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Abstract

Background: Molecular signatures identified from high-throughput transcriptomic studies often have poor
reliability and fail to reproduce across studies. One solution is to combine independent studies into a single
integrative analysis, additionally increasing sample size. However, the different protocols and technological platforms
across transcriptomic studies produce unwanted systematic variation that strongly confounds the integrative analysis
results. When studies aim to discriminate an outcome of interest, the common approach is a sequential two-step
procedure; unwanted systematic variation removal techniques are applied prior to classification methods.

Results: To limit the risk of overfitting and over-optimistic results of a two-step procedure, we developed a novel
multivariate integration method,MINT, that simultaneously accounts for unwanted systematic variation and identifies
predictive gene signatures with greater reproducibility and accuracy. In two biological examples on the classification
of three human cell types and four subtypes of breast cancer, we combined high-dimensional microarray and RNA-seq
data sets and MINT identified highly reproducible and relevant gene signatures predictive of a given phenotype. MINT
led to superior classification and prediction accuracy compared to the existing sequential two-step procedures.

Conclusions: MINT is a powerful approach and the first of its kind to solve the integrative classification framework in a
single step by combining multiple independent studies.MINT is computationally fast as part of the mixOmics R CRAN
package, available at http://www.mixOmics.org/mixMINT/ and http://cran.r-project.org/web/packages/mixOmics/.
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Background
High-throughput technologies, based on microarray and
RNA-sequencing, are now being used to identify biomark-
ers or gene signatures that distinguish disease subgroups,
predict cell phenotypes or classify responses to therapeu-
tic drugs. However, few of these findings are reproduced
when assessed in subsequent studies and even fewer lead
to clinical applications [1, 2]. The poor reproducibility of
identified gene signatures is most likely a consequence of
high-dimensional data, in which the number of genes or
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transcripts being analysed is very high (often several thou-
sands) relative to a comparatively small sample size being
used (< 20).
One way to increase sample size is to combine raw data

from independent experiments in an integrative analysis.
This would improve both the statistical power of the anal-
ysis and the reproducibility of the gene signatures that are
identified [3]. However, integrating transcriptomic studies
with the aim of classifying biological samples based on an
outcome of interest (integrative classification) has a num-
ber of challenges. Transcriptomic studies often differ from
each other in a number of ways, such as in their exper-
imental protocols or in the technological platform used.
These differences can lead to so-called ‘batch-effects’, or
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systematic variation across studies, which is an impor-
tant source of confounding [4]. Technological platform,
in particular, has been shown to be an important con-
founder that affects the reproducibility of transcriptomic
studies [5]. In the MicroArray Quality Control (MAQC)
project, poor overlap of differentially expressed genes
was observed across different microarray platforms (∼
60%), with low concordance observed between microar-
ray and RNA-seq technologies specifically [6]. Therefore,
these confounding factors and sources of systematic vari-
ation must be accounted for, when combining indepen-
dent studies, to enable genuine biological variation to be
identified.
The common approach to integrative classification is

sequential. A first step consists of removing batch-effect
by applying for instance ComBat [7], FAbatch [8], Batch
Mean-Centering [9], LMM-EH-PS [10], RUV-2 [4] or
YuGene [11]. A second step fits a statistical model to
classify biological samples and predict the class member-
ship of new samples. A range of classification methods
also exists for these purposes, including machine learn-
ing approaches (e.g. random forests [12, 13] or Support
Vector Machine [14–16]) as well as multivariate linear
approaches (Linear Discriminant Analysis LDA, Partial
Least Square Discriminant Analysis PLSDA [17], or sparse
PLSDA [18]).
The major pitfall of the sequential approach is a risk of

over-optimistic results from overfitting of the training set.
This leads to signatures that cannot be reproduced on test
sets. Moreover, most proposed classification models have
not been objectively validated on an external and indepen-
dent test set. Thus, spurious conclusions can be generated
when using these methods, leading to limited potential
for translating results into reliable clinical tools [2]. For
instance, most classification methods require the choice
of a parameter (e.g. sparsity), which is usually optimised
with cross-validation (data are divided into k subsets or
‘folds’ and each fold is used once as an internal test set).
Unless the removal of batch-effects is performed indepen-
dently on each fold, the folds are not independent and
this leads to over-optimistic classification accuracy on the
internal test sets. Hence, batch removal methods must be
used with caution. For instance, ComBat can not remove
unwanted variation in an independent test set alone as
it requires the test set to be normalised with the learn-
ing set in a transductive rather than inductive approach
[19]. This is a clear example where over-fitting and over-
optimistic results can be an issue, even when a test set is
considered.
To address existing limitations of current data integra-

tion approaches and the poor reproducibility of results, we
propose a novel Multivariate INTegrative method,MINT.
MINT is the first approach of its kind that integrates
independent data sets while simultaneously, accounting

for unwanted (study) variation, classifying samples and
identifying key discriminant variables. MINT predicts
the class of new samples from external studies, which
enables a direct assessment of its performance. It also
provides insightful graphical outputs to improve inter-
pretation and inspect each study during the integration
process.
We validated MINT in a subset of the MAQC project,

which was carefully designed to enable assessment
of unwanted systematic variation. We then combined
microarray and RNA-seq experiments to classify sam-
ples from three human cell types (human Fibroblasts
(Fib), human Embryonic Stem Cells (hESC) and human
induced Pluripotent Stem Cells (hiPSC)) and from four
classes of breast cancer (subtype Basal, HER2, Luminal
A and Luminal B). We use these datasets to demon-
strate the reproducibility of gene signatures identified
byMINT.

Methods
We use the following notations. Let X denote a data
matrix of size N observations (rows) × P variables (e.g.
gene expression levels, in columns) and Y a dummy
matrix indicating each sample class membership of
size N observations (rows) × K categories outcome
(columns). We assume that the data are partitioned into
M groups corresponding to each independent study m:
{(X(1),Y (1)), . . . , (X(M),Y (M))} so that

∑M
m=1 nm = N ,

where nm is the number of samples in group m, see
Additional file 1: Figure S1. Each variable from the data
set X(m) and Y (m) is centered and has unit variance.
We write X and Y the concatenation of all X(m) and
Y (m), respectively. Note that if an internal known batch
effect is present in a study, this study should be split
according to that batch effect factor into several sub-
studies considered as independent. For n ∈ N, we
denote for all a ∈ R

n its �1 norm ||a||1 = ∑n
1 |aj|

and its �2 norm ||a||2 =
(∑n

1 a2j
)1/2

and |a|+ the
positive part of a. For any matrix we denote by � its
transpose.

PLS-based classification methods to combine independent
studies
PLS approaches have been extended to classify samples
Y from a data matrix X by maximising a formula based
on their covariance. Specifically, latent components are
built based on the original X variables to summarise
the information and reduce the dimension of the data
while discriminating the Y outcome. Samples are then
projected into a smaller space spanned by the latent com-
ponent. We first detail the classical PLS-DA approach
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and then describe mgPLS, a PLS-based model we pre-
viously developed to model a group (study) structure
in X.

PLS-DA Partial Least Squares Discriminant Analysis
[17] is an extension of PLS for a classification frame-
works where Y is a dummy matrix indicating sample
class membership. In our study, we applied PLS-DA as an
integrative approach by naively concatenating all studies.
Briefly, PLS-DA is an iterative method that constructs H
successive artificial (latent) components th = Xhah and
uh = Yhbh for h = 1, ..,H , where the hth component
th (respectively uh) is a linear combination of the X (Y )
variables.H denotes the dimension of the PLS-DAmodel.
The weight coefficient vector ah (bh) is the loading vec-
tor that indicates the importance of each variable to define
the component. For each dimension h = 1, . . . ,H PLS-DA
seeks to maximize

max
||ah||2=||bh||2=1

cov(Xhah,Yhbh), (1)

where Xh,Yh are residual matrices (obtained through a
deflation step, as detailed in [18]). The PLS-DA algo-
rithm is described in Additional file 1: Supplemental
Material S1. The PLS-DA model assigns to each sam-
ple i a pair of H scores (tih,u

i
h) which effectively rep-

resents the projection of that sample into the X- or Y -
space spanned by those PLS components. As H <<

P, the projection space is small, allowing for dimension
reduction as well as insightful sample plot representa-
tion (e.g. graphical outputs in “Results” section). While
PLS-DA ignores the data group structure inherent to each
independent study, it can give satisfactory results when
the between groups variance is smaller than the within
group variance or when combined with extensive data
subsampling to account for systematic variation across
platforms [21].

mgPLS Multi-group PLS is an extension of the PLS
framework we recently proposed to model grouped data
[22, 23], which is relevant for our particular case where
the groups represent independent studies. In mgPLS,
the PLS-components of each group are constraint to
be built based on the same loading vectors in X and
Y. These global loading vectors thus allow the samples
from each group or study to be projected in the same
common space spanned by the PLS-components. We
extended the original unsupervised approach to a super-
vised approach by using a dummy matrix Y as in PLS-DA
to classify samples while modelling the group structure.
For each dimension h = 1, . . . ,H mgPLS-DA seeks to
maximize

max
||ah||2=||bh||2=1

M∑

m=1
nmcov

(
X(m)

h ah,Y (m)

h bh
)
, (2)

where ah and bh are the global loadings vectors com-
mon to all groups, t(m)

h = X(m)

h ah and u(m)

h = Y (m)

h bh
are the group-specific (partial) PLS-components, and
X(m)

h and Y (m)

h are the residual (deflated) matrices. The
global loadings vectors (ah, bh) and global components
(th = Xhah,uh = Yhbh) enable to assess overall classifi-
cation accuracy, while the group-specific loadings and
components provide powerful graphical outputs for each
study that is integrated in the analysis. Global and group-
specific components and loadings are represented in
Additional file 1: Figure S2. The next development we
describe below is to include internal variable selection in
mgPLS-DA for large dimensional data sets.

MINT
Our novel multivariate integrative method MINT simul-
taneously integrates independent studies and selects the
most discriminant variables to classify samples and pre-
dict the class of new samples. MINT seeks for a common
projection space for all studies that is defined on a small
subset of discriminative variables and that display an anal-
ogous discrimination of the samples across studies. The
identified variables share common information across all
studies and therefore represent a reproducible signature
that helps characterising biological systems. MINT fur-
ther extends mgPLS-DA by including a �1-penalisation on
the global loading vector ah to perform variable selection.
For each dimension h = 1, . . . ,H the MINT algorithm
seeks to maximize

max
||ah||2=||bh||2=1

M∑

m=1
nmcov(X(m)

h ah,Y (m)

h bh) + λh||ah||1,

(3)

where in addition to the notations from Eq. (2), λh is
a non negative parameter that controls the amount of
shrinkage on the global loading vectors ah and thus the
number of non zero weights. Similarly to Lasso [24] or
sparse PLS-DA [18], the added �1 penalisation in MINT
improves interpretability of the PLS-components that are
now defined only on a set of selected biomarkers from
X (with non zero weight) that are identified in the lin-
ear combination X(m)

h ah. The �1 penalisation in effectively
solved in the MINT algorithm using soft-thresholding
(see pseudo Algorithm 1).
In addition to the integrative classification framework,

MINT was extended to an integrative regression frame-
work (multiple multivariate regression, Additional file 1
Supplemental Material S2).
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Algorithm 1MINT
1: We denote ∀1 ≤ m ≤ M,X(m)

1 = X(m), Y (m)
1 = Y (m),

X(m) = X and Y (m) = Y , where X and Y are centered
and scaled.

2: For h < H , choose λh and an initial value for ah with
||ah||2 = 1,

3: repeat
4: t(m)

h ← X(m)

h ah � partial components
5: th ← Xhah � global components
6: b(m)

h ← (Y (m)

h )�t(m)

h � partial loadings
7: bh ← (

∑M
m=1 b

(m)

h )/|| ∑M
m=1 b

(m)

h ||2 � global
loadings

8: u(m)

h ← Y (m)

h bh � partial components
9: a(m)

h ← (X(m)

h )�u(m)

h � partial loadings
10: ah ← (

∑M
m=1 a

(m)

h )/|| ∑M
m=1 a

(m)

h ||2 � global
loadings

11: ah ← sign(ah)(|ah| − λh)+ � soft thresholding
12: until convergence of ah and bh.
13: P ← I − th(t�h th)

−1t�h , where I = identity matrix of
R
N

14: Xh+1 ← PXh and Yh+1 ← PYh � deflation

Class prediction and parameters tuning withMINT
MINT centers and scales each study from the training set,
so that each variable has mean 0 and variance 1, similarly
to any PLS methods. Therefore, a similar pre-processing
needs to be applied on test sets. If a test sample belongs to
a study that is part of the training set, then we apply the
same scaling coefficients as from the training study. This is
required so that MINT applied on a single study will pro-
vide the same results as PLS. If the test study is completely
independent, then it is centered and scaled separately.
After scaling the test samples, the prediction framework

of PLS is used to estimate the dummy matrix Ytest of an
independent test set Xtest [25], where each row in Ytest
sums to 1, and each column represents a class of the out-
come. A class membership is assigned (predicted) to each
test sample by using the maximal distance, as described
in [18]. It consists in assigning the class with maximal
positive value in Ytest .
The main parameter to tune in MINT is the penalty λh

for each PLS-component h, which is usually performed
using Cross-Validation (CV). In practice, the parameter
λh can be equally replaced by the number of variables to
select on each component, which is our preferred user-
friendly option. The assessment criterion in the CV can
be based on the proportion of misclassified samples, pro-
portion of false or true positives, or, as in our case, the bal-
anced error rate (BER). BER is calculated as the averaged
proportion of wrongly classified samples in each class
and weights up small sample size classes. We consider

BER to be a more objective performance measure than
the overall misclassification error rate when dealing with
unbalanced classes.MINT tuning is computationally effi-
cient as it takes advantage of the group data structure in
the integrative study. We used a “Leave-One-Group-Out
Cross-Validation (LOGOCV)”, which consists in perform-
ing CV where group or study m is left out only once
m = 1, . . . ,M. LOGOCV realistically reflects the true
case scenario where prediction is performed on indepen-
dent external studies based on a reproducible signature
identified on the training set. Finally, the total number of
components H in MINT is set to K − 1, K = number
of classes, similar to PLS-DA and �1 penalised PLS-DA
models [18].

Case studies
We demonstrate the ability of MINT to identify the true
positive genes on the MAQC project, then highlight the
strong properties of our method to combine independent
data sets in order to identify reproducible and predictive
gene signatures on two other biological studies.

TheMicroArray quality control (MAQC) project. The
extensive MAQC project focused on assessing microarray
technologies reproducibility in a controlled environment
[5]. Two reference samples, RNA samples Universal
Human Reference (UHR) and Human Brain Reference
(HBR) and two mixtures of the original samples were con-
sidered. Technical replicates were obtained from three
different array platforms -Illumina, AffyHuGene and
AffyPrime- for each of the four biological samples A (100%
UHR), B (100%HBR), C (75%UHR, 25%HBR) and D (25%
UHR and 75% HBR). Data were downloaded from Gene
Expression Omnibus (GEO) - GSE56457. In this study, we
focused on identifying biomarkers that discriminate A vs.
B and C vs. D. The experimental design is referenced in
Additional file 1: Table S1.

Stem cells. We integrated 15 transcriptomics microar-
ray datasets to classify three types of human cells: human
Fibroblasts (Fib), human Embryonic Stem Cells (hESC)
and human induced Pluripotent Stem Cells (hiPSC). As
there exists a biological hierarchy among these three cell
types, two sub-classification problems are of interest in
our analysis, which we will address simultaneously with
MINT. On the one hand, differences between pluripo-
tent (hiPSC and hESC) and non-pluripotent cells (Fib) are
well-characterised and are expected to contribute to the
main biological variation. Our first level of analysis will
therefore benchmark MINT against the gold standard in
the field. On the other hand, hiPSC are genetically repro-
grammed to behave like hESC and both cell types are
commonly assumed to be alike. However, differences have
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been reported in the literature [26–28], justifying the sec-
ond and more challenging level of classification analysis
between hiPSC and hESC. We used the cell type annota-
tions of the 342 samples as provided by the authors of the
15 studies.
The stem cell dataset provides an excellent showcase

study to benchmark MINT against existing statistical
methods to solve a rather ambitious classification prob-
lem.
Each of the 15 studies was assigned to either a training

or test set. Platforms uniquely represented were assigned
to the training set and studies with only one sample in one
class were assigned to the test set. Remaining studies were
randomly assigned to training or test set. Eventually, the
training set included eight datasets (210 samples) derived
on five commercial platforms and the independent test
set included the remaining seven datasets (132 samples)
derived on three platforms (Table 1).
The pre-processed files were downloaded from the

http://www.stemformatics.org collaborative platform
[29]. Each dataset was background corrected, log2 trans-
formed, YuGene normalized and mapped from probes ID
to Ensembl ID as previously described in [11], resulting in
13 313 unique Ensembl gene identifiers. In the case where
datasets contained multiple probes for the same Ensembl

Table 1 Stem cells experimental design

Experiment Platform Fib hESC hiPSC

Bock Affymetrix HT-HG-U133A 6 20 12

Briggs Illumina HumanHT-12 V4 18 3 30

Chung Affymetrix HuGene-1.0-ST V1 3 8 10

Ebert Affymetrix HG-U133 Plus2 2 5 3

Guenther Affymetrix HG-U133 Plus2 2 17 20

Maherali Affymetrix HG-U133 Plus2 3 3 15

Marchetto Affymetrix HuGene-1.0-ST V1 6 3 12

Takahashi Agilent SurePrint G3 GE 8x60K 3 3 3

Total training set 5 platforms 43 62 105

Andrade Affymetrix HuGene-1.0-ST V1 3 6 15

Hu Affymetrix HG-U133 Plus2 1 5 12

Kim Affymetrix HG-U133 Plus2 1 1 3

Loewer Affymetrix HG-U133 Plus2 4 2 7

Si-Tayeb Affymetrix HG-U133 Plus2 3 6 6

Vitale Illumina HumanHT-12 V4 8 3 18

Yu Affymetrix HG-U133 Plus2 2 10 16

Total test set 3 platforms 22 33 77

A total of 15 studies were analysed, including three human cell types, human
Fibroblasts (Fib), human Embryonic Stem Cells (hESC) and human induced
Pluripotent Stem Cells (hiPSC) across five different types of microarray platforms.
Eight studies from five microarray platforms were considered as a training set
[57–64] and seven independent studies from three of the five platforms were
considered as a test set [65–71]

ID gene, the highest expressed probe was chosen as the
representative of that gene in that dataset. The choice
of YuGene normalisation was motivated by the need to
normalise each sample independently rather than as a
part of a whole study (e.g. existing methods ComBat [7],
quantile normalisation (RMA [30])), to effectively limit
over-fitting during the CV evaluation process.

Breast cancer. We combined whole-genome gene-
expression data from two cohorts from the Molecular
Taxonomy of Breast Cancer International Consortium
project (METABRIC, [31] and of two cohorts from the
Cancer Genome Atlas (TCGA, [32]) to classify the intrin-
sic subtypes Basal, HER2, Luminal A and Luminal B, as
defined by the PAM50 signature [20]. The METABRIC
cohorts data were made available upon request, and were
processed by [31]. TCGA cohorts are gene-expression
data from RNA-seq and microarray platforms. RNA-seq
data were normalised using Expectation Maximisation
(RSEM) and percentile-ranked gene-level transcrip-
tion estimates. The microarray data were processed as
described in [32].
The training set consisted in three cohorts (TCGA

RNA-seq and both METABRIC microarray studies),
including the expression levels of 15 803 genes on 2 814
samples; the test set included the TCGA microarray
cohort with 254 samples (Table 2). Two analyses were con-
ducted, which either included or discarded the PAM50
genes from the data. The first analysis aimed at recovering
the PAM50 genes used to classify the samples. The sec-
ond analysis was performed on 15,755 genes and aimed at
identifying an alternative signature to the PAM50.

Performance comparison with sequential classification
approaches
We compared MINT with sequential approaches
that combine batch-effect removal approaches with

Table 2 Experimental design of four breast cancer cohorts
including 4 cancer subtypes: Basal, HER2, Luminal A (LumA) and
Luminal B (LumB)

Experiment Platform Basal Her2 LumA LumB

METABRIC
Discovery

Illumina
HT-12 v3

118 87 466 268

METABRIC
Validation

Illumina
HT-12 v3

213 153 255 224

TCGA RNA-seq illumina
HiSeq 2000

188 80 549 213

Total training
set

2 platforms 519 320 1270 705

TCGA
microarray

Agilent
custom 244K

57 31 99 67

Total test set 1 platform 57 31 99 67

http://www.stemformatics.org
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classification methods. As a reference, classification
methods were also used on their own on a naive con-
catenation of all studies. Batch-effect removal methods
included Batch Mean-Centering (BMC, [9]), ComBat [7],
linear models (LM) or linear mixed models (LMM), and
classification methods included PLS-DA, sPLS-DA [18],
mgPLS [22, 23] and Random forests (RF [12]). For LM
and LMM, linear models were fitted on each gene and
the residuals were extracted as a batch-corrected gene
expression [33, 34]. The study effect was set as a fixed
effect with LM or as a random effect with LMM. No
sample outcome (e.g. cell-type) was included.
Prediction with ComBat normalised data were obtained

as described in [19]. In this study, we did not include
methods that require extra information -as control genes
with RUV-2 [4]- and methods that are not widely available
to the community as LMM-EH [10]. Classification meth-
ods were chosen so as to simultaneously discriminate all
classes. With the exception of sPLS-DA, none of those
methods perform internal variable selection. The multi-
variate methods PLS-DA, mgPLS and sPLS-DA were run
on K − 1 components, sPLS-DA was tuned using 5-fold
CV on each component. All classification methods were
combined with batch-removal method with the exception
of mgPLS that already includes a study structure in the
model.
MINT and PLS-DA-like approaches use a prediction

threshold based on distances (see “Class prediction and
parameters tuning with MINT” section) that optimally
determines class membership of test samples, and as such
do not require receiver operating characteristic (ROC)
curves and area under the curve (AUC) performancemea-
sures. In addition, those measures are limited to binary
classification which do not apply for our stem cell and
breast cancer multi-class studies. Instead we use Bal-
anced classification Error Rate to objectively evaluate the
classification and prediction performance of the meth-
ods for unbalanced sample size classes (“MINT” section).
Classification accuracies for each class were also reported.

Results
Validation of theMINT approach to identify signatures
agnostic to batch effect
The MAQC project processed technical replicates of four
well-characterised biological samples A, B, C and D across
three platforms. Thus, we assumed that genes that are
differentially expressed (DEG) in every single platform
are true positive. We primarily focused on identifying
biomarkers that discriminate C vs. D, and report the
results of A vs. B in the Additional file 1: Supplemental
Material S3, Figure S3. Differential expression analysis of
C vs. D was conducted on each of the three microar-
ray platforms using ANOVA, showing an overlap of 1385
DEG (FDR < 10−3 [35]), which we considered as true

positive. This corresponded to 62.6% of all DEG for Illu-
mina, 30.5% for AffyHuGene and 21.0% for AffyPrime
(Additional file 1: Figure S4). We observed that conduct-
ing a differential analysis on the concatenated data from
the three microarray platforms without accommodating
for batch effects resulted in 691 DEG, of which only
56% (387) were true positive genes. This implies that the
remaining 44% (304) of these genes were false positive,
and hence were not DE in at least one study. The high
percentage of false positive was explained by a Principal
Component Analysis (PCA) sample plot that showed sam-
ples clustering by platforms (Additional file 1: Figure S4),
which confirmed that the major source of variation in the
combined data was attributed to platforms rather than cell
types.
MINT selected a single gene, BCAS1, to discriminate

the two biological classes C and D. BCAS1 was a true pos-
itive gene, as part of the common DEG, and was ranked 1
for Illumina, 158 for AffyPrime and 1182 for AffyHuGene.
Since the biological samples C and D are very different,
the selection of one single gene by MINT was not sur-
prising. To further investigate the performance of MINT,
we expanded the number of genes selected by MINT, by
decreasing its sparsity parameter (seeMethods), and com-
pared the overlap between this largerMINT signature and
the true positive genes. We observed an overlap of 100%
for a MINT signature of size 100, and an overlap of 89%
for a signature of size 1385, which is the number of com-
mon DEG identified previously. The high percentage of
true positive selected by MINT demonstrates its ability to
identify a signature agnostic to batch effect.

Limitations of commonmeta-analysis and integrative
approaches
A meta-analysis of eight stem cell studies, each including
three cell types (Table 1, stem cell training set), highlighted
a small overlap of DEG lists obtained from the analysis of
each separate study (FDR < 10−5, ANOVA, Additional
file 1: Table S2). Indeed, the Takahashi study with only 24
DEG limited the overlap between all eight studies to only
5 DEG. This represents a major limitation of merging pre-
analysed gene lists as the concordance between DEG lists
decreases when the number of studies increases.
One alternative to meta-analysis is to perform an inte-

grative analysis by concatenating all eight studies. Simi-
larly to the MAQC analysis, we first observed that the
major source of variation in the combined data was
attributed to study rather than cell type (Fig. 1a). PLS-DA
was applied to discriminate the samples according to their
cell types, and it showed a strong study variation (Fig. 1b),
despite being a supervised analysis. Compared to unsu-
pervised PCA (Fig. 1a), the study effect was reduced for
the fibroblast cells, but was still present for the similar cell
types hESC and hiPSC. We reached similar conclusions
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Fig. 1 Stem cell study. a PCA on the concatenated data: a greater study variation than a cell type variation is observed. b PLSDA on the
concatenated data clustered Fibroblasts only. cMINT sample plot shows that each cell type is well clustered, dMINT performance: BER and
classification accuracy for each cell type and each study

when analysing the breast cancer data (Additional file 1:
Supplemental Material S4, Figure S5).

MINT outperforms state-of-the-art methods
We compared the classification accuracy of MINT to
sequential methods where batch removal methods were
applied prior to classification methods. In both stem cell
and breast cancer studies, MINT led to the best accu-
racy on the training set and the best reproducibility of the
classification model on the test set (lowest Balanced Error
Rate, BER, Fig. 2, Additional file 1: Figures S6 and S7). In
addition, MINT consistently ranked first as the best per-
forming method, followed by ComBat+sPLSDA with an
average rank of 4.5 (Additional file 1: Figure S8).
On the stem cell data, we found that fibroblasts were

the easiest to classify for all methods, including those that
do not accommodate unwanted variation (PLS-DA, sPLS-
DA and RF, Additional file 1: Figure S6). Classifying hiPSC
vs. hESC proved more challenging for all methods, lead-
ing to a substantially lower classification accuracy than
fibroblasts.
The analysis of the breast cancer data (excluding PAM50

genes) showed that methods that do not accommodate
unwanted variation were able to rightly classify most of
the samples from the training set, but failed at classifying

any of the four subtypes on the external test set. As a
consequence, all samples were predicted as LumB with
PLS-DA and sPLS-DA, or Basalwith RF (Additional file 1:
Figure S7). Thus, RF gave a satisfactory performance on
the training set (BER = 18.5), but a poor performance on
the test set (BER= 75).
Additionally, we observed that the biomarker selection

process substantially improved classification accuracy. On
the stem cell data, LM+sPLSDA andMINT outperformed
their non sparse counterparts LM+PLSDA and mgPLS
(Fig. 2, BER of 9.8 and 7.1 vs. 20.8 and 11.9), respectively.
Finally, MINT was largely superior in terms of compu-

tational efficiency. The training step on the stem cell data
which includes 210 samples and 13,313 was run in 1 s,
compared to 8 s with the second best performing method
ComBat+sPLS-DA (2013 MacNook Pro 2.6Ghz, 16Gb
memory). The popular method ComBat took 7.1s to run,
and sPLS-DA 0.9s. The training step on the breast can-
cer data that includes 2817 samples and 15,755 genes was
run in 37s for MINT and 71.5s for ComBat(30.8s)+sPLS-
DA(40.6s).

Study-specific outputs withMINT
One of the main challenges when combining indepen-
dent studies is to assess the concordance between studies.
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Fig. 2 Classification accuracy for both training and test set for the stem cells and breast cancer studies (excluding PAM50 genes). The classification
Balanced Error Rates (BER) are reported for all sixteen methods compared with MINT (in black)

During the integration procedure, MINT proposes not
only individual performance accuracy assessment, but
also insightful graphical outputs that are study-specific
and can serve as Quality Control step to detect out-
lier studies. One particular example is the Takahashi
study from the stem cell data, whose poor performance
(Fig. 1d) was further confirmed on the study-specific out-
puts (Additional file 1: Figure S9). Of note, this study was
the only one generated through Agilent technology and its
sample size only accounted for 4.2% of the training set.
The sample plots from each individual breast cancer

data set showed the strong ability of MINT to discrim-
inate the breast cancer subtypes while integrating data
sets generated from disparate transcriptomics platforms,
microarrays and RNA-sequencing (Fig. 3a–c). Those data
sets were all differently pre-processed, and yet MINT was
able to model an overall agreement between all studies;
MINT successfully built a space based on a handful of
genes in which samples from each study are discriminated
in a homogenous manner.

MINT gene signature identified promising biomarkers
MINT is a multivariate approach that builds successive
components to discriminate all categories (classes) indi-
cated in an outcome variable. On the stem cell data,MINT
selected 2 and 15 genes on the first two components
respectively (Additional file 1: Table S3). The first compo-
nent clearly segregated the pluripotent cells (fibroblasts)

vs. the two non-pluripotent cell types (hiPSC and hESC)
(Fig. 1c, d). Those non pluripotent cells were subsequently
separated on component two with some expected overlap
given the similarities between hiPSC and hESC. The two
genes selected by MINT on component 1 were LIN28A
and CAR which were both found relevant in the litera-
ture. Indeed, LIN28A was shown to be highly expressed in
ESCs compared to Fibroblasts [36, 37] and CAR has been
associated to pluripotency [38]. Finally, despite the high
heterogeneity of hiPSC cells included in this study, MINT
gave a high accuracy for hESC and hiPSC on indepen-
dent test sets (93.9% and 77.9% respectively, Additional
file 1: Figure S6), suggesting that the 15 genes selected by
MINT on component 2 have a high potential to explain
the differences between those cell types (Additional file 1:
Table S3).
On the breast cancer study, we performed two analyses

which either included or discarded the PAM50 genes that
were used to define the four cancer subtypes Basal, HER2,
Luminal A and Luminal B [20]. In the first analysis, we
aimed to assess the ability of MINT to specifically identify
the PAM50 key driver genes. MINT successfully recov-
ered 37 of the 48 PAM50 genes present in the data (77%)
on the first three components (7, 20 and 10 respectively).
The overall signature included 30, 572 and 636 genes on
each component (see Additional file 1: Table S4), i.e. 7.8%
of the total number of genes in the data. The performance
of MINT (BER of 17.8 on the training set and 11.6 on the



Rohart et al. BMC Bioinformatics  (2017) 18:128 Page 9 of 13

Fig. 3MINT study-specific sample plots showing the projection of samples from aMETABRIC Discovery, bMETABRIC Validation and c
TCGA-RNA-seq experiments, in the same subspace spanned by the first two MINT components. The same subspace is also used to plot the (d)
overall (integrated) data. e Balanced Error Rate and classification accuracy for each study and breast cancer subtype from the MINT analysis

test set) was superior than when performing a PLS-DA
on the PAM50 genes only (BER of 20.8 on the training
set and a very high 75 on the test set). This result shows
that the genes selected by MINT offer a complementary
characterisation to the PAM50 genes.
In the second analysis, we aimed to provide an alter-

native signature to the PAM50 genes by ommitting them
from the analysis.MINT identified 11, 272 and 253 genes
on the first three components respectively (Additional
file 1: Table S5 and Figure S10). The genes selected
on the first component gradually differentiated Basal,
HER2 and Luminal A/B, while the second component
genes further differentiated Luminal A from Luminal
B (Fig. 3d). The classification performance was similar
in each study (Fig. 3e), highlighting an excellent repro-
ducibility of the biomarker signature across cohorts and
platforms.
Among the 11 genes selected byMINT on the first com-

ponent, GATA3 is a transcription factor that regulates

luminal epithelial cell differentiation in the mammary
glands [39, 40], it was found to be implicated in luminal
types of breast cancer [41] and was recently investigated
for its prognosis significance [42]. The MYB-protein plays
an essential role in Haematopoiesis and has been asso-
ciated to Carcinogenesis [43, 44]. Other genes present
in our MINT gene signature include XPB1 [45], AGR3
[46], CCDC170 [47] and TFF3 [48] that were reported as
being associated with breast cancer. The remaining genes
have not been widely associated with breast cancer. For
instance, TBC1D9 has been described as over expressed in
cancer patients [49, 50]. DNALI1 was first identified for its
role in breast cancer in [51] but there was no report of fur-
ther investigation. Although AFF3 was never associated to
breast cancer, it was recently proposed to play a pivotal
role in adrenocortical carcinoma [52]. It is worth noting
that these 11 genes were all included in the 30 genes pre-
viously selected when the PAM50 genes were included,
and are therefore valuable candidates to complement the
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PAM50 gene signature as well as to further characterise
breast cancer subtypes.

Discussion
There is a growing need in the biological and computa-
tional community for tools that can integrate data from
different microarray platforms with the aim of classi-
fying samples (integrative classification). Although sev-
eral efficient methods have been proposed to address
the unwanted systematic variation when integrating data
[4, 7, 9–11], these are usually applied as a pre-processing
step before performing classification. Such sequential
approach may lead to overfitting and over-optimistic
results due to the use of transductive modelling (such as
prediction based on ComBat-normalised data [19]) and
the use of a test set that is normalised or pre-processed
with the training set. To address this crucial issue, we
proposed a newMultivariate INTegrative method, MINT,
that simultaneously corrects for batch effects, classifies
samples and selects the most discriminant biomarkers
across studies.
MINT seeks to identify a common projection space for

all studies that is defined on a small subset of discrimina-
tive variables and that display an analogous discrimination
of the samples across studies. Therefore, MINT provides
sample plot and classification performance specific to
each study (Fig. 3). Among the compared methods, MINT
was found to be the fastest and most accurate method to
integrate and classify data from different microarray and
RNA-seq platforms.
Integrative approaches such as MINT are essential

when combining multiple studies of complex data to limit
spurious conclusions from any downstream analysis. Cur-
rent methods showed a high proportion of false positives
(44% on MAQC data) and exhibited very poor prediction
accuracy (PLS-DA, sPLS-DA and RF, Fig. 2). For instance,
RF was ranked second only to MINT on the breast cancer
learning set, but it was ranked as the worst method on the
test set. This reflects the absence of controlling for batch
effects in these methods and supports the argument that
assessing the presence of batch effects is a key preliminary
step. Failure to do so, as shown in our study, can result in
poor reproducibility of results in subsequent studies, and
this would not be detected without an independent test
set.
We assessed the ability of MINT to identify rele-

vant gene signatures that are reproducible and platform-
agnostic. MINT successfully integrated data from the
MAQC project by selecting true positives genes that
were also differentially expressed in each experiment.
We also assessed MINT’s capabilities analysing stem
cells and breast cancer data. In these studies, MINT
displayed the highest classification accuracy in the
training sets and the highest prediction accuracy in

the testing sets, when compared to sixteen sequen-
tial procedures (Fig. 2). These results suggest that, in
addition to being highly predictive, the discriminant
variables identified by MINT are also of strong biological
relevance.
In the stem cell data, MINT identified 2 genes LIN28A

and CAR, to discriminate pluripotent cells (fibroblasts)
against non-pluripotent cells (hiPSC and hESC). Pluripo-
tency is well-documented in the literature and OCT4 is
currently the main known marker for undifferentiated
cells [53–56]. However, MINT did not selected OCT4 on
the first component but instead, identified two markers,
LIN28A and CAR, that were ranked higher than OCT4
in the DEG list obtained on the concatenated data (see
Additional file 1: Figure S11, S12). While the results from
MINT still supported OCT4 as a marker of pluripotency,
our analysis suggests that LIN28A and CAR are stronger
reproducible markers of differentiated cells, and could
therefore be superior as substitutions or complements to
OCT4. Experimental validation would be required to fur-
ther assess the potential of LIN28A or CAR as efficient
markers.
Several important issues require consideration when

dealing with the general task of integrating data. First
and foremost, sample classification is crucial and needs
to be well defined. This required addressing in analyses
with the stem cell and breast cancer studies generated
from multiple research groups and different microarray
and RNA-seq platforms. For instance, the breast cancer
subtype classification relied on the PAM50 intrinsic classi-
fier proposed by [20], which we admit is still controversial
in the literature [31]. Similarly, the biological definition
of hiPSC differs across research groups [26, 28], which
results in poor reproducibility among experiments and
makes the integration of stem cell studies challenging [21].
The expertise and exhaustive screening required to

homogeneously annotate samples hinders data integra-
tion, and because it is a process upstream to the statistical
analysis, data integration approaches, including MINT,
can not address it.
A second issue in the general process of integrating

datasets from different sources is data access and normal-
isation. As raw data are often not available, this results in
integration of data sets that have each been normalised
differently, as was the case with the breast cancer data
in our study. Despite this limitation, MINT produced
satisfactory results in that study. We were also able to
overcome this issue in the stem cells data by using the
stemformatics resource [29] where we had direct access
to homogeneously pre-processed data (background cor-
rection, log2- and YuGene-transformed [11]). In general,
variation in the normalisation processes of different data
sets produces unwanted variation between studies and we
recommend this should be avoided if possible.
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A final important issue in data integration involves
accounting for both between-study differences and plat-
form effects. When samples clustered by study and the
studies clustered by platform, then the experimental plat-
form and not the study, is the biggest source of varia-
tion (e.g. 75% of the variance in the breast cancer data,
Additional file 1: Figure S5). Indeed, there are inherent
differences between commercial platforms that greatly
magnify unwanted variability, as was discussed by [5] on
the MAQC project. As platform information and study
effects are nested,MINT and other data integrationmeth-
ods dismiss the platform information and focus on the
study effect only. Indeed, each study is considered as
included in a single platform. MINT successfully inte-
grated microarray and RNA-seq data, which supports
that such an approach will likely be sufficient in most
scenarios.
When applying MINT, additional considerations need

be taken into account. In order to reduce unwanted sys-
tematic variation, the method centers and scales each
study as an initial step, similarly to BMC [9]. Therefore,
only studies with a sample size > 3 can be included,
either in a training or test set. In addition, all outcome
categories need to be represented in each study. Indeed,
neitherMINT nor any classificationmethods can perform
satisfactorily in the extreme case where each study only
contains a specific outcome category, as the outcome and
the study effect can not be distinguished in this specific
case.

Conclusion
We introduced MINT, a novel Multivariate INTegrative
method, that is the first approach to integrate indepen-
dent transcriptomics studies from different microarray
and RNA-seq platforms by simultaneously, correcting for
batch effects, classifying samples and identifying key dis-
criminant variables.We first validated the ability of MINT
to select true positives genes when integrating the MAQC
data across different platforms. Then, MINT was com-
pared to sixteen sequential approaches and was shown
to be the fastest and most accurate method to discrimi-
nate and predict three human cell types (human Fibrob-
lasts, human Embryonic Stem Cells and human induced
Pluripotent Stem Cells) and four subtypes of breast cancer
(Basal, HER2, Luminal A and Luminal B). The gene sig-
natures identified by MINT contained existing and novel
biomarkers that were strong candidates for improved
characterisation the phenotype of interest. In conclusion,
MINT enables reliable integration and analysis of inde-
pendent genomic data sets, outperforms existing available
sequential methods, and identifies reproducible genetic
predictors across data sets. MINT is available through the
mixMINT module in the mixOmics R-package.

Additional file

Additional file 1: Supplementary material. This pdf document contains
supplementary methods and all supplementary Figures and Tables.
Specifically, it provides the PLS-algorithm, the extension ofMINT in a
regression framework, the application to the MAQC data (A vs B), the
meta-analysis of the breast cancer data, the classification accuracy of the
tested methods on the stem cells and breast cancer data, and details on
the signature genes identified byMINT on the stem cells and breast cancer
data. (PDF 4403 kb)
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