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Abstract
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1 Introduction

The topology of financial networks is central to the study of systemic risk. An adverse idiosyn-

cratic shock to one part of the financial system poses a threat to systemic stability if there are

linkages through which it can propagate to other parts of the system. Measuring the nature

and strength of financial market linkages is not only important for risk management strategies

but also to inform the policy response to systemic crises. Several techniques for the economet-

ric analysis of financial networks have been proposed in recent years, including those based on

Granger-causality and on innovation accounting (e.g. Billio, Getmansky, Lo and Pelizzon, 2012;

Diebold and Yilmaz, 2009, 2014; Alter and Beyer, 2014). A common feature of this literature is

the reliance on conventional conditional mean estimators, such as ordinary least squares (OLS).

The result is an estimate of the average network structure that prevails when an average shock

affects the system. However, systemic shocks are likely to be much larger than average and it

need not be the case that large shocks propagate in the same way as smaller shocks. To ad-

dress this possibility, we develop a new framework that uses regression quantiles to investigate

whether the topology of a network changes with the size of the shocks that affect the system.

Our framework builds upon that of Diebold and Yilmaz (2009, 2014), where the m (m− 1)

bilateral interactions among an m-vector of variables, yt, are approximated by the h-steps-ahead

forecast error variance decomposition (FEVD) of an underlying vector autoregression (VAR) in

yt. Consequently, the Diebold–Yilmaz framework answers the question ‘how much of the future

uncertainty associated with variable i can be attributed to shocks coming from variable j?’.

A major advantage of the Diebold–Yilmaz framework relative to the Granger-causal network

analysis of Billio et al. (2012) is that the resulting network is not only directed but also weighted

and therefore provides an estimate of the strength of bilateral spillover effects. It has proven

to be an influential technique, with applications including the connectedness among equity

markets (e.g. Diebold and Yilmaz, 2009), foreign exchange markets (e.g. Baruńık, Kočenda and

Vácha, 2016; Greenwood-Nimmo, Nguyen and Rafferty, 2016), systemically important financial

institutions (e.g. Demirer, Diebold, Liu and Yilmaz, 2018) and sovereign and corporate credit

spreads (e.g. Greenwood-Nimmo, Huang and Nguyen, 2019; Bostanci and Yilmaz, 2020).

Rolling sample analysis is typically used to track the evolution of the network over time,

with abrupt increases in connectedness often being interpreted in relation to systemic shocks.

However, there is a tension between this interpretation and the fact that existing applications of

the Diebold–Yilmaz framework rely on a range of conventional estimators, including OLS (e.g.

2



Diebold and Yilmaz, 2009, 2014), the least absolute shrinkage and selection operator, or LASSO

(e.g. Greenwood-Nimmo et al., 2019) and elastic net regularization (e.g. Demirer et al., 2018).

Each of these estimators evaluates the relationship between yt and zt =
{
yt−1,yt−2, . . . ,yt−p

}
at the mean of the conditional distribution of yt|zt. The parameters of a VAR model estimated

by OLS, for example, capture the dynamic relationships among the variables in yt under the

assumption that average shocks — that are precisely equal to zero by definition — affect the

system. The tension arises because systemic shocks may often be larger than average. Conse-

quently, studies in this literature implicitly assume that the relationships that prevail at the

conditional mean can be generalized to the entire conditional distribution. This is a strong

assumption but it is vital if rolling sample analysis based on conditional mean estimators is to

provide a valid signal regarding the impact of large systemic shocks.

We relax this assumption by developing a new approach based on the premise that if one

wishes to analyze the network structure associated with a large shock — for example a shock

in the ninety-fifth percentile of the size distribution of shocks — then one must set aside condi-

tional mean estimators and instead fit the VAR model at the ninety-fifth percentile by quantile

regression. Following Koenker and Bassett (1978), quantile regression can be used to evaluate

the dependence of yt on zt over the entire range of the conditional distribution of yt|zt. At the

time of writing, two approaches to the estimation of quantile VAR models have been proposed

by Cecchetti and Li (2008) and Schüler (2014), respectively.1 Cecchetti and Li develop an

equation-by-equation estimation framework for VAR models with cross-sectionally correlated

residuals, while Schüler develops a Bayesian framework for the analysis of structural VARs.

Our framework is distinct from these existing methods by virtue of our treatment of the

VAR residuals. We assume that the cross-sectional correlation of the VAR residuals is driven by

a finite number of unobserved common factors. This assumption serves two purposes. First, by

purging the common component from the VAR residuals, we are able to isolate the idiosyncratic

shock to each variable in the system. Not only does this align our framework with the large

literature on systematic vs. idiosyncratic variations in finance — an important consideration if

one wishes to use network models to analyze the propagation of idiosyncratic shocks, for example

— but it also addresses the likelihood that the failure to account for sources of common variation

may generate substantial biases in the analysis of networks. Specifically, if an omitted common

1The method of Cecchetti and Li (2008) has subsequently been applied by Linnemann and Winkler (2016)
and Zhu, Su, Guo and Ren (2016). A related paper by Chavleishvili and Manganelli (2016) develops a framework
for quantile impulse response analysis of a bivariate system with one endogenous and one exogenous variable.
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factor affects all variables in the VAR system, then the proportion of the forecast error variance

that should rightly be attributed to that factor must instead be attributed to one or more of the

endogenous variables in the system, thereby upwardly biasing the estimated spillover effects.2

The issue of spurious Granger causality arising due to the omission of sources of common

variation is well-known but the impact of omitted common factors on Diebold–Yilmaz networks

has not been adequately explored to date (see Claeys and Vaš́ıček, 2014, for an example of a

Diebold–Yilmaz network with common factors). Second, the use of a factor structure simplifies

the estimation problem substantially because it attenuates the cross-section correlation among

the VAR residuals, greatly simplifying the task of defining regression quantiles.

Our approach answers a modified version of the question addressed by the Diebold–Yilmaz

framework: ‘how much of the future uncertainty associated with variable i can be attributed

to idiosyncratic shocks coming from variable j as the shock size varies?’. Consequently, our

technique is ideally suited to the study of the propagation of idiosyncratic risk shocks and

contagion, the latter of which is often defined in relation to the difference in the way that

shocks propagate during rare events relative to normal times (e.g. Caporin, Pelizzon, Ravazzolo

and Rigobon, 2018). We introduce the term quantile connectedness to distinguish between our

quantile-based approach to network analysis and the established mean-based approach.

We apply our technique to study spillovers of idiosyncratic credit risk between sovereigns

and national financial sectors over the period January 2006 to December 2017, both within

and across borders. The study of credit risk transmission has become an important focus

among policy institutions, with a particular concern for the emergence of feedback loops and

destabilizing spirals (e.g. International Monetary Fund, 2013, pp. 65-6). Acharya, Drechsler

and Schnabl (2014) provide compelling evidence of just such an adverse feedback effect. They

demonstrate that the financial sector bailouts undertaken by many developed countries in 2008

amounted to a substantial transfer of private sector credit risk onto the public sector at a time

of rapid public debt growth. This combination ultimately proved untenable in several countries

and led to a resurgence of systemic risk driven by the emergence of an adverse feedback loop

between sovereign credit risk and financial sector credit risk. Variants of the Diebold–Yilmaz

technique have been applied to the analysis of the sovereign–financial credit risk network by

Alter and Beyer (2014) and Greenwood-Nimmo et al. (2019), although our paper represents the

2In this paper, we focus on analyzing direct spillovers of idiosyncratic credit risk, having controlled for
common systematic factors. Although it is not our focus here, one may also be interested in analyzing the
indirect propagation of shocks via the common factors. The Diebold–Yilmaz framework accounts for both direct
and indirect linkages but it does not allow them to be analyzed separately.
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first attempt to study quantile-variation in the structure of the credit risk network.

We follow the existing literature and use credit default swap (CDS) spreads to measure credit

risk.3 The existence of a factor structure in the cross-section of CDS spreads has been docu-

mented by Pan and Singleton (2008), Longstaff, Pan, Pedersen and Singleton (2011), Fender,

Hayo and Neuenkirch (2012) and Ang and Longstaff (2013), among others. To isolate the id-

iosyncratic variation in the CDS spreads, our model accounts for an unobserved factor structure

following Ando and Bai (2020), where the optimal number of unobserved common factors at

a given conditional quantile is chosen by minimization of an information criterion. Ex post

analysis of the common factors reveals that they are correlated with a number of observable

variables, including various iTraxx credit risk indices, the US equity market excess return and

the US equity variance risk premium. This is consistent with Longstaff et al. (2011), who note

that sovereign CDS spreads exhibit strong correlations with US stock market returns and their

implied volatility.

Our first finding is that the topology of the credit risk network varies substantially with

the shock size over the full sample. We find that the effects of small idiosyncratic credit risk

shocks in the central 40% of the conditional distribution are predominantly localized. Bilateral

spillovers account for roughly 40% of the five-days-ahead forecast error variance (FEV) over this

range. However, this is not true of large shocks. Large adverse shocks in the right tail of the

conditional distribution spread forcefully through the financial system, with bilateral spillovers

accounting for 79.36% and 91.77% of FEV at the ninety-fifth and ninety-ninth conditional quan-

tiles, respectively. This finding accords with the existing evidence of increased financial market

comovements under adverse conditions (e.g. Ang and Bekaert, 2002). Interestingly, we also find

evidence that large beneficial shocks propagate strongly, with bilateral spillovers accounting for

77.17% and 88.18% of FEV at the fifth and first conditional quantiles, respectively. The finding

that large shocks in both tails spill-over strongly is consistent with the existing literature on

good and bad contagion (e.g. Jorion and Zhang, 2007; Londono, 2019). Crucially, when the

3A CDS contract operates like an insurance agreement negotiated between two parties, for example, one of
whom holds a risky bond and the other of whom agrees to absorb losses arising should the bond issuer suffer
a designated credit event, such as default. The CDS spread defines the price that the bondholder must pay
to the protection seller. Blanco, Brennan and Marsh (2005) and Gyntelberg, Hördahl, Ters and Urban (2013)
show that the CDS market is the leading forum for credit risk price discovery, providing more timely signals of
changes in the credit risk environment than bond yield spreads. In addition, CDS spreads may offer a cleaner
measure of credit risk than bond yield spreads, because the latter are directly affected by inflation. Losses
associated with single name CDS contracts played an important role in the global financial crisis and sovereign
CDS contracts were widely used for hedging and speculation during the European debt crisis. Although the CDS
market has subsequently evolved due to regulation and has seen a notable reduction in outstanding notional value
associated with the rise of index hedging strategies (Aldasoro and Ehlers, 2018), it remains an important forum
for determining the price of credit risk.
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model is estimated at the conditional mean by OLS, this quantile variation is averaged out and

bilateral spillovers are found to account for 56.57% of FEV. This result arises because OLS is

equivalent to an equally-weighted average of quantile regression estimators over the entire condi-

tional distribution. This cautions against the use of network models estimated using conditional

mean estimators to analyze the spillovers associated with extreme events.

Our second result is that, over the full sample, the adverse feedback effect documented by

Acharya et al. (2014) and Farhi and Tirole (2018) manifests as a marked intensification of the

bidirectional feedback between each sovereign and its domestic financial sector in the presence

of large adverse shocks in the right tail of the conditional distribution. However, we once again

find that this behavior is not unique to adverse shocks — there is a similar intensification of

bidirectional feedback in the left tail. This leads us to conclude that the adverse feedback loop

that generates a vicious cycle by amplifying bad news is counterbalanced to some extent by

the existence of a virtuous feedback loop that can rapidly reduce credit spreads when beneficial

shocks occur.

Our final result is derived from rolling sample estimation of our model. In this way, we

demonstrate that the dependence structure that exists among the cross-section of sovereigns

and financial institutions displays marked time-variation. The time-variation of bilateral credit

risk spillovers has already been demonstrated at the conditional mean (e.g. Greenwood-Nimmo

et al., 2019). However, we are the first to demonstrate that the time-variation in the net-

work topology observed in the tails of the conditional distribution does not closely resemble

the time-variation observed at either the conditional mean or median. This is an important

finding, given the relevance of tail-dependence for financial supervision and risk management

(e.g. Betz, Hautsch, Peltonen and Schienle, 2016) and it suggests that the implications derived

from network models evaluated by conventional conditional mean estimators cannot necessar-

ily be generalized to the tails. We show that major adverse events are associated with an

increase in average connectedness but that their effects on the tails differs. Specifically, we

find that right-tail-dependence increases markedly but that left-tail-dependence often does not

respond strongly and may even decrease. By contrast, stabilizing policy interventions that re-

duce average connectedness tend to increase left-tail-dependence but may not exert a strong

influence on right-tail-dependence. We suggest that the differential behavior of right- and left-

tail-dependence may arise from the aggregate actions of market participants if the information

revealed by a major event in either tail causes a non-trivial proportion of market participants
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to focus disproportionately on further events occurring in that tail while paying less attention

to events in the other tail.

We develop a new measure of relative tail-dependence denoted RTD, which draws attention

to the differential behavior of left- and right-tail-dependence. As a tail-based aggregate measure

of financial fragility, RTD bears a non-trivial resemblance to the CATFIN index proposed by

Allen, Bali and Tang (2012). CATFIN is an aggregate downside risk measure obtained as

an equally-weighted average of the 99% value-at-risk (VaR) estimated in three different ways.

However, unlike CATFIN, RTD is a not a downside risk measure but a relative measure that

exploits information from both tails of the conditional distribution. In practice, RTD tracks

CATFIN relatively closely over our sample period, with the two sharing a correlation of 0.42

and exhibiting similar turning points. Given that RTD captures a related but subtly different

phenomenon than CATFIN, we argue that the two are complementary and provide policymakers

and practitioners alike with a valuable indication of aggregate changes in systemic risk.

Aside from the work on empirical network modeling, we wish to highlight four strands of

literature to which our paper is related. First, our use of quantile regression to study extreme

events closely resembles a branch of the systemic risk literature that is well-represented by

Betz et al. (2016) and Caporin et al. (2018), both of which use quantile regression to study

the propagation of adverse shocks through the financial markets. Second, our concept of time-

varying quantile connectedness is complementary to the extreme value theory (EVT) literature

on time-varying tail dependence (e.g. McNeil and Frey, 2000; Bali and Weinbaum, 2007), with

each technique offering particular benefits. An appealing feature of the EVT approach is that

it offers a parametric form for the tail of a distribution, thereby providing a basis for extrapo-

lation beyond the range of the data. However, the theory underlying the application of EVT

methods to multivariate systems with cross-section and serial dependence is yet to be ade-

quately developed. Our quantile connectedness framework enjoys an advantage in this respect,

as it can accommodate both cross-section and serial dependence through the factor structure.

Third, our work has a natural link to VaR and associated concepts, such as CoVaR (Adrian

and Brunnermeier, 2016) and CATFIN (Allen et al., 2012). VaR is widely used by investors

to measure the potential loss that they may endure on their positions due to adverse shocks

over a defined horizon and at a predetermined confidence level. To illustrate the conceptual

link, assume that investors maintain sufficient capital reserves to cover the VaR at the 95%

confidence level. In this case, losses up to the VaR can be absorbed within the capital buffer.
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However, the probability of an adverse shock sufficiently severe to generate a loss in excess of

the VaR is 5%. Investors may find the losses caused by such large shocks untenable, raising the

possibility of default and insolvency. As a result, the transmission of risk among counterparties

may be considerably stronger in the case of large shocks than small shocks. This offers a partial

explanation of the quantile-variation that we document in the topology of the credit risk net-

work. Finally, the notion that the topology of a network may vary with the size of the shocks

affecting the system is related to Acemoglu, Ozdaglar and Tahbaz-Salehi’s (2015) insight that

a phase change may occur, whereby dense financial networks are resilient to small shocks but

can be vulnerable to cascading failures in the event of a large adverse shock.

This paper proceeds as follows. In Section 2, we outline the quantile factor VAR model and

derive the associated FEVD, which is then used to construct network statistics. We discuss the

construction and properties of our dataset in Section 3, before presenting our estimation results

in Section 4. We conclude in Section 5. Further information regarding our dataset and a brief

synopsis of two substantial robustness exercises are provided in four appendices.

2 Quantile Connectedness

In this section, we propose a new framework for the graphical analysis of VAR models estimated

at a given conditional quantile, τ ∈ (0, 1). To this end, we develop a framework for the equation-

by-equation estimation of a VAR model by quantile regression, where a factor structure is used

to distinguish between the common and idiosyncratic components of the error process. We then

derive the associated h-steps-ahead FEVD, which forms the basis for network analysis in the

tradition of Diebold and Yilmaz (2009, 2014).

2.1 The Quantile VAR Model

Consider a multi-country environment, where countries are indexed by i = 1, 2, . . . , N and time

periods are indexed by t = 1, 2, . . . T . Let yit = (∆sit,∆fit)
′, where sit and fit denote the

sovereign and financial sector CDS spreads for the ith country, which will be discussed in detail

below. Moreover, let the m× 1 vector yt = (y′1t,y
′
2t, . . . ,y

′
Nt)
′ collect the credit spreads for all

N countries in the system, where m = 2N . Implementation of the Diebold–Yilmaz technique

requires the specification of a model capturing the dynamics of yt. To this end, consider the

following VAR model, which expresses the sovereign and financial sector CDS spreads for the

ith country as a function of the lagged sovereign and financial sector CDS spreads for every
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country in the system:

yit = µi +

p∑
j=1

Φijyt−j + eit, (1)

where µi
2×1

is a vector of intercepts, Φij
2×m

is the parameter matrix at the jth lag and the regression

residuals eit
2×1
∼ (0,Σi), where Σi

2×2
is a positive definite covariance matrix. By stacking (1) for

all countries in the system, we obtain the following VAR system for yt:

yt = µ+

p∑
j=1

Φjyt−j + et, (2)

where µ
m×1

= (µ′1,µ
′
2, . . . ,µ

′
N )′ is a vector of intercepts, Φj

m×m
=
(
Φ′1j ,Φ

′
2j , . . . ,Φ

′
Nj

)′
is the jth

autoregressive parameter matrix and the residual process et
m×1

= (e′1t, e
′
2t, . . . , e

′
Nt)
′ ∼ (0,Σ),

where Σ
m×m

is positive definite.

The order of the VAR model, p, can be consistently estimated using the Schwarz Informa-

tion Criterion. Nonetheless, the residuals will typically exhibit contemporaneous cross-section

correlation and so Σ is likely to be non-diagonal.4 Conditional mean estimation of unrestricted

VARs of this type is straightforward, and can be achieved on an equation-by-equation basis

using OLS. Conditional quantile estimation is more challenging, however. Given that each

equation in (2) shares a common set of right hand side variables, the estimation problem has

a seemingly unrelated regressions (SUR) structure that has led several authors to pursue an

equation-by-equation quantile regression estimation strategy (e.g. Cecchetti and Li, 2008; Lin-

nemann and Winkler, 2016; Zhu et al., 2016). However, from equation (5) in Zellner and Ando

(2010), it is clear that this approach sets the off-diagonal elements of the covariance matrix

of et to zero, which amounts to the assumption of cross-section independence. The failure to

adequately account for cross-section correlation among the regression residuals is likely to bias

the resulting parameter estimates.

We address this issue by modeling the cross-section correlation in the residuals as the result

of an f × 1 vector of common factors. In this way, we are able to separate the systematic and

idiosyncratic components of the error process, thereby aligning our approach with the large

literature on the distinction between systematic and idiosyncratic risks (see Feldhütter and

Nielsen, 2012, for an example focusing on credit spreads). Furthermore, where one wishes to

4When using VARs for macroeconomic analysis, it is common to transform the reduced form VAR (2) into a
structural counterpart with uncorrelated disturbance terms to which one can attach a structural interpretation.
This is typically achieved either by imposing Wold-causality as in Sims (1986), short-run exclusion restrictions
as in Blanchard and Watson (1986) or long-run restrictions as in Blanchard and Quah (1989). However, the
application of these traditional methods becomes increasingly challenging as the dimension of the model increases.
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analyze spillover effects between variables, it is important to focus on the idiosyncratic variation

having purged any systematic variation, or else one is likely to obtain a biased estimate of the

spillover intensity (see Claeys and Vaš́ıček, 2014, for a related discussion). Formally, we assume

that:

eit = λ′if t + vit, (3)

and, by extension, that:

et = Λf t + vt, (4)

where f t
f×1

is a vector of common factors, Λ
m×f

=
(
λ′1,λ

′
2, . . . ,λ

′
N

)′
is a matrix of heterogeneous

factor loadings and vt
m×1

= (v′1t,v
′
2t, . . . ,v

′
Nt)
′ ∼ (0,Ω) contains the idiosyncratic components

of et. Combining (2) and (4) yields the following factor VAR model:

yt = µ+

p∑
j=1

Φjyt−j + Λf t + vt, (5)

where f t is a vector of unobserved common factors and Λ denotes the corresponding factor

loadings. Estimation of and inference on models of this type at the conditional mean has been

studied by Bai, Li and Lu (2016). In this paper, we are primarily interested in estimating the

factor VAR model by quantile regression. The quantile function for yit at the τ -th conditional

quantile is:

Qτ (yit|Ft−1) = µi,(τ) +

p∑
j=1

φ′i,j,(τ)yt−j + λi,(τ)f t,(τ), (6)

where Ft−1 denotes the information set available at time t − 1, µi,(τ) is the i-th element of

µ(τ) = (µ1,(τ), ..., µm,(τ))
′, φi,j(τ) and λi,(τ) are the i-th rows of Φj(τ) and Λ(τ), respectively,

and f t,(τ) is the vector of unobserved common factors at the τ -th conditional quantile, with

dimension f(τ). We follow the precedent of Koenker and Xiao (2006) and assume that the

optimal lag order for the conditional mean model remains valid at every conditional quantile.

The unknown parameters to be estimated are µ(τ), Φ1(τ), ...,Φp(τ), F (τ) and Λ(τ), where

F (τ) = (f1,(τ), . . . ,fT,(τ))
′. For a fixed value of τ and a fixed number of common factors, these

unknown parameters can be estimated as follows:

min
µ(τ),Φ1(τ),...,Φp(τ),F (τ),Λ(τ)

1

mT

m∑
i=1

T∑
t=1

ξτ

yit − µi,(τ) −
p∑
j=1

φ′i,j,(τ)yt−j − λi,(τ)f t,(τ)

 , (7)

where ξτ (z) is the check loss function defined as ξτ (z) = z(τ−1[z≤0]) as in Koenker and Hallock
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(2001). Ando and Bai (2020) establish the consistency and asymptotic normality of the resulting

parameter estimates under mild regularity conditions.

For identification purposes, normalization restrictions are imposed on F (τ) and Λ(τ). Follow-

ing Bai and Ng (2013), we use the restrictions F ′(τ)F (τ)/T = If(τ) and Λ′(τ) = (Λ′1,(τ),Λ
′
2,(τ))

′,

with Λ1,(τ) being an invertible lower triangular matrix.5 Following Ando and Bai (2020), the

number of common factors can be selected by minimizing the following information criterion:

min
f(τ)

[
log

 1

mT

m∑
i=1

T∑
t=1

ξτ

yit − µ̂i,(τ) −
p∑
j=1

φ̂
′
i,j,(τ)yt−j − λ̂i,(τ)f̂ t,(τ)


+ f(τ) ×

(
m+ T

mT

)
log

(
mT

m+ T

)]
(8)

where µ̂i,(τ), φ̂i,j,(τ), λ̂i,(τ) and f̂ t,(τ) are the estimated parameters of (7) for a given number of

factors.

2.2 Quantile Forecast Error Variance Decomposition

The functional form of the factor VAR model (5) is identical to a VARX(p, 0) model — that is,

a VAR model with p lags of a set of endogenous variables augmented with the contemporaneous

values of a set of exogenous variables. Two approaches to innovation accounting with VARX

models have been pursued in the literature: (i) to conduct innovation accounting by conditioning

on the values of the exogenous variables; and (ii) to augment the VARX specification with

an auxiliary marginal model for the exogenous variables and then to undertake innovation

accounting with respect to the augmented system. Given that our interest is in modeling the

propagation of the idiosyncratic shocks as opposed to the effects of systemwide shocks, we pursue

the former option. In addition, as the computation of the FEVD for VARX models evaluated

at the conditional mean is well established (e.g. Garratt, Lee, Pesaran and Shin, 2006), we limit

our attention to the quantile factor VAR (QFVAR) case.

We start with the following QFVAR model:

yt =

p∑
j=1

Φj(τ)yt−j + Λ∗(τ)f
∗
t(τ) + vt(τ), (9)

where Λ∗(τ) =
(
µ(τ),Λ(τ)

)
, f∗t(τ) =

(
1,f ′t(τ)

)′
. The Wold representation of (9) can be written

5The reader is referred to Bai and Ng (2002, 2013) for details of the principal component estimator for the
conditional mean model.
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as:

Qτ (yt|Ft−1) =

∞∑
j=0

Bj(τ)vt−j(τ) +

∞∑
j=0

Cj(τ)f
∗
t−j(τ), (10)

where Bj(τ) = Φ1(τ)Bj−1(τ) +Φ2(τ)Bj−2(τ) + . . . for j = 1, 2, . . . with B0(τ) = Im and Bj(τ) = 0

for ` < 0 and where Cj(τ) = Bj(τ)Λ
∗
(τ).

Following the precedent established by Cecchetti and Li (2008, p. 12) in the context of

multivariate forecasting with dynamic quantile regressions, we assume that the quantile index

is fixed throughout the forecast horizon.6 Under this assumption, (10) implies that the vector

of forecast errors associated with the prediction of yt+h conditional on the information available

at time t− 1 and on the common factors is given by:

ut+h(τ) =

h∑
`=0

B`(τ)vt+h−`(τ),

and the total forecast error variance matrix is:

Cov
(
ut+h(τ)

)
=

h∑
`=0

B`(τ)Ω(τ)B
′
`(τ). (11)

Now, consider the covariance matrix of the forecast errors associated with predicting yt+h given

values of the shocks to the ith equation, vit(τ), vi,t+1(τ), . . . , vi,t+h(τ):

u
(i)
t+h(τ) =

h∑
`=0

B`(τ)

(
vt+h−`(τ) − E

(
vt+h−`(τ)|vi,t+h−`(τ)

))
. (12)

Now, we have:

E
(
vt+h−`(τ)|vi,t+h−`(τ)

)
=
(
ω−1
ii,(τ)Ω(τ)ei

)
vi,t+h−`(τ)

= eivi,t+h−`(τ), (13)

where ei is an m× 1 selection vector with its ith element set to 1 and all other elements set to

zero and where ω−1
ii,(τ)Ω(τ)ei = ei. Substituting (13) into (12), we obtain:

u
(i)
t+h(τ) =

h∑
`=0

B`(τ)

(
vt+h−`(τ) −

(
ω−1
ii,(τ)Ω(τ)ei

)
vi,t+h−`(τ)

)
, (14)

6In principle, one could allow for the quantile index to vary across the forecast horizon, although it is not
clear how one could systematically determine the time-path of the quantile index from one horizon to the next.
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and taking the unconditional expectation yields:

Cov
(
u

(i)
t+h(τ)

)
=

h∑
`=0

B`(τ)Ω(τ)B
′
`(τ) − ω

−1
ii,(τ)

h∑
`=0

B`(τ)Ω(τ)eie
′
iΩ(τ)B

′
`(τ). (15)

Therefore, the decline in the h-steps-ahead forecast error variance of yt obtained as a result of

conditioning on future shocks to the ith equation is given by:

∆ih(τ) = Cov
(
ut+h(τ) − u

(i)
t+h(τ)

)
= ω−1

ii,(τ)

h∑
`=0

B`(τ)Ω(τ)eie
′
iΩ(τ)B

′
`(τ). (16)

Scaling the jth diagonal element of ∆ih(τ) — that is, e′j∆ih(τ)ej — by the h-steps-ahead forecast

error variance of the jth variable in yt, we obtain:

FEV D
(
yjt;uit(τ), h

)
=
ω−1
ii,(τ)

∑h
`=0 e′j

(
B`(τ)Ω(τ)eie

′
iΩ(τ)B

′
`(τ)

)
ej∑h

`=0 e′jB`(τ)Ω(τ)B
′
`(τ)ej

=
ω−1
ii,(τ)

∑h
`=0

(
e′jB`(τ)Ω(τ)ei

)2

∑h
`=0 e′jB`(τ)Ω(τ)B

′
`(τ)ej

, (17)

for ` = 0, 1, . . . , h and i, j = 1, . . . ,m, where ej selects the predicted variable and ei selects

the source innovation. Consequently, the generalized forecast error variance decomposition

FEV D
(
yjt;uit(τ), h

)
measures the proportion of the h-steps-ahead forecast error variance of

the jth variable in yt accounted for by the ith idiosyncratic innovation, vit(τ).

2.3 The Diebold–Yilmaz Approach to Network Analysis

Based on our definition of the quantile FEVD in (17), it is straightforward to generalize the

Diebold–Yilmaz framework for conditional mean network analysis to the conditional quantile

setting. The h-steps-ahead m × m spillover matrix for yt evaluated at the τth conditional

quantile may be written as follows:

A(h)
(τ) =



θ
(h)
1←1,(τ) θ

(h)
1←2,(τ) · · · θ

(h)
1←m,(τ)

θ
(h)
2←1,(τ) θ

(h)
2←2,(τ) · · · θ

(h)
2←m,(τ)

...
...

. . .
...

θ
(h)
m←1,(τ) θ

(h)
m←2,(τ) · · · θ

(h)
m←m,(τ)


, (18)
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where we apply the row-sum normalization developed by Diebold and Yilmaz (2014) and define

θ
(h)
j←i,(τ) = FEV D

(
yjt;uit(τ), h

)
/
∑m

i=1 FEV D
(
yjt;uit(τ), h

)
to ensure that each row of A(h)

(τ)

sums to 1 even in the presence of residual cross-correlation. θ
(h)
j←i,(τ) measures the spillover

of idiosyncratic shocks affecting variable i onto variable j. Based on A(h)
(τ), we may define the

following summary measures of the network topology at the τth conditional quantile:

O
(h)
i←i,(τ) = θ

(h)
i←i,(τ)

F
(h)
i←•,(τ) =

m∑
j=1,j 6=i

θ
(h)
i←j,(τ)

T
(h)
•←i,(τ) =

m∑
j=1,j 6=i

θ
(h)
j←i,(τ)

N
(h)
i←i,(τ) = T

(h)
•←i,(τ) − F

(h)
i←•,(τ). (19)

The proportion of the h-steps-ahead FEV of the i-th variable that can be attributed to shocks to

variable i itself is known as the own variance share, O
(h)
i←i,(τ). The from (or in) degree of variable

i, F
(h)
i←•,(τ), measures the total spillover from the system to variable i. As such, it measures the

dependence of variable i on external conditions. Likewise, the to (or out) degree of variable i,

T
(h)
•←i,(τ), captures the total spillover from variable i to the system, which measures the influence

of the ith node in the network. N
(h)
i←i,(τ) is therefore a natural measure of the net directional

connectedness of variable i. Note that O
(h)
i←i,(τ) + F

(h)
i←•,(τ) = 1, i = 1, 2, . . . ,m by construction

but that T
(h)
•←i,(τ) can be greater than or less than one. Finally, the spillover index evaluated at

the τth conditional quantile is given by:

S
(h)
(τ) = m−1

m∑
i=1

F
(h)
i←•,(τ). (20)

3 Credit Spread Data

Our model includes the following N = 17 countries: Austria†, Australia, Belgium†, China,

France†, Germany†, Ireland†, Italy†, Japan, the Netherlands†, Norway∗, Portugal†, Russia,

Spain†, Sweden∗, the UK∗ and the US. Eurozone members are marked with a dagger symbol,

while European countries that do not use the Euro are marked with an asterisk. Our dataset

is sampled at daily frequency over the period 03-Jan-2006 to 29-Dec-2017. For each country,

we include two country-specific credit spreads, one for the sovereign and one for the financial
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sector. Unfortunately, despite the fact that it suffered a severe debt crisis during our sample

period that raised concerns over the contagion of sovereign credit risk, we are unable to include

Greece in our sample, because there is a period of more than a year in 2012–3 where data on

the Greek sovereign CDS spread is unavailable.7 However, given the severity of the Greek debt

crisis and its potential to generate contagion, we re-estimate an enlarged version of our model

including Greece over a shorter sample, ending on February 14, 2012. Appendix A contains a

concise overview of the results of this exercise and demonstrates that our key findings are not

unduly influenced by the forced omission of Greece.

3.1 Sovereign Credit Risk

We measure the change in sovereign credit risk using the first difference of the five-year sovereign

CDS spread, expressed in basis points. Following the CDS market conventions outlined by Bai

and Wei (2017), we work with US dollar denominated CDS in all cases except for the US,

where we employ Euro denominated CDS. In addition, we use CDS contracts with a complete

restructuring clause for every sovereign except Australia, where we use CDS contracts with a

modified restructuring clause as the data is more complete.

3.2 Financial Sector Credit Risk

We track changes in financial sector credit risk in the ith country using the first difference of the

synthetic sector-wide CDS spreads constructed by Greenwood-Nimmo et al. (2019), which we

extend from their original end point of 27-Jul-2015 until 29-Dec-2017. Taking inspiration from

the approach of Acharya et al. (2014), Greenwood-Nimmo et al. (2019) construct a synthetic

credit spread for the ith country as an equally-weighted average of the CDS spreads for firms

that satisfy a variety of selection criteria. Among these criteria, firms must: (i) have USD

denominated five-year CDS spread data in the Markit database that conforms to the corporate

CDS market conventions documented by Bai and Wei (2017); (ii) be classified by Markit as

financials; (iii) be classified as either banking or insurance firms in Bureau van Dijk’s Osiris

database; (iv) be identified by Markit as operating in the ith country; and (v) hold assets of

USD10bn or more. The large majority of the firms included in the indices are publicly traded,

although there are two notable exceptions: (i) in Austria, Raiffeisen Zentralbank is included in

7This gap in the data reflects the fact that Greek sovereign CDS contracts ceased trading on a running spread
in favor of a points upfront convention in 2012 due to the expectation of an imminent credit event. In such an
environment, protection sellers benefit from a points upfront arrangement, because it eliminates the possibility
that they will have to pay out before they have received any income from the contract.
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the sample, to ensure that the index is not based on data for a single firm; and (ii) in China,

data for four large state-sponsored banks is used, as there is not enough CDS data for privately

held Chinese banks to construct a meaningful index. Similarly, rather than simply dropping

failed banks from the sample, Greenwood-Nimmo et al. (2019) include CDS data for several

institutions that became state-owned as a result of the crisis, such as the Irish Bank Resolution

Corporation.8

The financial sector CDS spreads that we use are derived from data on 199 financial insti-

tutions, a sample that provides good coverage of the global financial system. A full list of the

financial institutions included in the synthetic financial sector credit spread for each country

may be found in Appendix C. This list includes 28 of the 30 Globally Systemically Important

Banks (G-SIBs) and 8 of the 9 Globally Systemically Important Insurers (G-SIIs) identified by

the Financial Stability Board as of November 20179. Of the three omitted G-SIBs and G-SIIs,

one is domiciled in Canada and so lies is outside of the scope of our analysis, while the remain-

ing two (China Construction Bank and Ping An Insurance Group Ltd.) are omitted due to a

lack of data. Our list also includes the majority of Domestically Systemically Important Banks

(D-SIBs) domiciled in our sample countries and offers comparable cross-sectional coverage to

leading empirical studies of the connectedness of the financial system (e.g Demirer et al., 2018).

3.3 Properties of the Dataset

Table 1 provides elementary summary statistics for the dataset. Preliminary analysis of the

autocorrelation structure in the data indicates that each series is stationary with relatively

limited serial correlation (results are available on request). The countries in our sample form

two natural groups, one composed of Ireland, Italy, Portugal, Russia and Spain, all of which

display high and volatile credit spreads, and the other composed of the remaining countries in

8For a detailed discussion of the construction and properties of the financial sector CDS spreads, the reader
is referred to Greenwood-Nimmo et al. (2019) and, in particular, to their Data Supplement. To ensure that our
financial sector credit spreads are identical to those developed by Greenwood-Nimmo et al. (2019) up to the
point at which their sample ends (27-Jul-2015), we retain their original selection criteria precisely. To construct
data beyond this point, we take the list of financial institutions for each country as of 27-Jul-2015 as given and
construct the financial sector credit spread for the remainder of the sample as a simple equally-weighted average.
The use of an equally-weighted average of single name CDS spreads as opposed to an asset-weighted average, for
example, is consistent with the seminal study of Acharya et al. (2014). Furthermore, Greenwood-Nimmo et al.
(2019) note that the choice of weighting scheme does not exert a strong influence over the resulting index due
to the strong positive correlation among the CDS spreads for the set of financial institutions in each country. In
fact, in their sample, they report that the correlation between the equally-weighted financial sector credit spreads
and an alternative definition based on fixed asset weights is approximately 0.97 on average across countries.

9See https://www.fsb.org/wp-content/uploads/P211117-1.pdf for the list of G-SIBs and https://www.

fsb.org/wp-content/uploads/2016-list-of-global-systemically-important-insurers-G-SIIs.pdf for
the list of G-SIIs. Note that the Financial Stability Board did not update the G-SII list in 2017, so the 2016 list
remained current at the end of our sample.
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our sample, which display considerably lower and less volatile credit spreads. For any given

country, the sovereign CDS spread is typically lower and less volatile than the financial sector

CDS spread. In general, sovereign credit spreads should act as a lower bound on financial

sector credit spreads, not least because of the implicit guarantee that the sovereign extends to

the financial sector. However, due to their deep sovereign crises, this is not the case in Italy or

Spain.

— Insert Table 1 here —

The credit spreads for all countries display pronounced excess kurtosis, reflecting the severity

of the shocks affecting global financial markets over our sample period. The evidence of heavy

tails in the data suggests that estimation by quantile regression may be preferable to the use

of simple conditional mean estimators, not just because it can illuminate tail relationships, but

also because it is more robust in the presence of extreme observations.

4 Estimation Results

Before we proceed, we must first determine appropriate values for both the QFVAR lag order

and the forecast horizon used in the construction of our connectedness measures. We follow the

precedent of Koenker and Xiao (2006) and set the lag order at every conditional quantile equal

to the optimal lag order that is selected at the conditional mean by minimization of the Schwarz

Information Criterion. This results in a first-order model, which we verify is dynamically stable

— the largest eigenvalue of the companion matrix is just 0.34.10 Unfortunately, there is no

similar rule to select an optimal forecast horizon for connectedness analysis. For this reason,

we compare the properties of the adjacency matrix evaluated at the conditional mean for three

different forecast horizons, h ∈ {3, 5, 10} trading days. We select relatively short horizons in

light of the fact that the FEVDs obtained from a first order VAR model estimated on data

with a low degree of persistence are likely to rapidly converge to their long-run values. This

observation is borne out by our finding that the network statistics are largely invariant to the

choice of horizon within this range, with the spillover indices obtained under h = 3, h = 5 and

h = 10 being identical to the first decimal place (an elementwise comparison of the spillover

matrices is available on request). A similar degree of invariance with respect to the forecast

10In practice, allowing for higher lag orders does not change our results substantially – the distributions of
the pairwise spillover effects obtained from the factor VAR(1), VAR(2) and VAR(3) models are all very similar.
Further details are available from the authors on request.
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horizon has been documented by Greenwood-Nimmo et al. (2016) in the context of a stationary

first order VAR model applied to the analysis of risk spillovers among the G10 currencies. We

therefore adopt a forecast horizon of five trading days without loss of generality, although we

shall return to the issue of horizon selection in the rolling sample context in Section 4.3.

4.1 Interpretation of the Factors

We allow for up to 15 common factors at the conditional mean and at each conditional quantile.

Moreover, to achieve the greatest possible flexibility, we allow the number of factors to vary

between quantiles, with the optimal number being selected in each case by minimization of the

information criterion introduced by Ando and Bai (2020). The number of factors chosen in each

case is reported in Figure 1. At the conditional mean, ten factors are selected. Interestingly,

there are only 9/99 conditional quantiles where more factors are selected and they all lie far

into the far left and right tails of the conditional distribution. In the center of the conditional

distribution, either five or six common factors are typically selected. This suggests that more

sources of common influence are relevant when large shocks affect the system than when smaller

shocks prevail.

— Insert Figure 1 here —

In practice, a finite number of common factors is unlikely to completely eliminate the cross-

section correlation among the regression residuals but it should attenuate it sufficiently to

allow us to proceed on the basis of approximate cross-section independence. The adequacy of

our factor structure is ultimately an empirical question. To evaluate the degree to which our

factor structure is able to account for the cross-section correlation among the residuals, it is

necessary to compare two models, one with a factor structure and one without. This would

not be a straightforward undertaking for the QFVAR model, as the presence of non-trivial

cross-section correlations among the regression residuals would frustrate efforts to properly

define the conditional quantiles. Therefore, we limit our attention to the conditional mean

case and compare the residual cross-correlations observed from a simple VAR(1) model with no

factors and from our factor VAR(1) model. Figure 2(a) reveals considerable correlation among

the residuals of the simple VAR(1) model, with more than half of the pairwise correlation

coefficients exceeding 0.25 in absolute value and almost one-quarter exceeding 0.4. Figure 2(b)

shows that the factor structure removes a great deal of this correlation. In the factor VAR(1)
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model, 91.6% of the pairwise correlations are weaker than 0.25 in absolute value and 97.9% are

weaker than 0.4. This strongly supports the validity of our factors and suggests that it is a

reasonable simplification to treat the error terms of the factor VAR(1) model as cross-sectionally

uncorrelated.11

— Insert Figure 2 here —

The factor loadings (available on request) indicate that the unobserved common factors

capture three main phenomena. First, there are factors that load on all credit spreads to

varying degrees and that capture global variations in aggregate credit risk. Next, there are

factors that load heavily on either financial sector or sovereign credit spreads. These factors

appear to capture financial-sector-specific and sovereign-specific credit risk. Finally, there are

factors that capture the impact of sovereign instability. For example, several of the factors load

heavily on subsets of the sovereign and financial sector credit risk measures for Ireland, Italy,

Portugal, Spain and Russia. These are the countries in our sample that have experienced the

most profound sovereign instability and that have raised the greatest concerns over sovereign

credit risk contagion.

It is natural to ask whether the unobserved common factors that we obtain are related to

any observable macroeconomic or financial variables. To address this question, we compute the

correlation between the unobserved factors that we obtain at the conditional mean and median

and at the 5th and 95th conditional quantiles against a list of observed macroeconomic and

financial variables that is inspired by those considered by Longstaff et al. (2011) in their analysis

of the common components in sovereign credit spreads. First, we use the three Fama-French

factors and the 5-year US constant maturity treasury (CMT) yield to proxy for global economic

and financial conditions. Next, we use the TED spread, the Euribor-DeTBill spread, the US

equity variance risk premium, the 5-year US Treasury term premium and the US investment

grade (IG) and high yield (HY) bond spreads to capture variations in funding liquidity and

investor risk appetite. We also include an array of five iTraxx credit risk indices to capture

11The cross-section dependence (CD) test statistic of Pesaran (2004, 2015) is increasingly being applied to
the residuals of regression models for use as an ex-post diagnostic tool. In practice, the residual-based CD test
has been shown to often reject the null hypothesis of no remaining cross-section dependence in the case of the
Common Correlated Effects (CCE) estimator (e.g. Mastromarco, Serlenga and Shin, 2016). Juodis and Reese
(2018) show that the application of the CD test to regression residuals obtained from two-way fixed effects models
or interactive effects models introduces a bias term of order

√
T , which may lead to an erroneous rejection of the

null hypothesis. Nonetheless, the CD test may be used as a model-selection tool, with a reduction in the absolute
value of the CD test statistic typically being interpreted as an indication of an improved model specification.
Used in this manner, the reduction in the value of the CD test statistic from 393.09 for the VAR(1) model
with no factors to 9.924 for our factor VAR(1) model suggests that our factor structure leads to a substantial
improvement in the specification of the model.
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pan-European credit risk factors, as well as the daily log-return of the bilateral spot exchange

rate for each currency in our sample, in units of foreign currency per USD. Further details of

the construction of these variables and the relevant data sources may be found in Appendix D.

Figure 3 reveals that the strongest correlations between the unobserved factors obtained

at all conditional quantiles and the list of observed global variables arises in the case of the

iTraxx credit risk indices. This is perhaps unsurprising, as the iTraxx indices are designed to

capture different aspects of aggregate credit risk. Several of the unobserved factors are also

correlated with the market excess return and the equity variance risk premium, an observation

that accords with the results of Longstaff et al. (2011). However, it is important to note that

several of the unobserved factors are essentially uncorrelated with any of the global variables

that we identify. This highlights the value of using an unobserved factor approach, because these

sources of common variation do not appear to exhibit any obvious relationship to observable

global macroeconomic or financial conditions. Consequently, it may not be possible to capture

these factors in an observed factor framework.

— Insert Figure 3 here —

4.2 Conditional Mean vs. Conditional Quantiles

To establish a point of reference for the analysis that follows, we begin by comparing the

spillover index obtained from the model evaluated at the conditional mean with the values

obtained from the model evaluated at conditional quantiles τ = 0.1, 0.2, . . . , 0.99. This is an

important exercise, because if the results from network models evaluated at the conditional

mean are to be generalized across the conditional distribution — as is currently the norm in

the network literature, at least implicitly — then the results obtained at the conditional mean

and at each conditional quantile should be similar. However, there is reason to believe that the

results will differ non-trivially given the extreme credit spread movements recorded in several

countries during our sample. Such extreme observations can be naturally accommodated by

quantile regression but may compromise the reliability of a conditional mean estimator.

Our interpretation of the quantile regression estimates will be predicated on the distinction

between large adverse shocks and large beneficial shocks. To see this, note that in the right

tail of the conditional distribution, the observed changes in the vector of credit spreads are

large conditional on the values taken by the explanatory variables — that is, credit spreads are

increasing sharply due to the effect of large adverse shocks. By contrast, in the left tail, credit
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spreads are falling sharply conditional on the explanatory variables, due to the impact of large

beneficial shocks.

In light of the evidence that financial market comovements increase under adverse conditions

(e.g. Ang and Bekaert, 2002), it is natural to think that strong spillovers should be observed

in the right tail of the conditional distribution, where the largest adverse shocks affect the

system. Figure 4 reveals this to be the case: the spillover intensity in the upper quantiles is

approximately twice as strong as at the conditional median.12 Interestingly, however, the figure

also reveals that strong spillovers occur in the left tail of the conditional distribution, indicating

that spillover intensity increases with shock size for both adverse (right tail) and beneficial (left

tail) shocks. Over the central 40% of the conditional distribution, the spillover index fluctuates

at around 40%, indicating that the spillover of idiosyncratic credit risk shocks is dominated by

the effect of variable-specific shocks when small shocks affect the system. By comparison, when

large idiosyncratic shocks affect the system, bilateral spillovers play a profound role in shaping

the evolution of sovereign and financial sector credit risk. At the 1st, 5th, 10th, 90th, 95th and

99th conditional quantiles, the spillover index takes values of 88.18%, 77.17%, 72.20%, 73.34%,

79.36% and 91.77%, respectively. This profound increase in the spillover intensity in both tails

of the conditional distribution is consistent with the literature on good and bad contagion,

which emphasizes the transmission of unexpected events in both the left and right tail (e.g.

Jorion and Zhang, 2007; Londono, 2019).

— Insert Figure 4 here —

The large tail effects reported in Figure 4 are not simply due to a lack of effective observations

in the tails of the conditional distribution. For any given τ , quantile regression makes use of every

data point with non-zero weight and our sample of 3,129 trading days is sizable compared to the

dimensionality of the QFVAR system. Rather, our results are consistent with the hypothesis

that the informational content of large shocks is greater than that of small shocks, a point that

is well-established in the volatility literature (e.g. Dendramis, Kapetanios and Tzavalis, 2015).

When a large idiosyncratic shock affects a given sovereign or financial sector, investors gain

significant news that may lead to a reappraisal of the level of risk associated with other nodes

in the system. Consequently, the quantile variation documented in Figure 4 can be interpreted

like a regime-switching process, in which the transition between regimes of strongly beneficial

12See Figure A1 in Appendix A for a replication of Figure 4 based on the model including Greece estimated
on a sample ending in February 2012. The similarity between the two figures indicates that our results are robust
to the inclusion of Greece.
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news at one extreme and strongly adverse news at the other occurs relatively smoothly as the

shock size varies. It is interesting to note that the pattern of quantile-variation in the spillover

index is approximately symmetric over the full sample. However, this near-symmetry is not a

general feature of our results, because we will demonstrate below that it breaks down in rolling

sample analysis. We will return to this issue shortly.

To provide an impression of how the differences in aggregate spillover intensity surveyed

above are reflected in the network topology, Figures 5 and 6 provide schematic visualizations

of the network evaluated at the conditional mean and median and at the fifth and ninety-fifth

conditional quantiles. Sovereigns are represented by white nodes and financial sectors by shaded

nodes, while the strength of bilateral spillovers is indicated by the relative thickness of the edges.

The layout of all four graphs is identical and is determined using the force-directed algorithm

of Fruchterman and Reingold (1991) applied at the conditional mean.

— Insert Figures 5 & 6 here —

The network visualizations display some similar features, notably the centrality of the

crisis-hit peripheral European sovereigns and the disposition of many of the strongest bilat-

eral spillover effects. However, some important differences are easily seen, most notably that,

although the average bilateral spillover effect is stronger in the tails than at the conditional

mean or median (as reflected in the spillover index reported in Figure 4), the strongest individ-

ual pairwise spillover effects are actually observed at the conditional mean and at the center of

the conditional distribution. A similar finding is documented by Dungey, Harvey and Volkov

(2019), who demonstrate that a smaller number of strong bilateral linkages may be replaced by

a greater number of weaker bilateral linkages during times of stress, resulting in an increase in

the weighted completeness of the sovereign–financial credit risk network.

This feature of the network is most clearly demonstrated by inspection of the distribution

of bilateral spillover effects (henceforth the spillover density) at the conditional mean and at

selected quantiles. For convenience, we multiply each element of the adjacency matrix by 100, so

that the estimated spillover effects can be interpreted as percentages rather than proportions. In

principle, therefore, the spillover density has support [0, 100] although, in practice, the limiting

cases of 0 and 100 will only arise from restricted VAR models in which the parameter and

covariance matrices are sparse. Note that the spillover density of a network constructed by

the Diebold–Yilmaz method resembles a power law.13 This is a natural finding given that

13Power law behavior is pervasive in economic and financial networks — see Acemoglu, Carvalho, Ozdaglar
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the elements of the adjacency matrix are constructed from variance decompositions, which are

defined as ratios of quadratic forms. Consequently, for ease of interpretation, we report empirical

counter cumulative distribution functions (CCDFs) on a logarithmic scale in Figure 7.

— Insert Figure 7 here —

Figures 7(a) and 7(b) plot the spillover density at the conditional mean and median. Several

features are noteworthy. First, the right tails of both densities are similar, which indicates that

the strongest spillovers in the system are of comparable magnitude at the conditional mean and

median. The three strongest bilateral spillovers at the conditional mean are from the Belgian

financial sector to the Dutch financial sector (24.22%) and from the Russian financial sector

to the US and Spanish financial sectors, respectively (17.37% and 16.94%). By contrast, at

the conditional median, the three strongest pairwise spillovers are from the Spanish sovereign

to the Italian sovereign (22.75%), from the Italian sovereign to the Spanish sovereign (22.29%)

and from the Chinese sovereign to the Chinese financial sector (16.79%). The evidence of

strong spillovers involving the European periphery (including Belgium, which narrowly avoided

a sovereign debt crisis in 2011) reflects their central role in the European debt crisis.

The similarity in the right tail of the spillover density does not extend to other parts of

the density, however. The CCDF is less curved and displays considerably greater left tail mass

at the conditional median than at the conditional mean, implying a higher proportion of weak

spillovers at the median than at the mean. To appreciate the difference in the shape of the

two spillover densities more clearly, consider an arbitrary threshold — of the 1,122 bilateral

spillovers that we study, 568 are weaker than 1% at the conditional mean but this value rises

to 829 at the conditional median.

The shift toward a greater number of weaker spillovers in both tails of the conditional

distribution can be seen clearly in Figures 7(c)–(f). Note how the spillover density becomes

more peaked and the left and right tails both shrink as τ → 1 and τ → 0. This results

in a substantial increase in the average intensity of bilateral spillovers, implying that large

idiosyncratic credit risk shocks propagate considerably more widely than weaker shocks.

The granular differences across quantiles documented above accumulate substantially under

aggregation. Table 2 reports the to (weighted out-degree), from (weighted in-degree) and net

statistics for each node in the system at the conditional mean and at the fifth and ninety-fifth

conditional quantiles. In the large majority of cases, the conditional mean estimate of the

and Tahbaz-Salehi (2012) and Gabaix (2016), for example.
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weighted in- and out-degrees is smaller than the estimates obtained in either the left or the

right tails, often substantially so. Exceptions to this general rule occur mainly in the sovereigns

and financial sectors that experienced the most profound crises during our sample. The large

shocks experienced by each of these nodes may explain the high weight that is attached to them

under conditional mean estimation.

— Insert Table 2 here —

A natural question to ask at this stage is whether the ranking of nodes by centrality is

preserved across quantiles. That is, does the group of nodes that display the strongest outward

spillovers vary with the shock size? To this end, in Figure 8, we plot the weighted out-degree

rank of each node in the system, with the nodes ranked in decreasing order of influence. The

weighted out-degree captures the total strength of all outward spillovers originating from a given

node. As such, it represents a natural measure of the influence of a node.

— Insert Figure 8 here —

The figure is organized with the peripheral European countries (Ireland, Italy, Portugal and

Spain) on the top row, the other European countries on the next two rows and the non-European

countries on the final row. Several features of Figure 8 are noteworthy. First, for the majority of

European sovereigns — both core and peripheral — the weighted out-degree rank is relatively

high across most of the conditional distribution, with the German sovereign consistently ranked

close to the top. This reflects the integration of the European sovereign bond market over

much of our sample period and the unique role of German bonds as reference points within this

market. This also explains why Norway, which is the only European country in our sample that

is not a member of the European Union, achieves a relatively low sovereign out-degree rank at

most conditional quantiles. Interestingly, the peripheral European sovereigns that experienced

pronounced sovereign debt crises do not dominate the network. One plausible explanation of

this phenomenon is that the degree of spillover from the European periphery onto other global

sovereigns at the height of the sovereign debt crisis was limited by their decoupling from the

major global sovereign bond markets.

The Chinese sovereign and financial sector stand apart in our analysis. The Chinese

sovereign generates the strongest outward credit risk spillovers of any entity in the system

at the center of the conditional distribution and the Chinese financial sector also generates
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strong spillovers in this region. However, a substantial proportion of this spillover activity is

bilateral, reflecting the fact that the Chinese financial system is mostly populated by largely or

wholly state-sponsored institutions.

The outdegree rank of most sovereigns drops in the extreme left and right tails of the

conditional distribution. Two most notable exceptions to this rule are the Japanese and US

sovereigns, bonds issued by which are known to serve as safe haven assets in turbulent times.

The reason that the out-degree rank of most other sovereigns falls in the tails is that it is the

financial sector that plays a dominant role in the propagation of the largest shocks affecting

the system. Indeed, the large and potentially fragile French financial sector is among the top

sources of credit risk in our model across much of the upper and lower tails.

Figure 8 focuses on the multilateral spillover effects originating from each node in the system.

It does not convey information about the bilateral relationship between the credit risk of the ith

sovereign and the ith financial sector, which has received a great deal of attention in the recent

literature. It is these bilateral interactions that are central to the feedback loops described by

Acharya et al. (2014) and Farhi and Tirole (2018). In our model, the feedback between the ith

sovereign and the ith financial sector is captured by the sum of the bilateral spillovers between

the two nodes, T (5)
si↔fi,(τ) = T

(5)
si←fi,(τ) + T

(5)
fi←si,(τ). Figure 9 reports the quantile variation in

T (5)
si↔fi,(τ) for all 17 countries in our sample.

— Insert Figure 9 here —

Setting aside the special case of China, where the distinction between financial sector and

sovereign credit risk is obscured by state involvement in the financial sector, the feedback effect is

typically negligible throughout the center of the conditional distribution. However, the feedback

intensifies markedly in both tails, particularly in the European periphery and in Russia. This

is potentially an important result, because the adverse feedback loops described by Acharya et

al. (2014) and Farhi and Tirole (2018) focus on the feedback associated with adverse shocks, in

the right tail of the conditional distribution. Our results indicate that a virtuous feedback loop

may also act upon the arrival of large beneficial shocks. We conjecture that, in some cases, a

sovereign bailout may offer an example of such a beneficial shock. Suppose that the ith sovereign

receives a bailout, which reduces its credit risk. This increases the ability of the ith sovereign

to stabilize the ith financial sector, while simultaneously lowering the default risk associated

with domestic sovereign bonds held by the ith financial sector. This leads to a reduction in

financial sector credit risk, which lowers the probability that the sovereign will be required to
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intervene in the financial sector, further lowering sovereign risk and so on. This suggests that

the same feedback loop that promotes instability in the analysis of Acharya et al. (2014) can

act to restore stability if policymakers are able to generate large beneficial shocks.

4.3 Time-Varying Tail-Dependence

To this point, our analysis has focused exclusively on full-sample statistics. We have demon-

strated substantial quantile-variation in the topology of the credit risk network and have shown

that bilateral spillovers of idiosyncratic credit risk are considerably stronger in the tails than

they are at the conditional median. This implies that network models estimated at the condi-

tional mean are unlikely to adequately capture the full extent of dependence when large shocks

occur. As noted by Betz et al. (2016), it is tail-dependence that should be of the greatest inter-

est for surveillance and regulatory purposes. Unlike the existing literature on Diebold–Yilmaz

networks, by estimating our QFVAR model on a rolling sample basis, we can directly study

time-variation not only in average connectedness but also in the extent of left- and right-tail-

dependence.

Before we proceed, we must first choose an appropriate window length for our rolling samples.

Existing studies in the Diebold–Yilmaz network literature that work with daily data have used

a variety of window lengths, including 100 days (e.g. Diebold and Yilmaz, 2014), 150 days (e.g.

Demirer et al., 2018), 200 days (e.g. Baruńık et al., 2016) and 250 days (e.g. Greenwood-Nimmo

et al., 2016, 2019). In the absence of a firm precedent, we evaluate the sensitivity of our results

to a set of three candidate window lengths, w ∈ {250, 375, 500} trading days. We do not consider

shorter windows to ensure that we do not encounter small-sample issues in estimation. Small

sample problems are always a concern in rolling regression exercises and may be particularly

problematic in the context of quantile regressions, where they may lead to a lack of effective

observations in the tails of the conditional distribution. In addition, we take this opportunity

to further explore the robustness of our results to the choice of forecast horizon, h ∈ {3, 5, 10}.

Either of two approaches could be used to determine the relevant number of common factors

in each rolling sample. First, one could select the optimal number of common factors in each

rolling sample using the Ando and Bai (2020) procedure. In principle, this approach accounts

for the possibility that the number of relevant factors may differ between periods of turbulence

and periods of tranquility. However, as a practical matter, it may be difficult to precisely

estimate the number of common factors in each rolling sample using just 250 observations and
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this approach may result in variations in the number of common factors from one rolling sample

to the next that are difficult to reconcile. Second, one could set the number of common factors in

each rolling sample equal to the number selected over the full sample. This approach is simpler,

computationally cheaper and has the significant benefit that it may facilitate comparisons across

rolling samples, because any observed time-variation in the structure of the network cannot be

attributed to changes in the number of factors. This is the approach that we adopt. We evaluate

the sensitivity of our results to this choice in Appendix B, where we compare a selection of key

rolling sample network statistics obtained under both procedures. Our results prove highly

robust, a finding that supports adoption of the simpler option.

Figure 10 reports the spillover index under the nine possible combinations of window length

and forecast horizon at the conditional mean and median, as well as the fifth and ninety-fifth

conditional quantiles. First, consider panels (a) and (b). At the conditional mean and median,

the choice of forecast horizon has little discernible effect on the spillover index, a result that

reinforces our findings over the full sample. The choice of window length affects the level of the

spillover index, with shorter windows yielding somewhat higher values. Nonetheless, it is the

dynamics of the spillover index that are of primary concern and they are similar irrespective of

the choice of window length. The correlation among the spillover indices obtained under the

nine different combinations of w and h is close to one in all cases at the conditional mean and

is somewhat lower but still strongly positive in all cases at the conditional median. The same

basic features are also apparent at the fifth and ninety-fifth conditional quantiles, although

with greater noise. Critically, however, the correlation across different combinations of window

length and forecast horizon remains strongly positive in the tails. We therefore conclude that

the choice of window length and forecast horizon does not exert an undue influence on our

results. Therefore, we proceed with w = 250 and h = 5 trading days without loss of generality,

resulting in a total of 2,880 rolling samples. The benefit of choosing the shortest window length

is that fewer observations are required for initialization, allowing our rolling sample analysis to

start at an earlier date.

— Insert Figure 10 here —

With the forecast horizon and window length set, Figure 11(a) re-plots the spillover index

evaluated at the conditional mean and median — both of which are different measures of the

average connectedness of the system — on the same axes. To assist the reader, the dates of

several important events are marked by vertical dashed lines. Figure 11(b) plots the spillover
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index evaluated at the fifth conditional quantile as a measure of left-tail-dependence. This

captures the propensity for beneficial shocks that reduce credit risk to propagate through the

system. All else equal, stronger left-tail-dependence is stabilizing. Figure 11(c) plots the the

spillover index at the ninety-fifth conditional quantile as a measure of right-tail-dependence,

the propensity for destabilizing adverse shocks to spread. Lastly, Figure 11(d) plots the linear

combination RTD = S
(5)
0.95− S

(5)
0.05.14 RTD has a natural interpretation as a measure of relative

tail-dependence, with positive (negative) values indicating stronger (weaker) dependence in the

right tail than in the left tail. We therefore interpret increases (decreases) in RTD as evidence

of rising (falling) financial fragility. The correlations between the the four different spillover

indices and our RTD measure are reported in Table 3.

— Insert Figure 11 & Table 3 here —

The time-variation that we observe in the RTD implies that the near-symmetry of Figure

4 in the full-sample setting is not preserved over rolling samples. To see this, note that the full

sample RTD takes a value of just 2.19% due to the near-symmetry of the spillover index across

the conditional distribution (it would be precisely zero if Figure 4 was exactly symmetric). The

fact that we observe values of the order of ±15% in the rolling sample RTD indicates that the

spillover index is strongly asymmetric across the conditional distribution at certain points in

time. Our conjecture is that the RTD may rise significantly above zero during adverse episodes

of elevated financial fragility, perhaps due to the short-run failure of mechanisms that typically

act to stabilize the financial system (e.g. arbitrage opportunities may not be fully exploited

in bad states of the world due to factors including liquidity constraints). Likewise, RTD may

fall below zero during beneficial episodes, when risks are rapidly receding (e.g. in the wake of

large-scale policy interventions intended to support financial stability). Over a long sample that

combines several adverse and beneficial episodes, the RTD may tend toward zero.

The spillover indices evaluated at the conditional mean and median display broadly similar

behavior and Table 3 reveals that they are strongly positively correlated (0.72). Both increase

abruptly as a result of major adverse shocks, such as the freezing of redemptions in selected

investment funds by BNP Paribas in August 2007 and the bankruptcy of Lehman Brothers in

September 2008. Similarly, beneficial shocks, such as the announcement of the Troubled Asset

14See Figure A2 in Appendix A for a replication of Figure 11 based on an enlarged model including Greece
estimated using data up to February 2012. The dynamics of the spillover indices and the RTD obtained from
both models are remarkably similar over the common sample period, indicating that our results are robust to the
inclusion of Greece. Likewise, Figures B1 and B2 in Appendix B reveal that our assumption that the number of
common factors is unchanged across rolling samples does not strongly influence the results.
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Relief Program (TARP), the American Recovery and Reinvestment Act (ARRA), several of

the European sovereign bailouts and the announcement of negative interest rate policy by the

European Central Bank (ECB), are all associated with reductions in both indices.

A natural question is whether the spillover indices evaluated at the conditional mean and

median share common dynamics with the spillover indices evaluated in the tails of the condi-

tional distribution. The correlations in Table 3 provide an interesting answer. Both are strongly

positively correlated with our measure of right-tail-dependence (0.77 and 0.59, respectively) but

are considerably more weakly correlated with our measure of left-tail-dependence (0.41 and 0.33,

respectively). Furthermore, our measures of left- and right-tail-dependence are moderately cor-

related with one-another (0.37) and often move in opposite directions, at least in the short-

to medium-term. It is this last result that is most interesting, as it suggests that changes in

right-tail-dependence do not necessarily coincide with similar changes in left-tail-dependence

and vice-versa. This distinction between the evolution of spillover activity in either tail of the

conditional distribution may arise from the aggregate behavior of market participants if the

information revealed by a major event in either tail causes a non-trivial proportion of market

participants to focus disproportionately on further events occurring in that tail, while paying

less attention to events in the other tail.

The differential dynamics of left- and right-tail-dependence is easily seen in Figures 11(b)-

(d). Consider the revelation of major losses at the Bear Stearns High-Grade Structured Credit

Fund and the Bear Stearns High-Grade Structured Credit Enhanced Leveraged Fund in July

2007 as an example of a large adverse shock that led market participants to re-evaluate the

level of risk associated with mortgage-backed securities. At this time, we observe an abrupt and

long-lasting increase in the sensitivity of market participants to adverse shocks. By contrast,

there is a dip in left-tail dependence at this time, indicating a reduced propensity for spillovers

of good news. This combination generates a marked increase in RTD.

Now, consider the announcement of TARP as an example of a major beneficial shock. TARP

represented a substantial government intervention in the financial markets, providing funds for

the purchase of toxic assets and equity from troubled financial institutions. The introduction

of TARP is associated with a gradual reduction in right-tail-dependence but with an abrupt

increase in left-tail-dependence that is sustained for several months. Likewise, the introduction

of negative interest rate policy by the ECB generates an abrupt and long-lasting drop in right-

tail dependence coupled with a gradual increase in left-tail dependence. Recall that we have
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controlled for a raft of common factors, so these results are not simply a manifestation of

improved funding liquidity or enhanced investor risk appetite driven by the enactment of these

stabilization policies. Rather, our results suggest that major policy interventions can increase

the sensitivity of the market to beneficial shocks relative to adverse shocks.

To rule out the possibility that the behavior of RTD documented above is simply an artifact

of our choice to work with the fifth and ninety-fifth conditional quantiles, we plot two alternative

measures of relative tail-dependence in Figure 12. Specifically, alongside our benchmark 5%

RTD, we plot the 10% and 1% RTDs defined as RTD10% = S
(5)
0.90 − S

(5)
0.10 and RTD1% =

S
(5)
0.99−S

(5)
0.01, respectively. The dynamics of the three RTD measures are similar, indicating that

our results are robust to the precise definition of the left- and right-tail-dependence measures.

— Insert Figure 12 here —

RTD represents a novel data-driven measure of aggregate systemic fragility that can be up-

dated in close-to-real-time. As such, RTD can be used by policymakers and practitioners alike

to augment their systems for monitoring systemic risk. Unlike many of the existing frameworks

for monitoring the contribution to systemic risk of individual entities, RTD provides an indica-

tion of the extent of aggregate systemic fragility. Increases in RTD indicate that the financial

system is becoming more susceptible to the spread of adverse shocks, while decreases in RTD

indicate that the financial system is becoming more robust to adverse shocks. As an aggregate

tail risk measure, RTD bears a non-trivial similarity to the CATFIN index proposed by Allen

et al. (2012). CATFIN is an aggregate downside risk measure derived from the cross-section of

financial stock returns. Specifically, CATFIN is constructed as the equally-weighted average of

the 99% VaR computed using the generalized Pareto distribution, the skewed generalized error

distribution and a nonparametric method based on the empirical return distribution. Unlike

CATFIN, RTD is a measure of relative tail risk that exploits information from both the upper

and lower tails of the conditional distribution.

In Figure 13, we investigate the degree to which the RTD and its constituent parts comove

with CATFIN over our sample period. As the CATFIN index is only available at monthly

frequency, we construct monthly versions of our indices by taking the period-average. In addi-

tion, to facilitate comparisons, all series are normalized by subtracting their respective means

and dividing by their standard deviations. CATFIN comoves strongly with the spillover index

evaluated at the ninety-fifth conditional quantile, with a correlation of 0.51. By contrast, there

is little correlation between CATFIN and our measure of left-tail-dependence (0.15). This is a
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natural finding, because CATFIN is a downside risk measure, and downside risks are associated

with the right tail in our framework. The RTD index tracks CATFIN reasonably closely, with

a correlation of 0.42. Furthermore, RTD and CATFIN share a number of common turning

points. Given the extent of this comovement and bearing in mind that RTD captures a related

but subtly different phenomenon than CATFIN, we argue that the two are complementary and

that they jointly provide policymakers and practitioners alike with a rich framework for the

study of aggregate changes in systemic risk.

— Insert Figure 13 here —

5 Concluding Remarks

In this paper, we develop a new technique for the econometric analysis of financial networks in

which the topology of the network is allowed to vary with the size of the shocks that affect the

system. Our approach is based on a novel framework for the estimation of vector autoregressions

by quantile regression. We employ an unobserved factor structure to isolate the idiosyncratic

component of the error process from the systematic component. Not only does this align our

model with the long literature on systematic and idiosyncratic risk but it also simplifies the

estimation problem, as it accounts for the the cross-section correlation among the regression

residuals. This greatly simplifies the task of defining regression quantiles and, as a result, our

approach is considerably easier to implement than the competing frameworks for the estimation

of quantile VARs associated with Cecchetti and Li (2008) and Schüler (2014).

We apply our technique to study the transmission of credit risk among a panel of 17

sovereigns and their respective financial sectors between January 2006 and December 2017.

We document marked quantile variation in the topology of the network. We show that, on

average, idiosyncratic credit risk shocks do not propagate strongly at the conditional mean or

median but that the average spillover intensity is strong in both tails of the conditional distribu-

tion. By studying the bidirectional feedback between each sovereign and its domestic financial

sector, we find that the adverse feedback loop between sovereign credit risk and financial sector

credit risk documented by Acharya et al. (2014) and Farhi and Tirole (2018), among others,

manifests as a marked intensification of feedback in the right tail, where large adverse shocks

occur. Interestingly, however, we note a similar intensification in the left tail, which indicates

that a comparable virtuous feedback loop can act in a stabilizing manner in the presence of
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large beneficial shocks, such as sovereign bailouts.

We use rolling sample analysis to document time-variation in the degree of tail-dependence.

This reveals an interesting phenomenon — the level of left-tail-dependence is not strongly corre-

lated with the level of right-tail-dependence. We exploit this observation to develop a measure

of relative tail dependence, RTD, which is defined as the difference between the spillover index

obtained at the ninety-fifth and fifth conditional quantiles. We show that increases in RTD

are associated with large adverse shocks, while many stabilizing policy interventions are asso-

ciated with reductions in RTD. We propose that RTD can be used as an aggregate measure

of systemic financial fragility in a similar vein to the CATFIN index proposed by Allen et

al. (2012). Because the evolution of RTD is obscured when network models are estimated at

the conditional mean by OLS, as is common in the literature, we conclude that our quantile

connectedness framework represents a valuable addition to the literature on empirical network

modeling.
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Schüler, Yves S., “Asymmetric Effects of Uncertainty over the Business Cycle: A Quantile
Structural Vector Autoregressive Approach,” Working Paper 2014-02, University of Konstanz
January 2014.

Sims, Christopher A., “Are Forecasting Models Usable for Policy Analysis?,” Minneapolis
Federal Reserve Bank Quarterly Review, 1986, Winter, 2–16.

Zellner, Arnold and Tomohiro Ando, “A Direct Monte Carlo Approach for Bayesian Anal-
ysis of the Seemingly Unrelated Regression Model,” Journal of Econometrics, 2010, 159,
33–45.

Zhu, Huiming, Xianfang Su, Yawei Guo, and Yinghua Ren, “The Asymmetric Effects
of Oil Price Shocks on the Chinese Stock Market: Evidence from a Quantile Impulse Response
Perspective,” Sustainability, 2016, 8, 1–19.

36



S
ov

er
ei

gn
C

D
S

F
in

an
ci

al
S

ec
to

r
C

D
S

M
ea

n
S

.D
.

S
ke

w
K

u
rt

M
ea

n
S

.D
.

S
ke

w
K

u
rt

E
u

ro
pe

a
n

C
o
u

n
tr

ie
s

A
u

st
ri

a
0.

00
4

3.
09

8
1.

09
9

32
.2

12
0.

01
0

4.
86

9
0.

28
8

42
.6

14
B

el
gi

u
m

0.
00

4
4.

08
6

-0
.7

12
31

.5
15

0.
01

4
6.

37
0

5.
57

8
32

7.
06

9
F

ra
n

ce
0.

00
5

2.
75

9
-0

.3
40

19
.3

22
0.

00
5

4.
25

9
-0

.0
92

15
.9

79
G

er
m

an
y

0.
00

2
1.

42
7

0.
24

3
16

.3
38

0.
01

1
3.

75
2

-0
.3

48
15

.3
26

Ir
el

a
n

d
0.

00
8

9.
68

7
-0

.6
33

45
.9

29
0.

03
2

42
.9

52
-1

.9
23

10
3.

15
6

It
a
ly

0.
03

4
7.

61
4

0.
15

2
17

.8
61

0.
01

7
7.

73
9

-0
.1

35
29

.5
40

N
et

h
er

la
n

d
s

0.
00

4
1.

73
2

1.
24

2
29

.8
63

0.
00

8
4.

96
1

-0
.1

84
57

.0
63

N
o
rw

ay
0.

00
3

1.
06

4
0.

73
2

45
.9

56
0.

02
5

2.
89

3
-0

.2
18

61
.0

26
P

or
tu

g
a
l

0.
02

8
14

.4
97

-0
.3

76
32

.4
99

0.
09

7
19

.7
51

0.
07

6
67

.1
51

S
p

ai
n

0.
01

7
7.

49
8

-0
.4

55
15

.3
72

0.
01

4
7.

46
8

-1
.4

79
27

.7
90

S
w

ed
en

0.
00

4
1.

56
3

0.
50

9
28

.0
53

0.
00

6
2.

44
4

0.
83

4
32

.8
64

U
K

0.
00

5
1.

79
2

0.
00

3
20

.2
76

0.
01

5
4.

56
5

0.
00

0
55

.5
44

N
o
n

-E
u

ro
pe

a
n

C
o
u

n
tr

ie
s

A
u

st
ra

li
a

0.
00

4
1.

99
1

0.
64

7
26

.0
03

0.
01

2
4.

65
4

-5
.8

23
20

9.
73

3
C

h
in

a
0.

01
0

3.
88

8
0.

27
2

52
.3

88
0.

01
3

5.
34

9
0.

33
4

68
.7

07
J
ap

an
0.

00
7

2.
05

9
2.

15
1

48
.0

03
0.

01
4

3.
30

1
1.

82
8

45
.9

66
R

u
ss

ia
0.

01
6

13
.2

95
2.

18
5

72
.3

44
0.

03
6

28
.3

52
-0

.3
22

52
.2

81
U

S
0.

00
5

1.
20

2
0.

77
8

18
.3

81
0.

02
6

8.
38

4
-2

.1
11

79
.3

16

N
o
t
e
s:

D
es

cr
ip

ti
v
e

st
a
ti

st
ic

s
a
re

re
p

o
rt

ed
o
v
er

a
p

er
io

d
o
f

3
,1

2
9

tr
a
d

in
g

d
a
y
s

fr
o
m

0
3
-J

a
n

-2
0
0
6

to
2
9
-D

ec
-2

0
1
7
.

B
o
th

th
e

so
v
er

ei
g
n

a
n

d
fi

n
a
n

ci
a
l

se
ct

o
r

cr
ed

it
sp

re
a
d

s
a
re

ex
p

re
ss

ed
a
s

fi
rs

t
d

iff
er

en
ce

s
a
n

d
a
re

m
ea

su
re

d
in

b
a
si

s
p

o
in

ts
.

T
ab

le
1:

D
es

cr
ip

ti
v
e

S
ta

ti
st

ic
s

37



S
ov

er
ei

gn
C

re
d

it
R

is
k

F
in

an
ci

al
S

ec
to

r
C

re
d

it
R

is
k

T
o

F
ro

m
N

et
T

o
F

ro
m

N
et

5
%

M
ea

n
9
5%

5%
M

ea
n

95
%

5%
M

ea
n

95
%

5%
M

ea
n

95
%

5%
M

ea
n

95
%

5%
M

ea
n

9
5%

A
U

1
01

.9
6

8
7.

66
10

0.
8
7

79
.9

3
69

.2
0

82
.5

3
22

.0
3

18
.4

5
18

.3
4

10
9.

58
18

.1
3

13
1.

71
80

.6
8

38
.8

7
83

.1
0

28
.9

0
-2

0.
7
4

4
8.

6
1

A
T

10
3.

04
19

.8
3

78
.6

6
80

.4
8

38
.3

9
79

.8
6

22
.5

6
-1

8.
55

-1
.2

0
10

4.
92

36
.6

1
92

.9
1

80
.0

6
55

.1
0

81
.7

4
24

.8
6

-1
8.

4
9

11
.1

7
B

E
70

.9
3

3
9.

18
93

.7
4

74
.1

8
55

.1
0

78
.3

7
-3

.2
5

-1
5.

92
15

.3
7

58
.5

1
85

.6
2

46
.3

6
56

.6
9

69
.2

8
58

.9
4

1
.8

2
1
6
.3

4
-1

2.
5
7

C
N

10
4.

38
45

.5
9

12
2.

27
80

.7
2

61
.3

0
81

.5
9

23
.6

6
-1

5.
71

40
.6

9
11

5.
87

74
.2

8
11

7.
46

80
.8

2
73

.2
2

81
.1

3
35

.0
5

1
.0

6
3
6.

3
3

F
R

79
.7

4
40

.8
2

1
05

.4
5

75
.5

8
5
4.

40
81

.8
1

4.
15

-1
3.

58
23

.6
4

12
7.

14
25

.3
2

11
6.

11
82

.5
8

43
.2

8
84

.1
7

4
4.

5
6

-1
7
.9

6
31

.9
4

D
E

10
6.

33
52

.7
7

11
1.

31
80

.8
2

59
.2

1
82

.5
4

25
.5

1
-6

.4
4

28
.7

7
10

2.
45

22
.2

9
89

.9
5

79
.5

9
43

.8
2

81
.5

2
22

.8
6

-2
1.

5
3

8
.4

2
IE

36
.8

7
13

7.
86

28
.4

0
4
1.

51
82

.2
8

55
.7

7
-4

.6
4

55
.5

8
-2

7.
38

20
.8

1
10

3.
51

31
.3

1
99

.7
0

76
.9

8
99

.6
3

-7
8.

8
9

2
6.

5
3

-6
8
.3

1
IT

81
.3

5
49

.3
6

80
.0

2
72

.6
7

63
.0

5
7
8.

05
8.

68
-1

3.
69

1.
98

45
.7

8
55

.0
7

35
.4

6
64

.5
9

67
.0

2
54

.2
2

-1
8.

8
1

-1
1
.9

5
-1

8.
7
6

J
P

10
1.

51
1
8.

56
77

.5
3

80
.0

9
33

.3
5

78
.6

6
21

.4
2

-1
4.

79
-1

.1
4

92
.5

2
13

.5
4

90
.9

3
75

.2
3

32
.8

8
81

.7
1

1
7.

2
9

-1
9
.3

4
9
.2

2
N

L
93

.0
8

56
.4

8
1
12

.0
8

8
1.

45
60

.7
0

84
.2

8
11

.6
3

-4
.2

2
27

.8
0

72
.1

5
27

.5
7

72
.3

0
70

.4
4

48
.0

9
74

.2
5

1
.7

1
-2

0
.5

2
-1

.9
5

N
O

28
.9

2
1
37

.3
3

39
.9

8
98

.0
9

79
.9

1
97

.7
9

-6
9.

17
57

.4
3

-5
7.

81
10

.0
6

12
9.

13
3.

44
99

.0
5

80
.9

8
99

.1
1

-8
9
.0

0
4
8.

1
4

-9
5
.6

7
P

T
3
.6

1
12

6
.0

2
12

.7
1

9
9.

79
79

.9
5

99
.8

0
-9

6.
18

46
.0

7
-8

7.
08

22
.2

6
10

3.
73

5.
79

99
.4

5
75

.4
5

99
.7

7
-7

7
.2

0
2
8.

2
8

-9
3
.9

8
R

U
82

.1
3

5
1.

24
9
2.

72
66

.9
5

63
.6

4
76

.1
0

15
.1

8
-1

2.
40

16
.6

2
23

.5
7

69
.8

3
35

.1
1

51
.1

6
70

.9
1

50
.7

8
-2

7.
5
9

-1
.0

8
-1

5.
67

E
S

10
4
.5

6
51

.6
3

12
8
.6

5
81

.4
0

59
.7

7
82

.9
7

23
.1

5
-8

.1
3

45
.6

8
11

4.
20

15
.5

8
11

1.
78

79
.7

5
27

.4
8

84
.3

1
34

.4
6

-1
1.

9
0

2
7.

4
6

S
E

11
5
.2

9
49

.3
8

10
8
.7

7
82

.2
8

55
.7

6
82

.8
9

33
.0

1
-6

.3
8

25
.8

9
98

.5
0

27
.0

7
91

.8
5

78
.1

5
51

.0
4

79
.6

1
20

.3
5

-2
3.

9
7

1
2.

2
4

U
K

11
1.

5
2

21
.4

8
95

.6
4

79
.5

1
34

.3
2

82
.1

7
32

.0
0

-1
2.

84
13

.4
7

51
.8

3
10

7.
68

88
.3

4
47

.7
2

74
.4

1
51

.5
4

4
.1

1
33

.2
7

3
6.

7
9

U
S

8
1.

45
1
6.

28
84

.0
0

77
.7

6
29

.3
4

7
6.

31
3.

68
-1

3.
06

7.
69

46
.9

4
6.

98
64

.4
9

64
.8

7
14

.9
4

71
.0

8
-1

7
.9

3
-7

.9
6

-6
.5

9

N
o
t
e
s:

C
o
u

n
tr

ie
s

a
re

id
en

ti
fi

ed
b
y

th
ei

r
re

sp
ec

ti
v
e

a
lp

h
a
-2

IS
O

co
d

es
.

A
ll

v
a
lu

es
a
re

re
p

o
rt

ed
in

p
er

ce
n
t.

T
ab

le
2
:

T
op

o
lo

gy
of

th
e

C
re

d
it

R
is

k
N

et
w

or
k

at
th

e
C

on
d

it
io

n
al

M
ea

n
an

d
at

th
e

F
if

th
an

d
N

in
et

y
-F

if
th

C
on

d
it

io
n

al
Q

u
an

ti
le

s

38



Mean 5% Med. 95% RTD

Mean 1.000 0.411 0.719 0.774 0.438
5% 0.411 1.000 0.329 0.367 -0.417
Med. 0.719 0.329 1.000 0.585 0.317
95% 0.774 0.367 0.585 1.000 0.693
RTD 0.438 -0.417 0.317 0.693 1.000

Table 3: Correlation among Spillover Indices Evaluated at Selected Quantiles

Notes: The figure reports the selected number of unobserved common factors at the τth conditional quantile
(plotted as a circle) relative to the number chosen at the conditional mean (shown by the dashed line).

Figure 1: Optimal Number of Factors at the Conditional Mean and at each Conditional Quantile

(a) Simple VAR(1) Model (b) Factor VAR(1) Model

Notes: The histograms show the distribution of the absolute pairwise correlations between the residuals of the
simple VAR(1) model with no factor structure and our factor VAR(1) model evaluated at the conditional mean.

Figure 2: Comparison of Absolute Residual Correlations, with and without Factors

39



(a) Conditional Mean

(b) Fifth Conditional Quantile

(c) Conditional Median

(d) Ninety-Fifth Conditional Quantile

Notes: The figure reports the correlation between each of the unobserved factors selected at the conditional
mean and the 5th, 50th and 95th conditional quantiles (labeled ‘F1’, ‘F2’,...) and the set of 23 observed global
variables described in Section 4.1.

Figure 3: Relation of Unobserved Factors to Observed Global Variables
40



Notes: The figure reports the value of the spillover index defined in (20) evaluated at the τth conditional
quantile (plotted as a circle) relative to the value at the conditional mean (shown by the dashed line).

Figure 4: Variation in the DY Spillover Index over the Conditional Distribution
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(a) Conditional Mean (b) Conditional Median

(c) τ = 0.05 (d) τ = 0.95

(e) τ = 0.01 (f) τ = 0.99

Notes: The figure reports the empirical counter cumulative distribution function (CCDF) of the m (m− 1) off-
diagonal elements of the adjacency matrix on a logarithmic scale. The CCDF for the model evaluated at the
conditional mean is shown as a dashed line in every panel for comparison.

Figure 7: Quantile Variation in the Shape of the Spillover Density
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(a) Conditional Mean

(b) Conditional Median

(c) Fifth Conditional Quantile

(d) Ninety-Fifth Conditional Quantile

Notes: In each panel, results for our baseline setting with w = 250 and h = 5 trading days are shown as a
heavy black line. Results for each other combination of w ∈ {250, 375, 500} and h ∈ {3, 5, 10} trading days
are shown as fine gray lines. Letters a–i in the common-sample correlation heatmaps refer to the following
combinations: (a) w = 250, h = 3; (b) w = 250, h = 5; (c) w = 250, h = 10; (d) w = 375, h = 3; (e) w = 375,
h = 5; (f) w = 375, h = 10; (g) w = 500, h = 3; (h) w = 500, h = 5; and (i) w = 500, h = 10.

Figure 10: Robustness to the Choice of Rolling Window and Forecast Horizon
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(a) Conditional Mean and Median
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(b) Fifth Conditional Quantile
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(c) Ninety-Fifth Conditional Quantile
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(d) Relative Tail-Dependence

Notes: The figure reports the value of the spillover index defined in (20) evaluated at the mean (shown as a fine line in panel
(a)) and at the 5th, 50th and 95th conditional quantiles (shown as heavy lines in panels (a)–(c)) as well as the difference
between the spillover index at the 95th and 5th conditional quantiles (shown as a heavy line in panel (d)). The results are
obtained from rolling regressions with a window length of 250 trading days. The date shown corresponds to the last day of
each rolling window. We suppress eight rolling samples where the system exhibits instability at the conditional mean. The
following events are marked: A: Bear Stearns announces hedge fund losses (17-Jul-07); B: BNP Paribas halts redemptions
on three investment funds (09-Aug-07); C: Bear Stearns is acquired by JP Morgan (24-Mar-08); D: Lehman Brothers files
for bankruptcy (15-Sep-08); E: the Troubled Asset Relief Program is announced (14-Oct-08); F: the Fed begins purchasing
mortgage-backed securities issued by Fannie Mae and Freddie Mac (05-Jan-09); G: signing of the American Recovery and
Reinvestment Act (17-Feb-09); H: Greek parliament is dissolved (08-Sep-09); I: report on the falsification of Greek data
released (12-Jan-10); J: Greece requests aid (23-Apr-10); K: the European Financial Stability Facility is announced (09-
May-10); L: Ireland requests aid (22-Nov-10); M: Portugal requests aid (06-Apr-11); N: second Greek bailout (22-Jul-11);
O: Greek debt swap arrangement agreed (07-Mar-2012); P: Spain requests aid (25-Jun-2012); Q: ECB cuts interest rates
to a record low of 0.5% (01-May-2013); R: US government shutdown (01-Oct-2013); S: ECB announces negative interest
rate policy (05-Jun-2014); T: October 2014 flash crash (15-Oct-2014); U: Greece fails to meet its IMF payment schedule
(30-Jun-2015); V: Brexit referendum (23-Jun-2016); W: Federal Reserve raises interest rates (14-Dec-2016); X: UK invokes
article 50 of the Lisbon Treaty (29-Mar-2017); and Y: snap election held in the UK (08-Jun-2017).

Figure 11: Time-Varying Dependence at Selected Quantiles



AB C DE

FG

H I

JK

L M

N

O P Q R S T U V W

X

Y

(a) 10% Relative Tail-Dependence, S
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(b) 5% Relative Tail-Dependence, S
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(c) 1% Relative Tail-Dependence, S
(5)
0.99 − S

(5)
0.01

Notes: The results are obtained from rolling regressions with a window length of 250 trading days. The date shown
corresponds to the last day of each rolling window. We suppress eight rolling samples where the system exhibits instability
at the conditional mean. The following events are marked: A: Bear Stearns announces hedge fund losses (17-Jul-07);
B: BNP Paribas halts redemptions on three investment funds (09-Aug-07); C: Bear Stearns is acquired by JP Morgan
(24-Mar-08); D: Lehman Brothers files for bankruptcy (15-Sep-08); E: the Troubled Asset Relief Program is announced
(14-Oct-08); F: the Fed begins purchasing mortgage-backed securities issued by Fannie Mae and Freddie Mac (05-Jan-09);
G: signing of the American Recovery and Reinvestment Act (17-Feb-09); H: Greek parliament is dissolved (08-Sep-09); I:
report on the falsification of Greek data released (12-Jan-10); J: Greece requests aid (23-Apr-10); K: the European Financial
Stability Facility is announced (09-May-10); L: Ireland requests aid (22-Nov-10); M: Portugal requests aid (06-Apr-11); N:
second Greek bailout (22-Jul-11); O: Greek debt swap arrangement agreed (07-Mar-2012); P: Spain requests aid (25-Jun-
2012); Q: ECB cuts interest rates to a record low of 0.5% (01-May-2013); R: US government shutdown (01-Oct-2013); S:
ECB announces negative interest rate policy (05-Jun-2014); T: October 2014 flash crash (15-Oct-2014); U: Greece fails
to meet its IMF payment schedule (30-Jun-2015); V: Brexit referendum (23-Jun-2016); W: Federal Reserve raises interest
rates (14-Dec-2016); X: UK invokes article 50 of the Lisbon Treaty (29-Mar-2017); and Y: snap election held in the UK
(08-Jun-2017).

Figure 12: Alternative Measures of Relative Tail-Dependence



(a) Standardized CATFIN vs. Standardized Spillover Index at the 5th Conditional Quantile

(b) Standardized CATFIN vs. Standardized Spillover Index at the 95th Conditional Quantile

(c) Standardized CATFIN vs. Standardized 5% RTD

Notes: CATFIN is only available at monthly frequency, so we convert our indices to monthly frequency by
taking the period-average. Furthermore, to ensure that all variables are measured on a comparable scale, we
standardize by subtracting the mean and dividing by the standard deviation in each case. The standardized
CATFIN is shown as a dashed line and the spillover index/RTD as a solid line in each panel.

Figure 13: Comovement with the CATFIN Index



Appendix A: Robustness to the Inclusion of Greece

To investigate the extent to which our estimation results are robust to the inclusion of Greece,
we re-estimate the model including Greek data over the available sample period (03-Jan-2006
to 14-Feb-2012, shortly after which Greek sovereign CDS ceased trading on a running spread
due to the expectation of an imminent credit event).

Figures A1 and A2 offer a concise summary of the key findings:

(i) In Figure A1, we replicate Figure 4 for the model including Greece. The results are
remarkably similar in both cases.

(ii) In Figure A2, we replicate the rolling sample analysis in Figure 11 over the shorter sample
period. For this exercise, we set the window length to 250 trading days and the forecast
horizon to 5 trading days. Once again, this change in specification does not cause any
substantial change in our results. The dynamic behavior of the Diebold–Yilmaz spillover
index evaluated at different quantiles is comparable to our baseline specification with 17
countries. Likewise, the dynamic evolution of the 5% RTD does not change substantially
relative to the baseline model – it exhibits the same principal turnings points and shows
a comparable pattern of positive and negative values.

The results of additional robustness exercises are available from the authors on request.

Notes: The figure reports the value of the spillover index defined in (20) evaluated at the τth conditional
quantile (plotted as a circle) relative to the value at the conditional mean (shown by the dashed line) for the
model including Greece estimated using a sample ending on February 14, 2012.

Figure A1: Quantile Variation in the DY Spillover Index for the Model Including Greece
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(a) Conditional Mean and Median
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(b) Fifth Conditional Quantile
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(c) Ninety-Fifth Conditional Quantile
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(d) Relative Tail-Dependence

Notes: The figure reports the value of the spillover index defined in (20) evaluated at the mean (shown as a fine line
in panel (a)) and at the 5th, 50th and 95th conditional quantiles (shown as heavy lines in panels (a)–(c)) as well as the
difference between the spillover index at the 95th and 5th conditional quantiles (shown as a heavy line in panel (d)).
The results are obtained from rolling regressions with a window length of 250 trading days. The date shown corresponds
to the last day of each rolling window. We suppress four rolling samples where the system exhibits instability at the
conditional mean. The following events are marked: A: Bear Stearns announces hedge fund losses (17-Jul-07); B: BNP
Paribas halts redemptions on three investment funds (09-Aug-07); C: Bear Stearns is acquired by JP Morgan (24-Mar-08);
D: Lehman Brothers files for bankruptcy (15-Sep-08); E: the Troubled Asset Relief Program is announced (14-Oct-08); F:
the Fed begins purchasing mortgage-backed securities issued by Fannie Mae and Freddie Mac (05-Jan-09); G: signing of
the American Recovery and Reinvestment Act (17-Feb-09); H: Greek parliament is dissolved (08-Sep-09); I: report on the
falsification of Greek data released (12-Jan-10); J: Greece requests aid (23-Apr-10); K: the European Financial Stability
Facility is announced (09-May-10); L: Ireland requests aid (22-Nov-10); M: Portugal requests aid (06-Apr-11); and N:
second Greek bailout (22-Jul-11).

Figure A2: Time-Varying Dependence at Selected Quantiles for the Model Including Greece



Appendix B: Robustness to Allowing the Number of Common
Factors to Change over Rolling Samples

Recall that our baseline estimation results are obtained by selecting the optimal number of com-
mon factors at the conditional mean and at each conditional quantile over the full sample period
and then keeping the number of factors fixed at this value throughout our rolling regressions.
To test whether the assumption that the number of common factors does not change between
rolling samples affects our estimation results, we re-estimate the model allowing the number
of common factors at the conditional mean and at each conditional quantile to be selected
optimally in each rolling sample.

In Figures B1 and B2, we compare the baseline values of the 5% RTD and the DY spillover
index at the conditional mean, the conditional median, the fifth and the ninety-fifth conditional
quantiles obtained assuming a fixed number of common factors (our baseline case) against their
counterparts computed allowing for a time-varying number of common factors. In each case
and across the large majority of rolling samples, the results are very similar, with only minor
deviations between the two lines shown in each panel of the figures. The most notable deviation
between the two sets of results arises in mid-2017, where the decline in left tail connectedness
observed in our baseline setting does not occur in the model in which the number of common
factors is time-varying. This occurs late in our sample and does not affect our narrative. No
other significant deviations occur over our sample period. This indicates that our use of a fixed
number of common factors does not strongly affect our estimation results. Consequently, in
deference to the principle of parsimony, we argue that the simpler model is to be preferred.

Additional output from the model estimated using a time-varying number of common factors
is available from the authors on request.
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Notes: The heavy black line shows our baseline estimate of the 5% RTD. The gray line shows the 5% RTD obtained
allowing the number of common factors to vary across rolling samples. The results are obtained from rolling regressions
with a window length of 250 trading days using a forecast horizon of 5 trading days. The date shown corresponds to the last
day of each rolling window. We suppress rolling samples where the system exhibits instability at the conditional mean. The
following events are marked: A: Bear Stearns announces hedge fund losses (17-Jul-07); B: BNP Paribas halts redemptions
on three investment funds (09-Aug-07); C: Bear Stearns is acquired by JP Morgan (24-Mar-08); D: Lehman Brothers files
for bankruptcy (15-Sep-08); E: the Troubled Asset Relief Program is announced (14-Oct-08); F: the Fed begins purchasing
mortgage-backed securities issued by Fannie Mae and Freddie Mac (05-Jan-09); G: signing of the American Recovery and
Reinvestment Act (17-Feb-09); H: Greek parliament is dissolved (08-Sep-09); I: report on the falsification of Greek data
released (12-Jan-10); J: Greece requests aid (23-Apr-10); K: the European Financial Stability Facility is announced (09-
May-10); L: Ireland requests aid (22-Nov-10); M: Portugal requests aid (06-Apr-11); N: second Greek bailout (22-Jul-11);
O: Greek debt swap arrangement agreed (07-Mar-2012); P: Spain requests aid (25-Jun-2012); Q: ECB cuts interest rates
to a record low of 0.5% (01-May-2013); R: US government shutdown (01-Oct-2013); S: ECB announces negative interest
rate policy (05-Jun-2014); T: October 2014 flash crash (15-Oct-2014); U: Greece fails to meet its IMF payment schedule
(30-Jun-2015); V: Brexit referendum (23-Jun-2016); W: Federal Reserve raises interest rates (14-Dec-2016); X: UK invokes
article 50 of the Lisbon Treaty (29-Mar-2017); and Y: snap election held in the UK (08-Jun-2017).

Figure B1: Robustness of RTD to Time-Variation in the Number of Common Factors
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(a) Conditional Mean
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(b) Conditional Median
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(c) Fifth Conditional Quantile
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(d) Ninety-Fifth Conditional Quantile

Notes: The heavy black line in each panel shows our baseline estimate of the DY spillover index. The gray line shows
the DY spillover index obtained allowing the number of common factors to vary across rolling samples. The results are
obtained from rolling regressions with a window length of 250 trading days using a forecast horizon of 5 trading days. The
date shown corresponds to the last day of each rolling window. We suppress rolling samples where the system exhibits
instability at the conditional mean. The following events are marked: A: Bear Stearns announces hedge fund losses
(17-Jul-07); B: BNP Paribas halts redemptions on three investment funds (09-Aug-07); C: Bear Stearns is acquired by
JP Morgan (24-Mar-08); D: Lehman Brothers files for bankruptcy (15-Sep-08); E: the Troubled Asset Relief Program is
announced (14-Oct-08); F: the Fed begins purchasing mortgage-backed securities issued by Fannie Mae and Freddie Mac
(05-Jan-09); G: signing of the American Recovery and Reinvestment Act (17-Feb-09); H: Greek parliament is dissolved
(08-Sep-09); I: report on the falsification of Greek data released (12-Jan-10); J: Greece requests aid (23-Apr-10); K: the
European Financial Stability Facility is announced (09-May-10); L: Ireland requests aid (22-Nov-10); M: Portugal requests
aid (06-Apr-11); N: second Greek bailout (22-Jul-11); O: Greek debt swap arrangement agreed (07-Mar-2012); P: Spain
requests aid (25-Jun-2012); Q: ECB cuts interest rates to a record low of 0.5% (01-May-2013); R: US government shutdown
(01-Oct-2013); S: ECB announces negative interest rate policy (05-Jun-2014); T: October 2014 flash crash (15-Oct-2014);
U: Greece fails to meet its IMF payment schedule (30-Jun-2015); V: Brexit referendum (23-Jun-2016); W: Federal Reserve
raises interest rates (14-Dec-2016); X: UK invokes article 50 of the Lisbon Treaty (29-Mar-2017); and Y: snap election held
in the UK (08-Jun-2017).

Figure B2: Robustness to Time-Variation in the Number of Common Factors



Appendix C: Financial Institutions Included in the Synthetic Fi-
nancial Sector CDS Spread Indices, by Country

The financial institutions that are included in the synthetic financial sector CDS spreads devel-
oped by Greenwood-Nimmo et al. (2019) for each country are listed below.

Australia
Adelaide Bank, AMP, Australia and New Zealand Banking Group, Bendigo and Adelaide Bank,
Bank of Queensland, Commonwealth Bank of Australia, Insurance Australia Group, Macquarie
Group, National Australia Bank, QBE Insurance Group, St. George Bank, Suncorp Group, and
Westpac Banking Corporation.

Austria
Erste Group Bank, and Raiffeisen Zentralbank.

Belgium
Ageas, Fortis and KBC Groep.

China
Agricultural Bank of China, Bank of China, Bank of Communications, and Industrial and
Commercial Bank of China.

France
Credit Agricole, Axa, BNP Paribas, Natixis, Scor, and Société Générale.

Germany
Allianz, Commerzbank, Deutsche Bank, Deutsche Postbank, Hannover RE, IKB Deutsche In-
dustriebank, Munich RE, and Talanx.

Ireland
Allied Irish Banks, Anglo Irish Bank, Bank of Ireland, Irish Bank Resolution Corporation, and
Permanent TSB.

Italy
Generali Assicuraziono, Mediobanca, Banca Italease, Banco Popolare di Verona e Novara, Banca
Popolare Italiana, Banco Popolare, Banca Lombarda e Piemontese, Capitalia, San Paolo IMI,
Banca Popolare di Milano SCARL, Banca Monte dei Paschi di Siena, Intesa Sanpaolo, Unione
di Banche Italiane, Unipol Gruppo Finanziario, and Unicredit.

Japan
ACOM Company, Aeon Financial Service Company, Aozora Bank, Bank of Fukuoka, Bank
of Iwate, Bank of Yokohama, Chiba Bank, Credit Saison Company, Dai-Ichi Life Insurance
Company, Daiwa Securities Group, Higo Bank, Hiroshima Bank, Hitachi Capital Corporation,
Hyakugo Bank, Joyo Bank, MS&AD Insurance Group Holdings, Mizuho Holdings, Mizuho Trust
and Banking Company, Mitsubishi UFJ Financial Group, Nishi-Nippon City Bank, Nikko Cor-
dial Corporation, Nomura Holdings, Orix Corporation, Resona Bank, The 77 Bank, Shiga Bank,
Shinsei Bank, Shizuoka Bank, Sompo Japan Insurance, Sumitomo Mitsui Financial Group,
Sumitomo Mitsui Trust Bank, and Tokio Marine & Nichido Fire Insurance Company.

Netherlands
ABN Amro Bank, Aegon, Ageas, Fortis, ING Groep, NN Group, SNS Reaal, and van Lanschot.

Norway
DNB, and Storebrand Group.

Portugal
Banco BPI, Banco Commercial Portugues, Banco Espirito Santo, and Novo Banco.
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Russian Federation
Bank of Moscow, Bank Uralsib, Gazprombank, MDM Bank, Promsvyazbank, Sberbank of
Russia, and VTB Bank.

Spain
Bankia, Banco de Sabadell, Banco Bilbao Vizcaya Argentaria, Bankinter, Banco Popular Es-
panol, Banco Pastor, and Banco Santander.

Sweden
Nordea Bank, Skandinaviska Enskilda Banken, Svenska Handelsbanken, and Swedbank.

United Kingdom
Aviva, Barclays, Bradford & Bingley, Friends Provident, HBOS, HSBC Holdings, 3I Group, Le-
gal & General Group, Lloyds Banking Group, Man Strategic Holdings, Old Mutual, Prudential,
Royal Bank of Scotland Group, RSA Insurance Group, Standard Life, and Standard Chartered.

United States
Aflac Inc., Allstate Corporation, Ally Financial Inc., American Express Company, American
Financial Group Inc., American International Group Inc., Assurant Inc., Bank of America Cor-
poration, Bank of New York Company Inc., Bank of New York Mellon Corporation, BB&T
Corporation, Bear Stearns Companies Inc., Berkshire Hathaway Inc., Blackrock Inc., Capital
One Financial Corporation, Charles Schwab Corporation, Chubb Corporation, CIT Group Inc.,
Citigroup Inc., CNA Financial Corporation, Discover Financial Services, E*Trade Financial
Corporation, Federal National Mortgage Association, Fifth Third Bancorp, Franklin Resources
Inc., Genworth Holdings Inc., Goldman Sachs Group Inc., Hartford Financial Services Group
Inc., Huntington National Bank, Jefferies Group LLC, JP Morgan Chase & Company, Key-
corp, Legg Mason Inc., Lehman Brothers Holdings Inc., Lincoln National Corporation, Loews
Corporation, Markel Corporation, Marshall & Ilsley Corporation, MBIA Inc., Mellon Financial
Corporation, Merrill Lynch & Company Inc., Metlife Inc., Morgan Stanley, National City Cor-
poration, Nationwide Financial Services, PHH Corporation, PNC Financial Services Group Inc.,
Principal Financial Group Inc., Progressive Corporation, Protective Life Corporation, Prunden-
tial Financial Inc., Regions Financial Corporation, Reinsurance Group of America Inc., SLM
Corporation, State Street Corporation, Suntrust Banks Inc., Torchmark Corporation, Trav-
elers Companies Inc., Unum Group Inc., US Bancorp, WR Berkeley Corporation, Wachovia
Corporation, and Wells Fargo & Company.
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Appendix D: Details of the Observed Global Variables

The observed global variables used in our analysis of the properties of the unobserved factors
in Section 4.1 are defined as follows:

(i) US stock market performance. To capture the key risk factors affecting US equity markets,
we use the Rm-Rf, SMB and HML factors developed by Fama and French (1993). Rm-
Rf represents a market factor, while SMB and HML account for risk factors related to
firm size and book-to-market equity, respectively. The Fama-French factors are freely
available from Ken French via http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html.

(ii) US Treasury market conditions. We use the change in the five-year Constant Maturity
Treasury (CMT) yield to capture expectations regarding macroeconomic conditions in the
US and, by extension, in the world economy. In addition, given that investors regard US
Treasury debt as a safe haven asset, Longstaff et al. (2011) note that the CMT yield may
incorporate a flight-to-liquidity component. The CMT yield is published by the Federal
Reserve in its H.15 Statistical Release.

(iii) The TED spread. The TED spread is the difference between the 3-month USD LIBOR
and the 3-month US Treasury bill yield. Variations in the TED spread reflect changes
in counterparty risk and liquidity in the US interbank market. Consequently, it is widely
used as an indicator of funding liquidity. The TED spread is available from the Federal
Reserve Economic Data Service (FRED) via https://fred.stlouisfed.org/.

(iv) The Euribor-DeTBill spread. To capture European-specific variations in funding liquidity,
we use the spread between the 3-month Euribor and the 3-month German Treasury bill
yield. The Euribor and the German yield data are available from Datastream.

(v) The variance risk premium (VRP). Bollerslev, Tauchen and Zhou (2009) define the VRP as
the difference between the one-month-ahead implied variance and a forecast of the realized
variance over the same period. Under this definition, the VRP is typically positive, with
higher values indicating a reduced risk appetite. We forecast the realized variance using
the same augmented version of Corsi’s (2009) heterogeneous autoregressive model used by

Bekaert and Hoerova (2014). We compute the VRP as V RPt = V IX2
t −E

[
RV

(22)
t+1

]
, where

V IX2
t denotes the de-annualized squared VIX and RV

(22)
t denotes the realized variance

for the S&P 500 measured over the next 22 trading days as the sum of squared five-minute
intraday returns. The VIX data is available from FRED, while we obtain the daily realized
variance from the Oxford Man Institute’s Realized Library (Heber, Lunde, Shephard and
Sheppard, 2009, ver. 0.2).15

(vi) The Treasury term premium. The term premium measures the excess yield required to
induce investors to hold a long-term bond as opposed to a sequence of shorter-term bonds.
Consequently, it conveys valuable information on investors’ time preferences as well as
their expectations regarding the macroeconomic outlook. We use the 5-year Treasury term
premium derived from the five-factor no-arbitrage term structure model of Adrian, Crump
and Moench (2013), which is freely available from the Federal Reserve Bank of New York
via https://www.newyorkfed.org/research/data_indicators/term_premia.html.

15Longstaff et al. (2011) also consider the equity premium approximated at monthly frequency by the price-
earnings ratio for the S&P 100 index. We are obliged to exclude the equity premium, because earnings per share
is unavailable at daily frequency. However, the variance risk premium should be highly correlated with the equity
premium and should impound much of its informational content.
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(vii) US investment grade and high yield spreads. To capture changes in the required rate
of return on investment grade (IG) and high yield (HY) corporate bonds, we use both
the IG and HY spreads. We define the IG spread as the spread between the Bank of
America Merrill Lynch US corporate BBB and AAA effective yields and the HY spread
as the difference between the Bank of America Merrill Lynch US corporate BB and BBB
effective yields. The corporate bond yield data is available from FRED.

(viii) ITRAXX indices to capture pan-European credit risk factors. To account for European
credit risk factors not captured elsewhere, we use five 5-year ITRAXX indices to isolate
European credit risk factors. Specifically, we include the ITRAXX Europe index, the
ITRAXX High Volatility index, ITRAXX Crossover index and the ITRAXX Senior and
Subordinated Financials indices. ITRAXX data is available from Datastream.

(ix) Bilateral spot exchange rate returns. To capture exchange rate fluctuations, we use the
daily log-return on the bilateral spot exchange rate for each currency in our sample in
units of foreign currency per USD. The exchange rate data is obtained from Datastream.
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