an efficient method for representing the

data, namely:

1. Feature representation,

2. Fragmented representation, and

3. Continuous representation

of the time series data.

Feature representation In feature representations a set of temporal features such as

the mean, standard deviation or dominant frequency of a time series is extracted to

represent the time series. In these methods, a time series or a sub-region of the series

is modelled through a small number of aggregated features that are extracted from the

original data. The goal is to represent the data in a way that feature based machine

learning techniques such as Support Vector Machines (SVM) can be applied to the time

series data set [48, 49]. Techniques such as statistical feature extraction [50], dominant

frequencies [51, 52], signal features such as temporal energy of a signal from the time

series [53], and perceptually important points (PIP) [54, 55] are a few examples of methods

that have been successfully applied as feature based machine learning models for time

series data by extracting features from the data.

Fragmented representation In fragmented representation, a time series is represented

through its segments. A segment is an ordered subset from a time series containing

consecutive observations from the time series. Yi and Faloutsos designed an approach

that represents each segment through its mean value [56]. In their approach, segments

are generated by segmenting the time series into equal length parts. Keogh et al. [57]

generalised this method by introducing Piecewise Aggregation Approximation (PAA),

46

which generates variable length segments. An example of PAA for a time series is given in

Figure 2-2.

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2

PAA reduction of series x

Index

x

Figure 2-2: A sample time series (the black graph) and its Piecewise Aggregation Approxi-
mation representation (PAA) shown in red.

Lin et al. extended the PAA idea by introducing the statistical distribution of points in

the time series to design the Symbolic Aggregation Approximation (SAX), which repre-

sents a time series using a set of predefined symbols [58]. SAX segments a time series and

then maps each segment into a symbol according to the average value in the segment

and the time series distribution. Piecewise linear aggregation (PLA) is another approach

that represents a time series through a linear approximation of its segments [59, 49].

Continuous representation In continuous representations, the members in the time

series are directly used to analyse the data. In this approach, a time series is seen as

a waveform (a signal). Thus, signal processing methods, such as correlation [60, 61],

Principal Component Analysis (PCA) [62, 63, 64], Fourier transform analysis [52, 65], and

wavelet analysis [66, 67] are popular methods that have been used to analyse time series

data as a waveform. In Section 2.2.4 on time series analogies, we discuss the approaches

of analysing the time series as a waveform in more detail.

47

2.2.3 Detecting exercise sets within a time series—A time series seg-

mentation problem

Lara and Labrador define the human activity recognition problem (HARP) to be the

problem of identifying a temporal segment from a given time series, where one and only

one activity can be assigned to the segment [68]. Thus, the activity of interest can be

extracted and tracked from a time series data. Segmentation is the process of partitioning

time series data into segments. The segments often associate with meaningful patterns

presented in different parts of the time series [69]. Lin et al. categorised time series

segmentation into three sub-classes [70]: (1) Physical boundaries, where segments are

typically defined through changes of movement; (2) Derived metric boundaries, where

segments are defined through a transition in variance or a threshold; and (3) Template

boundaries, where segments can be defined through user defined templates. Next we

review methods that are available for each sub-category.

Segmenting time series into intervals

Traditionally time series data were segmented into equal length regions [71]. This tech-

nique oversimplifies the problem of time series segmentation. Meaningful patterns often

appear with different lengths in time series. Thus, an equal length segmentation can

break the pattern of interest into multiple segments, which in turn can result in missing

the pattern [69]. Keogh et al. [59] designed one of the first variable length segmentation

algorithms. In their method a time series is segmented through piecewise linear approx-

imation of the time series. Other methods for segmenting a time series into intervals

then morphed to the problem of representing a time series by its fragments, which we

discussed in Section 2.2.2.

Change Point Detection Change Point Detection (CPD) techniques are one of the ear-

liest approaches for segmenting a time series. In CPD, the main task is to search for

48

properties whose changes uniquely differentiate the start and end point of the segments

in the time series.

Traditionally CPD algorithms can be divided into two categories: (1) Offline algo-

rithms, and (2) Online algorithms. Offline algorithms expect to receive the whole time

series in advance before performing any processing. These algorithms can apply comput-

ing/data intensive analysis to correctly segment the time series [72, 73]. Aminikhanghahi

and Cook defined both online and offline approaches under one umbrella of ε-real-time

algorithms [74]. In their definition the ε value defines how “fast” the algorithm works.

For example, when ε is equal to the length of the time series then the approach is offline,

and when ε has a constant upper bound it is online. By their definition all the methods

described in the Fragmented representation of a time series are defined as offline meth-

ods for CPD. Using this definition, they identified a statistical CPD approach as a starting

point for online methods, which we discuss next.

Statistical segmentation: Statistical pattern mining is a popular method in CPD where

each segment of a time series is generated from a distribution that is differentiable from

its immediately previous and next segments. Popular methods in this technique are

based on estimating the distribution of each segment. For example, Bayesian probability

change points can be defined in terms of segments whose observations are generated

from a normal distribution but with different parameters [75, 76, 77]. Gaussian processes

are a generalised version of Baysian methods for change point detection [78]. Chiu et

al. showed how the expectation maximisation (EM) algorithm, a process that is used in

generalised statistical modelling, can be used to segment a time series [79]. One method

that generalises statistical pattern mining to multiple time series is [80]. In this approach,

a bundle of co-evolving time series are given and the goal is to automatically (with no

input parameter) segment the bundle into groups called regimes. A fully automated

and unsupervised method based on statistical features called AutoPlait was designed by

49

Matsubara et al. [80]. AutoPlait is based on the concept of regimes, which the authors

introduced into time series. A regime is a hidden state that describes the behaviour of a

segment of a time series. A time series is generated by a Hidden Markov Model (HMM)

of regimes that switches between/within them. To find the optimum set of regimes, the

authors adopt the idea of compactness from coding theory. The goal is to generate the

minimum number of regimes that best describe the HMM that creates the time series.

To achieve this goal an iterative approach is proposed, which at each iteration breaks

the currently found regimes into two regimes. The iteration process is governed by an

objective function that describes each regime through coding theory (the number of bits

used to code the time series, number of segments in each regime, length of segments, etc).

In a closely related approach, Zhao and Itti proposed TSDecompose (TD), an information

retrieval approach to find split points from a given time series [81]. TD is based on the

definition of homogeneity for a time series. The homogeneity of a time series is defined

through its symbolic representation of the time series [81]. The authors used Symbolic

Aggregate Representation (SAX) [82] of a time series to transform a given time series into a

sequence of symbols. The authors define the entropy of a time series by the total entropy

of the symbols generating its SAX string. This string of symbols is then split into two

substrings if the total entropy of the new pair of substrings is less than their parent. The

dividing process stops when the decomposed tree is at its local minimum entropy. In

Chapter 4, we use this method by filtering the generated substring using an upper and

lower bound threshold over the length of generated segments to extract IoRs from time

series.

The main drawback in these methods is that they are highly dependent on the source

of the data stream, and thus can be hard to generalise [70]. Another drawback of statistical

pattern mining techniques is that these techniques need to observe a substantial amount

of data before they can detect changes in the underlying statistical pattern. This depen-

dency on observing a substantial amount of data makes them unsuitable for real-time

50

problems where making a fast decision is crucial. It also stops these methods from detect-

ing short segments where the distribution changes for a short period of time compared

to the length of the time series.

Subspace tracking Subspace tracking is an approach that can be used for online time

series segmentation, which falls into the class of derived metric boundaries. In this

approach, segments can be well defined when there is little randomness in the interval as

compared to the rest of the data. These algorithms estimate the stochasticity in an interval

and look for segments with significantly less randomness. Fancourt and Principe [83] and

Lin et al. [84] used subspace tracking in a specific domain for human motion recognition.

However, these methods are highly susceptible to the presence of noise, i.e., a small

perturbation inside the IoR can prevent these algorithms from differentiating the interval

from the rest of the data [85].

Segmenting by motifs Motif discovery algorithms are another set of methods for time

series segmentation, which search for physical boundaries [86, 87, 88]. A motif is a unique

recurring pattern in the time series data. Recurrence was first formally defined by Henri

Poincaré in 1890 [89]. Later in 1897 Eckmann et al. introduced the Recurrence Plot

(RP), which is a binary image that can visualise recurrence in a dynamical system [90].

Structure in the plot may result from periodicity of the system, and can thus be used to

detect recurrence in systems [91].

The most recent motif discovery method is Matrix Profile (MP), which can detect

motifs from time series in an unsupervised manner, proposed by Yeh et al. [92]. MP is a

vector such that at each point in the time series, it stores the Euclidean distance between

the subsequence of length m starting from that point, to its nearest neighbour. MP

searches for subsequences of fixed length m, and aims to find the closest subsequence to

each subsequence of length m [92]. MP drops to zero during an interval of recurrence.

Thus, to find intervals of recurrence in a time series we can search for points on the

51

MP with values smaller than a threshold for an interval. The main problem is that

MP depends on its input parameter m to find the IoR. Gharghabi et al. used MP to

design an arc counting method that considers each repeat as a motif, and tries to find

repetitive regions from a time series [93]. Mirmomeni et al. showed that both MP and

the arc counting method are highly sensitive to their key input parameter m for finding

consecutive repeating regions in a time series [94]. They demonstrated that for each

different region we must use a different m, which prevents this method from being a one

pass and real time algorithm. They designed a method for finding the best m to identify a

repeating region from a time series.

2.2.4 Evaluating trainees’ performance from a time series—A time se-

ries analogy problem

To provide feedback on exercises using wearable sensors, we need to find mechanisms to

evaluate the physical movement from the time series data. As discussed earlier, exercises

are performed differently by trainees mainly to achieve various personal goals. Thus,

there is no one correct way of performing an exercise that can be captured from the signal

features of the time series data. As a result, research has been focused on finding methods

to compare the observed time series data to some ground truth that has been captured in

advance. In this section, we review computational methods for comparing time series

data.

Time series analogy is the process of comparing pairs of time series data with each

other. The comparison returns a value that describes how similar/dissimilar the time

series are. These techniques can be divided into two main categories:

1. Analysing the time series by extracting features from the series, and

2. Analysing the time series by their shapes.

In feature extraction, the goal is to transform the time series into a feature space

52

based on statistical features such as the mean and standard deviation. These methods

are often based on the feature extraction representation of time series discussed in

Section 2.2.2. The time series is then processed as a vector in the reduced feature space.

Modelling shape of a time series statistical models (ARMA) [95, 96, 97], extracting the most

representative coefficients of a cosine transformation [98] and grouping patterns based on

principal components using singular value decomposition (SVD) [99], are methods that

reduce the time series dimension using feature extraction methods. These features are

passed to learning models for further analysis. Note that in some learning models, feature

extraction happens implicitly. For example, passing a spectrogram into a convolutional

neural network results in a network to learn complex features from the frequency domain

of the time series data. Although these methods improve processing time for large data

sets by reducing the dimension of the time series into just a few features, they often lose

the shape structure of the time series during the feature extraction process, a feature that

is important to capture when analysing weight training performance from IMU sensors.

In the problem statement, we mentioned that each performance of an exercise within a

set results in a signal. The changes in the shape of these signals is the unit of comparison

for our problem, i.e., to assess weight training performance from a time series stream.

Shape analysis of time series considers the overall waveform to be more interesting

than each individual value in the series [100, 101, 102]. As a consequence, shape-based

algorithms that quantify the similarity between pairs of time series search for common

patterns in the shapes formed by peaks and troughs. This category of time series analysis

can be divided into two subgroups: (1) Discrete time series, and (2) Continuous time

series.

Discrete time series analysis refers to a family of methods where the time series

is described through a few limited discrete values (symbols), which we described in

Section 2.2.2 (Fragmented representaion of time series). Piecewise aggregation of the

time series [57, 103, 56] and discretization of the curve to symbolic representations

53

through thresholding (SAX) [58, 104] are examples of methods that segment a time series.

Computing a consensus is often used as a method to extract the average shape from a

set of time series represented in a fragmented form [105]. A consensus is calculated by

comparing a set of time series point-to-point, and accepting the most frequent value at

each point from the aligned time series. Discrete time series analysis is limited by the

number of symbols available to represent the time series, which limits the accuracy of

the representation of the waveform.

Methods that work directly on time series values usually capture the most complete

shape details of a waveform. The time series in these problems is represented by con-

tinuous measurements. The simplest form of continuous analysis is to align a pair of

time series in a point-wise manner and calculate the Euclidean distance (ED) between

them [106]. In this approach we can assume each time series is a vector in space as de-

scribed by Buza et al. [107]. Then, the distance between two points is the vector distance

between the points in the mapped space. Using the first few Fourier coefficients [106],

reducing the time series to the first few Haar wavelet transformation coefficients [108],

or modelling the curve using Chebyshev polynomials [109] are some early models that

tried to map pairs of time series according to simpler models, such as the underlying

frequencies of the two time series. More advanced techniques are based on the elasticity

of time series or correlation of a pair of time series. These two techniques have been

widely used in finding time series analogies which we describe next.

Elastic based time series analogy

In this technique, the goal is to find the best map between the peaks and troughs of

two time series, i.e., different parts of time series with different lengths can be aligned

with each other. Let U = {t1, t2, ..., tm} and V = {t ′1, t ′2, ..., t ′n} be a pair of time series

with length m and n respectively. Let Di st be the distance function that computes the

distance between U andV . The algorithm that tries to find the minimum value for Di st

54

by mapping parts of these pairs to each other is a dynamic programming approach called

Dynamic Time Warping (DTW). DTW was first designed for speech recognition in 1971

by Sako and Chiba [110] and since then has became a popular method for time series

matching. In DTW, Di st is calculated by Dm,n such that Di st (U ,V) = Dm,n where Di , j =
di , j +min{Di−1, j ,Di−1, j−1,Di , j−1} and di , j is a distance function between ti and t ′ j . Since

then there have been numerous variations to DTW. For example, computing Di st (U ,V)

is computationally expensive. Pruning the search space for finding the best warping [111]

and approximate indexing [112] are some of the early methods proposed to compute

DTW efficiently. A parallel algorithm for calculating DTW was introduced by [113].

Keogh and Pazinni showed that DTW can result in misalignment, especially when a

very small region such as a single point from one time series is mapped to a big portion

of another time series [114]. They proposed a probabilistic approach that considers

regional shapes as high level features for mapping a pair of time series. Ratanamahatana

and Keogh proposed the idea of constraint time warping that set a bound on the search

space [115]. In 2017, Cuturi and Blondel introduced softDTW, which used smoothed time

series to propose a differentiable loss function for DTW [116].

The longest common subsequence (LCSS) distance was proposed to find the best

common subsequence of two time series [117]. LCSS differs from DTW in that it does

not need to map all the subsequences of two time series, and thus has more freedom

in comparing two time series. Adaptations of encoding methods from compression

theory [118], and frequency of occurrence of similar patterns in two time series [119]

are other elasticity based approach that have been proposed for time series distance

measures.

Correlation based approaches

Correlation based approaches are designed on basis that the time series is generated by

sampling a continuous waveform, thus it is a signal. Consequently, correlation for time

55

series is defined in the same way as it is defined for waveforms, i.e., for two real valued

time series U and V cross-correlation is denoted by ~ and defined by first extending

the time series to infinity by zero padding them and then calculated as U (t)~V (t) =∫ +∞
−∞ U (t +τ)V (t)d t . Use of correlation in time series similarity goes back to 1948 when

Quenouille studied how a test of significance can be applied to time series data through

their cross-correlation [120].

The cross-correlation of a pair of waveforms has a pseudo-metric property. This

property of cross-correlation became popular for analysing time series when Podobnik

and Stanley showed its effectiveness for general time series data [121]. Wachman et al.

used this pseudo-metric property to find the similarity between time series generated

from star brightness observations [122]. Paparrizos and Gravano used the pseudo-metric

property to design an efficient K-Means clustering algorithm for time series data [61].

2.2.5 Computing the correct performance of an exercise—A time se-

ries averaging problem

Time series averaging is the problem of computing a time series (centroid) that represents

all of the time series in a given set. The centroid plays a key role in both applying tests of

significance to time series data sets, as well as prototyping a set of time series. In tests

of significance, anomalies can be detected through their distance from the centroid. In

prototyping, a centroid is defined as the representative of a set that can be used in further

time series analysis to achieve greater efficiency. For example, to determine whether a

given time series is from a particular group, a common approach is to compare the new

time series to the centroid of the set and assign the time series to the group with the

closest centroid.

DTW Barycenter Averaging (DBA) is an averaging method based on Dynamic Time

Warping (DTW). Gupta et al. showed that finding the global optimum prototype using

DTW is an NP-Complete problem [123, 124]. This occurs because finding the optimum

56

prototype is sensitive to the order of presentation of the inputs. Petitjean et al. introduced

DBA, an iterative heuristic approach to overcome the ordering problem [124]. The initial-

isation of DBA chooses a random curve in a group. The objective function that monitors

the progress of DBA and K-Means clustering is the sum of squared errors between the

prototypes and the input data. Let X = {x1, . . . xN } be a set of unlabelled waveforms in

feature space Rp (i.e., each x j is a time series of p measurements); and let V = {v1, . . . vk }

in Rp be a set of k prototypes for the waveforms in X . Each V j represents a subset X j

from X . Then the within-group sum of squared errors (WGSS) between the input data

and the prototype, with respect to any vector norm ‖∗‖ on Rp is

W GSS(V) =∑
j

∑
i
‖x j i − v j‖2 (2.1)

where x j i is a member of Xi . In each iteration, DBA computes a prototype that lowers

the within-group sum of squared errors. In their most recent approach, Petitjean et al.

introduced the idea of finding multiple prototypes for a given group. In this approach, the

input space is divided into multiple sub-regions and then a prototype for each sub-region

is computed [125]. This technique performs better for classification/clustering of data

than the classical K-Means method. The sub-partitioning tries to produce convex hulls

for which the average is well defined (i.e., the average always appears inside the convex

hull of its generators).

Morel et al. introduced constrained dynamic time warping for averaging time series

(cDBA) [126]. Their method is very close to DBA with an extra constraint on mapping

through DTW. The authors showed that in cases where zero-mean normalisation cannot

be performed over the data, DBA fails to create an accurate prototype. They proposed

the use of locally constrained DBA (cDBA) defined by Muller [127] to improve the DBA

prototype in non-normalised data sets. They empirically showed that the prototype

computed using locally constrained DTW improves the DBA results in a classification

57

task.

Papparizos and Gravano introduced Shape Extraction (SE) for computing a prototype

from a set of time series [61]. Their scheme is based on the correlation distance of

time series data. They attempt to find an optimal prototype for a cluster using signal

correlation maximisation. The main idea is based on a convolution operator that creates

an inner product space and thus can be used as a pseudo-distance. In this method,

each z-normalised member of a given class is considered to be a vector in Rn where

n is the number of features in the time series. In this approach, signal correlation is

used as the distance between pairs of vectors. Let X = {x1, . . . xN } be a set of unlabelled

waveforms in feature space Rn that generates a matrix of size N ∗n. Thus, for a given

subset of vectors in Rn the eigenvector associated with the biggest eigenvalue defines

the dominant orientation of the spread of the vectors in Rn . Since every vector is z-

normalised, the z-normalised eigenvector associated with the biggest eigenvalue of the

given subset can be used as the prototype of the subset. Papparizos et al. showed how to

compute this eigenvector using a few linear transformations [61].

2.2.6 Overview of current time-series analysis methods for addressing

real-time and online exercise monitoring

Table 2.1 summarises the available methods for tracking exercises from time series data in

terms of the extent to which they satisfy our design goals. The table shows that the state-

of-the-art techniques all have limitations in terms of efficiently and effectively detecting

and tracking exercises using data from a given wearable sensor to provide feedback on

weight training activities.

58

Ta
b

le
2.

1:
C

o
m

p
ar

is
o

n
o

f
cu

rr
en

t
st

at
e-

o
f-

th
e-

ar
t

m
et

h
o

d
s

fo
r

id
en

ti
fy

in
g

an
d

tr
ac

ki
n

g
w

ei
gh

t
tr

ai
n

in
g

ac
ti

vi
ti

es
fr

o
m

in
co

m
in

g
st

re
am

s
o

fd
at

a
fr

o
m

w
ea

ra
b

le
d

ev
ic

es
in

te
rm

s
o

fd
es

ig
n

go
al

s
fr

o
m

C
h

ap
te

r
1

R
ea

lt
im

e
Se

gm
en

ta
ti

o
n

O
n

li
n

e
Se

gm
en

ta
ti

o
n

R
es

o
u

rc
e

E
ffi

ci
en

t
U

n
su

p
er

vi
se

d
A

d
ap

tt
o

V
ar

ia
ti

o
n

s
H

an
d

le
s

E
n

vi
ro

n
m

en
ta

lN
o

is
e

In
te

rv
al

[7
1,

69
,5

9]
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
C

P
D

[7
2,

73
,7

4,
78

,7
5,

76
,7

7,
80

]
N

o
Ye

s
Ye

s
Ye

s
N

o
N

o
Su

b
sp

ac
e

[8
3,

84
,8

5]
N

o
Ye

s
N

o
Ye

s
N

o
N

o
M

o
ti

fs
[8

6,
87

,8
8,

92
,9

3,
94

]
N

o
N

o
N

o
Ye

s
Ye

s
Ye

s

59

2.3 Timing the feedback: When to provide the feedback to

the trainee?

The timing of feedback plays a key role in deciding what information we need to provide

to the trainee. Personal trainers who monitor trainees offline want detailed information

of their trainees’ performance. For example, routine intensity and performance accuracy

as well as recovery period measurements are essential information that personal trainers

access to design their trainees’ routine. In offline scenarios, more computationally

intensive analysis can be used to provide detailed analysis of the trainees’ performance

to their personal trainers. However, trainees also want to know if they are performing

exercises safely, i.e., they want to know if they are maintaining correct posture while

performing their exercises. In this regard, trainees need to receive their feedback as soon

as possible while performing the exercises to avoid injuries. Machine learning techniques

to provide the feedback can be categorised into: (1) Offline methods, and (2) Online

methods.

2.3.1 Offline feedback

Offline methods target the life cycle of personal trainers and their trainees. These methods

aim to provide as much detail as possible to personal trainers about how their trainees

performed their exercise routine over a period of time (often six to eight weeks). Current

methods are based on manual logs that trainees record while performing their exercise

routines, which can be discussed with their personal trainers when they meet. Pernik et al.

designed one of the first machine learning techniques for wearables to define the intensity

of each set performed by trainees [128]. They designed a hierarchical workflow that uses

a SVM to first detect the exercise type performed by the trainee using accelerometer data

generated from multiple wearable sensors worn by the trainee. The system then uses

another SVM to identify the intensity of each detected exercise. They reported that their

60

system’s exercise recognition performance is not consistent over all exercise types, i.e.,

the system detects some exercises with higher accuracy than others. Thus they suggest to

use a fusion of classifiers to achieve higher accuracy, which makes their method more

computationally resource intensive.

Challenges The main challenge that these methods face is to collect the ground truth

for evaluating trainees’ performance during the exercise routine. They often use ques-

tionnaires or user feedback to define the evaluation ground truth. However, this type of

evaluation is shown to be highly correlated to users and does not generalise well [129].

Thus, more systematic effort is required to collect the necessary data to address this type

of evaluation thoroughly. In this regard, Capecci et al. collected the first data set that

contains physiological data of the activities of both healthy subjects and patients, which

was mapped with a clinical score that was assigned to each activity by clinicians [130].

This approach provides an important first step towards generating valuable insights on

trainees’ performance in an offline scenario.

Strength and weakness The main strength of offline methods comes from their ability

to provide detailed analysis of trainees’ performance automatically. The information that

these systems can provide is independent of a user’s feeling or mood on a particular day,

which provides more objective overall evaluation of trainees. Collecting this information

autonomously is the second benefit that these systems provide to their users. Users

are not obliged to collect their data manually and can focus their full attention on their

routine.

The main weakness of these systems is that they cannot warn their users during their

routine. The source of this shortcoming is the type of machine learning technique that

these systems use to analyse the data, which cannot be used in an online and real-time

environment.

61

2.3.2 Online feedback

Online feedback is any feedback that is provided to the trainees during their training.

This type of feedback is used for two main purposes:

(1) Teaching purposes, and

(2) Warning purposes.

Feedback for teaching purposes is designed to teach trainees how to perform an

exercise. These systems often consider trainees as beginners who want to learn a spe-

cific routine. Visual feedback for teaching purposes has gained considerable attention.

MotioMA was one of the earliest systems to address this problem [18]. In MotionMA, the

system learns an activity through an expert demonstration in front of a camera. After

learning the exercise, users can monitor their performance in front of a mirror where the

system reflects the user’s performance by mapping it into the expert’s performance that it

learnt in the first step. The system can detect incorrect movements from the mapping

and suggest improvements.

Although visual feedback to beginners can be highly effective and improve their

learning speed, it does not address the needs of more advanced trainees. These trainees

are people who aim to master the performance of exercises. However, they may fail to

maintain their posture or performance due to the pressure of their training routine (these

types of pressure were discussed in detail in Section 1.1.1). In this scenario, the solution

is to monitor the trainees in real-time and evaluate each exercise’s performance with

respect to the trainee’s best performance. In this way, a system can monitor the trainee

without imposing any unwanted limitations, such as different postures for a particular

performance, by first trusting the trainee, and second learning the movement pattern

from the trainee.

62

Strength and weakness The main strength of online feedback is that these systems

can play an essential role in avoiding injuries by trainees. The need for both warning

and teaching systems arises from the fact that incorrect performance of an exercise and

incorrect posture can result in injuries that may have life-long impact on the trainee.

Thus, providing online and real-time feedback to trainees can help them to undertake

their exercise safely and reach their goals more easily.

The main weakness of online feedback is a lack of in-depth analysis of each perfor-

mance. This shortcoming arises from the need to provide feedback as soon as possible,

which makes it infeasible to perform a thorough analysis of the data available to provide

a feedback. As always, there is a trade off between the feedback timing and the amount

of data that is possible to analyse to provide detailed feedback.

Challenges: The main challenge for online and real-time feedback comes from the

amount of data to be analysed and the computational resources available to generate

the feedback. For example, if a system is to provide a warning signal to its trainees while

performing an exercise through wearable devices, it faces the challenge of designing

resource efficient machine learning techniques that can run on a wearable device. In

particular, wearable devices have limited computing resources and energy storage, and

need to be durable in harsh environment.

2.4 Summary of state-of-the-art technologies for our de-

sign goals

Table 2.2 shows the current state-of-the-art technologies with respect to our design goals.

The table shows that wearable technologies (in the form of gloves or smartwatches) are

the only technique that are capable of being ubiquitous, which illustrates the potential

that wearable technologies have in meeting the design goals. In the next chapter, we

63

begin our research into machine learning techniques for providing feedback on wearable

devices for weight training, by describing our overall workflow for unsupervised learning

in weight training.

In the next chapter, we begin our research into machine learning techniques for pro-

viding feedback on wearable devices for weight training, by describing our overall workow

for unsupervised learning in weight training activities. We design the first workflow that

detects the deviations in the performance of weight training exercises from a standard

form without the use of labelled data. Our aim is to design machine learning steps that

need to be taken to achieve the first workflow to detect weight training movements with-

out the use of labelled data, i.e., an unsupervised method. We shed light on why current

machine learning techniques are incapable of fulfilling our design goals. We then focus

on designing the learning techniques for each of the building blocks of our workflow with

a focus in addressing our design goals discussed in Table 1.1.

64

Ta
b

le
2.

2:
C

om
p

ar
is

on
of

cu
rr

en
ts

ta
te

-o
f-

th
e-

ar
tt

ec
h

n
ol

og
ie

s
fo

r
id

en
ti

fy
in

g
an

d
tr

ac
ki

n
g

w
ei

gh
tt

ra
in

in
g

ac
ti

vi
ti

es
in

te
rm

s
of

d
es

ig
n

go
al

s
fr

o
m

C
h

ap
te

r
1.

D
ev

ic
e

R
ea

lt
im

e
D

et
ec

ti
o

n
R

ea
lT

im
e

Q
u

al
ifi

ca
ti

o
n

O
n

a
w

ea
ra

b
le

U
n

su
p

er
vi

se
d

A
d

ap
tt

o
va

ri
at

io
n

s
E

n
vi

ro
n

m
en

ta
lN

o
is

e
U

b
iq

u
it

o
u

s

G
ym

C
am

[3
1]

C
am

er
a

Ye
s

N
o

N
o

N
o

Ye
s

Fa
il

if
o

b
st

ru
ct

ed
N

o
M

o
ti

o
n

M
A

[1
8]

K
in

ec
tC

am
er

a
Ye

s
Ye

s
N

o
N

o
N

o
N

o
N

o
Yo

u
M

ov
e

[3
3]

A
u

gm
en

te
d

R
ea

lit
y

N
o

Ye
s

N
o

N
o

N
o

N
o

N
o

Sm
ar

tM
at

[3
5]

G
Y

m
M

at
N

o
N

o
N

o
N

o
N

o
N

o
Se

m
i

Sm
ar

tS
u

rf
ac

e
[3

6]
Su

rf
ac

e
T

il
es

N
o

N
o

N
o

N
o

N
o

Ye
s

N
o

Sm
ar

tG
lo

ve
[3

9]
G

lo
ve

s
Ye

s
N

o
Ye

s
N

o
N

o
N

o
Ye

s
R

ec
o

Fi
t[

6]
Sm

ar
tw

at
ch

Ye
s

N
o

Ye
s

N
o

N
o

O
n

ly
se

en
n

o
is

e
Ye

s
N

u
A

ct
iv

e
[4

1]
Sm

ar
tw

at
ch

N
o

N
o

N
o

Se
m

i-
su

p
er

vi
se

d
Ye

s
N

o
Ye

s
M

ax
xy

t[
7]

Sm
ar

tw
at

ch
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

o
Ye

s
M

il
F

it
[8

]
Sm

ar
tw

at
ch

Ye
s

N
o

N
o

Ye
s

N
o

Ye
s

Ye
s

65

66

Chapter 3

A workflow to detect incorrect

performances in weight training

activities

3.1 Introduction

In this chapter we propose a general workflow to detect incorrect performances of a

weight training exercise. This workflow provides an overall framework and context in

which we can investigate the underlying machine learning challenges that are addressed

in the subsequent chapters. Here, we use prerecorded time series data from weight

training exercises, and we assume that the analysis is not limited by computing power.

Thus, the focus in this chapter is to show how to detect incorrect performances from time

series data recorded using an IMU sensor worn by a trainee.

As discussed in Section 2.2.2, designing a system based on IMU technologies brings

other technical challenges that arise from the nature of these sensors. The main challenge

is to infer the whole movement from the motion measurements. In the IMU we are

dealing with a set of motion sensors that monitor each action independently. Thus, the

67

body movement needs to be derived from a set of motion sensors; in other words, we are

inferring the body movement from the measurements of multiple motion sensors.

The second challenge is to identify each exercise within a set individually. This is

essentially a problem of accurately segmenting the underlying time series data into

exercise segments. We revisit the dataset recorded by Velloso et al. to demonstrate how

an accurate segmentation can improve recognition performance [18].

In summary, we propose a workflow for performance error detection in weight train-

ing exercises (see Figure 3-1). Thus in this chapter we focus on the following issues:

1. A mathematical model for repetition segmentation based on a generalisable math-

ematical feature from weight training exercises, along with its concrete implemen-

tation and evaluation;

2. A method that learns a prototype of an exercise from IMU sensor data;

3. A statistical method for identifying incorrect executions based on deviations from

the exercise prototype;

4. An evaluation of our approach on a publicly available dataset that shows that our

system is able to identify incorrect performance with 98% accuracy.

3.2 Workflow

Figure 3-1 gives an overview of the workflow for detecting incorrect performance of an

exercise solely based on observing correct performances of the exercise. The workflow

has three main components. First, the workflow starts by segmenting the received time

series to extract each exercise repeat from a set. Second, it extracts a prototype that

describes the correct performance of an exercise and derives the distribution of correct

performances. Third, it evaluates each new performance of the same exercise with

respect to the computed distribution and evaluates its correctness. Next we explain each

68

Figure 3-1: Workflow for finding incorrect moves in a weight training exercise.

component in more detail.

3.2.1 Segmenting repetitions

In this section, we revisit the dataset recorded by Velloso et al. to demonstrate how an

accurate segmentation can improve the mistake recognition performance [18]. Segmen-

tation here refers to the process of finding each individual repetition of an exercise in a

given time series. Since our focus is on each individual repetition we need to find a way

to correctly extract each repetition from a given accelerometer time series data stream.

Velloso et al. studied the possibility of classifying form correctness in weight train-

ing through unilateral biceps curls [18]. They took a supervised learning approach, by

recording both the correct execution of the exercise, as well as common types of mistakes.

Because we use their dataset to evaluate this approach, in this section, we briefly describe

69

(a) Starting position (b) Biceps movement

Figure 3-2: Illustration of unilateral biceps curl performance.

the dataset and propose a new segmentation approach that improves the recognition

accuracy using the same classifier used by those authors.

Dataset The dataset of Velloso et al. includes the data from six participants performing

10 repetitions of a unilateral biceps curl exercise with five variations [18]. The dataset is

publicly available in the UCI Machine Learning Repository1. A unilateral dumbbell curl

is a weight training exercise focused on strengthening the biceps muscle. The description

of the exercise is as follows and is illustrated in Figure 3-2:

1. Stand with a dumbbell in each hand.

2. Keep the upper arm stationary, while bringing one of the forearms up until it

reaches its maximum bend.

3. Return the arm to its original position slowly.

4. Repeat the same move with the other arm.

The authors defined four common errors that can occure during this exercise as

follows: Class B: Moving upper arm to the front. Class C: Lifting the dumbbell half way up

and return. Class D: Lowering the dumbbell halfway down. Class E: Pulling the forearm

1Available at: https://archive.ics.uci.edu/ml/datasets/Weight+Lifting+Exercises+
monitored+with+Inertial+Measurement+Units

70

with the help of the hips at the start to lift the dumbbell. The correct form of the exercise

is labelled Class A, accordingly. For each class label, they asked six participants to perform

the exercise according to its class label specification. They collected the data using four

sets of sensors placed on the glove, upper arm, dumbbell and belt. Each sensor set

contains one three-axis accelerometer, one three-axis gyroscope and one compass. Each

participant performs 10 repeats of the exercise for each label. For the detailed explanation

of the dataset collection method see [18].

Pre-processing Any motion sensor shows some degree of white noise, which comes

from the nature of the sensor. White noise appears as small perturbations around the

actual value. Any successful analysis of the data must first remove this noise from the

data [131]. In the literature the smoothing effect of Kalman Filters has been widely used

as a low pass filter that can remove white noise with high accuracy [132, 133]. In this

project, we used a density based Kalman Filter implementation [134]. Since the focus is

to remove white noise, we configured the filter with low sensitivity to the current read

and high sensitivity to previous reads by setting the deviation of the current reads to be

10 times the deviation of the previous reads. The result is shown in Figure 3-3.

We draw the readers’ attention to the peaks in the raw data. The accelerometer shows

a very sudden, high acceleration and drop, which is due to the effect of stopping the

dumbbell. From Figure 3-3 we can see how a Kalman Filter reduces this effect and

smooths the result.

Since the data is published separately, for consistency we checked all the labelling

to verify that the labels are correct. We found issues with the correct execution of two of

the participants. By definition, the label-A data should have a steady pattern from the

belt accelerometer data. However, in two cases, the participants incorrectly moved their

hips during the exercise, as illustrated in Figure 3-4. We therefore discarded the data from

these two participants from the subsequent analyses.

71

Figure 3-3: Smoothing accelerometer data with a Kalman Filter. Top figure shows the raw
data from an accelerometer. Bottom figure shows the result of applying Kalman Filter on
the same data.

Segmentation In this section we show how to utilise knowledge of the general domain

of weight training to indicate the exercise repetitions. In Section 1.1 we discussed that

weight training exercises are repetitive activities where trainees perform the same move

for a few repetitions, i.e., the move starts from a starting point, follows a path in space

and returns to the starting point again. Each exercise set contains three-to-many of the

same repetitions. Therefore, the underlying time series received from motion sensors

sampling the unilateral biceps curl show a cyclical pattern in the time series. An example

for acceleration data from a unilateral biceps curl can be seen in Figure 3-5.

As a result, correctly identifying the move using the motion-graph requires finding

its starting point in the acceleration graph. To formulate a move, let f be the time-

movement function showing the path for the move in space. Thus f is a function of the

72

change-of-position in the x, y and z directions, i.e., f = g (x, y, z)

As a result, function g is defined to describe the move. Since finding the actual move

is highly dependent on all three dimensions and very sensitive to any noise/error in the

data, we followed the method described in [135]. They showed that in weight training

exercises, motion can be captured mainly from a single axis in space. We call this axis

the axis-of-effect (AoE). For example, the y-axis is the AoE in the unilateral biceps curl

exercise (Figure 3-6).

The unilateral biceps curl in the AoE direction starts with a positive acceleration

to lift the weight up. Then, it follows a negative acceleration, which results in stop-

ping the dumbbell at the peak. It is then followed by a negative acceleration pattern

to bring down the dumbbell, which follows a positive acceleration to bring the dumb-

bell back to the steady point. Therefore, function f can be estimated by g (tAoE i) where

tAoE i is the i th sampled read value from the underlying time series received from the

accelerometer in the AoE direction, i.e., f ≈ g (tAoE i). Considering the unilateral biceps

move, we are searching for points in the function f where the function has reached its

Figure 3-4: High perturbation area for the subject Jeremy2 makes his class label “A” invalid.
For a correct label for class “A” we expect a steady series like the one in the top figure.
Note that the actual repeats start at around time = 800 for Jeremy.

73

Figure 3-5: Motion sensors show a repetitive pattern for weight training exercises. In
this figure, the repetitive pattern is clear from the accelerometer attached to the trainee’s
forearm while performing a unilateral biceps curl.

Figure 3-6: y-axis is the Axis-of-Effect (AoE) in unilateral biceps curl. The main motion
occurs in the y direction (drawn in red).

maximum/minimum values. That is:

d f

d t
= 0 (3.1)

74

Using the chain rule:

d f

d t
= d g

d t

d t

di
= 0 (3.2)

Since changes in acceleration can describe the changes in movement, we can estimate

the optimum points by only considering d t
di = 0. That is:

d f

d t
≈ d t

di
= 0 (3.3)

We look for points in the acceleration time series where the derivatives went to zero, or

equivalently we search for points where the derivatives of the acceleration time series

changes sign. Since we only need to find the start points of each move, we only look for

minimum points on the acceleration-time graph, which lets us segment the repetitions

(indicated by dots in Figure 3-5).

To evaluate the accuracy of our model, we manually annotated the acceleration time

series and compared the manually annotated segments with the automatically detected

segments. Table 3.1 shows the performance of our model for finding the repeats in the

acceleration time series.

Table 3.1: Average precision and recall for segmenting the biceps curl routine using
change point detection

Precision Recall

Average 0.965 0.82

The result shows that our algorithm finds the correct segmentation points with high

precision. The recall value shows that the algorithm finds more segments than necessary.

Filtering the points by the average repetition size improves the recall to 90%.

Classification In Velloso et al. [136], the authors reported the best classification accu-

racy achieved by segmenting the data using a fixed sliding window of length 2.5 seconds.

75

This result comes from the fact that each repeat takes around 2 seconds. Therefore,

setting the window size to 2.5 seconds captures the entire move. However, a fixed window

size can result in two main problems. First, a fixed window size captures overlapping

repetitions, resulting in missing the start and end part of a repeat. Missing the start

and/or end of a repeat stops any system from correctly alerting users as soon as they start

deviating from a correct form. Second, a fixed window size is highly dependent on the

person and the exercise. For example, if the user performs the exercise too quickly, a fixed

window might capture two or more repetitions. Given that our unit of analysis is each

individual repetition, it is crucial to capture the whole repetition with no extra data.

Table 3.2: The average precision of the classification task as a percentage. The top row is
from data segmented by our method. The bottom row is from a fixed window size.

Algorithm A B C D E

Optimum point 57.3 56.3 56.7 56.4 56.8
Fixed window 52.1 54 53.5 53.7 53.2

For comparison, we applied the same classifier proposed by Velloso et al., only using

our segmentation method. The result is presented in Table 3.2. The result shows that our

proposed algorithm not only provides a method that can easily be generalised, but also

boosts the classification accuracy.

Discussion These results show that in a supervised learning scenario, where we have

data for the correct execution of an exercise, as well as data for each possible repetition,

segmenting the data using windows that precisely match the repetition improves the

classification performance. However, it is unlikely that in a realistic use case we would

have data for every possible mistake. Given that an incorrect form might result in lifelong

injury, the stakes for the problem are high enough that we need a system that can robustly

detect previously unseen mistakes based only on the correct form of the exercise. In such

systems, a model should be created from the correct moves. After learning the correct

move, every move is compared with the ground truth model to detect deviations from the

76

model. Designing such a model is not a straightforward task. There are many parameters

involved in a ground truth model such as the height of the person, the weight used for

the exercise, the duration of the repeat, etc. In the next section, we show how to derive a

personalised model from the correct moves in the exercise, as a ground truth model for

the unilateral biceps curl.

3.2.2 Deriving a ground truth model

The two scenarios we presented above suggest that at some point the trainee will be

able to demonstrate correct performance, either because she/he is under the supervi-

sion of a trainer or is using a lighter weight. Using this assumption, we can derive a

user-dependent ground truth model specific to the trainee’s needs that they can use in

subsequent repetitions (when the trainer is absent or with a heavier weight) to evaluate

their performance.

Data collection In this phase the personal trainer makes sure the person is capable of

correctly performing the exercise and initiates data collection. The data labelled ‘A’, in the

dataset of Velloso et al. is used as the data associated to the correct performance of the

exercise.

Pre-processing As discussed earlier, the recorded data for an exercise routine includes

multiple repeats of the same exercise. However, each routine starts and ends with record-

ings, which are usually related to releasing or carrying the weight, not related to the

actual routine. To clear Class A segmentation, we used a clustering algorithm to put

the segments with high similarity into the same group. This task is very important be-

cause we can make sure the ground truth method is only generated from homogeneous

segments and prune any anomalies from itself. We continued the clustering algorithm

until we had a cluster of size “number of repeats - 2”. This value is selected because we

are aware that starting and ending segments might have extra movements that make

77

them different from the segments for the rest of the repeats. We used the single linkage

clustering algorithm to cluster our segments [137]. For the distance measure in single

linkage clustering, we used two measures DTW [115] and Shape Based Distance [61].

Ground Truth Prototype Deriving a prototype for time series data is a challenging task.

The main issue is how we can map one time series to another. The main method for such

a mapping is based on finding the minimum distance from mapping each point from

one time series to another. Dynamic Time Warping (DTW) [127] has been traditionally

used to perform this task. More recently, the K-shape [61] algorithm has been introduced

with promising results. Both approaches derive a comparison based method to define a

distance between set of time series data. By clustering the time series data, Paparrizos and

Gravano showed how to design an algorithm that can find a trajectory which satisfies the

minimum sum of distances between its points and all the other points in the associated

time series cluster.

Paparrizos and Gravano showed that given a distance matrix, we can reduce the

problem of finding the prototype for a cluster to a maximum likelihood problem where the

eigenvectors of the Hessian matrix define the prototype for the cluster. They named their

algorithm shape-extraction, which we adopt in this chapter. For a detailed argument see

the original paper [61]. In this chapter, we use the same method for deriving a prototype

trajectory from the correctly performed moves. We then use a statistical method to

capture any deviation from this prototype.

To find the ground truth trajectory, we proposed Method 1. For each person in the

dataset, we passed all the homogeneous segments clustered in pre-processing part from

the class A dataset to the shape-extraction algorithm and find the ground truth trajectory

(Personal GTT).

Finding anomalies Using Personal GTT, we first enumerate each segment from each

person and calculate the associated trajectory for that segment. Then, for each point in

78

Algorithm 1: Finding Ground Truth.

1 Function ground_truth(C):
Data: C: cluster of homogeneous segments for correct move performed by the person
Result: Prototype for given cluster, the mean and standard deviation of the calculated

prototype according to the member of the cluster.
2 globalTrajectory ← extract_shape(C);
3 trajectory ← [];
4 mean ← [];
5 sd ← [];
6 forall c ∈C do

shape ← extract_shape([c, globalTrajectory]);
trajectory.append(shape);

7 end
8 forall p ∈ globalTrajectory do

m ← mean(trajectoryp) // trajectoryp is the p th value of all trajectories

s ← standard_deviation(trajectoryp)

mean.append(m)

sd.append(s)
9 end

return globalTrajectory, mean, sd

time in the trajectory set we find the mean and standard deviation among all calculated

trajectories. Receiving any new segment for the person we find the trajectory for the new

segment according to the related Personal GTT. We then compare each point in the new

trajectory to be in the mean±3s.d. range. Three standard deviations is selected from the

3-sigma rule, which states that nearly all values from a distribution occur within the range

of three standard deviations from the mean value [138]. If any point is found outside this

margin from the new trajectory, we label it as a wrong form segment. See Algorithm 2.

Since anomalies may be found from different sensors — for example when the trainee

is moving their hip, the belt accelerometer will detect the mistake — we applied the same

algorithm (find-anomalies) for each time series from the available accelerometer sensors

attached to the belt, arm and forearm. We define a deviation from the correct form as

any deviation from any time series from any sensor. This way our system can also detect

why the person is deviating from the correct form. For example, in the test study for the

79

Algorithm 2: Checking for anomalies

1 Function find_anomaly(N ,G , M ,S):
Data: N: New segment;
G: Global prototype from Algorithm 1;
M: mean for G (from algorithm 1);
S:standard deviation for G (from algorithm 1)
Result: True if the new segment is an anomaly otherwise False

2 shape ← extract_shape([N ,G]);
3 forall p ∈ shape do

// shapep is shape’s value at index of p,
// Sp is S’s value at index of p,
// Mp is M’s value at index of p

4 if shapep > Mp +3∗Sp || shapep < Mp −3∗Sp then
return True

5 end
6 end

return False

unilateral biceps curl, the system tells whether the trainee is moving their hip or their

arm when they were not supposed to. The system also detects when during the segment

the user deviated from the correct form, i.e., whether it was in the first quarter of the

move, in the middle or in the last quarter. These two sets of information not only help

users maintain the correct form but also let personal trainers to design more personalised

routines that consider the strength and weakness of each trainee. For a brief overview of

the output of each step in the workflow see Figure 3-7. The workflow starts by collecting

data for the correct performance of the move (sample data is shown in Figure 3-7a). We

remove all the white noise from the collected data using a Kalman Filter and segment the

data using our proposed segmentation algorithm (Figure 3-7b). We create a homogenous

cluster from the segments created in part B. (Figure 3-7c). We derive the prototype for

the ground truth performance using the homogenous cluster (red line in Figure 3-7d).

We calculate the standard deviation for our prototype using the correct performance

(dashed line in Figure 3-7e). Note that the homogeneity of segments in part C makes sure

that only the correct performances of the exercise are considered for deriving the ground

truth in part D, and not moves with an extra part such as the very first move in which the

80

(a) (b)

(c) (d) (e)

Figure 3-7: Outline of workflow for finding weight training anomalies. (A) Collecting raw
data for correct performance. (b) Smoothing the raw data. (c) Creating a homogenous
cluster of correct segments. (d) Deriving the ground truth (red line). (e) Calculating
standard deviation for the ground truth (dashed line)

data contains the part where the trainee is picking up the weight at the very beginning of

the routine.

Results To test our approach, we used the same dataset and two distance measures,

namely dynamic time warping [115] and shape-based [61]. We considered class label A as

the correctly performed class and used the rest of the classes as the test cases. For testing

our ground truth trajectory, we manually labelled each correct segment in class A and

feed them to Algorithm 2. The result can be seen in Table 3.3. Both algorithms can reliably

detect mistakes for the unilateral biceps curl. However, it is clear that the shape based

81

Table 3.3: True Positive (TP) and False Positive (FP) rate for anomaly detection algorithm.
The cells with bold font show the winner algorithm for detecting anomalies.

Shape Base Distance Dynamic Time Warping
TP FP TP FP

Pedro 41
42

0
10

40
42

1
10

Carlitos 44
44

0
10

43
44

0
10

Charles 44
44

2
10

44
44

3
10

Eurico 40
40

2
10

40
40

3
10

distance is better able to find the trajectory. This is mainly because of the way the k-shape

algorithm computes distances, which highlights the correlation among the points in two

time series. Both algorithms have shown some false positives, which are mainly for the

segments at the start or end of the routine. This is mainly because the start and end of a

routine is very hard to correctly segment. It is often the case that the segmentation has

considered an extra part at the beginning of the segment for the starting segment, or

considered an extra part at the ending segment. These mis-segmentations result in false

positives in our algorithm.

3.3 Discussion

In this chapter, we designed the first workflow that detects incorrect moves from learning

only the correctly performed routine. We showed why correctly segmenting each rep-

etition during a weight training exercise is important. The workflow starts by correctly

segmenting the time series data using the data from an Axis-of-Effect accelerometer. The

workflow then calculates a prototype from the exercise segments. Using the derived pro-

totype, the workflow finds the distribution of the trajectory from mapping each segment

to the prototype. Finally, for each new segment it checks whether the new data’s trajectory

to the ground truth is from the calculated distribution or not. If not, the algorithm rejects

the segment and alerts the trainee of an anomaly.

82

3.4 Conclusion

In this chapter we demonstrate the ability to infer incorrect performance of a weight

training exercise through the signals received from a wearable attached on the axis-of-

effect. As discussed in Section 3.2.1, if a single sensor is placed on the axis-of-effect from

an exercise as suggested by Mortazavi et al [135], any deviation from the correct form can

be detected. Therefore, any exercise with a single axis-of-effect (AoF) can be analysed

using our workflow. Examples of such exercises include, but are not limited to, squat (AoF

upper leg), biceps curl (AoF wrist), shoulder press (AoF wrist) and deadlift (AoF upper

leg). Note that the workflow is accurate for any exercise as long as the sensor is located

on the correct part of the body (the axis-of-effect). We have designed the necessary steps

to be taken to find these anomalies in an offline environment.

A successful analytical approach for providing insightful feedback to weightlifters

must solve the following challenges:

1. Identifying the interval of interest: Capturing time intervals where the trainee is

performing an exercise is a critical step in analysing the routine. These intervals

are usually surrounded by periods of rest where the trainee is free to walk around

or stand still.

2. Quantifying the quality of the performance: By detecting the interval of interest, a

successful analysis must be able to give feedback about how the trainee is perform-

ing in that interval. Insights may include that the exercise is too easy for the trainee

or the trainee cannot maintain the correct posture for the whole session.

3. Performing in an on-line environment: Any method that is designed to alert

weightlifters for the possibility of injuries needs to be able to work while the

weightlifter is performing the exercise. This is so that the alarm is raised as soon as

a risk of injury is detected.

In the following chapters, we focus on taking each of these steps into a resource

83

limited environment of a wearable while applying them online, real-time and in-place. In

Chapter 4 we present the first online, real time and unsupervised technique that runs on

a wearable device. Then, in Chapter 5 we presents our novel technique for analysing time

series by their shape through functional geometry. Finally, in Chapter 6 we demonstrate

the ability of the techniques we designed in Chapters 4 and 5 by designing and developing

the first wearable device that can detect, track and analyse weight training exercises in

place and in real-time.

84

Chapter 4

Detecting and tracking exercises in

real-time

4.1 Introduction

In this chapter we revisit the recorded exercise figure from Chapter 1, depicted in Figure 4-

1. Figure 4-1 illustrates a sample data stream recorded for three different weight training

exercises, performed by a trainee using a motion sensor attached to his wrist. The data is

recorded in quaternion units that show rotation in space. Each exercise is delineated from

the rest of the data stream using vertical bars. The repeated pattern, which shows the

exercise performed by the trainee, is shown in red for each set. Comparing each exercise

set, Figure 4-1 shows how much each repetition (red segments from each exercise interval)

changes from one set to another in both shape and frequency. The figure shows that the

shape of the data not only varies from one set to the next (as indicated by the numbered

regions), but also from one repetition to the next (with different levels of amplitude). We

can also see how the data corresponding to the rest periods is substantially different to

the data during the exercises.

We refer to such a repeating pattern as an Interval of Recurrence (IoR). As discussed

85

75000 80000 85000 90000 95000 100000
Time

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Ve
rs
or

IoR 1
Signal:380mSec

IoR 2
Signal:780mSec

IoR 3
Signal:1000mSec

Wrist motion

Quaternion Motion

Figure 4-1: Intervals of recurrence in a time-series. Three intervals of recurrence (IoR) are
shown with the recurring signals in red.

in Chapter 1, identifying these IoR in real-time on a wearable device plays a key role in

developing warning systems that can detect abnormal activities as they occur, which is

crucial in applications such as detecting abnormal performance by athletes to prevent

injuries. The challenge with designing methods that can run on a wearable device is that

they must be sufficiently efficient to run on a device with limited computing resources [5].

Thus, efficiently detecting and tracking the repeating interval (IoR) is a key requirement

for designing warning systems, where a delay in detection can increase the risk of injury.

Detecting and tracking repeating patterns in real-time, without using labelled data,

involves two key tasks: (1) Detecting when an IoR starts in the incoming data; (2) Tracking

the consecutive repeats of the IoR while it occurs. To achieve these tasks we seek a unique

characteristic of any IoR that can be computed on a wearable device to detect and track

the IoR from an incoming data stream. We show that correlation is a promising operator

for extracting such a characteristic, given that it has been widely used for efficiently

detecting similarities in time series [139, 61, 140]. We prove that the periodic points from

the autocorrelation of an IoR have a linear relationship, and use this property to design

the first efficient, unsupervised and online method that can be run on a wearable device

to identify and track an IoR. Table 4.1 summarises the design goals of our approach and

their practical impact.

Any unsupervised machine learning method for online, real-time extraction and

detection of IoR on a wearable device must address the following four challenges [141]:

1. The sparse occurrence of these activities (an IoR is often surrounded by environ-

mental noise or other irrelevant patterns);

86

Table 4.1: Design goals and their impact on the system for detecting and tracking Intervals
of Recurrence. The Section column indicates the section in this chapter that addresses
each design goal.

G# Design Goals Impacts Section

1 Detects and tracks in real-time Real-time feedback 4.5
2 Runs on a wearable Ubiquitous usage 4.7
3 Performs unsupervised detection and tracking Adapt to new/unseen routines 4.4
4 Adapts to variations Personalised 4.3
5 Handles environmental noise Robust to environmental noise 4.6

2. The spatio-temporal variations in the activities (the repeating patterns can vary

over time both locally and globally);

3. The limited data available from which to identify the IoR;

4. The limited computing resources available on wearable devices.

To the best of our knowledge, there is currently no state of the art algorithm that

satisfies all the design goals in Table 4.1. In summary, our contributions are:

• We present an efficient, unsupervised algorithm for online detection and tracking

the IoR in real-time, which satisfies the design goals in Table 4.1.

• We demonstrate the ability of our algorithm to execute on a wearable device by

developing the first wearable that can detect and track IoR in a real-time manner

unsupervised.

• Our method has advantages compared to current state-of-the-art algorithms in

eliminating the need for intensive data collection, labelling and tuning while yield-

ing only a small loss of accuracy (less than 3%).

• We provide in-depth theoretical analysis on how to find IoR from a continuous

signal by proving the linearity and periodicity features of local maxima from auto-

correlation of the signal inside an IoR.

• We provide a theoretical analysis of the impact of noise and the digitisation of the

signal on our algorithm and show the robustness of this algorithm to variations in

the repeating patterns.

87

4.2 Problem statement

Our goal is to design an efficient real-time and unsupervised algorithm that can run

on a wearable device to detect Intervals of Recurrence (IoR)—the temporal regions in

a time series where a short burst of consecutive repeating patterns occurs. While we

focus on the application of activity recognition, this problem arises in domains such as

energy management [142], where these intervals characterise electricity consumption

patterns, or seismology [143], where intervals of recurrence relate to detecting incidence

of earthquakes from a seismograph. We formally define our weight training activity

segmentation problem in terms of identifying IoR of a time series. We define a time series

as follows:

Time series T : an ordered consecutive sequence of measurements ti : T = {t1, t2, ..., tn}

where n is the length of the time series and ti is a real valued variable measured at index i

from a continuous signal, where i ∈ I and I is an index set mapped to a set of (equidistant)

time points.

Region R: an ordered consecutive sequence of measurements from T where R ⊂ T

with length m.

We consider an IoR to be a region where a recurring activity occurs, and therefore,

the target of the segmentation process. In this term, recurrence refers to the consecutive

repetitions of an activity inside the region. We model the continuity of repetitions as a

periodic function that occurs for a short period of time (region) in the time series.

Interval of recurrence Rp ⊂ T (IoR): a region where there exists a periodic function

f �Rp with period Kp and a signal S such that ∀t ∈ Rp , f �Rp (t +Kp) = f �Rp (t), where � is

the restriction symbol, % is the modulo operator and

∀t ∈ Rp ,S(t) :=

f �Rp (t) if t < Kp

f �Rp (t%Kp) if t ≥ Kp

(4.1)

88

We call S the Signal of Recurrence (SoR), i.e., S is the signal that repeats inside the IoR. An

example of three different IoRs is shown in Figure 4-1. In each IoR, the SoR is marked in

red.

Given a time series T , we want to find the set of intervals of recurrence IR = {
Rp

}
in

T , where ∀Rp j ∈ IR an unknown integrable function f j �Rp j
(SoR) is recurring for a short

period of time. The functions f j �Rp j
(t) are independent of each other and the period

Kp j can vary from one interval to another.

4.3 Finding IoR

In this section the goal is to seek a property of the time series data stream that can be used

to detect an IoR while receiving data, online, on a wearable device. Thus, we require such

a property that can be computed efficiently. To address these requirements we consider

the properties of the correlation operator, which has been widely used for efficiently

detecting similarities in a time series [139, 61, 140]. Our key observation is that local

maxima of the autocorrelation (i.e., the correlation of a signal with itself) of an IoR from a

continuous signal are (1) periodic, and (2) linearly related.

An example of the periodicity and linearity property of local maxima from the auto-

correlation of an IoR is shown in Figure 4-2. In this figure, the IoR is shown in the bottom

curve where a SoR is repeated three times. The autocorrelation function for that interval

is drawn in the top curve. The autocorrelation is calculated by zero padding the periodic

function outside the IoR. The dashed line connects all the local maxima (which occur at a

period of every 20 time intervals) from the autocorrelation function, thus illustrating this

linearity property. We formally present these two properties in Proposition 1.

Proposition 1. Given time series T and an IoR Rp⊂T , then ∃P={p1, p2, p3, ...pm}⊂ f̂ �Rp ,

such that p1<p2...<pm are linear and periodic points where pi ,1≤i≤m is a local maxi-

mum.

89

Figure 4-2: An example of a periodic function f (bottom figure) and its autocorrelation
function f̂ (top figure). The line that passes through all the maxima in f̂ is dashed.

Proof. For readability we provide the detailed proof in Section 4.11.1.

We use these two properties of an IoR to design an efficient algorithm to detect and

track IoR online. In the Appendix (Section 4.11.1), we prove that the (1) periodicity and

(2) linearity of the peaks from the autocorrelation of an IoR are general properties of

any IoR, and thus can be used to detect IoR. Further, we want to make sure that these

properties also hold after the digitisation of a continuous signal, and in the presence of

sampling noise. In Section 4.6, we discuss the effect of sampling noise and the digitisation

of the continuous signal on these two properties.

4.4 Identifying and tracking IoR online

In the previous section we proved that (1) linearity, and (2) periodicity are the two main

properties of a set of local maxima from the autocorrelation of any IoR. We use these two

properties to design an online algorithm for detecting and tracking IoR without the need

for any labelled data, i.e., in an unsupervised manner. A flowchart of this algorithm is

shown in Figure 4-3. We start by analysing the incoming raw time series data using a

sliding window of size W (Figure 4-4a). At each iteration we calculate the autocorrelation

of the region inside the sliding window and search for peaks that satisfy the periodicity

and linearity conditions of the IoR. We test for the linearity of the peaks within a given

margin of error as shown by grey lines in the figures. The peaks must fall within the error

90

bounds shown by the two grey lines to be considered linear. We discuss this error margin

in Section 4.6. If no set of peaks satisfies the two properties, we check the current size of

the window. If it is larger than a threshold (Θ), we slide the start of the window forward

until the window size is equal to its initial value, W . Otherwise, we extend the window

forward by the initial value W (details in Algorithm 3). If we find a region that satisfies

the two properties (Figure 4-4b), we slide the window to the start of the region (step (a) in

the flowchart) and extend the window by the size of the estimated period (step (b) in the

flowchart, Figure 4-4c). We do this extension until no new local maximum satisfying the

periodicity and linearity conditions is found through the autocorrelation of the region

(Figure 4-4d). We then slide the window to the end of the IoR and continue (step (c) in

the flowchart, Figure 4-4e). In the flowchart, the NewRec function returns true if a new

SoR is found inside a given IoR and the NoRec function returns true if no new SoR inside

the window has been seen.

The threshold Θ is defined for efficiency reasons. Setting Θ too big makes calculating

the autocorrelation of the sliding window too expensive to run in real-time. Θ stops the

sliding window from being extended without bound. We setΘ to be at least three times

the maximum expected length of any SoR in the application domain. Since two peaks can

Figure 4-3: Flowchart for online tracking of IoR in real-time. W is the dynamic sliding
window.

91

0 1000 2000 3000
−2

−1

0

1

2

R
ot

at
io

n ×102

0 1000 2000 3000

Time
−2
−1

0
1
2
3
4

C
or

re
la

ti
on

×104

(a) No IoR.

0 1000 2000 3000
−2

−1

0

1

2

R
ot

at
io

n ×102

0 1000 2000 3000

Time
−0.5

0.0

0.5

1.0

C
or

re
la

ti
on

×107

(b) Finding a possible IoR.

0 1000 2000 3000
−2

−1

0

1

2

R
ot

at
io

n ×102

0 1000 2000 3000

Time
−1.0
−0.5

0.0
0.5
1.0
1.5

C
or

re
la

ti
on

×107

(c) Adjust and extend W by the esti-
mated period.

0 1000 2000 3000
−2

−1

0

1

2

R
ot

at
io

n ×102

0 1000 2000 3000

Time
−2
−1

0
1
2
3

C
or

re
la

ti
on

×107

(d) Extend W by the estimated period
until no new SoR found.

0 1000 2000 3000
−2

−1

0

1

2

R
ot

at
io

n ×102

0 1000 2000 3000

Time
−2

−1

0

1

2

C
or

re
la

ti
on

×106

(e) Slide W to the end of IoR and restart.

Figure 4-4: Online tracking of IoR in real-time. The red flat line shows the state of the
sliding window. The signal in the top figures is the incoming data stream and the bottom
signal is its autocorrelation of the window. The black line shows the found IoR.

always be connected using a line, our algorithm requires at least three peaks to be seen to

check for the linearity condition. Thus, if we setΘ to be less than three times length of a

SoR, then the sliding window will slide forward before finding the region and thus the IoR

92

would be ignored. However, Θ does not have any upper bound. We empirically evaluate

Θ for the weight training application in more detail in Section 4.9.

The Online Tracking of Recurrence (OToR) algorithm for the flowchart in Figure 4-3 is

shown in Algorithm 3. The algorithm uses two main parameters (1) st (start), and (2) end

to create a dynamic sliding window. The aim is to grow the size of this window such that

it includes the whole IoR. The algorithm accepts the initial window size W and creates a

window of size W (line 1). The algorithm starts by receiving data at line 4. After receiving

Algorithm 3: Online Tracking of Recurrence (OToR)

Θ, Global variable
Function OToR(W):

Data: minimum window size W
Result: Report each found repeat from an IoR

1 st,end ← 0,W ;
2 T, currentPeaks ←;,;;
3 while True do

// Compute while receiving data
4 newData ← readData();
5 T ← T + newData;
6 while end < len(T) do
7 window ← T[st:end];
8 window ← window-mean(window);
9 C ← window � window;

10 M,MI ← MAXARGMAX(C);
11 newPeaks ← FIOR(M,MI);
12 if newPeaks6= ; then
13 if currentPeaks=; then
14 st ← adjust(newPeaks)
15 if len(newPeaks) 6=len(currentPeaks) then
16 currentPeaks ← newPeaks;
17 REPORTNEWREPEAT(newPeaks);

18 end ← end+ GETPERIOD(currentPeaks);

19 if NOREC(window, currentPeaks) >Θ then
20 st ← BREAKPOINT(currentPeaks);
21 currentPeaks ←;;

22 else
23 if newPeak=; then
24 end ← end + W ;

25 end
26 end

93

enough data to fill the sliding window (lines 2-3), OToR calculates the autocorrelation

of the current sliding window (lines 7-9). OToR calls FIOR to check the periodicity and

linearity conditions of the local maxima from the window’s autocorrelation (lines 10-11).

If an IoR is reported by FIoR (newPeaks is not empty, line 12), and the reported IoR is

a new IoR (currentPeaks is empty), OToR slides the start of the sliding window to the

start of the new IoR (line 14). If FIoR has reported a new SoR (an IoR that OToR is already

tracking—currentPeak is not empty) (line 15) OToR updates the IoR and reports the new

SoR (lines 16 and 17). If FIoR reports an IoR, the sliding window extends by the estimated

period from the reported peaks (line 18). OToR checks the time lag from the last seen

SoR at line 19. If the time lag is bigger thanΘ, OToR updates the starting point (st , line

20) of the sliding window to the end of the last SoR (if no SoR observed, st updates to

end −W). In line 23 and 24 OToR checks if no-IoR is observed yet and the sliding window

is still smaller thanΘ; if true, it extends the window size by W (note that if any of these

two conditions were false the window has already been updated).

4.5 Multiple peaks: an efficiency problem

A challenge arises when the activity recording shows a complex signal with multiple

peaks. We refer to a SoR that contains multiple peaks as a non-convex signal. Figure 4-1

shows real-world examples of non-convex signals (IoR 2 and 3). A simpler example of

SoR with multiple peaks is shown in Figure 4-5 (bottom figure). The SoR is repeated three

times in this figure. Taking the autocorrelation of such a SoR gives rise to multiple sets

of local maxima. One set of local maxima is generated when two signals of recurrence

are aligned with each other while taking the autocorrelation of the IoR. The other set

of local maxima are produced when the non-dominant part of the SoR (the part with

smaller peaks) matches the dominant part (the part with dominant peaks) of the SoR

while taking the autocorrelation of that interval. These two sets are shown in Figure 4-5.

94

0 10 20 30 40 50 60
n

0.0
0.2
0.4
0.6
0.8
1.0

1e5

f(n)⊛f(n)

0 10 20 30 40 50 60
n

0
5

10
15
20
25

f(n)

Figure 4-5: Multiple maxima from a non-convex SoR.

The maxima that are aligned with the dashed blue is the set of maxima that Proposition 1

identifies. The second set of local maxima, which complicate the detection of the IoR, are

connected with a dashed green line.

A naive solution to overcome this challenge is for the FIOR function in Algorithm 3

(line 17) to perform an exhaustive search in all local maxima found by the algorithm to

find a set of local maxima that satisfy the linearity and periodicity properties. However,

this exhaustive search is computationally inefficient for real-time applications. Given that

the goal is to run the algorithm on a wearable device with limited computing resources,

we need to design an efficient algorithm that can find the subset of local maxima that

satisfies the periodicity and linearity properties from a given set of local maxima.

Next we show that the linearity property of local maxima from Proposition 1 can be

replaced by an arithmetic progression property, i.e., the differences between consecutive

peaks’ values in Proposition 1 are equal.

Proposition 2. The set of local maxima L = {l1, l2, . . . lk } that satisfy Proposition 1 forms

an arithmetic progression.

Proof. Proposition 1 proves the periodicity of local maxima. The proof follows from the

linear property of this set.

Proposition 2 shows that each subset of local maxima that satisfy Proposition 1 follows

95

an arithmetic progression, i.e., in the set of local maxima that satisfy Proposition 1, the

amount of increase from one local maxima to the next consecutive local maxima is

constant for the entire set. Since the local maxima are generated with the same period,

each subset of local maxima that fulfil Proposition 1 follows the same period inside

L. Therefore, we can reduce the search for local maxima in L to finding a subset in L

with the same period and arithmetic progression, which is easier to solve than searching

for a subset of local maxima that are linearly aligned. In OToR we modify the FIOR

function (Finding Interval of Recurrence, Algorithm 4) to search for periodic peaks with

equal differences (arithmetic progression) inside the autocorrelation of the dynamic

sliding window.

FIOR uses the step variable to select the consecutive peaks. It starts from step = 1,

i.e., selecting the peaks that are one after another. FIOR selects three consecutive peeks

starting from the last peak in the set. If the three selected peaks do not satisfy the two

conditions (periodicity and arithmetic progression), it increases step by one and selects

three peaks that have step−1 peaks in-between (the last peak in the set is always selected).

If both conditions are met at any step, FIoR calls IOR to traverse the set of local maxima

backwards and returns the subset of peaks that are step distance apart with the same

arithmetic progression (line 7), otherwise it increases step until it reaches half of the

number of peaks. FIoR returns an empty set if no set that satisfies the two conditions

is found.

4.5.1 Complexity

The time complexity of the OToR algorithm depends on the time complexity of the

FIoR algorithm. We define ω as the size of the biggest IoR inside the time series with a

maximum number of R repeats, W as the initial size of the window, and n as the number

of local maxima passed to FIoR.

In the situation where no subsequence of peaks satisfies the periodicity and linearity

96

Algorithm 4: Find Intervals of Recurrence

1 Function FIoR(M , M I):
Data: M : Local maxima of autocorrelation of time series, M I :indices of local maxima in M
Result: R = {(s,e)|Rp = [s,e]}

2 step ← 1;
3 while step < len(M)/2 do
4 i ← len(M);
5 P,PI ← M [i,i-step,i-2*step],M I [i,i-step,i-2*step];

// the last 3 items with ‘step’ distance apart from the inputs
6 if PERIODIC(PI) and AP(P) then
7 return IOR(PI ,P, step);
8 step ← step+1

9 end
10 return ;;

conditions, FIoR traverses the local maxima once. FIoR selects the last three peaks with

‘step’ distance apart (Line 5), checks for the two conditions (Line 6) and increases the ‘step’

variable until all the subsequences fail the two conditions (Lines 3). Each check for the

two conditions is of constant time (the PERIODIC procedure checks if the peaks’ indexes

are the same distance apart and AP checks if the peaks’ values are the same distance

apart). In case there exists a set of consecutive peaks that satisfy arithmetic progression

and periodicity conditions (Line 6), then FIoR uses the IOR subroutine to find all periodic

peaks with the same estimated arithmetic progression and period. IOR needs to traverse

the list of local maxima once to find all the peaks with the given estimated period and

arithmetic progression, which is O(n) in time, where n = |M | and |M | denotes the length

of the set M . Therefore, FIoR’s time complexity is O(n).

The other subroutines in OToR (len, NOREC, MAXARGMAX and GETPERIOD) also have

linear time complexity. The autocorrelation in line 9 uses the convolution theorem and

fast Fourier transform, which has O(m logm) time complexity, where m is the input

size. We define the number of times OToR extends the window K , thus, OToR runs in

O(K (n+m logm)). Since the FIoR input parameters are the local maxima computed from

the autocorrelation of the dynamic window together with their locations, FIoR’s maximum

input size, n, is equal to m/2. Thus, OToR’s time complexity is O(K m logm). To find the

97

maximum values for K and m we need to know how the dynamic window size changes.

The dynamic window has three stages: (1) The dynamic window extends in a region with

no IoR. In this situation the maximum size of the dynamic window is Θ (the threshold

explained in Section 4.4); m = Θ. The window size extends by W until its size is Θ;

K =Θ/W . As a result, in this scenario, OToR runs in O
(
Θ/W (Θ logΘ)

)=O
(
(Θ2/W) logΘ

)
.

(2) The dynamic window has found an IoR. In this case, the window extends by the

estimated period, i.e., it extends R times (K = R). The maximum size of the window is ω;

m =ω. In this scenario, OToR runs in O(Rω logω). (3) The IoR tracking is finished and

OToR extends the dynamic window until it reaches the thresholdΘ. Thus, m =ω+Θ. At

each iteration the window is extended by the estimated period p, thus, K=R+Θ/p. In

this scenario, OToR runs in O
(
(R+Θ/p)

(
(ω+Θ)log(ω+Θ)

))
.

In total, OToR runs in O
(
(R+Θ/p)

(
(ω+Θ)log(ω+Θ)

)+Rω logω+Θ2/W logΘ
)
=O

(
(R+

Θ/p)(ω+Θ) log(ω+Θ)+Θ2/W logΘ
)
. Since Θ is a constant that is defined at the start,

OToR runs in O(Rω logω). Note that R is often a small value (for example in weight

training it is a number between 6-15). This complexity enables us to run the algorithm

on computationally constrained devices in real-time, as we demonstrate in Section 4.7.

We investigate the effect ofΘ on OToR in Section 4.9.

4.6 The effect of noise

Proposition 1 shows how to identify and track IoR in a continuous system. However,

in reality we digitise the signals for finding and tracking IoR. In this section we model

the effect of digitisation and noise on the algorithm. According to Nyquist’s theorem,

if a signal is sampled at more than twice the highest frequency presented in its Fourier

domain, the signal can be reconstructed without error [144]. The discrete version of

Proposition 1 for finding IoR using autocorrelation can be written in summation form

over the sampled signal. If the IoR length is equal to N and f (m) is the discrete function,

98

we can rewrite the autocorrelation function as: f̂ (n) = ∑N−1
m=0 f (m) f (n −m). Hence, in

practice three important factors can affect this calculation, namely:

1. Jitter results from hardware clock limitations in reproducing the true periodic

signal. In an ideal scenario, we would be able to sample the signal in exact τ

intervals. However, jitter perturbates the sampling points.

2. Amplitude noise is the small error present around each read of the sampled signal.

This noise often results from two sources: (a) read errors, and (b) performance

errors. The read error is an inseparable part of any digitised device where each read

can be affected by environmental factors such as temperature or humidity. The

second source of amplitude error comes from the signal’s source where repeats

cannot be performed 100% identically.

3. Discretization error shows itself as variations in repetitions of the digitised SoR in

an IoR. A sampling rate that is not synchronised to the period of repeat in an IoR

introduces discretization error. In this case, since the period of repeat in the IoR is

not factorable to the sampling rate, samples are taken at different points from the

successive repeats of the waveform. Thus, each digitised SoR from the IoR varies

from one repeat to another even though all the original SoRs are identical in the IoR.

A complete analysis of each type of noise is provided in Section 4.11.1. In a nutshell, in

scenarios where the noise is known with a bounded variance or is modelled by a Gaussian

distribution, Proposition 1 still holds, i.e., the expected line in the presence of Gaussian

noise calculated from a discretized signal is the same as the line from Proposition 1 with

a bounded variance (for the detailed proof see the Section 4.11.2). The variance is an

important factor in OToR. Earlier in Section 4.4, we discussed setting a marginal error

for the linearity property of the local maxima. The marginal error is directly set from

the variance for the linearity property of the local maxima. In Section 4.9 we empirically

99

demonstrate the effect of this parameter on OToR. In this section, we also discuss non-

Gaussian noise and how it can be handled.

There are situations where there is systematic noise in the period of recurrence. In

these cases, the SoR period gradually increases (decreases) over time. Figure 4-6a shows

an example of the period of an SoR increasing over time. Another scenario is for the

amplitude of an SoR to gradually decrease (increase) over time, as shown in Figure 4-6b

(e.g., a trainee becomes too fatigued to maintain the correct form). In both situations the

relations between local maxima are not linear, which stops OToR from detecting these

IoR. Thus, if OToR finds an IoR, it shows that the SoR inside the IoR has been consistent,

which is a desirable feature for providing feedback. For example, if OToR detects an entire

exercise set it tells the trainee that he/she has maintained the exercise routine for an

entire set.

An example of a trainee failing to maintain the routine is shown in Figure 4-7. In

these situations, the slope of the line from Proposition 1 changes gradually. As shown

in the figure, the slope of the line changes from the first three repeats to the last three.

We propose that changes of the slope of the line from Proposition 1 can be an accurate

indicator of the presence of systematic noise in the IoR, for example, the trainee is

becoming fatigued. Analysing this effect is beyond the scope of this thesis and left for

0 10 20 30 40 50 60 70 80
n

0.00.20.40.60.81.01.21.41.61.8

f(n
)⊛

f(n
) 1⊛5

0 10 20 30 40 50 60 70 80
n

0
5

10
15
20
25

f(n
)

(a) Systematic changes of the period of
SoR inside an IoR.

0 10 20 30 40 50 60 70 80
n

0.0
0.2
0.4
0.6
0.8
1.0
1.2

f(n
)⊛

f(n
) 1⊛5

0 10 20 30 40 50 60 70 80
n

0
5

10
15
20
25
30

f(n
)

(b) Systematic changes of the ampli-
tude of SoR inside an IoR.

Figure 4-6: Systematic error results in changes of SoR in the IoR, which breaks the linearity
property of local maxima from the autocorrelation of the IoR

100

future work.

200
300
400
500
600
700
800
900

6.33°

3.38°
Auto-correlation

1000
2000

3000
4000

5000
6000

7000
8000

Time

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

Exercise Plot

Figure 4-7: The changes in the slope of the line from IoR can show an inconsistency
in the performance. The region where the trainee’s performance was inconsistent is
highlighted.

4.7 Implementation of OToR on a wearable device

We have implemented OToR on a wearable device and used it to monitor fitness training.

The users can wear the device to the gym to automatically log their weightlifting routines.

Our wearable is based on the Intel Edison platform, and SparkFun base kit blocks (a base

block, a 9 DoF block and a Li-ion 400 mAh battery) to assemble the device, shown in

Figure 4-8.

The Intel Edison processing unit has a dual core 500MHz CPU with 1GB of RAM. We

(a) The assembled device (b) Wearing the prototype

Figure 4-8: The designed wearable device.

101

deployed the OToR algorithm using Python 2.7.14 onto the device. The Python service

runs in the background, continually reading from the IMU sensor and using OToR to

segment activities. The thread has a 0.5-second window to collect the data before applying

the algorithm. The sensor reads at 45Hz through a separate thread and passes the data to

the OToR thread. This dual thread design was selected to ensure the data is always read

without interruptions.

4.8 Experimental evaluation

We empirically evaluated OToR in two scenarios: (A) Offline: running the algorithm on

four datasets, and (B) Online: running the algorithm on the wearable device described in

Section 4.7 in a real-world environment.

4.8.1 Offline tracking

The aim of the first scenario is to show the accuracy of OToR in comparison to the state-

of-the-art alternative algorithms in segmenting the data. To perform this test, we used

four different datasets, both synthetic and real data collected from users.

Synthetic idealised data (I-SYN) This dataset is an idealised scenario where the SoR

remains unchanged during the IoR. We focus on how well each algorithm performs on a

perfectly consistent dataset. This scenario provides a baseline to analyse the behaviour

of each algorithm after introducing variations of the SoR into the dataset. To generate

this dataset, we used two polynomial functions: (a) a second degree polynomial function

S(x) = ax2+bx+c ; and (b) a third degree polynomial function S(x) = ax3+bx2+cx+d , as

the SoR. For each SoR, S, the function’s domain is set to be a short period around its root—

S(x) = 0. The signal is repeated for a random number of times: ∀t ∈Rp , f �Rp (t)=S(t%Kp).

For any other points in the time series we used a random number from a Gaussian

distribution. An example is shown in Figure 4-9 (Top, Left).

102

Exercise

Synthetic with NoiseSynthetic Idealistic

Walking

Figure 4-9: Example time series in the datasets: (a) Synthetic idealised dataset; (b) Syn-
thetic data with variations; (c) HAR dataset; and (d) Weight lifting dataset.

Synthetic data with variation (P-SYN) A more realistic dataset has variations in each

recurrence of S. In the P-SYN dataset we focus on how each algorithm reacts to variations

of the SoR inside the IoR. We use the dataset from Section 4.8.1 and add a divergence

factor, a random number d from a uniform distribution U (0.5,1.5), to each repetition of

signal S inside the IoR, i.e., each repeat is d ∗S(x) (Figure 4-9, top right).

Real data from on-body sensors (EXER) We used one set of six on-body motion sensors

to collect the body movements of trainees during a weight training session. Each sensor

was attached securely to different parts of the trainee’s body: left wrist, left upper arm,

lower back (lumbar), left thigh, left ankle and waist. We chose only one side of the body

because weight training exercises are often symmetric movements. Thus, with a limited

number of sensors we could record movements from different body parts. To make sure

we can capture every possible exercise, we have to record full body movements. To report

the result, we run each algorithm on the data from each sensor and then calculate the

union of the results from each algorithm to find all repeating segments.

We selected 11 exercises that provide a complete range of body motions: (1) Squat,

(2) Military press, (3) Front squat, (4) Dead lift, (5) Up right barbel row, (6) Sumo high pull,

103

(7) Side lateral to front, (8) Renegade triceps kick back, (9) Hammer curl, (10) Around the

world, and (11) Dumbbell fly.

We asked two participants to perform each exercise for 10 repeats. Each session

started with a personal trainer showing the participant how to perform the exercise,

next the participant watched a video showing how to perform the exercise, and then

performed the exercises. Participants were free to rest as required. We recorded the whole

session using a camera to establish the ground truth. An example of a training session

dataset can be seen in Figure 4-9 (Bottom, Right).

Human Activity Recognition (HAR) To show that OToR is applicable to finding other

short bursts of repeating patterns in HAR, we used a public dataset published by Reyes-

Ortiz et al. [145] (Available at https://bit.ly/2vLvTCy). This dataset contains con-

tinuous recordings of accelerometer data for users performing daily activities: Walking,

Walking Upstairs, Walking Downstairs, Sitting, Standing, Laying, Stand to Sit, Sit to Stand,

Sit to Lie, Lie to Sit, Stand to Lie, and Lie to Stand. Our task is to find regions where the

user is performing a repetitive task: Walking, Walking Upstairs, and Walking Downstairs.

We select regions from each participant’s accelerometer data, where the users performed

each of the repetitive tasks at least once. These regions include the part where the par-

ticipant performed the task as well as the transitional intervals where the participant

prepared to perform the next task. We used the labels assigned to the data by the authors

as the ground truth and selected the first 10 users from the dataset. An example of this

dataset is given in Figure 4-9 (Bottom, Left).

Baseline segmentation

To compare the OToR approach against the current state-of-the-art, we evaluated it

against three other methods: MP by Yeh et al. [92], incorporating the modification intro-

duced by Mirmomeni et al. [94], AutoPlait by Matsubara et al. [80], and DecomposeTS by

Zhao and Itii [81].

104

Matrix Profile (MP) MP is a vector such that at each point on the time series, it stores

the Euclidean distance between the subsequence of length m starting from that point, to

its nearest neighbour. MP searches for subsequences of fixed length m, and aims to find

the closest subsequence to each subsequence of length m [92]. MP drops to zero during

an IoR. Thus, to find intervals of recurrence in a time series we can search for points on

the MP with values smaller than a threshold for an interval. The main problem is that MP

depends on its input parameter m to find the IoR. Mirmomeni et al. [94] showed that m

must be equal to the length of the shortest non-repeating subsequence of the SoR inside

an IoR to find the IoR accurately. We embed their method into MP to find IoR.

AutoPlait (AP) AutoPlait is based on the concept of regimes that the authors introduced

into time series [80]. A regime is a hidden state that describes the behaviour of a seg-

ment(s) of a time series. A time series is generated by a Hidden Markov Model (HMM)

of regimes that switches between/within them. To find the optimum set of regimes, the

authors adopt the idea of compactness from coding theory. The goal is to generate the

minimum number of regimes that best describe the HMM that creates the time series.

To achieve this goal an iterative approach is proposed, which at each iteration breaks

the currently found regimes into two regimes. The iteration process is governed by an

objective function that describes each regime through coding theory (number of bits

used to code the time series, number of segments in each regime, length of segments,

etc). We extract IoR segments from the segments generated by this method using a length

threshold, i.e., we extract segments whose length are within a given range.

DecomposeTS (DT) DT is based on the definition of homogeneity for a time series. The

homogeneity of a time series is defined through its symbolic representation of the time

series [81]. The authors used Symbolic Aggregate Representation (SAX) [82] of a time

series to transform a given time series into a sequence of symbols. The authors define the

entropy of a time series by the total entropy of the symbols generating its SAX string. This

string of symbols is then split into two substrings if the total entropy of the new pair of

105

Table 4.2: Segmentation results from OToR in comparison with other methods for the
four datasets described in Section 4.8.

Precision Recall F1-Score

OToR DT AP MP OToR DT AP MP OToR DT AP MP

I-SYN .95 .45 .55 .95 .91 1 1 .91 .93 .62 .71 .93
P-SYN .94 .76 .54 .74 .88 .98 1 .74 .91 .84 .70 .74
EXER .71 .60 .41 .66 .76 .27 .95 .76 .74 .35 .56 .71
HAR .81 .88 .36 .62 .75 .53 1 .61 .78 .64 .53 .58

substrings is less than their parent. The dividing process stops when the decomposed tree

is at its local minimum entropy. We use this method by filtering the generated substring

using an upper and lower bound threshold over the length of generated segments to

extract IoRs from the time series.

Results

To compare the results obtained from the three algorithms mentioned above, we use the

classification by data point scheme suggested by Lin et al. [70]. A true positive (TP) is

defined to be a point where the ground truth and the result from the algorithm match

with each other, and a false positive (FP) to be a point where the result from the algorithm

and the ground truth does not match. A false negative (FN) and a true negative (TN)

are defined similarly against the ground truth. We then calculate Precision = (T P
T P+F P),

Recall = T P
T P+F N and F1-Score = 2 Precision∗Recall

Pr eci si on+Recal l . The results are shown in Table 4.2, with

bold indicating when the corresponding algorithm is the winner.

Discussion

Table 4.2 shows that OToR outperforms the other methods in all datasets in terms of

the F1-Score. The main strength of the OToR algorithm results from the principle of

autocorrelation, which amplifies the dominant frequency of a signal in comparison to

the noise, and reduces the effect of variations. Wachman et al. [122] showed that cross-

106

correlation can be considered as a similarity function that focuses on the similarity of the

shape of two signals. The MP algorithm, on the other hand, is affected by the presence of

perturbations in the SoR, because the most similar signal to a signal inside an IoR may

not be exactly consecutive to that signal. As a result, MP deviates from a flat line, and the

profile shows disturbance inside the IoR. Thus MP is susceptible to changes of SoR inside

the IoR. The second problem that affects MP in finding an IoR accurately is that MP is

sensitive to its key input parameter M to return the best result. However, as shown by

Mirmomeni et al. [94] for a given time series with multiple IoR we need to set different M

to find each IoR accurately, thus a single M value cannot find all the IoR.

The situation for AutoPlait and DecomposeTS is different from MP. These two methods

are based on statistical features from the time series to find the optimum location to

segment (split) the time series. This characteristic causes two general issues: (1) Failure

in situations where the data is not sufficient to distinguish between statistical changes,

and (2) Failure to differentiate between IoR with similar but not identical distributions.

The first problem arises when the IoR is very short compared to the rest of the time series.

For example, in a 90 minute gym session an exercise set might take up to 60 seconds,

which is less than one percent of the whole session. Thus the two methods are highly

likely to ignore these short bursts of repeating patterns. For example, consider the two

IoR segments that can be seen as the last two red segments in the ground truth (GT)

section of Figure 4-10. DT completely missidentifies these two IoR segments because

their lengths are too short to provide enough data for the algorithm to detect the regions

(Figure 4-10 DT section).

The second problem for AP and DT shows itself when two IoR take place within a

short distance of each other (for example, the first three IoR in the GT in Figure 4-10).

In this situation, both algorithms tend to consider the two regions as one, and segment

the two IoR together. The corresponding long red segments in DT and AP in Figure 4-10

demonstrate this problem. The high recall and low precision results from DT and AP in

107

Table 4.2 also confirm this problem.

The high precision and recall (over 0.9) together with high F1-Score (.95) of OToR

from synthetic noiseless dataset demonstrate that linearity and periodicity are the two

distinctive properties of an IoR. In this scenario, the segments where OToR is most likely

to fail are at the very beginning of the IoR. This region may fall into the last part of the

sliding window and thus the window can break one or two repetitions of the signal of

recurrence from the IoR. As a result the sliding window ignores the first couple of repeats

at the start of the IoR by sliding to the third repetition.

These results demonstrate the robustness to variations in the SoR by correctly identi-

fying intervals of recurrence in the P-SYN dataset. As seen in the results, a small change in

the SoR does not impact the ability of the OToR algorithm to detect intervals of recurrence.

In this scenario, OToR’s ability to correctly identify intervals of recurrence only drops by

1%. Although recall remains close to 0.9, OToR appears to be more sensitive to variations

in the SoR. This becomes an issue when the end part of an IoR is entirely located inside the

sliding window. If the amplitude of the last signals of recurrence degrade, the transition

from IoR to non-IoR becomes blurred, i.e., we find peaks from the autocorrelation of the

transitional region that are not part of the IoR.

Further, we tested OToR using two real world datasets (weight training—EXER, and

human activity recognition— HAR [145]). In both cases, OToR outperformed the state-of-

the-art. OToR had a higher precision in the HAR dataset compared to the EXER because

activities in this dataset are much easier to perform compared to the EXER dataset. In

EXER dataset, the very last repetitions may deteriorate substantially over time as shown

by Melchiorri and Rainoldi [146], which causes the transition from IoR to non-IoR to be

harder to distinguish.

108

4.8.2 Online tracking (counting repeats)

We evaluate the effectiveness of OToR to detect and count repetitions online in a real-life

environment (a gym).

Personal Trainers Dataset (PTD) We recruited seven professional personal trainers to

perform four different exercises in the gym using the wearable device described in Sec-

tion 4.7. The wearable device was worn on the right wrist of the participants throughout

the trials. Each personal trainer was asked to perform two sets with ten repeats of the

four different exercises: (1) Side lateral raise, (2) Bicep curls, (3) Bicep curls to shoulder

press, and (4) Hammer curls.

RecoFit Morris et al. [6] designed a wearable that uses a supervised approach to count

the repeats of predefined weight training exercises online. However, their data and

implementation are not publicly available, making it impossible for a fair and accurate

comparison. The authors have not provided any detail about the performance of their

algorithm in tracking recurrences online. We contacted the authors to gain access to their

data and/or method but they revealed to us that both are private and not available for

public use.

1000 2000 3000 4000 5000
Time

AP
DT
MP

OToR
GT

Figure 4-10: Algorithms’ results in segmenting a real gym session. Regions in red corre-
spond to inferred IoR (GT ground truth).

109

Results

We use the same technique by RecoFit to compare their reported results from their

training set to OToR’s online results for tracking of exercises [6]. RecoFit has reported

their exercise counting percentage from their training sets (Table 4.3). In this table, we

show the average accuracy of counting repeats for the four exercises. OToR can achieve

high accuracy with a margin of two mistakes, while completely eliminating the need for

preparing a large training dataset. Figure 4-11a shows the distribution of counting errors

per exercise in our experiment.

Table 4.3: Online tracking. Exact: the percentage of training sets that were counted
precisely. Within-1: the percentage of training sets that had an error of up to 1 count.
Within-2: the percentage of training sets that had an error of up to 2 counts. NA means
the result is not available.

Exact Within-1 Within-2 Proc(Sec) Exec(Sec)

OToR 47% 81% 96% 0.09 1.5
RecoFit 70% 93% 97% NA NA

Conclusion

Although, as shown in Table 4.3, OToR’s performance in counting exact repeats is lower

than RecoFit, our algorithm does not require any supervised training, bootstrapping, or

prior data. In contrast RecoFit is a supervised learning method, which requires an expert

to watch the participants while they perform the exercises to label the dataset. To detect

13 exercises, the authors of RecoFit went through 126 sessions of data collection before

being able to train their classifier. To account for personal differences they collected

data from participants with various ages, genders and abilities. All these efforts show

the importance of our work in unsupervised tracking of exercises. Note that since OToR

detects the SoR, a post processing algorithm that finds each SoR from the IoR will improve

the counting result.

Table 4.3 shows that OToR algorithm can detect each repeat from an online sequence

110

Exercise1 Exercise2 Exercise3 Exercise4

−
6

−
4

−
2

0
2

4

(a) Error count for each exercise. Zero
means exact count.

F
re

q
u
e
n
c
y

0.0 0.1 0.2 0.3 0.4

0
1
0

2
0

3
0

4
0

(b) CPU time-lag for detecting each
new repeat (in seconds).

F
re

q
u
e
n
c
y

0 1 2 3 4

0
1
0

2
0

3
0

4
0

(c) WallClock time-lag for detecting
each new repeat (in seconds).

F
re

q
u
e
n
c
y

0.00 0.05 0.10 0.15

0
2
0

4
0

6
0

8
0

(d) Percentage of processing time for
OToR algorithm.

Figure 4-11: Performance of OToR in real-time.

of exercises within 0.09 seconds on average (Proc column in Table 4.3). The distribution of

this measurement is shown in Figure 4-11b. The wearable device’s sensor read frequency

was set to 45Hz. Thus, we analysed 45 reads per-second. The longest exercise was the

Bicep to shoulder press, which takes around 5 seconds to perform. Each participant

performed 10 repetitions of this exercise. OToR waits for 3 periods before stopping to

track an IoR. Thus, in total there were 45∗ (5∗ (10+3)) ≈ 3000 reads for OToR to analyse

during the 0.09 seconds. The algorithm has to wait for the raw data to be ready (read

from the sensor every half a second and passed to the processor) before it can analyse

111

the data. Thus the execution time (WallClock in Figure 4-11c), which includes the time

for in-between processing and notifying the OToR for the readiness of new raw data takes

on average 1.5 seconds (Exec column in Table 4.3). Typically, gym exercises take around 2

to 5 seconds per repetition. Achieving a 1.5 second lag on average allows the algorithm to

analyse and provide feedback to the user in near-real time.

Figure 4-11d shows that OToR requires less than 10% of the processing time, which

confirms that OToR places a relatively light load on the CPU, on average taking 9% of

the cycles. In the weight training application, the two main sources of power consump-

tion are processing time and sensor reads, therefore OToR is highly efficient in power

consumption, and keeps the CPU in idle mode 91% of time for other tasks or to save

power.

4.9 OToR parameters

In Section 4.4, we discussed that OToR requires the configuration of two parameters—the

window size threshold that stops the dynamic window from extending without bound

and the marginal error threshold for linearity to track variations of SoR.

0.4

0.5

0.6

0.7

0.8

0 200 400 600
Window size (observations)

A
v

e
ra

g
e

 F
1

−
S

c
o

re

(a) The effect of window size
threshold (Θ) on accuracy.

0.005

0.010

0.015

0.020

0.025

0 200 400 600
Window size (observations)

C
o

m
p

u
ta

ti
o

n
 t

im
e

(b) The effect of window size
threshold (Θ) on computa-
tion time.

0.5

0.6

0.7

0.8

0 100 200 300 400 500
Residual percentage

A
v

e
ra

g
e

 F
1

−
S

c
o

re

(c) The effect of marginal er-
ror threshold on accuracy.

Figure 4-12: The effect of OToR parameters on its performance.

1. Window size thresholdΘ: The threshold has only a small effect on the performance

of the algorithm, if set within a reasonable range. To show this, we evaluated the effect ofΘ

112

on the F1-Score of the segmentation task using the PTD dataset described in Section 4.8.2.

We ran the experiment for all seven participants using a range of window sizes from 5 (0.1

second) to 600 observations (13 seconds). We calculated the average F1-Score for each

window size, averaged across all participants. The results are shown in Figure 4-12a. This

figure shows that the F1-Score increases until it plateaus at around a 100-sample window,

with little change as the window size increases. Below 100-samples, there is not enough

data to capture the three necessary repetitions for the system to start counting, but if the

threshold is large enough to capture the three repeats, there is no further gain in setting a

larger threshold. In contrast, Figure 4-12b shows that the time required to process the

window increases linearly by increasing the threshold. This suggests a trade-off between

the robustness of the system (for which the marginal gains diminish after reaching a

threshold) and the responsiveness of the system (which is progressively reduced as we

increaseΘ).

2. Marginal error threshold: This is the threshold for determining how close a newly

observed peak should be from the arithmetic progression calculated using previously

observed peaks. To understand the effect of this threshold on the system’s performance,

we calculated the F1-Score using a range of thresholds on the PTD dataset described in

Section 4.8.2. The result of this experiment, averaged across all participants, is shown in

Figure 4-12c. The best performance was achieved with a marginal error threshold of 40

to 120%. If the threshold is too small, it makes the recognition too strict, forcing the user

to be unnaturally consistent in performance. If the threshold is too large, it decreases the

robustness of the system, accepting movements that do not consist of a new repetition of

the same exercise. Within the 40-120% range, the recognition remains stable, giving a

wide margin of error for setting this parameter.

113

4.10 Conclusion

In this chapter we designed OToR, a novel and efficient algorithm to find and track

intervals of recurrence (IoR) from time series data streams in real-time on a wearable

device. We demonstrated the robustness of this algorithm, which is built on (1) periodicity

and (2) sub-domain linearity properties of autocorrelation. We provided an in-depth

theoretical analysis of these principles.

We achieved two design objectives that go beyond the state-of-the-art. First, OToR

tracks the activity performance with minimal prior knowledge and configuration, i.e.,

unsupervised. Second, the tracking happens in a device with low computing/memory

resources (a wearable) in real-time. We demonstrated the superiority of OToR in our

experiments in both offline and online scenarios in comparison to the state-of-the-art

algorithms.

4.11 Appendix

4.11.1 Linearity property of periodic points from the autocorrelation

of a continuous IoR

In this section, our aim is to formally prove the two main properties that we use of an

IoR—(1) linearity and (2) periodicity of the local maxima of the autocorrelation of an

IoR—the two properties we discussed in the previous section to detect and track an IoR

from a streaming data. In Theorem 1, we first prove that all periodic points from the

autocorrelation of an IoR inside a continuous signal are linearly aligned. Next we prove in

Proposition 4 that the local maxima of the autocorrelation of an IoR satisfy the periodicity

of the points from the IoR and are thus linearly related. These properties are used as the

bases of our algorithm in Section 4.4.

We define f̂ to be the autocorrelation function, i.e., f̂ (x) = f � f where � is the

114

correlation operator. The autocorrelation operator for a restricted function f �Rp (where

the domain of f is Rp) is defined by applying autocorrelation after zero padding the

function for the regions outside the restriction region ∀x ∈ Rp | f̂ (x)=∫ x
0 f �Rp (x +τ) f �Rp

(τ)dτ. To prove Theorem 1, we first introduce Lemma 1 for any IoR Rp to show that for

an IoR the derivative of the autocorrelation of f �Rp follows a periodic function. Using

Lemma 1 we prove Theorem 1 that if the derivative of an autocorrelation function is

periodic, then the periodic points on the autocorrelation result from an addition of a

linear function and a periodic function. We then prove in Proposition 3 that there exists

a set of local maxima from an IoR that are periodic. Finally, we prove the linearity and

periodicity of local maxima (Proposition 4) to formally show that our algorithm holds for

any IoR.

Lemma 1. Given a time series T and IoR Rp ⊂ T , there exists a function Γ(x) such that

g ′ (x) = d

d x

f̂ �Rp (x)

Γ (x)
is periodic.

Proof. The goal is to find the function Γ(x) such that dividing the autocorrelation of

f �Rp by Γ(x) results in a function with a periodic derivative, i.e.,
d

d x

f̂ �Rp

(
x +Kp

)
Γ

(
x +Kp

) =

d

d x

f̂ �Rp (x)

Γ (x)
. To find Γ(x), we start by analysing the result of f̂ �Rp

(
x +Kp

)− f̂ �Rp (x) to

check for periodicity as follows:

f̂ �Rp

(
x+Kp

)−f̂ �Rp (x)=
∫ x

0
f �Rp

(
x+Kp+τ

)
f �Rp (τ)dτ+∫ x+Kp

x
f �Rp

(
x+Kp+τ

)
f �Rp (τ)dτ−

∫ x

0
f �Rp (x+τ) f �Rp (τ)dτ

(4.2)

Because f �Rp is a periodic function with period Kp then f �Rp

(
x +Kp +τ)= f �Rp (x +τ),

thus the first and third terms from Equation 4.2 eliminate each other and we have

f̂ �Rp

(
x+Kp

)−f̂ �Rp (x) =
∫ x+Kp

x
f �Rp

(
x+Kp+τ

)
f �Rp (τ)dτ (4.3)

115

Since Kp is the period of f in Rp thus we have

∫ x+Kp

x
f �Rp

(
x+Kp+τ

)
f �Rp (τ)dτ=

∫ Kp

x%Kp

f �Rp (x+τ) f �Rp (τ)dτ (4.4)

To simplify our notation we call
∫ Kp

x%Kp
f �Rp (x+τ) f �Rp (τ)dτ, I

(
x%Kp

)
. The derivative

of a function is periodic if the differences between periodic values of that function

are a constant. Dividing both sides of Equation 4.4 by I (x%Kp) makes the right side of

Equation 4.4 a constant and as a result its derivative becomes zero, i.e.,
d

d x

f̂ �Rp

(
x+Kp

)
I
(
x%Kp

) −

d

d x

f̂ �Rp (x)

I
(
x%Kp

) = 0. Thus,
d

d x

f̂ �Rp

(
x +Kp

)
I
(
x%Kp

) = d

d x

f̂ �Rp (x)

I
(
x%Kp

) .

Because I
(
x%Kp

)= I
((

x+Kp
)

%Kp
)
, and defining g (x)=

f̂ �Rp (x)

I
(
x%Kp

) we can write

d

d x

f̂ �Rp

(
x+Kp

)
I
((

x+Kp
)

%Kp
)= d

d x

f̂ �Rp (x)

I
(
x%Kp

)⇒ d g
(
x+Kp

)
d x

= d g (x)

d x

that is, the derivative of g , is periodic with period Kp . By defining Γ(x) := I (x%Kp) the

proof is complete.

The next theorem shows that for any set r = {t1, ...tl } ⊂ Rp , where each point in r is

Kp apart from its subsequent point, there exists a line that connects all the points from

f̂
(
t j

)|t j ∈ r .

Theorem 1. If Rp is an IoR from a given time series T with period Kp , then for any set

Z={ f̂ �Rp (t1), f̂ �Rp (t2) , ..., f̂ �Rp (ti) , ..., f̂ �Rp (tr)} in f̂ �Rp where ti+1 − ti = Kp , there exists

a line z (t) = at + c that passes through all the points in Z .

Proof. In Lemma 1 we showed that g ′ (x) = d

d x

f̂ �Rp (x)

I
(
x%Kp

) is periodic with period Kp . Thus,

∀t ,
∫ t+Kp

t g ′ (u)du = c, where c is a constant. By taking the integral from both sides of

g ′ (x +Kp
)−g ′ (x) = 0, while defining h (x) = ∫ x

x0
g ′d x+h (x0), we have h

(
x +Kp

)−h (x) = c .

If c is zero, then h (x) is periodic. If c 6= 0, we define v (x) = g ′ (x)− c

Kp
and, without loss of

116

generality, we define h (x) to be
∫ x

x0
vd x +h (x0). Now h

(
x +Kp

)−h (x) = 0, that is, h (x) is

periodic with period Kp . We have

∫ x+Kp

x
v (x)d x =

∫ x+Kp

x
g ′ (x)+ c

Kp
d x = r (x)+ c

Kp
x

where r (x) is a periodic function with period Kp . Replacing g (x) with its original function
f̂ �Rp (x)

I
(
x%Kp

) , we have

f̂ �Rp (x)

I
(
x%Kp

) = c

Kp
x + r (x)

Thus, for all 0 ≤ x0 < Kp and for any natural number n ∈Nwe have I ((x0+nKp)%Kp) = c0

where c0 is a constant. Thus, ∀0 ≤ x0 < Kp ,n ∈N

f̂ �Rp (x0+nKp)= c

Kp
(x0+nKp)∗I ((x0 +nKp)%Kp)+

r (x0 +nKp)∗ I ((x0 +nKp)%Kp) =

C0 + c

Kp
(nKp)∗ c0 + r (x0)∗ c0 = b0 +an

where C0= c

Kp
x0c0 and b0 =C0 + r x0 are both constants.

Next we show that there exists a set of local maxima from f̂ �Rp that are linear and

periodic.

Proposition 3. Given time series T and an IoR Rp ⊂ T , then ∃P = {p1, p2, p3, ...pm} ⊂ f̂ �Rp ,

such that p1 < p2... < pm are periodic points and pi ,1 ≤ i ≤ m is a local maximum.

Proof. Consider Rp to be an IoR with length p and period Kp , i.e., ∀x ∈ Rp , f �Rp(
x +Kp

)= f �Rp (x). From the definition of autocorrelation we know that the autocorre-

lation of f , f̂ �Rp (x) = ∫
Rp

f �Rp (τ) f � Rp (x +τ)dτ, reaches its local maxima whenever

the phase from f (τ) matches the phase from f (x +τ), or in other words, the signals of

the recurrences in f �Rp (τ) and f �Rp (x +τ) exactly match each other. If we consider t0

to be the first time f �Rp (τ) and f �Rp (x +τ) matched with each other, then ∀i where

117

i Kp ∈ Rp | f̂ �Rp (x) is a local maximum at f̂ �Rp

(
i Kp

)
. Then P from Proposition 4 is

P = { f̂ �Rp

(
Kp

)
, f̂ �Rp

(
2Kp

)
, ... f̂ �Rp

(
mKp

)
}.

We can thus prove the properties that we use to differentiate an IoR from a non-IoR,

namely, the linearity and periodicity of local maxima of an IoR.

Proposition 4. Given time series T and an IoR Rp⊂T , then ∃P={p1, p2, p3, ...pm}⊂ f̂ �Rp ,

such that p1<p2...<pm are linear and periodic points where pi ,1≤i≤m is a local maxi-

mum.

Proof. Proposition 3 shows how to find a set of local maxima from the autcorrelation

of an IoR that is periodic. Proposition 4 follows Theorem 1 that proves the linearity of

periodic points from the autocorrelation of an IoR.

4.11.2 Noise analysis

Jitter

Jitter results from hardware clock limitations in reproducing the true periodic signal. In

an ideal scenario, we would be able to sample the signal in exact τ intervals. However,

jitter perturbates the sampling points. If the sampling occurs at τ intervals with sampling

error ε then we have:

f̂ (n) =
N−1∑
m=0

f (m +εm) f (n −m +εn−m) (4.5)

Given that ε is small, f can be estimated by its first order Taylor series expansion [147],

i.e., f (n +ε)= f (n)+ε f ′(n) then:

f̂ (n) =
N−1∑
m=0

(
f (m)+εm f ′(m)

)(
f (n −m)+εn−m f ′(n −m)

)
118

Since εm is a random variable we have:

E
(

f̂ (n)
)=E(N−1∑

m=0
f (m) f (n−m)

)
+

N−1∑
m=0

E(εm)f ′(m) f (n−m)+
N−1∑
m=0

E
(
εn−m

)
f ′(n−m) f (m)+

N−1∑
m=0

E
(
εn−mεm

)
f ′(n −m) f ′(m) (4.6)

Var
(

f̂ (n)
)=Var

(N−1∑
m=0

(
f (m)+εm f ′(m)

)(
f (n−m)+εn−m f ′(n −m)

))
(4.7)

where E is the expectation and Var is the variance function. To calculate Equations 4.6

and 4.7 we need to know the distribution of εm functions and their covariance with each

other, which are implementation dependent factors. We empirically demonstrate that

our implementation is not highly sensitive to these two values (Section 4.9). If we assume

εm are independent Gaussian variables with E
(
εm

)= 0 and Var
(
εm

)= η we can simplify

Equation 4.6 as follows [147]:

E
(

f̂ (n)
)= E(N−1∑

m=0
f (m) f (n −m)

)
(4.8)

Noting that Var
(

f (n−m) f (m)
) = 0 and all εm are independent, then expanding Equa-

tion 4.7 results in a bounded variance:

Var
(

f̂ (n)
)≤ ηN−1∑

m=0
f ′(m)2

N−1∑
m=0

f (n −m)2+

η
N−1∑
m=0

f ′(n−m)2
N−1∑
m=0

f (m)2+η2
N−1∑
m=0

f ′(n−m)2
N−1∑
m=0

f ′(m)2

(4.9)

The Gaussian sampling error model (Equation 4.8) shows that the expected line

computed from the sampled signal is the same as the line from Proposition 4 with a

variance that can be computed by Equation 4.9. In signal processing
∑N−1

m=0 f (m)2 is

defined as the energy of f over its domain. Since the domain of f in Equation 4.9 is

restricted to the IoR, its energy is bounded. Thus, Var(f̂) is bounded by three values, the

119

noise variance η, the energy of f and its derivative f ′ during the IoR.

Amplitude noise

Amplitude noise is the small error present around each read of the sampled signal. This

noise often results from two sources: (1) read errors, and (2) performance errors. The read

error is an inseparable part of any digitised device where each read can be affected by

environmental factors such as temperature or humidity. The second source of amplitude

error comes from the signal’s source where repeats cannot be performed 100% identically.

This variation can affect our calculations. Amplitude noise is modelled as an error around

each read, i.e.:

f̂ (n) =
N−1∑
m=0

(f (m)+εm)(f (n −m)+εn−m) (4.10)

Using the same analysis from Section 4.11.2 with Gaussian zero mean noise and variance

ϑ it follows that:

• E
(

f̂ (n)
)=∑N−1

m=0 f (m) f (n −m), and

• Var
(

f̂ (n)
)≤ϑF +ϑF ′

where F and F ′ are the area under the IoR and are thus bounded. Hence the computed

line derived from measurements affected by Gaussian noise is expected to be the same as

that in Proposition 4 with an error bounded by the noise variance and the area under the

IoR.

Discretization error

Discretization error shows itself as variations in repetitions of the digitised SoR in an

IoR. A sampling rate that is not synchronised to the period of repeat in an IoR introduces

discretization error. In this case, since the period of repeat in the IoR is not factorable to

120

the sampling rate, samples are taken at different points from the successive repeats of the

waveform. Thus, each digitised SoR from the IoR varies from one repeat to another even

though all the original SoRs are identical in the IoR. If ∆ is the sampling period and Kp is

the repeat period from an IoR, we can define discretization error to be a random variable,

γ, appearing in the period of repeat with respect to the sampling period as follows:

∃l | Kp = l∆+γ (4.11)

where l is an integer corresponding to the number of samples per repeat. Assuming we

have R SoR in the IoR, we can rewrite the autocorrelation (f̂) of an IoR to be:

f̂ (n) =
Rl−1∑
m=0

f (m) f (n −m)=
R−1∑
j=0

l−1∑
i=0

f (i+ j Kp) f (n−i − j Kp)

=
R−1∑
j=0

l−1∑
i=0

f (i+ j l∆+ jγi+ j l∆) f (n− i−j l∆+ jγn−i− j l∆)

By introducing a new variable z := i + j l∆ and a random variable ζ := jγ then we have

f̂ (n) =
N−1∑
z=0

f (z +ζz) f (n − z +ζn−z) (4.12)

Comparing Equation 4.12 to Equation 4.5 we see that the two equations are identical.

Thus we can perform the same analysis as we did in Section 4.11.2.

Variations from the period of repeat produced by the signal’s source have the same

effect as the unsynchronized sampling discretization error due to unsynchronized sam-

pling. In these cases the signal’s source is not able to generate every SoR in the IoR

identically. For example, a trainee cannot perform each repeat of the same exercise with

exactly the same speed. Thus, there exists an error around the periodicity of the IoR

associated with that exercise.

In Equation 4.11, we assume that every SoR in the IoR has the same sampling length l .

121

This assumption imposes an upper bound on the sampling frequency. To calculate this

upper bound, the number of samples from the shortest and the longest SoR in the IoR

have to be equal, i.e., length(Smi n,I)/φ= length(Smax,I)/φ, where Smi n,I and Smax,I are

the shortest and longest SoR, respectively, from the IoR I , andφ is the sampling frequency.

4.11.3 Impact of noise on OToR

In this section we analyse the impact of white noise on OToR’s performance in detecting

and tracking consecutive repeats. For our experiment, we generate a synthetic time series

of ten consecutive repeats of the SoR signal shown in red in Figure 4-13.

Figure 4-13: A synthetic IoR with ten repetitions of a SoR. The SoR (the red signal) is
generated from two signals with the same period but different amplitude.

We added different levels of zero-mean white noise to the generated time series

and ran the OToR algorithm over each generated time series. Figure 4-14 reports the

maximum number of consecutive repeats detected by OToR at each noise level. In this

figure the noise level is represented by signal-to-noise-ratio (SNR) on the X axis. The

figure shows that noise level of up to 3:1 SNR has minimal effect on OToR’s detection

and tracking of SoR, i.e., OToR can handle SNR of 3:1 with at most two miscounting of

repetitions. The figure shows that OToR performance drops for higher signal-to-noise-

ratios. However, it’s performance flattens at SNR 1:1 where it can detect and track five

consecutive repeats before breaking the IoR region.

122

Figure 4-14: Maximum number of consecutive peaks detected and tracked by OToR in
the presence of noise.

4.11.4 Detecting local maxima from autocorrelation

OToR is based on finding the local maxima from the autocorrelation of an incoming

time series. In a noisy environment local maxima are happening more often due to the

fluctuations resulted from adding noise to the signal. Thus, finding the local maxima of

the autocorrelation in a noisy environment requires defining a neighbourhood in which

the local maximum value is representing the actual local maxima, i.e., we need to find a

window of the neighbourhood in which local maxima from the autocorrelation plus their

noise value are masking other local maxima generated by the signal’s fluctuations due to

noise. We have demonstrated this effect using the experiments from Section I.C, Impact

of noise on OToR. We ran OToR by using different neighbourhood sizes (N) for computing

the local maxima. Figure 4-15 shows the number of consecutive repeats that OToR

detects before breaking the IoR. The figure shows that selecting a small neighbourhood

size (N ≤ 10 points) results in a sharp drop in OToR’s performance. However, setting the

neighbourhood’s size large enough (N ≥ 15) results in a uniform performance from OToR,

where its performance smoothly decreases until it flattens at noise levels of SNR= 1 : 1 or

higher.

123

Figure 4-15: The effect of neighbourhood size (N) in detecting local maxima in the
presence of noise.

4.11.5 Visualising OToR algorithm’s behaviour for finding new IoR

In this section, we demonstrate how OToR detects an IoR in scenarios where a non-convex

SoR is repeating inside an IoR. Consider a SoR that includes two identical signals, see

Figure 4-16. In this example, SoR (shown in red) is generated from two identical signals,

which are slightly apart from one another inside the SoR. Note that if the two identical

signals ware not apart then by the definition SoR was defined as one of the signals. Thus,

SoR is generated from the two identical signals with some distance in between. SoR is

repeated three times in the time series. To find the Interval of Recurrence (IoR) generated

by this SoR, OToR calculates the autocorrelation of the time series, shown on the right in

Figure 4-16. OToR selects the last peak (marked as Ps in the figure) as the starting point

and searches for an ordered set of points which are starting from Ps and are both periodic

and aligned. OToR starts by searching the previous peaks in a heuristic approach. It first

elects P11 and generates the line l1 (shown in dashed). At this stage, the expected period

is Θ1. However, in the set of local maxima calculated from the autocorrelation, no point

satisfies both periodicity (next point should beΘ1 apart from P11) and linearity (lies on

l1) conditions. Next, OToR skips P11 and elects P21 to generate the line l2. In this iteration,

the expected period isΘ2. Thus, OToR checks the points that areΘ2 apart from P21 and

elects P22. OToR confirms the linearity condition of the three points (Ps , P21, and P22) by

124

Figure 4-16: Signal of recurrence with identical signals. On the left an IoR with three
repetitions of the SoR (shown in red) is plotted. On the right the autocorrelation of the
IoR is shown.

checking that p22 is placed on the pre-calculated line, l2.

Thus, OToR selects P22, P21, and Ps as the three peaks defining the IoR in the time

series. From now on, OToR iteratively tracks incoming local maxima with n ∗Θ2 period

apart from Ps that are aligned on l2 starting from n = 1. This step is shown in Figure 4-

17 where l2 extension is dashed. Pn is the new local maximum calculated from the

autocorrelation that isΘ2 distance apart from Ps .

Figure 4-17: OToR tracks SoR in the detected IoR from Figure 4-16. On the left the
same IoR with four repetitions of the SoR (shown in red) is plotted. On the right the
autocorrelation of the IoR is shown. OToR tracks the IoR by l2 extension which is shown
in dashed.

Our next example concerns a SoR which is generated from two periodic signals with

an identical period but different amplitudes, Figure 4-18. As shown in the image, OToR’s

125

behaviour is similar to its response in the previous example, i.e., OToR dismisses the first

line (l1) and then tracks the points lined on l2.

Figure 4-18: Signal of recurrence generated from two signals with same period but
different amplitude. On the left an IoR with three repetitions of the SoR (shown in red) is
plotted. On the right the autocorrelation of the IoR is shown.

126

Chapter 5

Analysing waveforms by their shape

5.1 Introduction

In the previous chapter, we discussed how to extract exercise segments from an incoming

time series of measurements from IMU sensors. As discussed in Section 3.2, the next

two steps to analyse weight training exercises are to (1) Compute the average time series,

known as a prototype, from the observed time series, and (2) Compare time series to the

computed prototype.

Our weight training application motivated the idea to analyse time series through

their visual “shape”, i.e., using a method to analyse time series through their appearance.

Comparing time series by their appearance or visual shape has diverse applications, such

as classifying heartbeat ECG records into normal and abnormal signals [148, 149, 150,

151], clustering accelerometer records from wearables attached to a trainee into different

sets of exercises [152], or categorising data received from a space shuttle [153]. In these

problems, the relationships between points on the time series are more important than

each individual absolute value. For example, Figure 5-1 shows an abnormal and a normal

heartbeat from the ECG200 database [2]. We can see that both heartbeats have peaks in

the highlighted areas. However, the peaks in the normal heartbeat are much smoother

127

than the peaks in the abnormal one. This smoothness manifests itself in the relationship

between the peak and its neighbourhood values.

0 20 40 60 80
Abnormal heartbeat

2

1

0

1

2

0 20 40 60 80
Normal heartbeat

2

1

0

1

2

Figure 5-1: Abnormal and normal waveforms of heartbeats from ECG200 data set [2].

Traditionally, shape analysis for time series data has focused on comparisons between

pairs of time series. In such an approach, shape is indirectly characterised by a mapping

between smaller pieces of the two time series to each other. For example, dynamic time

warping (DTW), the most common distance measure between pairs of time series for

shape analysis, uses dynamic programming to find the “best” mapping between the two

time series [154, 155]. A DTW value is a numeric distance measure that evaluates the

dissimilarity between two time series. An alternative approach identifies primitives from

a time series where a shape is considered to be decomposable into peaks and troughs.

In this approach, similar shapes are assumed to behave similarly through time, i.e., if

one goes up the other goes up and if one goes down the other goes down as well. In

this case, the similarity between two time series is defined through correlation [139, 61].

Although these approaches can be used to define the similarity of time series from a set of

data points, they do not provide any insights about the internal relationships among the

points of a single time series. This insight is crucial for the interpretation of time series

data. As shown in Figure 5-1, the notion of the shape of a time series would reveal the

underlying relationship among the points on the time series, such as the smoothness of

peaks shown in the figure. Our approach is to define the notion of shape in such a way

128

that it enables us to reconstruct the original time series exactly. In this way, a time series

is modelled as a unique geometric curve that can be presented to an observer like any

other geometric object such as a line, circle or cycloid.

Mathematically, a time series can be described as a curve in space. The simplest curve

is a line, an object with no curvature (peaks and troughs) (Figure 5-2a). Another simple

object is one with constant curvature—a circle (Figure 5-2b). Third, consider a cycloid;

the curve generated by a point on the circumference of a circle that rolls along a straight

line, (Figure 5-2c). The cycloid’s curvature changes according to the fixed point on the

circle. Differential geometry generalises this idea to uniquely determine the shape of

the curve through its curvature [156]. The curvature shows the degree of deviation while

72.5 75.0 77.5 80.0 82.5 85.0 87.5
t (time)

100

150

200

250

(a) Lines are objects with zero curvature.

0.0 0.5 1.0
t (time)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Circles are objects with constant curva-
ture.

(c) A cycloid is the curve traced by a point on the rim of a circular
wheel (blue circle) as the wheel rolls along a straight line.

Figure 5-2: Shapes are described by the amount of curvature (defined by the radius (r) of
the tangent circle) they have at any point.

moving along the curve from a flat line. By knowing the curvature at each point we can

always generate the same curve regardless of the initial position [157]. This definition of

shape brings three important characteristics for shape analysis, namely:

129

1. Scale invariance,

2. Translation invariance, and

3. Rotation invariance.

Our aim is to use differential geometric properties of curves to introduce a new

representation of a time series that uniquely identifies the time series by its shape. The

Fourier analysis of this representation leads us to design a vector space where each time

series is uniquely defined by a vector. The goal is to address two fundamental problems

in time series analysis: (1) How to compute a prototype from a given set of time series?,

and (2) How to compare a pair of time series? We use two important tasks in time series

analysis: (1) K-Means clustering and (2) Nearest Centroid Classifier (NCC) to demonstrate

the effectiveness of these methods in addressing these two fundamental problems.

Comparing time series is an important problem when trying to group similar time

series. To determine whether a given time series is from a particular group, a common

approach is to compare the new time series to every member of the group, which is

an inefficient approach. This is the main reason behind the second problem that we

consider in time series analysis where a prototype is needed to represent a group of

time series. A centroid for a group of time series can be seen as the mean value for

the given group, i.e., the centroid is a data point (time series) that has the minimum

average distance to every other member of the group. Computing a centroid is coupled

with designing a distance measure. The mean property of a centroid enables various

important types of analysis on time series, such as: (1) Detecting anomalies in a semi-

supervised fashion [158, 159]. (2) Designing a fast indexing mechanism for data base

retrieval [160, 161]. (3) Generating synthetic time series data [162, 163]. (4) Designing loss

functions for optimisation problems with applications in deep neural networks [164, 165].

In summary, our contributions in this chapter are:

• Novel method to represent the shape of a time series:We Design a new represen-

130

tation for time series based on differential geometry to capture the shape of a

time series.

• Novel vector space: We develop a vector space that can effectively represent the

shape of a time series, and prove several key properties of this space.

• Shape prototype: We provide a theoretical framework to efficiently compute the

shape prototype for a set of time series using the shape representation.

• Effectiveness: We empirically show using 48 data sets that the average shape (cen-

troid) designed in this chapter together with our distance metric is the most effec-

tive method in comparison to three state-of-the-art methods when classifying time

series data using a NCC for analysing time series by their shape. Equally important,

the quality of the clusters found by our approach compares favourably with clusters

found by the best-known technique.

• Efficiency: We show that the time complexity of our method is lower than the

comparison methods, and empirically confirm that Contour (the method designed

in this chapter) is the most efficient method for computing the shape prototype to

be used in both clustering and classification of time series data when shape is the

differentiating feature.

5.2 Problem statement

In this chapter the aim is to define a time series as a discrete geometric object generated by

sampling a continuous planar curve. Thus, only finite, planar time series are considered.

To define the geometric shape of a time series, we review the mathematical definition of

a time series and then review the definition of shape through curvature from geometry.

Time series: A time series Ts of length n is a finite ordered set of measurements, say

{Y (tk)} through time starting from time t1 and ending at time tn : Ts = {Y (t1),Y (t2), ...,Y (tn)}.

131

To identify the shape of a time series, we represent it using the concept of curvature,

i.e., the degree to which a curve deviates from a line. The curvature defines the velocity of

the rotation of the tangent to the curve while moving along the curve.

The curvature at a point is defined by the relationship between the tangent vector to

the curve and its second derivative vector at that point [166]. Formally, the curvature of a

twice differentiable planar curve Y (X) at a point X? is:

Curvature κ:

κY (X?) = Y ′′(X?)(
1+Y ′(X?)2)3/2

(5.1)

Anderson and Bezdek showed that it is possible to estimate the curvature from a

discrete curve [156]. Since then, there have been many studies to estimate the curvature

for discrete curves [167, 168, 169]. We use the simplest definition of curvature to perform

our experiments, i.e., Y ′ =∆Y /∆X? and Y ′′ =∆Y ′/∆X?. Note that our method is inde-

pendent from any particular form of approximation, and thus, can be used with any of

the curvature estimators.

Curvature measures the amount of deviation from a flat line at each point along the

curve. We use this notion to define the shape of a time series as follows.

Definition 1. Shape of a time series: The shape STs (ti) of a time series Ts at point ti is

the total curvature of measurements in Ts from t1 to ti .

STs (ti) =
∫ ti

t1

kY (t)dt (5.2)

The definition of shape in Equation 5.2 is a way to linearise Ts = {Y (t1), ...Y (tn)}.

Consider the interval [t1, tn] and define ∆ti = ti − t1, where ti ∈ [t1, tn]. If ∆ti → 0 then

STs (ti) is estimated by the tangent vector at point ti , i.e., the direction that the curve Y

should move from point t1 to point ti in the interval [t1, tn]. From a global point of view,

STs (ti) reflects the total amount of turning Y takes to reach point ti from point t1.

Since any window of a time series is also a time series, this definition of shape can be

132

applied recursively to any segment of a time series. This property leads us to define the

Shape-Series for any given time series Ts .

Definition 2. Shape-Series STs : A Shape-Series STs of a time series Ts of length n, is

an ordered set of shapes with n members such that each value in the series STs at ti is

associated with one and only one value in the time series and represents the shape of the

time series at ti , i.e., STs = {STs (t1),STs (t2), ...,STs (tn)}

An example of calculating a Shape-Series is shown in Figure 5-3. In this figure we show

the two steps to compute the Shape-Series of sin x. It starts by computing the curvature of

the curve at each ti in the first step. The relation between curvature and the curve can be

seen as a map for tracing the original curve in a 2-dimensional space. We start by moving

forward while rotating. The amount of rotation at each point is given by the curvature

at that point. In the second step, we perform a cumulative sum over the curvature to

compute the Shape-Series. The Shape-Series tells us how much rotation in total we have

performed at each point.

� ��� ��� ���
������

��

�

�
������

� ��� ��� ���
������

����

���

���
��� 	����������

� ��� ��� ���
������

��

����

���
������

	������� 	��
��

Figure 5-3: Steps to compute a Shape-Series for a given time series. First, we compute the
curvature of each point. Second, we compute Equation 5.2 for each point.

5.3 Shape similarity

The Shape-Series (Definition 2) quantifies the shape of a curve and can be used to

compare two curves. We first show in Theorem 5 that each shape quantity uniquely

identifies its associated curve modulo translations and rotations.

133

Proposition 5 (Shape uniqueness proposition). Given a Shape-Series of a planar curve

on the interval [t1, tn], there is a unique translation- and rotation-invariant curve that is

quantified by the Shape-Series.

Proof. From the first fundamental theorem of calculus and the definition of the shape

function, i.e., STs (t) = ∫ t
t1

kY (t)dt , we have kY (t) = dSTs (t)

d t
. Proposition 5 is a direct con-

sequence of the fundamental existence and uniqueness theorem for space curve (Theorem

5.3, Lipschutz [157]), which proves that there is exactly one planar curve associated with

any given curvature function on the plane, modulo any translation or rotation. Thus, for

any arbitrary Shape-Series there is exactly one curve on the plane for which the derivative

of the Shape-Series is the curvature of that curve.

Proposition 5 guarantees the uniqueness of the shape associated with a shape func-

tion. We use this uniqueness property to define a new vector system to represent shapes.

We use the completeness characteristics of the Fourier transform—i.e., it is an invertible

linear transformation—to design the shape vector system.

The DFTs of any two Shape-Series of length n yield a pair of (frequency) vectors in Rn .

Specifically,

~VSTs
= ~DFT∗ ~STs (5.3)

where ~DF T is the Discrete Fourier Transform matrix, ∗ defines the outer product of two

vectors and ~STs is the Shape-Series of the time series in a vector form. We define the

distance between these two vectors, which we call the Angular Shape Distance (ASD), to

be the angle between the vectorization of their Shape-Series.

ASD(Ts ,Tq) = cos−1

(
~VSTs

·~VSTq

‖~VSTs
‖‖~VSTq

‖

)
(5.4)

where · is the Euclidean dot product (Algorithm 5). Note that Equation 5.4 is an angular

measure that ranges from 0 to 2π. Algorithm 5 shows how to compute the angular

134

similarity between two Shape-Series.

Algorithm 5: Find Angular Shape Distance between two time series

1 Function ASD(A, B):
Data: A: time series of length n, B:time series of length n
Result: Return distance value between [0,180]

2 NA ← A - MEAN(A);
3 NB ← B - MEAN(B);
4 ShapeA ← SHAPESERIES(NA);
5 ShapeB ← SHAPESERIES(NB);
6 fA ← DFFT(ShapeA); // dFFT returns discrete Fast Fourier Transform
7 fB ← DFFT(ShapeB);

8 D ← cos−1
(R(fA.fB)

‖fA‖‖fB)‖
)
; // R shows the real part of DFT and fB

is the conjugate of fB. ‖‖ is the norm
operator

9 return D;

1 Function ShapeSeries(T):
Data: T: time series of length T = {Y (t1), ...,Y (tn)}
Result: Return Shape-Series of the given time series

2 CurveT ← []; // List of curvature for each point in T
3 for i ← to n do
4 CurveT[ti] ← K(Y (ti)); // k returns curvature of a given point.
5 end
6 Res ← CUMSUM((CurveT));
7 return Res;

Algorithm 5 starts by making each waveform zero-mean (lines 2 and 3). It calculates

the Shape-Series for each normalised waveform (lines 4 and 5). Lines 6 to 8 are where

the ASD is computed for the given waveforms. The SHAPESERIES function computes the

Shape-Series for a given waveform by first calculating the curvature for each point on

the waveform (lines 3 and 4). It then calculates the cumulative sum over the curvature’s

result (line 6).

To comply with geometric shape properties, a true shape comparison should be (1)

scale invariant and (2) translation invariant. The scale invariance property ensures that

every shape is identical regardless of magnitude, e.g., a circle is always a circle regardless

of its radius. The translation invariance or time shift invariance makes sure that curves

are identical and independent of both their occurrence in time and their observation

135

time. Two shapes are considered similar if one can be obtained by uniformly scaling or

mirroring the other one (see Chapter 5 in Pedoe [170]).

The scale invariant property of ASD comes from the linearity property of the curva-

ture and the cumulative sum, which make Shape-Series linear to scaling. The linearity

property of the discrete Fourier transformation, i.e., DF T
(
aSTs

)= aDF T
(
STs

)
and the

fact that angles between vectors are invariant to the length of the vectors makes ASD

scale invariant. The shift and rotation invariant properties of ASD result from curvature’s

definition that is invariant to position and rotation. Therefore, ASD is translation and

rotation invariant.

Definition 3. Shape-Sphere is the identity sphere generated by normalising all the vec-

tors in the Shape Space. Because the similarity between vectors in the Shape vector is

defined as the angle between them, without loss of generality, we can normalise any

Shape-Series vector ~VSTs
and transform it to Shape-Sphere:

~NV STs
=

~VSTs

‖ ~VSTs
‖ (5.5)

Figure 5-4 shows the result of this transformation.

Figure 5-4: Shape-Sphere for time series analysis.

One of the advantages of ASD is that it induces a pseudometric on shape space. We

prove the metric properties of ASD in Section 5.3.1.

136

5.3.1 The metric property of ASD

Metrics play an important role in clustering and classification algorithms, where the

goal is to assign similar objects to the same group while assigning dissimilar objects to

different groups. We prove that ASD is a pseudometric. We use this property to design an

efficient and accurate method for analysing time series. The metric properties of ASD are

as follows:

1. ASD
(
Ts ,Tq

)≥ 0.

2. ASD
(
Ts ,Tq

)= ASD
(
Tq ,Ts

)
.

3. ASD
(
Ts ,Tq

)= 0 ⇐⇒ Ts = Γ
(
aTq

)
for some constant factor a > 0 and some right

shift associated with Γ, the translation function.

4. ASD is translation invariant, i.e., ASD
(
Ts ,Tq

)= ASD
(
Ts ,Γ

(
Tq

))
.

5. ASD
(
Ts ,Tq

)≤ ASD
(
Ts ,Tp

)+ ASD
(
Tp ,Tq

)
, i.e., the similarity measure ASD satis-

fies the triangle inequality.

Proof. The first and second properties result from the symmetric and positive semi-

definite properties of angular similarity. The third and fourth properties follow from the

definition of similarity.

The fifth property results from the uniqueness and one-to-one properties of the

similarity function ASD, cf. Proposition 5. We showed that each shape function is

uniquely identified by a vector in the frequency coordinates. Thus, for any arbitrary time

series Ti there exists one and only one vector (~VSTi
) in the frequency coordinate that is

associated with Ti . Without loss of generality, we transform ~VSTi
to Shape-Sphere (~NV STi

).

For any two vectors ~NV STs
and ~NV STq

, which are not directly opposite one another on

the shape sphere, we can define a unique circle centered at the origin that connects them.

ASD is the value of the central angle of this circle. Any arbitrary third time series Tp can

be mapped to the same frequency coordinate to get vector ~NV STp
. We then have three

137

possible positions for this new vector as follows:

1. ~NV STp
is positioned on the arc associated with the central angle between

~NV STs
and ~NV STq

. In this case, the angle between ~NV STs
and ~NV STp

plus the angle

between ~NV STp
and ~NV STq

is equal to the angle between ~NV STs
and ~NV STq

. Thus

ASD
(
Ts ,Tq

)= ASD
(
Ts ,Tp

)+ ASD
(
Tp ,Tq

)
.

2. ~NV STp
is positioned outside the arc associated with the central angle between

~NV STs
and ~NV STq

but on the same circle. In this case, the angle between ~NV STs

and ~NV STp
plus the angle between ~NV STp

and ~NV STq
is greater than or equal to

the angle between ~NV STs
and ~NV STq

. The same case happens when the angle

between ~NV STs
and ~NV STq

is equal to 180◦. Thus ASD
(
Ts ,Tq

) ≤ ASD
(
Ts ,Tp

)+
ASD

(
Tp ,Tq

)
.

3. ~NV STp
is positioned outside the arc associated with the central angle between

~NV STs
and ~NV STq

and on a different circle. Using the triangle inequality on the

sphere created from the three circles joining each pair of vectors, we get that

�NV1NV3 + �NV3NV2 > �NV1NV2 = ASD
(
Ts ,Tq

)
. Therefore,

ASD
(
Ts ,Tq

)< ASD
(
Ts ,Tp

)+ ASD
(
Tp ,Tq

)
.

Properties 2, 3 and 5 establish ASD as a pseudometric. As a result Shape Sphere is a

pseudometric space.

5.4 Computing the average shape—Contour prototypes

We define the average shape of a set of time series as the set’s contour, as follows:

Definition 4. Contour: We define the contour of a set of time series as the Shape-Series

that has the maximum similarity (minimum distance) to every Shape-Series member of a

set of time series. Thus, the contour, C , of a set of time series, T = {Ti S |∀i ,1 ≤ i ≤ n} is the

vector calculated by averaging all the vectors from the set of vectors Vs that represents Ts

138

in its corresponding Shape-Sphere:

C
({

Vs
})= ∑n

i=1
~VSTi S

n
(5.6)

To make contours free of any translation we use the periodic property of the Fourier

transform (FT). A function with a DFT can be seen as a curve drawn on the surface of a

cylinder, where the start and end points meet at the same location. Therefore, any time

shift is equal to some rotation of the cylinder. To find the actual shift between two signals,

we repeat one of the signals consecutively and take the signal-correlation between this

new signal and the second signal. The amount of shift between the two signals is equal to

the point where the computed correlation is maximised. Thus, we right-shift-rotate the

second signal by the amount of shift resulting from the correlation to find the best match

between the two signals. We perform this task as a preprocessing step for a given set of

time series to calculate the average shape of a set. This process is shown in Algorithm 6.

Procedure GETCENTROID first finds an average contour for a given set (line 2). It then

right shifts all the time series in a given set to match the calculated centroid (line 3). The

algorithm calculates the centroid from the shifted set as the Contour of the set (line 4).

The GETCENTROID function computes the Fourier transform for every single member

of a given set (lines 4 to 6) and return the average of all the Fourier transforms (line 7).

The SHIFTBYCONTOUR right shift rotates a given set according to a given waveform. For

each member of the set, it first finds the shift that matches the member with the given

waveform. To perform this task, it finds the global maximum location from the cross

correlation of the waveform and the member (lines 6 and 7) and right shift rotate each

member by this amount (line 8). It returns the new waveforms at line 10.

139

Algorithm 6: Procedure Contour for a given set of Shape-Series

1 Function Contour(S):
Data: S: A set of Shape-Series of length n.
Result: Returns the prototype for set S

2 cntr ← GETCENTROID(S);
3 shiftFreeS ← SHIFTBYCONTOUR(S, cntr);
4 C ← GETCENTROID(shiftFreeS);
5 return C;

1 Function GetCentroid(S):
/* Compute Average Centre for a given set of Shape-Series */
Data: S: A set of Shape-Series of length n.
Result: Returns the contour for set S

2 m ←‖S‖;
3 fftS ← [];
4 for i ← 1 to m do
5 fftS[i] ← DFFT(S(i));
6 end
7 cntr ← COLLAVERAGE(fftS); // CollAverage returns the column average

for the input matrix
8 return cntr;

1 Function ShiftByContour(S, C):
/* Align Shape-Series according to a contour */
Data: S: A set of Shape-Series of length n, C: A Shape-Series of length n
Result: S′ a set of Shape-Series with every member shifted according to C

2 m ←‖S‖;
3 med ←cntr.APPEND(cntr);
4 result ← [];
5 for i ← 1 to m do
6 AC ← CORELATION(S[i], m);
7 r ← ARGMAX(AC);
8 result.APPEND(rShfitRight(S[i], r); // rShiftRight right rotate shift the

passed vector r times
9 end

10 return result ;

5.4.1 Complexity

Given a set of time series with m members of length n, computing the contour starts by

calculating the shape representation of each member of the cluster. Because the shape

representation is the result of a convolution, this takes O
(
n logn

)
time for each member.

There are m members in the set, thus the whole process takes O
(
mn logn

)
. The second

step is to transform the shape representation into Shape-Sphere which is equivalent

140

to taking the Fourier transformation of each shape representation. However, since we

have already calculated the shape representation through the Convolution Theorem, we

already have this result. To compute the contour, we take the average from the set in

Shape-Sphere, which takes O (mn) time. After calculating the contour for the first time,

we need to calculate the shift according to the correlation between the signals, which

again, using the Convolution Theorem, takes O
(
mn logn

)
. After adjusting all the data

points in the cluster, we once again calculate the contour, which takes O (mn). Thus, in

total, calculating the prototype for a cluster takes O
(
mn logn +mn +mn logn +mn

)=
O

(
mn logn

)
. Therefore, calculating the prototype for a cluster of m data points of length

n is O
(
mn logn

)
.

5.5 Comparison of centroids

In Proposition 5 we discussed the one-to-one relationship between a curve and its cur-

vature translation. We transfer the curvature using a cumulative sum of the curvature

series. The cumulative sum is equivalent to taking the integral of the curvature series.

The result is a unique series up to a constant factor. This uniqueness allows us to analyse

time series in the new feature space. This approach is different to the scheme used by

DBA [124], cDBA [126] and SE in K-Shape [61] where a set of time series is represented

by a prototypical time series in the input feature space. Instead, we compare time series

to prototypes indirectly with the NCC. Specifically, we subdivide each subset of various

labelled time series into training and test sets. Then we apply the four algorithms to the

training data to secure prototypes for each subset. Finally, we compute the observed

error rate (number of labelling errors) committed on the test data by each of the four

NCC classifiers. The centroid that results in the highest accuracy is presumably the best

representative of each labelled subset.

141

5.5.1 Baseline methods: DBA, cDBA and K-Shape

DBA is an averaging method based on Dynamic Time Warping (DTW). Gupta et al.

showed that finding the global optimum prototype using DTW is an NP-Complete prob-

lem [123, 124]. This occurs because finding the optimum prototype is sensitive to the

order of presentation of the inputs. Petitjean et al. introduced DBA, an iterative heuristic

approach to overcome the ordering problem [124]. The initialisation of DBA chooses a

random curve in a group. The objective function that monitors the progress of DBA and

K-Means clustering is the sum of squared errors between the prototypes and the input

data. Let X = {x1, . . . xN } be a set of unlabelled waveforms in feature space Rp (i.e., each x j

is a time series of p measurements); let V = {v1, . . . vk } in Rp be a set of k prototypes for

the waveforms in X . Each V j represents a subset X j from X . Then the within group sum

of squared errors (WGSS) between the input data and the prototypes, with respect to any

vector norm ‖∗‖ on Rp is,

W GSS(V) =∑
j

∑
i
‖x j i − v j‖2 (5.7)

where x j i is a member in Xi . In each iteration, DBA computes a prototype that lowers

the within group sum of squared errors. In their most recent approach, Petitjean et al.

introduced the idea of finding multiple prototypes for a given group. In this approach, the

input space is divided into multiple sub-regions and then a prototype for each sub-region

is computed [125]. This technique performs better for classification/clustering of data

than the classical K-Means method. The sub-partitioning tries to produce convex hulls

where an average is well defined (the average always appears inside the convex hull of its

generators). All the techniques that we develop can also be used to calculate a prototype

for any sub-partitioning of data and they all benefit from such sub partitioning. Thus, we

only compare our method with DBA, the underlying method for computing a prototype

for a given set of time series.

142

Constraint Dynamic time warping Barycenter Averaging (cDBA) Morel et al. introduced

constraint dynamic time warping for averaging time series [126]. Their method is very

close to DBA with an extra constraint on mapping through DTW. The authors showed that

in cases where zero-mean normalisation cannot be performed over the data, DBA fails

to create an accurate prototype. They proposed using locally constrained DBA (cDBA)

defined by Muller [127] to improve the DBA prototype in non-normalised datasets. They

empirically showed that the prototype computed using locally constrained DTW im-

proves the DBA results in a classification task. Despite our best efforts, we were unable

to obtain the original implementation of the cDBA software, so we implemented their

method ourselves. It is important to note that although we obtained the same results as

reported by the authors [126] on the five data sets used below, we were unable to replicate

their speed results. Though the authors claim to have achieved the same speed as DBA,

in our tests the algorithm was slower than DBA by a constant magnitude factor.

K-Shape Paparizzos et al. introduced K-Shape as a method for clustering time series

using two notions about shape, namely: (1) Shape-Based Distance (SBD); and (2) Shape

Extraction (SE). These are combined in [61] as Algorithm 3, which uses the same alternat-

ing estimation scheme as k-Means but with SBD and SE instead of Euclidean distance

and vector averaging.

SBD is a pseudo-metric to compare a pair of time series [61]. SBD considers each time

series as a signal, and defines the distance between two time series to be equal to one

minus the correlation between the two time series. By normalising this value, the distance

between two signals becomes a value in [−1,1]. To have an always positive distance

the authors define the distance between two signals to be one minus the normalised

maximum cross-correlation between the two signals [61]. Thus SBD ranges from 0 to 2,

where 0 means perfect alignment.

K-Shape proposed SE for computing a prototype from a set of time series [61]. This

scheme is based on the SBD distance, and attempts to find an optimal prototype for a

143

cluster using signal correlation maximisation. The main idea is based on the convolution

operator, which creates an inner product space and thus can be used as a pseudo-distance.

In this method, each z-normalised member of a given class is considered to be a vector

in Rn where n is the number of features in the time series. In this approach, signal

correlation is used as the distance between pairs of vectors. Let X = {x1, . . . xN } be a set of

unlabelled waveforms in feature space Rn that generates a matrix of size N ∗n. Thus, for

a given subset of vectors in Rn , the eigenvector associated with the biggest eigenvalue

defines the dominant orientation of the spread of the vectors in Rn . Since every vector

is z-normalised, the z-normalised eigenvector associated with the biggest eigenvalue of

the given subset can be used as the prototype of the subset. Papparizos et al. showed

how to compute this eigenvector using a few linear transformations [61]. The advantage

of K-Shape’s distance method over DTW is that it uses properties from the convolution

theorem to design an efficient algorithm for finding prototypes. This gives SE a time

complexity advantage over DBA when used in pattern recognition algorithms such as

K-Means and Nearest Centroid Classifiers (NCC).

5.6 Experimental evaluation

In this section we compare DBA, cDBA and K-Shape to our approach using two partitions

generated by two schemes: (1) Classification using the Nearest Centroid Classifier (NCC),

and (2) Clustering using the K-Means clustering algorithm. We empirically evaluated our

method in an experiment using 48 publicly available datasets [171]. Our goal is to answer

two questions: (1) How does the NCC classifier based on the contours extracted using the

CONTOUR procedure compare to NCCs based on the prototypes computed using the other

three state-of-the-art techniques for analysing time series data? (2) Is our approach more

time efficient than the alternatives?

144

We evaluate the four algorithms using the adjusted Rand index (ARI), a well-known

scalar measure introduced by Hubert and Arabie [172] that compares pairs of partitions

on n objects X = {
x1, . . . , xn

}
. Let V (X) be a reference partition (ground truth partition)

that purports to represent the "true structure" in X . Let U (X) be a partition of X found

with any clustering or classification algorithm named u. Then, ARI
(
U (X),V (X)

)
measures

the extent to which the labels in U (X) match the ground truth labels in V (X). The ARI

maximizes at 1 when U (X) =V (X), i.e., when all the labels in the two partitions agree. On

the other hand, disagreement grows as ARI decreases, and at ARI= 0, there are no label

matches.

The ARI can be used to compare the efficacy of different algorithms for clustering and

classification. Specifically, let U (X) and W (X) denote partitions obtained by algorithms

u and w. We first compute the pair (x, y) =
(
ARI

(
V (X),U (X)

)
,ARI

(
V (X),W (X)

))
. If x > y ,

algorithm u has produced a partition that matches the ground truth better than algorithm

w. Conversely, when x < y , algorithm w produced the better match. And when x = y ,

algorithms u and w produced labels that match the ground truth labels equally well. We

call this the ARI pairs (ARIP) scheme.

Our experiments use 48 labelled data sets. Any subset of these sets is also labelled,

so we can obtain ground truth partitions (V (X t)) for any set X t of test data. Figures 5

and 6 use the ARIP scheme to compare the efficacy of the four algorithms in this chapter

for two tasks: classification with the NCC classifier; and clustering with the k-Means

algorithm. The x coordinate in these figures is the ARI match between the ground truth

and ShapeSphere (SS) labels. The y coordinate will be the ARI match between the ground

truth and the labels produced by one of the three comparison methods; DBA, cDBA or

K-Shape.

145

5.6.1 NCC classifier

In our experiments, we used the K-Shape and DBA-Mean implementations available in

the K-Shape official library1 and tslearn2, respectively. We used the Nearest Centroid

Classifier (NCC) for comparing the methods. For each dataset we performed a 5-fold

stratified cross-validation and compared the average results over all the folds. In each

fold, we calculate a centroid for the training set and then label each testing data point

to its closest centroid. For DBA we used DTW, cDBA we used cDTW and for K-Shape

(ShapeExtraction) we used SBD to calculate the distance between the centroids and each

test member. The algorithms were executed using cython on a one core Virtual Machine

with 16GB RAM provided by the NeCTAR cloud3.

The results of the NCC experiment are shown as an ARIP diagram in Figure 5-5. In

Figures 5-5 and 5-6 the line y = x that halves each graph is the line of equality. Any point

below this line shows that the winner for that data set is the algorithm on X -axis and

vice versa. The graphs show that each of the three methods are superior from others

for some data sets and perform poorly for other data sets.The figures show that our

method (Contour) outperformed the other methods in classifying the data using the NCC

classifier. Figure 5-5d shows the ARIP differences of our method’s result to each of the

three rivals. The positive median from the boxplot indicates that Contour outperforms all

three of the other algorithms for more than half of the datasets in the NCC experiments.

To further analyse these results we first test for normality of the distribution of the

ARIP differences. The Shapiro-Wilk test significantly rejected the normality of these

distributions (p << .05). We conducted a non-parametric Friedman test of differences

among the 4 ARI results that rendered a Chi-square= 55.52, which was significant (p < .05).

The Wilcoxon post-hoc test confirms that the Contour’s ARI results in the NCC test are

significantly higher than the other methods (p < .05); Contour vs SBD: p = 4e−2, T = 432,

1https://github.com/Mic92/kshape
2https://tslearn.readthedocs.io
3https://nectar.org.au

146

0.0 0.5 1.0
ASD

0.0

0.5

1.0

D
B
A

(a) ARIP diagram:ASD vs DBA. ASD per-
forms better in 44 datasets out of 48.

0.0 0.5 1.0
ASD

0.0

0.5

1.0

K
-S
h
a
p
e
 (
S
E
)

(b) ARIP diagram:ASD vs K-Shape. ASD per-
forms better in 27 datasets out of 48.

0.0 0.5 1.0
ASD

0.0

0.5

1.0

cD
B
A

(c) ARIP diagram:ASD vs DBA. ASD per-
forms better in 32 datasets out of 48.

K-Shape DBA cDBA

−0.5

0.0

0.5

1.0

N
C
C
 A
R
IP
 d
if
fe
re
n
ce
s

 f
ro
m
 C
o
n
to
u
r
a

e
ra
g
in
g

(d) Boxplot of differences between ARI re-
sults of ASD from other prototype methods.
The positive median value shows that ASD
performs best for more than half of the data
sets.

Figure 5-5: ARIP diagrams and boxplot for the NCC experiments.

Contour vs DBA (p = 2e −8, T = 44), and Contour vs cDBA (p = 6e −4, T = 254).

5.6.2 K-Means clustering

We used the K-Shape and DBA-Mean implementations available in the K-Shape official

library 4 and tslearn 5, respectively. We modified the tslearn library to support our method.

For the cDBA method, despite our multiple efforts to contact the authors, we did not

receive any response. We developed cDBA as best we could from the description in the

4https://github.com/Mic92/kshape
5https://tslearn.readthedocs.io

147

paper. For each dataset we used a 5-fold stratified cross-validation and compared the

average over all the folds. For each fold we cluster the dataset using K-Means and validate

the clustering result using the ARI. For DBA we used DTW, for cDBA we used cDTW and

for ShapeExtraction we used SBD to calculate the similarity distance of each data point

to the associated centroid in the K-Means algorithm. All the algorithms were executed in

python on an Intel Core i7 desktop machine with 16GB RAM using just one core.

Figure 5-6 shows the ARIP results for our method in comparison with K-Shape (Shape-

Extraction), DBA and cDBA. When clustering with K-Means, Contour outperforms K-

Shape on the 48 test sets, and performs equal to cDBA and DBA on the 48 test sets (cf.

Table 1 in the Appendix), The median values above zero for K-Shape and close to zero for

cDBA and DBA in the boxplot in Figure 5-6d support this observation.

To further understand the mixed results shown in Figure 6, we examined the distribu-

tion of the ARIP differences to determine whether the assumption of normality was met. A

Shapiro-Wilk test significantly rejected the normality of all these distributions (p << .05).

A non-parametric Friedman test of differences between the 4 ARI results found them

to have nonsignificant differences with Chi-square= 4.92, which suggests a marginally

significant result (p = 0.07). The Wilcoxon post-hoc test indicated that the ASD’s ARI

was marginally significantly higher than the K-Shape T = 415.0, p = 0.07. However no

significant difference was observed between ASD vs DBA: p = 0.76, T = 346 and ASD vs

cDBA (p = 0.78, T = 563.0). This supports our belief that ASD outperforms K-Shape in

the K-Means clustering test while performing as well as DBA and cDBA. We discuss this

in more detail in Section 5.7.

5.6.3 Complexity

In Section 5.4.1 we proved that calculating the prototype using the Contour algorithm has

time complexity O(mn logn), where m is the number of data points and n is the length

of the time series. In Section 5.5.1 we observed that computing the most representative

148

0.0 0.5 1.0
ASD

0.0

0.5

1.0

D
B
A

(a) ARIP diagram:ASD vs DBA. ASD per-
forms better in 26 datasets out of 48.

0.0 0.5 1.0
ASD

0.0

0.5

1.0

K
-S
ha
pe

(b) ARIP diagram:ASD vs K-Shape. ASD per-
forms better in 31 datasets out of 48.

0.0 0.5 1.0
ASD

0.0

0.5

1.0

cD
B
A

(c) ARIP diagram:ASD vs cDBA. ASD per-
forms better in 22 datasets out of 36.

K-Shape DBA cDBA

−0.5

0.0

0.5

1.0

A
R
IP
 d
iff
er
en

ce
s
to

 c
lu
st
er
in
g
in
 S
ha

pe
-S

ph
er
e

(d) Boxplot of K-Means ARI differences be-
tween ASD and the other methods. The
ositive median in K-Shape shows ASD per-
forms better compare to this method.

Figure 5-6: ARIP diagrams and boxplot for the K-Means experiments.

prototype using DBA (as well as cDBA) is an NP-complete problem. Computing proto-

types using K-Shape isΩ(n2+m2) in time, whereΩ is the lower bound. Thus theoretically

our algorithm is the most efficient algorithm of the four discussed here. Since the most

time-consuming task in both NCC and K-Means clustering for waveform analysis is to

calculate the prototypes, we empirically analyse the four algorithms for computing a

prototype from a set.

Figure 5-7 shows the CPU times of different algorithms for computing prototypes by

changing the two main input parameters, namely, the length of the time series n and the

number of data points m. Figure 5-7a and 5-7c show the effect of changes in the length

149

of time series data points on the performance of each algorithm. In this test, we used a

set of time series with 98 data points (OSULeaf dataset [171]). For each test we resample

each time series to get the required length.

To analyse the effect of n on the performance of each algorithm we performed an

analysis of variance. The Bartlett’s test result showed a violation of homogeneity of

the variances (Chi-square = 356, p = 2e −16). Therefore, we used the non-parametric

Kruskal-Wallis test that revealed significant differences between CPU times as a function

of time series length (Chi-square= 33.36 and p < 0.05). A post-hoc Wilcoxon reveals the

significant differences between the performance of Contour and DBA (p < 0.05, r = 0.88)

and Contour and cDBA (p < 0.05, r = 0.89). However, no significant difference was found

between the performance of Contour and SBD (p = 0.7).

Figures 5-7b and 5-7d show the effect of changes in the number of data points m

on the performance of each algorithm. In this test we randomly sampled data points

from the ECG5000 dataset [171]. To analyse the effect of m on the performance of each

algorithm we performed an analysis of variance. The Bartlett’s test result showed a

violation of homogeneity of the variances (Chi-square = 726.47, p = 2e −16). Therefore,

we used the non-parametric Kruskal-Wallis test that revealed significant differences

between CPU time as a function of dataset size (Chi-square= 69.07 and p < 0.05). A post-

hoc Wilcoxon test reveals significant differences between the performance of Contour

and DBA (p < 0.05, r = 1.24) and Contour and cDBA (p < 0.05, r = 1.25). The test

shows a marginally significant difference between the performance of Contour and SBD

(p = 0.09,r = 0.35).

As a reference, the average cross-validation time for both the NCC and clustering

scenarios are shown in Figure 5-8. As explored and expected, Contour and SBD are the

most efficient algorithms in both NCC and K-Means clustering.

150

0.0

2.5

5.0

7.5

10.0

100 200 300 400

Time series length (n)

C
P

U
 t

im
e

in

 S

e
c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Algorithm
Contour
SBD
DBA
cDBA

(a) CPU time as a function of time series length.

0.0

2.5

5.0

7.5

0 100 200 300 400 500

Dataset size (m)

P
e

rf
o

rm
a

n
c
e

 i
n

 S

e
c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Algorithm
cDBA
DBA
SBD
Contour

(b) CPU time as a function of data set size.

0.0

0.2

0.4

0.6

0.8

100 200 300 400

Time series length (n)

C
P

U
 t

im
e

 i
n

 S

e
c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Algorithm
Contour
SBD

(c) CPU time of SBD and Contour algorithms
for computing prototypes as a function of time
series length.

0.0

0.2

0.4

0.6

0 100 200 300 400 500

Dataset size (m)

P
e

rf
o

rm
a

n
c
e

 i
n

 S

e
c
o

n
d

s
 (

lo
g

 s
c
a

le
)

Algorithm
SBD
Contour

(d) CPU time of SBD and Contour algorithms
for computing prototypes as a function of data
set size.

Figure 5-7: CPU times the four algorithms for computing a prototype from a single set of
data points.

Contour K-Shape DBA cDBA
Algorithm

0

5

10

N
C
C
 C
ro
ss
-v
al
id
at
io
n

 ti
m
e
(lo

g
sc
al
e
se

co
nd

s) log(Cross Validation Time)

(a) Average cross-validation time in NCC exper-
iment.

Contour K-Shape DBA cDBA
Algorithm

0

5

10

K
-M

ea
n
C
ro
ss
-v
al
id
at
io
n

 ti
m
e
(lo

g
sc
al
e
se

co
nd

s) log(Cross Validation Time)

(b) Average cross-validation time in K-Means
clustering experiment.

Figure 5-8: Average fitting time (log-scale) for each algorithm in both experiments.

5.7 Discussion

The experiments in Section 5.6 show that the proposed methods based on Shape-Sphere

for analysing a finite set of time series outperforms the three comparison methods in

NCC classification for the 48 data sets. Our clustering experiment showed the proposed

method performs at least as well as the three comparison methods. For comprehensive

details of each method see Table 5.1 in the Appendix.

151

A closer look at the data sets reveals where each method performs well while other

methods fail. First, Shape-Series accurately extracts the overall shape of the time series.

ASD amplifies the shape differences while averaging these changes in the other methods

levels small changes between groups. For example, consider the Diatom Size Reduction

dataset, which contains four classes (Figure 5-9) [171]. Although the overall look of each

class is the same (they all start with a trough follows by a peak which is followed by another

trough), the shape of each class is different in terms of the shape of its peak and troughs.

For example, class 1 has a shallow trough follows by a flat peak and a deep trough.

50 100 150 200 250 300
Time

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

(a) Members of class label 1.

50 100 150 200 250 300
Time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(b) Members of class label 2.

50 100 150 200 250 300
Time

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0

(c) Members of class label 3.

50 100 150 200 250 300
Time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

(d) Members of class label 4.

Figure 5-9: The four classes in Diatom Size Reduction data set. Geometric shape is a
distinguishing feature.

Our method fails to recognise clusters when the shape is not the differentiating feature.

For example, consider the time series for the two classes in the Wine data set, shown

in Figure 5-10 [171]. From the figure, we can see that the shapes of the time series are

identical.

Second, K-Shape computes cross-correlation of the signals. As a result, it is biased

towards high and low value peaks of the data sets. K-Shape can identify differences in data

152

50 100 150 200
Time

−2

−1

0

1

2

3

4

(a) Members of class label 1 from Wine data
set drawn on top of each other. The distin-
guishing region of the time series is high-
lighted

50 100 150 200
Time

−2

−1

0

1

2

3

4

(b) Members of class label 2 from Wine data
set drawn on top of each other. The distin-
guishing region of the time series is high-
lighted.

Figure 5-10: The two classes in Wine data set. Geometric shape is not a distinguishing
feature of the subsets.

sets where peaks are the descriptive characteristics of the data. For example consider the

Wine data set in Figure 5-10. In this figure the shapes of the two waveforms are essentially

identical, the difference being the height of the first peak.

Third, DTW works best wherever sub-regions of the time series must align with each

other. In this scenario, DTW can reduce the effect of the sub-regions that poorly match

each other by warping them to the best possible sub-region (to alleviate the mismatch

penalty) while matching the aligned sub-regions. For example, consider the Sony AI

Robot data set with 2 classes (Figure 5-11) [173]. In this data set, neither shape nor a

sub-region are distinguishable features. Thus, the alignment of time series with each

other is an essential step in analysing the data.

Finally, the main reason Shape-Sphere analysis cannot consistently outperform the

other methods for the K-Means clustering of time series is due to how the average shape

of two different shapes can be a different shape (for example, averaging a square and a

circle creates a square with rounded corners). Therefore, at any iteration of K-Means, it

is possible that a few items from different classes are mixed together this way, which in

turn results in a prototype that attempts to represent both classes rather than just one

class. One solution for this problem is to have more data samples so that the effect of a

few incorrect items is reduced while averaging the Shape-Series. However, Shape-Series

outperforms the other methods significantly (NCC test case) by avoiding mixing items of

153

10 20 30 40 50 60 70
Time

−3

−2

−1

0

1

2

3

4

(a) Members of class label 1.

10 20 30 40 50 60 70
Time

−3

−2

−1

0

1

2

3

(b) Members of class label 2.

Figure 5-11: The two classes in Sony AI Robot data set. Alignment of waveforms is an
essential part in comparing them.

different classes.

(a) Samples of images from
BirdChicken data set.

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 100 200 300 400 500
Time

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

(b) Class label 1. Time series are
scaled and shift rotated.

2

1

0

1

2

0 100 200 300 400 500
Time

3

2

1

0

1

(c) Class label 2. Time series are
shift rotated to right.

Figure 5-12: Samples of images and time series from BirdChicken data set.

Our next example concerns the BirdChicken data set. This data set is produced from

an image data set of chickens and other birds. For each image, the outline of the image is

extracted and mapped into a 1-D series of distances to the centre. Examples of images

and time series data from this data base are shown in Figure 5-12. This data set has the

characteristic that images can be rotated or scaled so we can analyse the impact of these

transformations on the sampled time series. For example, the global minimum of the

bottom time series in both sample classes shown in Figure 5-12b and Figure 5-12c are

shifted to the right compared to the top time series of the same class. The scale and

154

rotational invariance properties of our method make it superior to the other methods

in our experiments in both classifying and clustering this data set (see the results in

Table 5.1, Supplementary Material).

5.8 Conclusions

In this chapter, we proposed Shape-Sphere, a pseudometric space for representing shape

features of time series. We showed how to efficiently transform time series into Shape-

Sphere. We proved that Shape-Sphere is a pseudometric space and showed how to use

it to compute the most efficient shape average for a given cluster of time series. We

proved theoretically and showed experimentally that the angular distance in Shape-

Sphere (ASD) has the best time complexity of the four methods tested. On average, ASD

yielded the most accurate labelling results when used for NCC classification where shape

is a differentiating factor. The results of the K-Means test were mixed; ASD labelling was

better for some data sets, but not so good for others. Our analysis by cases suggests that,

as always, the data themselves often dictate which of the methods discussed will be most

useful for clustering. With unlabelled data (the real situation in cluster analysis), there

is no easy way to decide which of the situations may apply. Consequently, an ensemble

approach using all four methods [174] might be the best way to ensure reliable results.

Beyond what we showed here, since our time series transformation is a one-to-one

function, the transformed results can be used in a variety of time series analysis tasks

from classification to indexing strategies.

155

5.9 Appendix

5.9.1 The impact of noise

We analyse the impact of six different common noise types on our algorithm and the state-

of-the-art algorithms. For our analysis we have used five common types of coloured noise

plus missing-value noise. We analyse the impact of each noise type on each algorithm.

We then discuss how well each algorithm performs in the presence of noise.

Method

To perform the analysis, we selected the Plane dataset from the UCR data, which most

algorithms can cluster well (ARS > 0.5). To analyse the impact of each type of noise on

the different metrics, we first select a noise type to add to every member of the data set.

We then apply a smoothing filter (a moving average filter) as a preprocessing method

that can be used in practice. We perform 5-fold-cross validation, i.e., we divide the Plane

dataset into five different subsets such that the intersection of each pair of subsets is

empty. For each fold one subset leaves out and apply k-means on the rest of the data set.

We test the learnt model on the left out subset by assigning each member of the subset to

the cluster with the closest centroid to the member and calculate the ARS. The average

ARS over the five test subsets is reported.

Coloured noise

Coloured noise corresponds to additive noise that can be present in the data. Common

types of coloured noise are: (1) White noise: a noise signal that has equal density at

different frequencies. (2) Blue noise: a noise signal whose power density increases by 3dB

per octave with increasing frequency. (3) Violet noise: a noise signal whose power density

increases by 6dB per octave with increasing frequency. (4) Red noise: a noise signal whose

power density decreases by 6dB per octave with increasing frequency. (5) Pink noise: a

156

Noiseless

White

Blue

Red

Violet

Pink

0.1
0.3

0.5

0.7

KShape
ASD
DTW

Coloured noise result

Figure 5-13: K-Means ARS result for different algorithms after adding various types of
coloured noise to the Plane data set.

noise signal whose power density decreases by 3dB per octave with increasing frequency.

The result of each algorithm is shown using a spider chart in Figure 5-13. Each line

in the chart presents an ARS level with the centre of the chart representing ARS equal

to zero. Thus, the further from the centre, the better the algorithm has performed. The

result of each algorithm is shown in a different colour. Although the performance of all

the algorithms has dropped in comparison to the noiseless data sets, we can see that

all the algorithms performed well in the presence of white noise. This is because the

effect of white noise can be reduced using a smoothing filter. The average ARS for all

the algorithms dropped as a result of adding other types of coloured noise. However,

our method (ARS) outperformed the other methods in clustering the Plane data set in

the presence of white, red and violet noise. Our algorithm and K-Shape have similar

performance in the presence of blue noise and K-Shape outperforms the other methods

in the presence of pink noise.

We show a sample signal from the Plane data set together with the effect of each type

of noise and its smoothed version of the signal in Figure 5-14. As expected white noise has

157

0 20 40 60 80 100 120 140
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Original

(a) The original time series from Plane data
set.

0 20 40 60 80 100 120 140
Time

3

2

1

0

1

2

3

4 Noisy
Smoothed

(b) The effect of white noise.

0 20 40 60 80 100 120 140
Time

4

3

2

1

0

1

2

3

4 Noisy
Smoothed

(c) The effect of pink noise.

0 20 40 60 80 100 120 140
Time

4

3

2

1

0

1

2

3

4
Noisy
Smoothed

(d) The effect of violet noise.

0 20 40 60 80 100 120 140
Time

2

1

0

1

2

3

4 Noisy
Smoothed

(e) The effect of red noise.

0 20 40 60 80 100 120 140
Time

3

2

1

0

1

2

3

4
Noisy
Smoothed

(f) The effect of blue noise.

Figure 5-14: The effect of different coloured noise types on a sample data point from the
Plane data set.

158

the least effect on the shape of the signal. A smoothing filter can substantially reduce the

white noise from the signal. However, coloured noise signals towards the low frequencies

distort the original signal the most, which reduces the accuracy of K-Means clustering.

Missing samples

The second type of noise that often impacts time series analysis is missing samples. To

analyse the impact of missing samples we use the Plane data set discussed in the previous

section. From each member, we select n random points using a uniform distribution and

set them to zero. We then apply K-Means clustering as described in the method section.

The results of K-Means can be seen in Figure 5-15. The figure shows that our method

15% 20% 25% 30% 35% 40%
Percentage of missing points (n)

0.1
0.2
0.3
0.4
0.5
0.6

AR
S

Missing Value-KMeans
KShape
ASD
DTW

Figure 5-15: K-Means ARS result for different algorithms on the Plane dataset with missing
samples where n is the percentage of missing samples from each item in the data set.

(ASD) outperforms other methods when the number of missing samples are less than

35% of the length of the time series. We can see that the performance of all the methods

decreases as the number of missing samples increases. However, K-Shape’s performance

is more stable when the percentage of missing samples exceeds 25% of the length of the

time series, while the other methods’ performance still decreases.

5.9.2 One Nearest Neighbour classifier

It has been shown that the One Nearest Neighbour (1NN) classifier is one of the most

accurate classifiers for time series data sets [175, 176]. In 1NN each unlabelled data

instance is assigned to the class of the closest item from the training data set. We applied

159

the ASD similarity measure using the 1NN classifier. Figure 5-16 shows a comparison

of SBD and DTW to ASD for 1NN classifiers using the 48 data sets from Table 5.1. As

0.0 0.2 0.4 0.6 0.8 1.0
Our method (ASD)

0.0

0.2

0.4

0.6

0.8

1.0

DT
W

(a) DTW versus ASD.

0.0 0.2 0.4 0.6 0.8 1.0
Our method(ASD)

0.0

0.2

0.4

0.6

0.8

1.0

K-
Sh

ap
es

 (S
E)

(b) SBD versus ASD.

ASDDTW SBD
[Algorithm]

0.00

0.25

0.50

0.75

1.00

AR
S

Boxplot grouped by Algorithm

(c) Comparison of 1NN re-
sults.

Figure 5-16: Comparison of ARS results of 1NN classifier using different dis-
tance/similarity measures.

shown in Figure 5-16, for 30% of the data sets in our experiments both DTW and SBD

outperform our method ASD, resulting in the ARS average difference of DTW from ASD

to be 7% (quantiles are at 0.001, 0.05 and 0.16) and SBD to ASD to be 9% (quantiles

are at 0.007, 0.09, 0.19). This loss in performance is because the angular distance is

inelastic in the pair-wise comparison of time series, that is, unlike DTW and SBD, the

vector representation of the time series in the Shape-Sphere space is fixed. The elasticity

property is an important property for 1NN classifiers where a pair of time series evolve to

find the best match between them when calculating the similarity of the pair as shown by

Xi et al. [175]. This loss of elasticity impacts our 1NN results, where for some data sets

both DTW and SBD perform better than ASD. Note that a possible direction for future

research is to use SBD or DTW with the Shape-Series representation.

5.9.3 Comparing One Nearest Neighbour to Nearest Centroid Classi-

fier

We demonstrate that the ASD method in combination with the Contour prototype is the

most effective technique in classifying time series using a Nearest Centroid Classifier. In

Section 5.9.2 we compared different distance/similarity methods using a one nearest

160

neighbour (1NN) classifier. However, a challenge with using 1NN to classify a new item is

its computation time.

Figure 5-17b shows a comparison of the CPU time for classifying time series using

1NN (SBD and DTW) and NCC (ASD). The figure shows (on a logarithmic scale) that 1NN

is much slower than NCC. The remaining question is: Do we lose any accuracy for this

efficiency gain? Comparing the NCC results to 1NN in Figure 5-17a shows that NCC on

average performs worse than 1NN (average ARS difference µ= 12 with standard deviation

σ = 0.31). However, having a large standard deviation (σ > 2∗µ) confirms that there

are situations where NCC outperforms 1NN (15 data sets out of 48 compared to 1NN

(SBD) and 13 data sets out of 48 compared to 1NN (DTW)) while it is faster than 1NN

(Figure 5-17b). Figure 5-17b compares the CPU time for the 1NN algorithms to NCC using

our method (Shape-Sphere). Note that the efficiency gain of our algorithm compared to

1NN is several orders of magnitude on the logarithmic axis.

1NN(DTW) 1NN(SBD)NCC(ShapeSphere)
[Algorithm]

0.0

0.2

0.4

0.6

0.8

1.0

AR
S

(a) Classification result (ARS) comparison

1NN (DTW) 1NN (SBD)NCC(ShapeSphere)
[Algorithm]

10 2

100

102

104

Ti
m

e

(b) Classification time comparison. The average
classification time for each algorithm is shown
next to its box.

Figure 5-17: Comparison of 1NN classifier through SBD and DTW to NCC classifier using
Shape-Sphere.

5.10 Experimental results

The results of our NCC (classification) and K-Means (clustering) tests are given in Table 5.1,

which contains the (average) values of the adjusted Rand index comparing the ground

truth partition to a computed one on each of the 48 data sets. For both scenarios the

winning algorithm results are in bold. In Section 5.6.3 we showed that cDBA is the slowest

161

algorithm for computing the prototype, which was also reported by the authors. Due to

resource limitations in terms of computation time, we could not obtain the results for

all the reported datasets using cDBA in our clustering scenario. In these cases, we show

these results as NA.

Table 5.1: ARIs for our experiments using NCC and K-Means.

Dataset
NCC (Classification) K-Means (Clustering)

ASD KS DBA cDBA ASD KS DBA cDBA

1 DiatomSizeReduction 0.95 0.95 0.78 0.86 0.86 0.00 0.83 0.43

2 BirdChicken 0.90 0.20 0.06 0.01 0.31 0.25 0.25 0.00

3 MoteStrain 0.73 0.59 0.18 0.42 0.07 -0.16 0.15 0.20

4 MiddlePhalanxTW 0.54 0.57 0.34 0.56 0.50 0.00 0.40 0.55

5 ProximalPhalanxTW 0.49 0.69 0.23 0.7 0.48 0.04 0.45 0.43

6 Plane 0.95 0.91 0.78 1.0 0.81 0.49 0.77 0.76

7 Car 0.89 0.24 0.04 0.07 0.19 0.02 -0.01 0.10

8 Adiac 0.34 0.31 0.30 .29 0.28 0.02 0.21 0.21

9 ItalyPowerDemand 0.97 0.64 0.00 0.22 0.70 0.15 -0.01 0.00

10 DistalPhalanxOutlineCorrect 0.62 0.05 0.01 0.06 0.01 0.01 0.03 0.03

11 WordsSynonyms 0.65 0.21 0.03 0.14 0.16 0.16 0.15 NA6

12 FISH 0.61 0.39 0.12 0.43 0.29 0.04 0.22 0.32

13 SwedishLeaf 0.51 0.45 0.25 0.33 0.27 0.09 0.29 NA

14 FaceFour 0.68 0.61 0.28 0.32 0.26 0.26 0.47 NA

15 MidPhalanxOutlineAgeGroup 0.53 0.49 0.26 0.50 0.19 -0.01 0.04 0.42

16 Computers 0.90 0.05 0.03 0.02 0.02 0.00 0.01 NA

17 WormsTwoClass 0.22 0.01 0.00 0.00 0.01 -0.01 -0.02 NA

18 ECG200 0.75 0.20 0.04 0.18 0.29 0.27 0.21 0.13

19 CBF 0.87 0.79 0.24 0.70 0.18 0.37 0.60 0.59

20 TwoLeadECG 0.84 0.69 0.07 0.43 0.04 0.20 0.10 0.13

21 Cricket_Y 0.38 0.18 0.06 0.13 0.06 0.17 0.21 NA

22 SonyAIBORobotSurfaceII 0.37 0.33 -0.01 0.28 0.29 0.23 0.56 0.18

23 OSULeaf 0.60 0.33 0.01 0.05 0.07 0.31 0.21 NA

6Not Available. See the Appendix for details.

162

24 PhalangesOutlinesCorrect 0.15 0.08 0.02 0.05 0.02 0.00 -0.01 0.03

25 ToeSegmentation1 0.24 0.08 0.01 0.18 0.08 0.20 -0.02 0.03

26 BeetleFly 0.24 0.19 -0.03 0.11 0.16 0.00 0.25 0.00

27 Worms 0.08 0.03 0.06 0.03 0.01 -0.01 0.03 NA

28 Herring 0.10 0.00 -0.03 0.01 -0.00 -0.04 0.02 0.00

29 Earthquakes 0.06 0.00 0.03 0.06 0.00 0.02 -0.01 NA

30 MiddlePhalanxOutlineCorrect 0.05 0.03 0.05 0.01 0.02 0.00 0.07 0.03

31 DistalPhalanxTW 0.72 0.77 0.71 0.76 0.68 0.04 0.42 0.68

32 ProPhalanxOutlineAgeGroup 0.51 0.59 0.33 0.60 0.32 0.00 0.20 0.12

33 DistalPhalanxOutlineAgeGroup 0.30 0.53 0.44 0.54 0.27 0.25 0.34 0.03

34 Gun_Point 0.00 0.22 0.00 0.10 0.05 -0.04 -0.06 -0.01

35 synthetic_control 0.57 0.70 0.18 0.85 0.10 0.60 0.59 0.54

36 Coffee 0.24 0.79 0.21 0.86 0.86 1.00 0.75 0.15

37 ECGFiveDays 0.46 0.86 0.00 0.15 0.01 0.47 -0.07 0.07

38 Wine 0.05 0.08 0.04 0.01 0.01 0.75 0.30 0.24

39 SonyAIBORobotSurface 0.46 0.77 0.07 0.40 0.10 0.06 0.56 0.18

40 ProPhalanxOutlineCorrect 0.14 0.15 0.01 0.14 0.10 0.12 0.08 0.11

41 OliveOil 0.65 0.71 0.33 0.69 0.26 0.25 0.17 0.49

42 Cricket_Z 0.19 0.21 0.03 0.10 0.08 0.13 0.19 NA

43 Cricket_X 0.22 0.23 0.02 0.12 0.07 0.16 0.23 NA

44 ShapeletSim -0.01 0.24 -0.02 0.04 0.01 0.00 0.50 0.00

45 Beef 0.00 0.10 0.12 0.08 0.17 0.03 0.00 -0.02

46 Strawberry 0.05 0.07 0.06 0.04 0.08 0.00 0.09 0.01

47 Ham 0.03 0.07 0.00 0.08 0.01 0.00 0.00 0.01

48 Lighting2 -0.01 0.05 0.08 0.02 0.13 0.03 0.04 NA

163

164

Chapter 6

LiftSmart: The wearable that monitors

weight training activities in real-time,

without the use of labelled data

6.1 Introduction

In this chapter, we demonstrate LiftSmart, a novel smart wearable to detect, track and

analyse weight training activities. To the best of our knowledge, LiftSmart is the first

wearable for weight training that is based on unsupervised machine learning techniques,

specifically those introduced in the previous chapters, to eliminate the use of labelled

data. In Chapter 1 we discussed the importance of methods that can adapt to personalised

routines for monitoring sport activities. Chapter 3 followed this idea of personalised

monitoring where we designed a novel workflow to detect incorrect performance of an

exercise by solely observing correct performance of an exercise. Chapters 4 and 5 were

the building blocks of designing resource efficient machine learning techniques that can

run on a resource limited environment like wearable devices. In this chapter, we combine

all our previous efforts in designing resource efficient machine learning techniques to

165

build LiftSmart—the first wearable that monitors weight training activities without the

use of any labelled data in real-time.

6.2 LiftSmart

LiftSmart is an unsupervised wearable solution that, independently of any other com-

puting resources, addresses challenges related to the use of labelled data that supervised

approaches face. It starts tracking an exercise set from the incoming data stream on the

wearable device by using the OToR algorithm (described in Chapter 4).

After identifying the first three repetitions of an exercise, the wearable computes

the observed prototype from the first identified repetition using the Contour Algorithm

described in Chapter 5, and considers it as the correct performance of the exercise.

LiftSmart compares the new incoming repetitions to the computed prototype through

their shape using the ASD method described in Chapter 5. The comparison between

each new repetition and the first repetition results in a score, called Di st , between

0 and 1 with zero being an exact match and one being completely different. We use

this value to provide feedback to the athlete while performing the exercise. Although

configurable, we have considered every 0.2 change in the Di st score to be a shift from

the level of consistency. Note that setting the shift value to be too strict, results in

repetitions needing to be exactly the same, whereas having a larger shift (> 0.2) results

in having more degrees of freedom to capture inconsistencies between repetitions. We

use a 5-level consistency system (1) Accurate (A) (Di st ≤ .2), (2) Close (C) (.2 < Di st ≤ .4),

(3) Deviating (D) (.4 < Di st ≤ .6), (4) Fluctuating (F) (.6 < Di st ≤ .8), and (5) Incomparable

(I) (.8 < Di st) to give feedback to the athlete. The computed prototype is considered as

the reference repetition to evaluate the consistency of other repetitions in real-time.

For offline processing, a mobile application stores the detected exercise signals. LiftS-

mart provides various methods to compare repetitions with a reference signal, such

166

Figure 6-1: The wearable monitors and evaluates the performance in real-time. It warns
the user when deviating from the correct posture.

as selecting a single repetition or a set of repetitions as a reference signal. An interac-

tive application shows each repetition of the exercise to the athletes and their coaches

(Figure 6-2).

6.3 Method

The tasks of detecting, tracking and analysing weight training performance are based on

analysing the incoming stream of data captured by the gyroscope on the wearable device.

The workflow (designed in Chapter 3) detects and analyses repeating exercises by

leveraging the consecutive repeating property of weight training exercises [177]. A con-

secutive repeating movement manifests itself as a consecutive repeating signal in the

incoming stream of data. Detecting these consecutive repetitions allows us to detect

when the trainee started an exercise. It also allows us to find the repeating signal as the

reference signal. After selecting a reference signal, we can search for new repetitions from

167

(a) (b)

Figure 6-2: Two applications of LiftSmart in offline mode. The application shows each
repetition in a colour coded manner. The colour of the repetition results from its compar-
ison to the reference. (a) Trainees can use the application to set the reference repetition
and compare the other repetitions to the reference repetition. The application shows the
comparison of the repetitions (the speed ratio and Range of Motion (ROM) ratio). (b)
Trainers and expert users can select multiple repetitions of the same set using TickBoxes
to analyse the performance of the set. By selecting multiple repetitions, any anomalies
can be found.

the incoming data that are (1) consecutive to the last detected signal and (2) similar to the

reference signal. The workflow for detecting and tracking and evaluating weight training

movements using the incoming data stream is presented in Figure 6-3.

6.4 Application

Detecting, tracking and analysing weight training exercises in real-time and on-line

provides an opportunity for improving trainees’ outcomes from the training routines

while enhancing the trainee-trainer communication cycle. We discuss two of the main

168

Figure 6-3: The workflow for unsupervised evaluation of a weight training exercise. First,
a detection method is required to detect the exercise from the incoming data stream.
Second, a repetition from the detected exercise set is selected as the reference set. Third,
each new repetition of the same set is evaluated using the selected signal of repeat.

opportunities in this regard.

6.4.1 Feedback to athletes while training

The first part of LiftSmart provides a warning mechanism to experienced athletes in

regards to muscle fatigue—the main cause for many injuries. If athletes are familiar with

an exercise, they can perform it accurately under light load. However, by increasing the

load, athletes often push themselves too hard. Too much pressure over an extended

169

training period or sudden jumps in the load can cause muscle fatigue, which manifests

itself through significant deviations after a few repetitions. By comparing the repetitions

to a correct execution, we ensure that the athlete’s training is consistent throughout the

set and can warn them when they deviate from the reference by more than a configurable

threshold (see Figure 6-1).

6.4.2 Offline analysis of trainee’s performance

The second part of LiftSmart provides a mechanism for feedback about the athlete’s

performance offline. Coaches can use LiftSmart remotely. Historically, athletes work with

their coaches for one or two sessions and then start practising the exercise for a few weeks

before meeting their coaches again. In this process the coach have traditionally relied

on the athlete’s memory to perform the exercises up to a certain standard. LiftSmart

can provide meaningful feedback about the athletes’ performance during training to the

athletes and their coaches online as well offline. Coaches can use the system to monitor

the athlete’s performance and update their exercise routines accordingly (see Figure 6-2).

6.4.3 Demo

A demo of LiftSmart is available at https://www.youtube.com/watch?v=R3saws37KKM

6.5 Conclusions

In this chapter, we demonstrated the capability of the machine learning techniques that

have been designed in this thesis to detect and track weight training exercises online

on a wearable device in real-time. The workow is based on detecting short bursts of a

repetitive signal from the incoming data stream, extracting a reference signal and using

the reference signal to evaluate the new repetitions presented in Figure 6-3. The main use

case behind our scenario is based on the trainees’ knowledge in performing the exercise

170

correctly but cannot maintain the correct form due to pressure and/or muscle fatigue, as

was discussed in Chapter 1. By making use of the trainee’s knowledge of how to perform

an exercise, signals from the early stage of a detected set (the rst three repetition signals)

can be used to derive a prototype from these signals as a reference to evaluate any new

signals. The selection of the rst three signals of repetition for an exercise is the result of

an observation that the rst few repetitions are often accurate repetitions of an exercise

that a trainee performs during their routine. Athletes often deviate from the correct

posture after performing the rst few repetitions as they become fatigued due to the weight

load they are holding during their routine. However, further investigation is required to

identify the most accurate method for selecting the optimum number of repetitions when

computing a reference signal for evaluation of incoming signals. Note that LiftSmart

provides the potential for further HCI research in designing a trainee/trainer review cycle

where trainers can tune the correctness of repetitions to set when LiftSmart should warn

the trainee. It generates a new environment that can bring remote/offline monitoring

into the cycle of trainees/trainers interactions.

LiftSmart is sensitive to the position of the wearable, that is, if the wearable is worn

on a body part that does not show any repeating pattern then the system fails to provide

any feedback to the trainees and trainers. A direct extension for LiftSmart is to design a

sensor fusion platform where multiple instances of the wearable sensor are worn by a

trainee, and feedback is generated by aggregating the output of each wearable sensor.

Lastly, LiftSmart provides its feedback in a visual output format. However, since the

processing takes place on the wearable, it is feasible to generate other types of warning

signals to the trainee when a deviation from their normal performance is detected. For

example, audio messages can be sent to a headphone worn by the athlete, or device

vibration can be used to warn the trainee. Selecting the best mechanism to provide this

warning feedback to the trainees and trainers warrants further investigation.

171

172

Chapter 7

Future work and Conclusions

7.1 Conclusions

In this thesis we have addressed the problem of monitoring weight training activities

in real-time using a wearable device without the use of labelled training data. We have

outlined the importance of this real-time monitoring task and the machine learning

challenges that arise for solving this problem. We have investigated the current state-of-

the-art techniques and discussed in detail their shortcomings in answering the challenges

for unsupervised monitoring of weight training activities in real-time over a wearable

device. In particular, we have investigated three main challenges that the current methods

have failed to address in a unified manner, namely:

1. Personalised monitoring,

2. Real-time monitoring, and

3. Wearable-based monitoring.

To answer each of these challenges we have designed novel, resource-efficient ma-

chine learning analysis techniques that can run on wearable devices with limited com-

puting resources. We summarise our contributions in this thesis in this section.

173

In Chapter 3, we designed a system that detects incorrect weight training movements,

based on learning only from the correctly performed routine. We showed why correctly

segmenting each repetition of a weight training exercise from a time series data into its

repetition signal is important. We designed our workflow based on the signals extracted

from a segmentation of the sensor data from correctly performed routines. This lets us

use our system in an online environment where the system can detect any anomalies as

soon as the end of an exercise repetition has been detected.

Our workflow is based on the concept of the Axis-of-Effect — the direction in which

the trainee’s main limb moves during an exercise. As a consequence, we highlighted

that our algorithm is able to analyse exercises provided the wearable sensor is worn in

the appropriate location on the body. Thus the workflow is sensitive to the positioning

of the wearable device. We discuss this dependency in more detail in the future work

discussion.

Our workflow is based on calculating the prototype representation of an exercise

repetition, based on the signals segmented from the time series. Using the derived

prototype, the system finds the distribution of the trajectory by mapping each segment

to the prototype. Finally, for each newly detected segment of an exercise from the time

series, the algorithm checks whether the new trajectory is from the calculated distribution

or not. If not the algorithm rejects the segment and alerts the trainee of an anomaly. We

show that the workflow can detect whether a given signal that represents a repetition of

an exercise has been performed correctly or not. However, a more important question is

whether we can identify the incorrect performance of the exercise before the repetition

ends. This brings us to the question of how to perform a partial comparison of the

repetitions, and the importance of our contribution in computing the average shape of a

signal, which we discuss in more detail in the future work section.

In Chapter 4, we formally define weight training activities in terms of bursts of con-

secutive repeating signals from a time series of measurement data, which we called

174

an Interval of Recurrence (IoR). To track these IoRs, we designed OToR, a novel and

resource-efficient algorithm to find and track intervals of recurrence from time series

data streams in real-time on a wearable device. Our algorithm is based on the periodicity

and sub-domain linearity properties of autocorrelation, which we formally analyse in

Chapter 4 when detecting intervals of recurrence. We provide an in-depth theoretical

analysis of these principles. We mathematically prove and experimentally demonstrate

the robustness of our algorithm to environmental noise.

We achieve two design objectives for our goal (summarised in Chapter 1 and Table 4.1)

that go beyond the state-of-the-art. First, our technique tracks the activity performance

with minimal prior knowledge and configuration, i.e., in an unsupervised manner. We

achieve this goal by sacrificing the detection of the first three repetitions of an exercise; i.e.,

OToR waits to receive three repetitions of an exercise before it considers the repetitions to

be an exercise set. We can then monitor the exercise after automatically detecting these

first three repetitions.

Second, the tracking happens in real-time in a wearable device with low computing

and memory resources. We demonstrate the effectiveness of OToR in our experiments in

both offline and online scenarios in comparison to several state-of-the-art algorithms. In

summary, we have shown that we satisfied the following four design goals:

1. Detecting and tracking weight training activities in real-time,

2. Performing the detection and tracking of exercises in an unsupervised manner,

3. Handling environmental noise, and

4. Adapting to variations based on differences in the performance of exercises by

trainees.

In Chapter 5, we further developed our mathematical modelling of weight training

activities based on the signals collected from wearable sensors. This chapter advances

the idea of comparing repetitions of an exercise based on the shape of their associated

175

signals, as introduced in Chapter 3. We investigated use of the concept of Shape in time

series, which enables the comparison of geometric objects by their shape. We introduced

the geometric shape analogy into time series analysis by describing time series data as a

geometric curve that is expressed in terms of its relative location and form in space. We

then transform the computed curve into a vector space where each signal is presented as

points on the surface of a sphere (Shape-Sphere). We prove a pseudo-metric property of

shape distances in Shape-Sphere and show how to compute the average shape in this

space, for use as a prototype of a set of signals. We demonstrated the effectiveness of

these two properties in analysing time series data by applying them in Nearest Centroid

Classifiers and K-Means clustering. Our results on 48 publicly available data sets show

that Shape-Sphere improves the classification results when shape is the differentiating

feature between signals, while keeping the quality of clustering equivalent to current

state-of-the-art techniques. We note that the current limitation of Shape-Sphere is that it

requires the time series to be of equal lengths before comparing them and we discuss

suggested approaches to address this limitation.

In Chapter 6, we demonstrated LiftSmart, a novel smart wearable to detect, track

and analyse weight training activities. LiftSmart is the first wearable for weight training

monitoring that is based on unsupervised machine learning techniques to eliminate the

use of labelled data, to train in a supervised manner. We designed LiftSmart to target

users who have knowledge of the weight training activities they are meant to perform,

i.e., users of LiftSmart are able to perform their routine correctly. One of the limitations

of LiftSmart is that it always evaluates an exercise within its set. The advantages of this

unsupervised approach are that it avoids the cost of acquiring labelled training data, and

can be trained in a computationally efficient manner. For this to be possible, LiftSmart

requires that trainees be able to perform the first three repetitions of an exercise correctly,

so that LiftSmart can monitor the rest of the set. In the next section we examine how to

address restrictions such as these in future work.

176

7.2 Future work

In this thesis we have addressed the problem of monitoring weight training activities in

real-time, using a wearable device without the use of labelled data. We formally defined

the problem and have designed novel machine learning techniques to achieve our goal.

To the best of our knowledge we have developed the first wearable device that monitors

weight training activities in real-time.

We propose two sets of problems that have been raised by our research, which would

be useful for future work: (1) Practical extensions to our application, and (2) Theoretical

questions that arise from our theoretical contributions.

7.2.1 Application extensions

In Section 7.1 we discussed the sensitivity of our workflow for detecting unseen anomalies

with respect to the Axis-of-Effect. A relevant question for future work is to identify what

types of exercises can be addressed by observing data stream from a wearable sensor.

That is, if we know the location of a sensor, when should we consider the incoming

data as relevant data from the Axis-of-Effect, and when should we consider the data

to be irrelevant and hence discard the data? This can be seen as an extension of our

method, where multiple sensors are worn by a trainee and we want to identify when data

is relevant to the current exercise.

Another extension to our method is that by extending our method to multiple sensors,

what information can be extracted from these sensors to help trainees perform their

routines correctly? In other words, how can we provide more detailed feedback (other

than correct or incorrect performance) to a trainee. For example, during a squat exercise

it is ideal to provide detailed feedback to the trainee about the movement of different

parts of their body, to provide them with an explanation of why they were unable to

maintain their performance.

177

7.2.2 Theoretical extensions

In Chapter 4 we presented our method OToR to automatically track consecutive repeating

signals. Our theory is based on single-dimensional time series. A direct extension of

OToR would be to extend the theories to multi-dimension signals. By this extension,

we can track consecutive multi-dimensional signals, which in turn can provide greater

insight into the quality of repeated activities. For example, in the weight lifting scenario,

tracking multi-dimensional signals can lead to sensor fused monitoring systems where

trainees wear multiple sensors on different parts of their body to better monitor their

overall performance.

In Chapter 5 we presented our method, Shape-Sphere, and showed how to analyse

time series data based on their shape. A prerequisite to Shape-Sphere is that all the time

series must be of equal length. In Chapter 5 we discussed how the dimensionality of data

does not affect its shape. Thus, a possible solution to relax the requirement for equal

length signals is to investigate the effect of up-sampling or down-sampling of the data on

the Shape-Sphere algorithm.

A second extension to Shape-Sphere is to design methods for partially comparing

time series by their shape. In Section 7.1, we noted that our workflow for detecting

unseen anomalies can only detect anomalies once the end of a repetition has been seen.

In Chapter 5 we discussed how Shape-Series describes the shape of a time series up to

a point inside the time series. This behaviour of Shape-Series can be used to design

methods that can make a comparison of partial time series, rather than waiting for a

repetition to be completed.

178

Bibliography

[1] “Acc statistics from the 2014/2015 annual report,” April 2016. [Online]. Available:

http://www.acc.co.nz/about-acc/statistics/

[2] R. T. Olszewski, Generalized Feature Extraction for Structural Pattern Recognition

in Time-series Data. School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213, 2001.

[3] R. Richards, “Final report March 2013,” State of Victoria through the Department

of Transport, Planning and Local Infrastructure 2013, Technical report 1.1, 2013.

[Online]. Available: http://www.sport.vic.gov.au/sites/default/files/Sports_injury_

prevention_taskforce_report.pdf

[4] ——, “Cost of sports injuries,” Clearinghouse for Sport, Aus-

tralian Sports Commission, Technical report, 2017. [Online].

Available: https://www.clearinghouseforsport.gov.au/knowledge_base/sport_

participation/sport_injuries_and_medical_conditions/sports_injuries

[5] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1,

pp. 30–39, January 2017.

[6] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner, “Recofit: Using a wearable sensor

to find, recognize, and count repetitive exercises,” in Procceedings of the Conference

on Human Factors in Computing Systems (CHI ’14). New York, NY, USA: ACM,

2014, pp. 3225–3234.

179

[7] D. Pruthi, A. Jain, K. M. Jatavallabhula, R. Nalwaya, and P. Teja, “Maxxyt: An au-

tonomous wearable device for real-time tracking of a wide range of exercises,” in

Procceedings of the 17th International Conference on Modelling and Simulation

(UKSim), March 2015, pp. 137–141.

[8] C. Shen, B. Ho, and M. Srivastava, “Milift: Efficient smartwatch-based workout

tracking using automatic segmentation,” IEEE Transactions on Mobile Computing,

vol. 17, no. 7, pp. 1609–1622, July 2018.

[9] F. Azhar and C. Li, “Hierarchical relaxed partitioning system for activity recognition,”

IEEE Transactions on Cybernetics, vol. 47, no. 3, pp. 784–795, March 2017.

[10] American Heart Association Recommendations for Physical Activity in Adults

and Kids, American Heart Association, 2018 (accessed October 4, 2019). [On-

line]. Available: https://www.heart.org/en/healthy-living/fitness/fitness-basics/

aha-recs-for-physical-activity-in-adults

[11] Resistance training – health benefits, Victoria State Governent, August 2018

(accessed October 4, 2019). [Online]. Available: https://www.betterhealth.vic.gov.

au/health/healthyliving/resistance-training-health-benefits

[12] EU Physical Activity Guidelines: Recommended Policy Actions in Support of Health-

Enhancing Physical Activity, EU Working Group.

[13] M. K. Drew and C. F. Finch, “The relationship between training load and injury,

illness and soreness: A systematic and literature review,” Sports Medicine, vol. 46,

no. 6, pp. 861–883, June 2016.

[14] T. J. Gabbett, “The training—injury prevention paradox: should athletes be training

smarter and harder?” British Journal of Sports Medicine, vol. 50, no. 5, pp. 273–280,

2016.

180

[15] ——, “Debunking the myths about training load, injury and performance: empiri-

cal evidence, hot topics and recommendations for practitioners,” British Journal of

Sports Medicine, vol. 54, no. 1, pp. 58–66, 2020.

[16] T. J. Gabbett, G. P. Nassis, E. Oetter, J. Pretorius, N. Johnston, D. Medina, G. Rodas,

T. Myslinski, D. Howells, A. Beard, and A. Ryan, “The athlete monitoring cycle:

a practical guide to interpreting and applying training monitoring data,” British

Journal of Sports Medicine, vol. 51, no. 20, p. 1451—1452, October 2017.

[17] “Monitoring athletes taking advantage of technology,” Canadian Sport Insti-

tute. [Online]. Available: https://www.csipacific.ca/wp-content/uploads/pp/

performance-point-TID-1403-monitoring.pdf

[18] E. Velloso, A. Bulling, and H. Gellersen, “Motionma: Motion modelling and anal-

ysis by demonstration,” in Proceedings of the Conference on Human Factors in

Computing Systems (CHI ’13). New York, NY, USA: ACM, 2013, pp. 1309–1318.

[19] M. Kellmann, “Preventing overtraining in athletes in high-intensity sports and

stress/recovery monitoring,” Scandinavian Journal of Medicine & Science in Sports,

vol. 20, no. s2, pp. 95–102, 2010.

[20] A. W. Salmoni, R. A. Schmidt, and C. B. Walter, “Knowledge of results and motor

learning: A review and critical reappraisal,” Psychological Bulletin, vol. 95, no. 3, pp.

355–386.

[21] M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional

density,” in Proceedings of the European Conference on Computer Vision (ECCV ’96),

1996, pp. 343–356.

[22] J. Rittscher, A. Blake, and S. Roberts, “Towards the automatic analysis of complex

human body motions,” Image and Vision Computing, vol. 20, no. 12, pp. 905 – 916,

2002.

181

[23] J. Gall, C. Stoll, E. de Aguiar, C. Theobalt, B. Rosenhahn, and H. Seidel, “Motion

capture using joint skeleton tracking and surface estimation,” in Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp.

1746–1753.

[24] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,

and A. Blake, “Real-time human pose recognition in parts from single depth im-

ages,” in Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern

Recognition, June 2011, pp. 1297–1304.

[25] I. Ar and Y. S. Akgul, “A computerized recognition system for the home-based

physiotherapy exercises using an RGBD camera,” IEEE Transactions on Neural

Systems and Rehabilitation Engineering, vol. 22, no. 6, pp. 1160–1171, November

2014.

[26] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,

P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation

from single depth images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 12, pp. 2821–2840, December 2013.

[27] K. Buys, C. Cagniart, A. Baksheev, T. D. Laet, J. D. Schutter, and C. Pantofaru, “An

adaptable system for RGB-D based human body detection and pose estimation,”

Journal of Visual Communication and Image Representation, vol. 25, no. 1, pp. 39 –

52, 2014.

[28] Y. Chen, C. Shen, X. Wei, L. Liu, and J. Yang, “Adversarial posenet: A structure-aware

convolutional network for human pose estimation,” in Proceedings of the 2017 IEEE

International Conference on Computer Vision (ICCV), Oct 2017, pp. 1221–1230.

182

[29] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose machines,”

in Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), June 2016, pp. 4724–4732.

[30] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose: Realtime

multi-person 2d pose estimation using part affinity fields,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[31] R. Khurana, K. Ahuja, Z. Yu, J. Mankoff, C. Harrison, and M. Goel, “Gymcam: De-

tecting, recognizing and tracking simultaneous exercises in unconstrained scenes,”

ACM Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, pp.

185:1–185:17, 2018.

[32] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and motion

boundary descriptors for action recognition,” International Journal of Computer

Vision, vol. 103, no. 1, pp. 60–79, May 2013.

[33] F. Anderson, T. Grossman, J. Matejka, and G. Fitzmaurice, “Youmove: Enhancing

movement training with an augmented reality mirror,” in Proceedings of the 26th

Annual ACM Symposium on User Interface Software and Technology (UIST ’13).

New York, NY, USA: ACM, 2013, pp. 311–320.

[34] W. Zhao, H. Feng, R. Lun, D. D. Espy, and M. A. Reinthal, “A kinect-based rehabili-

tation exercise monitoring and guidance system,” in Proceedings of the 2014 IEEE

International Conference on Software Engineering and Service Science, June 2014,

pp. 762–765.

[35] M. Sundholm, J. Cheng, B. Zhou, A. Sethi, and P. Lukowicz, “Smart-mat: Recogniz-

ing and counting gym exercises with low-cost resistive pressure sensing matrix,” in

Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiq-

uitous Computing (UbiComp ’14). New York, NY, USA: ACM, 2014, pp. 373–382.

183

[36] J. Cheng, M. Sundholm, B. Zhou, M. Hirsch, and P. Lukowicz, “Smart-surface: Large

scale textile pressure sensors arrays for activity recognition,” Pervasive and Mobile

Computing, vol. 30, pp. 97 – 112, 2016.

[37] B. Zhou, M. Sundholm, J. Cheng, H. Cruz, and P. Lukowicz, “Never skip leg day: A

novel wearable approach to monitoring gym leg exercises,” in Proceedings of the

2016 IEEE International Conference on Pervasive Computing and Communications

(PerCom), March 2016, pp. 1–9.

[38] P. Parzer, A. Sharma, A. Vogl, J. Steimle, A. Olwal, and M. Haller, “Smartsleeve: Real-

time sensing of surface and deformation gestures on flexible, interactive textiles,

using a hybrid gesture detection pipeline,” in Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology (UIST ’17). New York, NY,

USA: ACM, 2017, pp. 565–577.

[39] E. A. H. Akpa, M. Fujiwara, Y. Arakawa, H. Suwa, and K. Yasumoto, “Gift: Glove

for indoor fitness tracking system,” in Proceedings of the 2018 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops), March 2018, pp. 52–57.

[40] K.-H. Chang, M. Y. Chen, and J. Canny, “Tracking free-weight exercises,” in Proceed-

ings of the 9th International Conference on Ubiquitous Computing (UbiComp ’07).

Berlin, Heidelberg: Springer-Verlag, 2007, pp. 19–37.

[41] H.-T. Cheng, F.-T. Sun, M. Griss, P. Davis, J. Li, and D. You, “Nuactiv: Recognizing

unseen new activities using semantic attribute-based learning,” in Proceeding of

the 11th Annual International Conference on Mobile Systems, Applications, and

Services (MobiSys ’13). New York, NY, USA: ACM, 2013, pp. 361–374.

[42] T. T. Um, V. Babakeshizadeh, and D. Kulić, “Exercise motion classification from

large-scale wearable sensor data using convolutional neural networks,” in Proceed-

184

ings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), September 2017, pp. 2385–2390.

[43] K. Skawinski, F. Montraveta Roca, R. D. Findling, and S. Sigg, “Workout type recog-

nition and repetition counting with cnns from 3d acceleration sensed on the chest,”

in Proceedings of the Advances in Computational Intelligence, 2019, pp. 347–359.

[44] E. Velloso, A. Bulling, and H. Gellersen, “Towards qualitative assessment of weight

lifting exercises using body-worn sensors,” in Proceedings of the 13th International

Conference on Ubiquitous Computing (UbiComp ’11). New York, NY, USA: ACM,

2011, pp. 587–588.

[45] J. F. S. Lin and D. Kulić, “Online segmentation of human motion for automated

rehabilitation exercise analysis,” IEEE Transactions on Neural Systems and Rehabil-

itation Engineering, vol. 22, no. 1, January 2014.

[46] R. H. Shumway and D. S. Stoffer, Time series analysis and its applications: with R

examples. Springer, 2017.

[47] D. C. Jonathan and C. Kung-Sik, Time series analysis with applications in R, 2008.

[48] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification

and feature extraction,” Information Sciences, vol. 239, pp. 142 – 153, 2013.

[49] P. Geurts, “Pattern extraction for time series classification,” in Proceedings of the

Principles of Data Mining and Knowledge Discovery. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 115–127.

[50] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Information processing and

technology.” Commack, NY, USA: Nova Science Publishers, Inc., 2001, ch. Feature-

based Classification of Time-series Data, pp. 49–61.

185

[51] F. Dellaert, T. Polzin, and A. Waibel, “Recognizing emotion in speech,” in Proceeding

of Fourth International Conference on Spoken Language Processing (ICSLP ’96),

vol. 3, Oct 1996, pp. 1970–1973 vol.3.

[52] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search in sequence

databases,” in Proceedings of the Foundations of Data Organization and Algorithms.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 69–84.

[53] A. Clare and R. D. King, “Knowledge discovery in multi-label phenotype data,” in

Proceedinhgs of the Principles of Data Mining and Knowledge Discovery. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2001, pp. 42–53.

[54] Fu-Lai Chung, Tak-Chung Fu, V. Ng, and R. W. P. Luk, “An evolutionary approach

to pattern-based time series segmentation,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 5, pp. 471–489, Oct 2004.

[55] V. Megalooikonomou, G. Li, and Q. Wang, “A dimensionality reduction technique

for efficient similarity analysis of time series databases,” in Proceedings of the Thir-

teenth ACM International Conference on Information and Knowledge Management

(CIKM ’04). New York, NY, USA: ACM, 2004, pp. 160–161.

[56] B.-K. Yi and C. Faloutsos, “Fast time sequence indexing for arbitrary lp norms,” in

Proceedings of the 26th International Conference on Very Large Data Bases. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000, pp. 385–394.

[57] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction

for fast similarity search in large time series databases,” Knowledge and Information

Systems, vol. 3, no. 3, pp. 263–286, August 2001.

[58] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series,

with implications for streaming algorithms,” in Proceedings of the 8th Workshop

186

on Research Issues in Data Mining and Knowledge Discovery. New York, NY, USA:

ACM, 2003, pp. 2–11.

[59] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A survey and

novel approach,” in Data Mining in Time Series Databases, pp. 1–21.

[60] C. Berberidis, I. Vlahavas, W. G. Aref, M. Atallah, and A. K. Elmagarmid, “On the

discovery of weak periodicities in large time series,” in Principles of Data Mining

and Knowledge Discovery. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,

pp. 51–61.

[61] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering of time

series,” in Proceedings of the 2015 International Conference on Management of Data.

New York, NY, USA: ACM, 2015, pp. 1855–1870.

[62] S. Papadimitriou, J. Sun, and C. Faloutsos, “Streaming pattern discovery in multiple

time-series,” in Proceedings of the 31st International Conference on Very Large Data

Bases (VLDB ’05). VLDB Endowment, 2005, pp. 697–708.

[63] K. Yang and C. Shahabi, “On the stationarity of multivariate time series for

correlation-based data analysis,” in Proceedings of the 2005 IEEE International

Conference on Data Mining (ICDM’05), November 2005, p. 4.

[64] H. Yoon, K. Yang, and C. Shahabi, “Feature subset selection and feature ranking for

multivariate time series,” IEEE Transactions on Knowledge and Data Engineering,

vol. 17, no. 9, pp. 1186–1198, Sep. 2005.

[65] C. A. Ratanamahatana and E. Keogh, “Making time-series classification more ac-

curate using learned constraints,” in Proceedings of the 2004 SIAM International

Conference on Data Mining, pp. 11–22.

187

[66] T. Shibuya, T. Harada, and Y. Kuniyoshi, “Causality quantification and its applica-

tions: Structuring and modeling of multivariate time series,” in Proceedings of the

2009 International Conference on Knowledge Discovery and Data Mining (KDD ’09).

New York, NY, USA: ACM, 2009, pp. 787–796.

[67] F. K. Chan, A. W. Fu, and C. Yu, “Haar wavelets for efficient similarity search of

time-series: with and without time warping,” IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 3, pp. 686–705, May 2003.

[68] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using

wearable sensors,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, March

2013.

[69] T. Fu, “A review on time series data mining,” Engineering Applications of Artificial

Intelligence, vol. 24, no. 1, pp. 164 – 181, 2011.

[70] J. F. S. Lin, M. Karg, and D. Kulić, “Movement primitive segmentation for human mo-

tion modeling: A framework for analysis,” IEEE Transactions on Human-Machine

Systems, vol. 46, no. 3, June 2016.

[71] P. Dash, M. Nayak, M. Senapati, and I. Lee, “Mining for similarities in time series

data using wavelet-based feature vectors and neural networks,” Engineering Appli-

cations of Artificial Intelligence, vol. 20, no. 2, pp. 185 – 201, 2007, special Issue on

Applications of Artificial Intelligence in Process Systems Engineering.

[72] V. Jandhyala, S. Fotopoulos, I. MacNeill, and P. Liu, “Inference for single and multi-

ple change-points in time series,” Journal of Time Series Analysis, vol. 34, no. 4, pp.

423–446.

[73] E. Page, “A test for a change in a parameter occurring at an unknown point,”

Biometrika, vol. 42, no. 3/4, pp. 523–527, 1955.

188

[74] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change

point detection,” Knowledge and Information Systems, vol. 51, no. 2, pp. 339–367,

May 2017.

[75] D. Barry and J. A. Hartigan, “A Bayesian analysis for change point problems,” Journal

of the American Statistical Association, vol. 88, no. 421, pp. 309–319, 1993.

[76] S. Chib, “Estimation and comparison of multiple change-point models,” Journal of

Econometrics, vol. 86, no. 2, pp. 221 – 241, 1998.

[77] Z. J. Wang and P. Willett, “Joint segmentation and classification of time series

using class-specific features,” IEEE Transactions on Systems, Man, and Cybernetics

(Cybernetics), vol. 34, no. 2, April 2004.

[78] V. Chandola and R. R. Vatsavai, “A Gaussian process based online change detec-

tion algorithm for monitoring periodic time series,” in Proceedings of the 2011

International Conference on Data Mining, pp. 95–106.

[79] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs,” in

Proceedings of the 2003 ACM International Conference on Knowledge Discovery and

Data Mining (KDD ’03). New York, NY, USA: ACM, 2003, pp. 493–498.

[80] Y. Matsubara, Y. Sakurai, and C. Faloutsos, “Autoplait: Automatic mining of co-

evolving time sequences,” in Proceedings of the 2014 International Conference on

Management of Data, 2014.

[81] J. Zhao and L. Itti, “Decomposing time series with application to temporal seg-

mentation,” in Proceedings of IEEE Workshop on Applications of Computer Vision

(WACV), March 2016.

189

[82] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel symbolic repre-

sentation of time series,” Data Mining and Knowledge Discovery, vol. 15, no. 2, pp.

107–144, Oct 2007.

[83] C. L. Fancourt and J. C. Principe, “Competitive principal component analysis for

locally stationary time series,” IEEE Transactions Signal Processing, vol. 46, no. 11,

pp. 3068–3081, 1998.

[84] J. F. Lin, V. Joukov, and D. Kulic, “Human motion segmentation by data point

classification,” in Proceedings of the 36th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, Aug 2014, pp. 9–13.

[85] K. Yu, K. Yang, and Y. Bai, “Experimental investigation on the time-varying modal

parameters of a trapezoidal plate in temperature-varying environments by sub-

space tracking-based method,” Journal of Vibration and Control, vol. 21, no. 16, pp.

3305–3319, 2015.

[86] D. Minnen, T. Starner, I. Essa, and C. Isbell, “Improving activity discovery with

automatic neighborhood estimation,” in Proceedings of the 20th International Joint

Conference on Artifical Intelligence (IJCAI’07). San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2007, pp. 2814–2819.

[87] E. Berlin and K. Van Laerhoven, “Detecting leisure activities with dense motif

discovery,” in Proceedings of the 2012 ACM Conference on Ubiquitous Computing

(UbiComp ’12). New York, NY, USA: ACM, 2012, pp. 250–259.

[88] A. Vahdatpour, N. Amini, and M. Sarrafzadeh, “Toward unsupervised activity dis-

covery using multi-dimensional motif detection in time series,” in Proceedings

of the 21st International Jont Conference on Artifical Intelligence (IJCAI’09). San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2009, pp. 1261–1266.

190

[89] H. Poincaré, “Sur le problème des trois corps et les équations de la dynamique,”

Acta Mathematica, vol. 13, no. 1, pp. A3–A270, 1890.

[90] J. Eckmann, S. O. Kamphorst, and D. Ruelle, “Recurrence plots of dynamical sys-

tems,” World Scientific Series on Nonlinear Science Series A, vol. 16, pp. 441–446,

1995.

[91] S. Spiegel, J.-B. Jain, and S. Albayrak, “A recurrence plot-based distance measure,”

in Proceedings of the Translational Recurrences, 2014, pp. 1–15.

[92] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen,

and E. Keogh, “Matrix profile I: All pairs similarity joins for time series: A unifying

view that includes motifs, discords and shapelets,” in Proceedings of the 2016 IEEE

International Conference on Data Mining (ICDM), December 2016, pp. 1317–1322.

[93] S. Gharghabi, Y. Ding, C. M. Yeh, K. Kamgar, L. Ulanova, and E. Keogh, “Matrix

profile VIII: Domain agnostic online semantic segmentation at superhuman per-

formance levels,” in Proceedings of the 2017 IEEE International Conference on Data

Mining (ICDM), November 2017, pp. 117–126.

[94] M. Mirmomeni, Y. Kowsar, L. Kulik, and J. Bailey, “An automated matrix profile for

mining consecutive repeats in time series,” in Proceedings of the Pacific Rim Inter-

national Conferences on Artificial Intelligence 2018: Trends in Artificial Intelligence

(PRICAI). Cham: Springer International Publishing, 2018, pp. 192–200.

[95] R. S. Tsay, Analysis of financial time series. John Wiley & Sons, 2005, vol. 543.

[96] X. Zhang, T. Zhang, A. A. Young, and X. Li, “Applications and comparisons of four

time series models in epidemiological surveillance data,” PLoS One, vol. 9, no. 2,

2014.

191

[97] Q. Li, N.-N. Guo, Z.-Y. Han, Y.-B. Zhang, S.-X. Qi, Y.-G. Xu, Y.-M. Wei, X. Han, and

Y.-Y. Liu, “Application of an autoregressive integrated moving average model for

predicting the incidence of hemorrhagic fever with renal syndrome,” The American

Journal of Tropical Medicine and Hygiene, vol. 87, no. 2, pp. 364–370, 2012.

[98] I. Batal and M. Hauskrecht, “A supervised time series feature extraction technique

using dct and dwt,” in Proceedings of the 2009 International Conference on Machine

Learning and Applications, Dec 2009, pp. 735–739.

[99] F. Korn, H. V. Jagadish, and C. Faloutsos, “Efficiently supporting ad hoc queries in

large datasets of time sequences,” ACM Special Interest Group on Management of

Data Record, vol. 26, no. 2, p. 289–300, 1997.

[100] S. Aghabozorgi, A. Seyed Shirkhorshidi, and T. Ying Wah, “Time-series clustering

- A decade review,” Journal of Information Systems, vol. 53, no. C, pp. 16–38, Oct.

2015.

[101] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks:

A survey and empirical demonstration,” Journal of Data Mining and Knowledge

Discovery, vol. 7, no. 4, pp. 349–371, Oct. 2003.

[102] W. H. Abdulla, D. Chow, and G. Sin, “Cross-words reference template for dtw-

based speech recognition systems,” in Proceedings of the Conference on Convergent

Technologies for Asia-Pacific Region (TENCON 2003), vol. 4, 2003.

[103] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adaptive dimen-

sionality reduction for indexing large time series databases,” ACM Transactions on

Database Systems, vol. 27, no. 2, pp. 188–228, 2002.

[104] P. Geurts, “Pattern extraction for time series classification,” in Proceedings of the

5th European Conference on Principles of Data Mining and Knowledge Discovery

(PKDD ’01). Berlin, Heidelberg: Springer-Verlag, 2001, pp. 115–127.

192

[105] M. Gribskov, “Identification of sequence patterns, motifs and domains,” in Refer-

ence Module in Life Sciences. Elsevier, 2018.

[106] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching

in time-series databases,” in Proceedings of the 1994 International Conference on

Management of Data (SIGMOD ’94). New York, NY, USA: ACM, 1994, pp. 419–429.

[107] K. Buza, J. Koller, and K. Marussy, “Process: Projection-based classification of elec-

troencephalograph signals,” in Proceedings of the Artificial Intelligence and Soft

Computing. Cham: Springer International Publishing, 2015, pp. 91–100.

[108] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,” in Pro-

ceedings of the 15th International Conference on Data Engineering, Mar 1999, pp.

126–133.

[109] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories with Chebyshev polynomi-

als,” in Proceedings of the 2004 ACM International Conference on Management of

Data (SIGMOD ’04). New York, NY, USA: ACM, 2004, pp. 599–610.

[110] H. Ney and S. Ortmanns, “Dynamic programming search for continuous speech

recognition,” IEEE Signal Processing Magazine, vol. 16, no. 5, pp. 64–83, Sep. 1999.

[111] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time

and space,” Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, Oct. 2007.

[112] Byoung-Kee Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar time

sequences under time warping,” in Proceedings of the 14th International Conference

on Data Engineering, February 1998, pp. 201–208.

[113] B. K. Sarker, T. Mori, T. Hirata, and K. Uehara, “Parallel algorithms for mining

association rules in time series data,” in Parallel and Distributed Processing and

Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 273–284.

193

[114] S. Greco and C. Molinaro, “Approximate probabilistic query answering over incon-

sistent databases,” in Proceedings of the Conceptual Modeling (ER 2008). Berlin,

Heidelberg: Springer Berlin Heidelberg, 2008, pp. 311–325.

[115] C. A. Ratanamahatana and E. J. Keogh, “Three myths about dynamic time warping

data mining,” in Proceedings of the 2005 International Conference on Data Mining

(SDM 2005), Newport Beach, CA, USA, April 21-23, 2005, 2005, pp. 506–510.

[116] M. Cuturi and M. Blondel, “Soft-dtw: a differentiable loss function for time-series,”

in Proceedings of the 34th International Conference on Machine Learning-Volume

70. JMLR. org, 2017, pp. 894–903.

[117] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh, “Indexing multi-

dimensional time-series with support for multiple distance measures,” in Proceed-

ings of the 2003 International Conference on Knowledge Discovery and Data Mining

(KDD ’03). New York, NY, USA: ACM, 2003, pp. 216–225.

[118] M.-S. Kim, S.-W. Kim, and M. Shin, “Optimization of subsequence matching under

time warping in time-series databases,” in Proceedings of the 2005 ACM Symposium

on Applied Computing (SAC ’05). New York, NY, USA: ACM, 2005, pp. 581–586.

[119] M. Last, Y. Klein, and A. Kandel, “Knowledge discovery in time series databases,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 31,

no. 1, pp. 160–169, February 2001.

[120] M. H. Quenouille, “Approximate tests of correlation in time-series 3,” Mathematical

Proceedings of the Cambridge Philosophical Society, vol. 45, no. 3, p. 483–484, 1949.

[121] B. Podobnik and H. E. Stanley, “Detrended cross-correlation analysis: A new

method for analyzing two nonstationary time series,” Physical Review Letters, vol.

100, no. 8, February 2008.

194

[122] G. Wachman, R. Khardon, P. Protopapas, and C. R. Alcock, “Kernels for periodic

time series arising in astronomy,” in Proceedings of the Machine Learning and

Knowledge Discovery in Databases. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 489–505.

[123] L. Gupta, D. L. Molfese, R. Tammana, and P. G. Simos, “Nonlinear alignment and

averaging for estimating the evoked potential,” IEEE Transactions on Biomedical

Engineering, vol. 43, no. 4, pp. 348–356, 1996.

[124] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method for dynamic

time warping, with applications to clustering,” Pattern Recognition, vol. 44, no. 3,

pp. 678–693, 2011.

[125] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh, “Faster

and more accurate classification of time series by exploiting a novel dynamic time

warping averaging algorithm,” Journal of Knowledge and Information Systems,

vol. 47, no. 1, pp. 1–26, 2016.

[126] M. Morel, C. Achard, R. Kulpa, and S. Dubuisson, “Time-series averaging using

constrained dynamic time warping with tolerance,” Pattern Recognition, vol. 74,

pp. 77 – 89, 2018.

[127] M. Müller, Information retrieval for music and motion. Springer, Berlin Heidelberg,

2007.

[128] I. Pernek, G. Kurillo, G. Stiglic, and R. Bajcsy, “Recognizing the intensity of strength

training exercises with wearable sensors,” Journal of Biomedical Informatics, vol. 58,

pp. 145 – 155, 2015.

[129] H. Lieberman and B. Marriott, Food Components to Enhance Performance: An

evaluation of potential performance-enhancing food components for operational

rations. National Academies Press, Chapter 6, 1994.

195

[130] M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, A. Monteriù, L. Romeo, and

F. Verdini, “The kimore dataset: Kinematic assessment of movement and clinical

scores for remote monitoring of physical rehabilitation,” IEEE Transactions on

Neural Systems and Rehabilitation Engineering, vol. 27, no. 7, pp. 1436–1448, July

2019.

[131] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of

a quaternion-based Kalman filter for human body motion tracking,” IEEE Transac-

tions on Robotics, vol. 22, no. 6, pp. 1216–1227, 2006.

[132] R. E. A. Kalman, “New approach to linear filtering and prediction problems,” Jour-

nal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[133] J. Jun, R. Guensler, and J. Ogle, “Smoothing methods to minimize impact of global

positioning system random error on travel distance, speed, and acceleration profile

estimates,” Journal of the Transportation Research Board (Transportation Research

Record), vol. 1972, pp. 141–150, 2006.

[134] B. M. Yu, K. V. Shenoy, and M. Sahani, “Derivation of extended Kalman filtering

and smoothing equations,” 2004. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.321.3457

[135] B. J. Mortazavi, M. Pourhomayoun, G. A.-s. Alsheikh, S. I. Lee, and M. Sarrafzadeh,

“Determining the single best axis for exercise repetition recognition and counting

on smartwatches,” in Proceedings of the IEEE International Conference on Wearable

and Implantable Body Sensor Networks’. IEEE, 2014, pp. 33–38.

[136] E. Velloso, A. Bulling, H. Gellersen, W. Ugulino, and H. Fuks, “Qualitative activity

recognition of weight lifting exercises,” in Proceedings of the 4th Augmented Human

International Conference (AH ’13). New York, NY, USA: ACM, 2013, pp. 116–123.

196

[137] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,” arXiv

preprint arXiv:1109.2378, 2011.

[138] E. W. Grafarend, Linear and nonlinear models: fixed effects, random effects, and

mixed models. de Gruyter, 2006.

[139] B. Podobnik and H. E. Stanley, “Detrended cross-correlation analysis: A new

method for analyzing two nonstationary time series,” Physical Review Letters, vol.

100, p. 084102, Feb 2008.

[140] P. H. Colberg and F. Höfling, “Highly accelerated simulations of glassy dynam-

ics using GPUs: Caveats on limited floating-point precision,” Computer Physics

Communications, vol. 182, no. 5, pp. 1120 – 1129, 2011.

[141] D. J. Cook, N. C. Krishnan, and P. Rashidi, “Activity discovery and activity recog-

nition: A new partnership,” IEEE Transactions on Cybernetics, vol. 43, no. 3, pp.

820–828, June 2013.

[142] D. Patnaik, M. Marwah, R. K. Sharma, and N. Ramakrishnan, “Data mining for

modeling chiller systems in data centers,” in Proceedings of the Advances in Intelli-

gent Data Analysis IX. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.

125–136.

[143] M. Beyreuther and J. Wassermann, “Continuous earthquake detection and classifi-

cation using discrete hidden markov models,” Geophysical Journal International,

2008.

[144] H. Nyquist, “Certain topics in telegraph transmission theory,” Transactions of the

American Institute of Electrical Engineers, 1928.

[145] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita, “Transition-aware

human activity recognition using smartphones,” Neurocomputing, 2016.

197

[146] G. Melchiorri and A. Rainoldi, “Muscle fatigue induced by two different resistances:

Elastic tubing versus weight machines,” Journal of Electromyography and Kinesiol-

ogy, vol. 21, no. 6, 2011.

[147] A. Papoulis, “Error analysis in sampling theory,” Proceedings of the IEEE, vol. 54,

no. 7, pp. 947–955, July 1966.

[148] S. M. Shekatkar, Y. Kotriwar, K. Harikrishnan, and G. Ambika, “Detecting abnormal-

ity in heart dynamics from multifractal analysis of ECG signals,” Scientific Reports,

vol. 7, no. 1, p. 15127, 2017.

[149] R. Thuraisingham, “Preprocessing RR interval time series for heart rate variability

analysis and estimates of standard deviation of RR intervals,” Computer Methods

and Programs in Biomedicine, vol. 83, no. 1, pp. 78 – 82, 2006.

[150] L. C. M. Vanderlei, C. M. Pastre, R. A. Hoshi, T. D. d. Carvalho, and M. F. d. Godoy,

“Basic notions of heart rate variability and its clinical applicability,” Brazilian Jour-

nal of Cardiovascular Surgery, vol. 24, no. 2, pp. 205–217, 2009.

[151] C. E. Kennedy and J. P. Turley, “Time series analysis as input for clinical predictive

modeling: Modeling cardiac arrest in a pediatric ICU,” Theoretical Biology and

Medical Modelling, vol. 8, no. 1, p. 40, 2011.

[152] O. D. Lara and M. A. Labrador, “A survey on human activity recognition using

wearable sensors,” IEEE Communications Surveys Tutorials, vol. 15, no. 3, pp. 1192–

1209, March 2013.

[153] G. Bertoldi, B. A. Burrington, and A. Peet, “Black holes in asymptotically Lifshitz

spacetimes with arbitrary critical exponent,” Physical Review, vol. 80, p. 126003,

December 2009.

198

[154] J. Zhao and L. Itti, “ShapeDTW: Shape dynamic time warping,” Pattern Recognition,

vol. 74, pp. 171–184, 2018.

[155] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proceedings of

the 2001 SIAM International Conference on Data Mining, 2001.

[156] I. M. Anderson and J. C. Bezdek, “Curvature and tangential deflection of discrete

arcs: A theory based on the commutator of scatter matrix pairs and its application

to vertex detection in planar shape data,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. PAMI-6, no. 1, pp. 27–40, January 1984.

[157] M. M. Lipschutz, Theory and Problems of Differential Geometry, ser. Schaum’s

outline series. McGraw-Hill, 1969.

[158] G. Forestier and C. Wemmert, “Semi-supervised learning using multiple clusterings

with limited labeled data,” Information Sciences, vol. 361-362, pp. 48 – 65, 2016.

[159] S.-E. Benkabou, K. Benabdeslem, and B. Canitia, “Unsupervised outlier detection

for time series by entropy and dynamic time warping,” Knowledge and Information

Systems, vol. 54, no. 2, pp. 463–486, February 2018.

[160] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veeraragha-

van, “Gorilla: A fast, scalable, in-memory time series database,” Proceedings of Very

Large Data Base Endowment, vol. 8, no. 12, pp. 1816–1827, 2015.

[161] C. W. Tan, G. I. Webb, and F. Petitjean, “Indexing and classifying gigabytes of time se-

ries under time warping,” in Proceedings of the 2017 SIAM International Conference

on Data Mining, pp. 282–290.

[162] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, “Generating syn-

thetic time series to augment sparse datasets,” in Proceedings of the 2017 IEEE

International Conference on Data Mining (ICDM), November 2017, pp. 865–870.

199

[163] L. Kegel, M. Hahmann, and W. Lehner, “Feature-based comparison and generation

of time series,” in Proceedings of the 30th International Conference on Scientific and

Statistical Database Management (SSDBM ’18). New York, USA: ACM, 2018.

[164] Y. Kang, S. Chen, X. Wang, and Y. Cao, “Deep convolutional identifier for dynamic

modeling and adaptive control of unmanned helicopter,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 30, no. 2, pp. 524–538, February 2019.

[165] B. J. Jain, “Generalized gradient learning on time series,” Machine Learning, vol.

100, no. 2, pp. 587–608, Sep 2015.

[166] B. O’Neill, Elementary differential geometry. Academic press, 2006.

[167] D. Coeurjolly, S. Miguet, and L. Tougne, “Discrete curvature based on osculating

circle estimation,” in Proceedings of the Visual Form 2001. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2001.

[168] B. Kerautret, J. O. Lachaud, and B. Naegel, “Comparison of discrete curvature

estimators and application to corner detection,” in Proceedings of the Advances

in Visual Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

710–719.

[169] D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature esti-

mation,” Computer Vision, Graphics, and Image Processing: Image Understanding,

vol. 55, no. 1, pp. 14 – 26, 1992.

[170] D. Pedoe, Geometry, a comprehensive course. Dover Publications, 1988.

[171] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series

classification bake off: A review and experimental evaluation of recent algorithmic

advances,” Journal of Data Mining and Knowledge Discovery, vol. 31, no. 3, pp.

606–660, May 2017.

200

[172] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, vol. 2,

no. 1, pp. 193–218, December 1985.

[173] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: An expressive primitive for

time series classification,” in Proceedings of the 17th ACM International Conference

on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2011, pp.

1154–1162.

[174] S. Vega-Pons and J. Ruiz-Shulcloper, “A survay of clustering ensemble algorithms,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 25,

no. 03, pp. 337–372, 2011.

[175] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, “Fast time series

classification using numerosity reduction,” in Proceedings of the 23rd International

Conference on Machine Learning (ICML ’06). New York, NY, USA: ACM, 2006, pp.

1033–1040.

[176] Z. Geler, V. Kurbalija, M. Radovanović, and M. Ivanović, “Comparison of different

weighting schemes for the knn classifier on time-series data,” Knowledge and

Information Systems, vol. 48, no. 2, pp. 331–378, 2016.

[177] T. R. Baechle and R. W. Earle, Essentials of strength training and conditioning.

Champaign, IL : Human Kinetics, 2016., 2016, ISBN: 9781492501626.

201

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Kowsar, Yousef

Title:

Resource Efficient Machine Learning Techniques for Monitoring Repetitive Activities through

Wearable Devices in Real-time

Date:

2020

Persistent Link:

http://hdl.handle.net/11343/258657

File Description:

Final thesis file

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

