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An accurate blood-based RAS mutation assay to determine eligibility of

metastatic colorectal cancer (mCRC) patients for anti-EGFR therapy

would benefit clinical practice by better informing decisions to administer

treatment independent of tissue availability. The objective of this study was

to determine the level of concordance between plasma and tissue RAS

mutation status in patients with mCRC to gauge whether blood-based

RAS mutation testing is a viable alternative to standard-of-care RAS

tumor testing. RAS testing was performed on plasma samples from newly

diagnosed metastatic patients, or from recurrent mCRC patients using the

highly sensitive digital PCR technology, BEAMing (beads, emulsions,

amplification, and magnetics), and compared with DNA sequencing data

of respective FFPE (formalin-fixed paraffin-embedded) tumor samples. Dis-

cordant tissue RAS results were re-examined by BEAMing, if possible. The

prevalence of RAS mutations detected in plasma (51%) vs. tumor (53%)
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was similar, in accord with the known prevalence of RAS mutations

observed in mCRC patient populations. The positive agreement between

plasma and tumor RAS results was 90.4% (47/52), the negative agreement

was 93.5% (43/46), and the overall agreement (concordance) was 91.8%

(90/98). The high concordance of plasma and tissue results demonstrates

that blood-based RAS mutation testing is a viable alternative to tissue-

based RAS testing.

1. Introduction

Colorectal cancer (CRC) is a major health problem

with ~1.3 million new cases diagnosed annually

(‘International Agency for Research on Cancer. GLO-

BOCAN 2012: estimated cancer incidence, mortality,

and prevalence worldwide in 2012’, n.d.). The disease

stage at diagnosis is a significant prognostic factor,

and in spite of global screening efforts, ~50% of

patients will either present with, or relapse with meta-

static disease (Kievit, 2002; Siegel et al., 2015). A key

priority for patients with metastatic colorectal cancer

(mCRC) is the implementation of an appropriate first-

line treatment strategy. Numerous randomized con-

trolled trials have demonstrated the benefit of treating

mCRC patients with monoclonal antibodies targeting

the epidermal growth factor receptor (EGFR), such as

cetuximab and panitumumab (Jonker et al., 2007;

Saltz et al., 2004; Tabernero et al., 2007; Van Cutsem

et al., 2007). The identification of patients wild-type

(WT) for KRAS codons 12 and 13 mutations

increased response rates to anti-EGFR therapy by as

much as 60% (Douillard et al., 2010; Van Cutsem

et al., 2009a) and reinforced the approach of incorpo-

rating molecular diagnostics into clinical practice.

Recent trials have demonstrated that a more compre-

hensive evaluation of RAS, so-called expanded RAS,

to include KRAS and NRAS codons 12, 13, 59, 61,

117, 146 can more precisely identify patients with

mCRC for anti-EGFR therapy than KRAS codons 12

and 13 testing alone (Bokemeyer et al., 2014; Douil-

lard et al., 2013; Heinemann et al., 2014; Peeters

et al., 2014).

Genotyping of tumor tissue can present challenges

to even the most advanced clinical practice. Studies

evaluating the genomic profiles of primary tumors

and metastases have shown discordant results, attrib-

uted largely to molecular inter- and intratumor/

metastasis heterogeneity (De Mattos-Arruda et al.,

2014; Gerlinger et al., 2012; Mao et al., 2015). Opera-

tionally, an optimal RAS testing procedure for biopsy

and surgical resection specimens has yet to be uni-

formly established (Allegra et al., 2009; van Krieken

et al., 2008; Tack et al., 2015). As an alternative and

complement to tumor tissue genotyping, analysis of

tumor DNA derived from plasma can provide a

rapid genotype result, which accurately reflects the

mutation status of tumor tissue (Bettegowda et al.,

2014; Diehl et al., 2008). A unique feature of blood-

based genotyping is its potential to provide an inte-

grative and gene mutation-specific highly sensitive

molecular analysis of an individual patient’s tumor

and/or metastases (Bettegowda et al., 2014; Diaz and

Bardelli, 2014), thus eliminating sampling bias related

to tissue heterogeneity.

Blood-based tumor genotyping derives from obser-

vations that patients with cancer have markedly higher

concentrations of circulating cell-free DNA (cfDNA)

than healthy individuals (Stroun et al., 1987). In

patients with metastatic cancer, plasma-derived ctDNA

has been shown to be a reliable surrogate for genomic

alterations in tumor tissue (Bettegowda et al., 2014;

Diehl et al., 2008; Morelli et al., 2015). Among the

various plasma ctDNA assays, BEAMing (beads,

emulsions, amplification, and magnetics), based on

emulsion digital PCR, has been shown to exhibit high
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sensitivity, enabling the detection of one mutant allele

within a background of 10 000 wild-type alleles (Diehl

et al., 2006; Dressman et al., 2003; Li et al., 2006). In

clinical trials, BEAMing has been extensively validated

to assess tumor mutation status from the blood of

patients with mCRC (Bettegowda et al., 2014; Morelli

et al., 2015; Tabernero et al., 2015), with exemplary

performance for the accurate assessment of expanded

RAS (Bokemeyer et al., 2015; Van Cutsem et al.,

2015; Venook et al., 2014). The objective of this study

was to demonstrate the utility of a standardized

blood-based RAS genotyping system as an alternative

to tissue-based RAS genotyping prior to treatment

with anti-EGFR therapy.

2. Materials and methods

2.1. Study design

Two separate cohorts of advanced CRC patients from

Australia and Germany were evaluated for concor-

dance of RAS mutation status between plasma and tis-

sue. A single blood sample from each patient was

obtained immediately prior to biopsy or resection of

tumors from either primary or metastatic sites. RAS

mutation analysis of plasma was compared with the

standard-of-care (SOC) tumor RAS testing performed

on a primary or metastatic specimen (FFPE tumor tis-

sue) from the same patient. In instances of discrepant

RAS results between plasma and tissue, repeat RAS

mutation testing was performed using BEAMing

applied to the same FFPE tumor block as that used

for SOC RAS testing. To determine concordance of

plasma vs tissue RAS testing results, positive percent

agreement (PPA), negative percent agreement (NPA),

and overall percent agreement (OA) were calculated.

In cases where SOC testing resulted in a WT determi-

nation and tissue BEAMing analysis revealed a RAS

mutation, the BEAMing result was favored if the frac-

tion of mutant alleles exceeded the SOC cutoff of 2%.

Histopathology was performed and CEA levels were

determined by the pathology and diagnostic laborato-

ries at each hospital, respectively.

2.2. Patients and samples

The local ethical committees approved sample collec-

tion, and consent was obtained for plasma analysis

prior to tumor biopsy or resection (ethical votes

Australia: Melbourne 03/90, Newcastle 11/04/20/4.03;

ethical votes Germany: Munich 1926/07; Bochum

16-5683). Collected patient characteristics included

age, gender, disease status, treatment history, CEA

concentration if available, histopathology and tumor

staging. Overall, 98 patients were included in the con-

cordance analysis. Four patient cases were excluded,

with three patient plasma samples exhibiting inade-

quate plasma-derived DNA for analysis and one

patient for whom a RAS mutation result could not be

confirmed in the original FFPE specimen when re-

evaluated by DNA sequencing.

The Australian cohort was comprised of 32 CRC

patients having advanced disease (stage IV, or stage

III with multiple lymph nodes affected). All FFPE tis-

sue and plasma samples originated from patients at

the John Hunter Hospital in Newcastle, New South

Wales, or the Peter MacCallum Cancer Centre in East

Melbourne, Victoria, Australia. The majority of

patients (n = 24) presented with recurrent metastatic

disease for whom tissue was obtained from the meta-

static lesion. Eight patients with stage III disease and

involvement of multiple (>2) lymph nodes were also

evaluated.

The German cohort (n = 66) was comprised of 61

newly diagnosed and five mCRC patients with recur-

rent disease. All FFPE samples and accompanying

RAS testing results were provided by the Medical

University of Bochum Hospital, Bochum, and the

University Hospital Klinikum rechts der Isar, Munich,

Germany. In contrast to those in the Australian

cohort, tumor samples from Germany were comprised

largely of primary tumors obtained at first diagnosis

of mCRC.

For patients in both cohorts, plasma samples were

prepared from blood collected in K2-EDTA Vacu-

tainer� tubes (Becton Dickinson, Franklin Lakes, NJ,

USA) within 4 h of phlebotomy according to

approved procedures for ctDNA analyses including a

centrifugation step to pellet any cell debris (Sysmex

Inostics GmbH, Hamburg Germany). All plasma sam-

ples were stored and shipped as 1 mL aliquots at

�80 °C. Approximately 2 mL of plasma from each

sample was thawed at room temperature for 10 min

prior to ctDNA isolation. Purification of DNA from

plasma was performed using the QIAamp DNA purifi-

cation kit (Qiagen, Venlo, the Netherlands) according

to the manufacturer’s instructions. The total amount

of human genomic DNA purified from plasma samples

was quantified using a modified version of LINE-1

real-time PCR assay (Diehl et al., 2008). Any samples

with total genome equivalents (GE) below 500 GE

were deemed insufficient for mutational analysis,

according to standard operating procedures (Sysmex

Inostics GmbH).
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2.3. Plasma RAS mutation testing using the

BEAMing method

Plasma samples were analyzed for 33 mutations in

KRAS and NRAS exons 2, 3, 4 by BEAMing at Sys-

mex Inostics. BEAMing utilizes emulsion digital PCR

performed on magnetic beads to amplify single DNA

molecules. Individual beads are then hybridized to

allele-specific fluorescently labeled probes complemen-

tary to the mutant and wild-type DNA sequences.

Finally, the bead population is analyzed by flow

cytometry to count and sort wild-type and mutant

beads. The result is reported as the fractional abun-

dance of mutant DNA alleles relative to wild-type

DNA alleles in a plasma sample. To generate the ratio

of mutant to wild-type DNA alleles (mutant allelic

fraction, MAF), an average of 3 9 106 beads are inter-

rogated in each BEAMing analysis (approximately

90 000 beads per mutation). The absolute number of

RAS-mutant alleles is not reported by BEAMing as

the determination of mutant status is dependent on

the total amount of DNA in an individual sample.

Total circulating DNA levels (both wild-type and

mutant) are subject to interpatient variability, which

may be directly related to tumor burden or other char-

acteristics such as inflammation and immune response.

In this study, the cutoff for the BEAMing RAS

assay was 0.02%. Although it has been shown that

BEAMing can detect one mutant molecule in a back-

ground of 10 000 wild-type molecules (0.01%), the set-

ting of the cutoff to 0.02% ensured that the limits of

detection (LODs) for each of the 33 RAS mutations in

the BEAMing RAS assay were well above background

signals or limits of blank (LoBs) for each analyte to be

detected in clinical samples. LODs were determined by

probit regression analyses by spiking wild-type (non-

RAS mutation-containing) plasma samples with each

RAS analyte. Background signals (LoBs) were deter-

mined in DNA prepared from wild-type plasma sam-

ples lacking RAS mutations at low, medium, and high

concentrations of genomic DNA. Based on the results

of these experiments, the cutoff of 0.02% was observed

to be appropriate so as to obtain a 95% probability/

confidence interval of reporting a ‘mutation detected’

result (Sysmex Inostics GmbH, internal validation).

2.4. Tissue RAS mutation testing

Formalin-fixed paraffin-embedded specimens were

evaluated for RAS mutations in KRAS and NRAS

exons 2, 3, and 4 using pyrosequencing, Sanger

sequencing, or next-generation sequencing according

to the procedures established in routine clinical use at

participating institutions. The cutoff threshold RAS

MAF for calling a specimen mutant as validated at

the local institutions was 2% and 5% for Australian

and German cohorts, respectively, with pyrosequenc-

ing utilized for all German specimens. For cases

where only KRAS exon 2 was evaluated by the SOC

method, tissue specimens were re-examined for

expanded RAS either by DNA sequencing at the pro-

vider’s institution or by BEAMing. BEAMing of tis-

sue samples was also used to re-evaluate the result

provided by the standard-of-care assay for cases

where the BEAMing plasma and SOC tissue results

were discordant. The cutoff for tissue BEAMing was

set at 1.0% MAF as demonstrated in CRYSTAL

and OPUS studies (Bokemeyer et al., 2015; Van Cut-

sem et al., 2015).

2.5. Statistical analyses

Concordance of RAS mutation status was determined

by calculating the agreement of RAS-mutant and WT

cases. Fisher’s exact test was used to assess the signifi-

cance of relationships for plasma and tissue RAS

results. All statistical tests were two-sided; the thresh-

old for statistical significance was P < 0.05. MAF val-

ues for newly diagnosed vs recurrent mCRC patients

were evaluated by calculating mean MAF values with

standard errors and compared with p values derived

using Welch’s unequal variances t-test. Correlation

between ctDNA and CEA levels was assessed using

Pearson’s rank correlation.

3. Results

3.1. Patient characteristics

In total, 98 patients with histologically confirmed

metastatic or stage III CRC with multiple lymph node

involvement (54 males and 44 females having a median

age of 66 years) were evaluated. Staging was based on

postoperative histopathology and imaging diagnoses.

The baseline characteristics of patients are shown in

Table 1. At the time of study inclusion, the majority

of patients (91.8%) had stage IV colorectal adenocar-

cinoma. Most patients (70/98) had newly diagnosed

disease and were na€ıve to treatment (71.4%). With

respect to treatment, ~ one-third of the patients had

recurrent disease and received at least one line of prior

chemotherapy. The colorectum was the predominant

site of tissue biopsy (78%). In patients for whom a

metastatic site was submitted for RAS mutation analy-

sis (22%), the most frequent site was the liver (77%)

followed by the lung (18%).

211Molecular Oncology 11 (2017) 208–219 ª 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

W. Schmiegel et al. ctDNA vs tumor DNA Testing for mCRC anti-EGFR therapy selection



Levels of CEA in blood samples were available for

65 of 98 patients in the concordance analysis. The

median CEA concentration from these 65 patients was

18.40 ng�mL�1 (range: 2–4069; mean � SD

193.6 � 624.6). A comparison of CEA concentrations

in newly diagnosed stage IV patients versus those diag-

nosed with metastatic disease at recurrence was then

made. The median CEA concentrations in newly diag-

nosed stage IV patients and those with recurrent dis-

ease were 19.40 ng�mL�1 (mean � SD 236.3 � 700.0)

and 9.90 ng�mL�1 (mean � SD 37.86 � 52.26),

respectively. A two-tailed t-test of CEA levels indi-

cated that differences in CEA levels between these two

patient groups were at the threshold of statistical sig-

nificance (P = 0.0504).

3.2. RAS mutation status analysis from plasma

and tissue

RAS mutation analysis in plasma was performed using

the BEAMing expanded RAS mutation panel

(Table 2), which detects 33 mutations encoding patho-

genic variants of KRAS and NRAS proteins. RAS

mutation status was evaluable in both plasma and tis-

sue of all 94 patients. Overall, RAS mutations were

detected in 53% of tumor tissue samples and in 51%

of plasma samples (Table 3). The frequency of RAS

mutations in patients investigated in this study was in

agreement with the results of other groups performing

expanded RAS analysis (Sorich et al., 2015). The vast

majority of mutations detected by both plasma and tis-

sue methods were KRAS codons 12 and 13 (Table 3).

RAS codon 61 mutations were detected in only four

cases.

The concordance of RAS status between matched

plasma and tissue from each patient is summarized in

Table 4. The RAS mutation status determined by

BEAMing from plasma versus the reference method

was concordant in 90 of 98 cases examined (91.8%

OPA). RAS mutations were found in 47 of 52 cases

tested (90.4% PPA). Of 46 patients identified as WT

by tissue testing, 43 were also found to be WT in

plasma (93.5% NPA). When considering only patients

with mCRC, plasma RAS mutations were found in 45

Table 1. Patient characteristics.

Patients 98

Median age (range) 66 (21–92)

Gender

Female, n (%) 44 (44.9%)

Male, n (%) 54 (55.1%)

Disease status at time of biopsy, n (%)

Stage III, newly diagnosed 8 (8.2%)

Stage IV, newly diagnosed 62 (63.3%)

Stage IV, recurrent disease 28 (28.6%)

Site of tissue biopsy, n (%)

Primary tumor 76 (78%)

Metastases 22 (22%)

Liver 18 (82%)

Lung 4 (18%)

Therapeutic history, n (%)

Treatment naive 70 (71.4%)

≥first line of therapy 28 (28.6%)

Baseline serum CEA, median (IQR) (n = 65) 18.4 (6.25–60.25)

Table 2. Individual KRAS and NRAS mutations detected by

BEAMing.

KRAS NRAS

Exon Mutation Exon Mutation

2 G12S

G12R

G12C

G12D

G12A

G12V

G13D

2 G12S

G12R

G12C

G12D

G12A

G12V

G13D

G13R

G13V

3 A59T

Q61L

Q61Ha

Q61Ha

3 A59T

Q61L

Q61Ha

Q61Ha

Q61K

Q61R

4 K117Na

K117Na

A146T

A146V

4 K117Na

K117Na

A146T

aDenotes two separate mutations detected for each of these

codons.

Table 3. RAS mutation by exon/codon: frequency and prevalence.

RAS mutation

Tissue Plasma

N % N %

KRAS Exon 2

Codon 12

40 77 35 70

KRAS Exon 2

Codon 13

10 19 10 20

KRAS Exon 3

Codon 61

1 2 1 2

NRAS Exon 3

Codon 61

1 2 3 6

KRAS Exon 4

Codon 146

1 2 1 2

RAS prevalence 52/98 = 53.1% 50/98 = 51.0%

WT prevalence 46/98 = 46.9% 48/98 = 49.0%
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of 49 cases (91.8% PPA), no RAS mutations were

found in 38 of 41 cases (92.7% NPA), and RAS muta-

tion status was concordant in 83 of 90 cases (92.2%

OPA). Initially, nine discrepant RAS mutation results

were found among the 98 cases. Five samples evalu-

ated by tissue testing were RAS mutation+, whereas

the corresponding plasma samples were WT. Con-

versely, plasma analysis revealed RAS mutations in

four patients whose tumors were determined WT by

tissue testing.

3.3. Discordance analysis

To evaluate discrepancies between the results of

matched tumor and plasma samples, tissue BEAMing

was employed as an orthogonal assay. Previous studies

have shown that BEAMing is an accurate technique

for the mutational analysis of archival FFPE tumor

tissue (Bokemeyer et al., 2015; Morelli et al., 2015;

Van Cutsem et al., 2015). Whenever possible, FFPE

samples matched to the date of surgery and tissue site

for cases having discrepant results were re-analyzed by

BEAMing. All but three FFPE specimens were either

unavailable or exhibited severely degraded DNA and

could not be tested. Of the three samples adequate for

re-analysis, tissue BEAMing confirmed the results of

SOC tissue testing in two cases and the results of

plasma testing in one case (Table 5). In the two cases

in which SOC tissue results were confirmed, BEAMing

detected a result of WT in one and a KRAS codon 12

mutation in the other. However, in one case, re-exami-

nation with tissue BEAMing confirmed a KRAS

G12D mutation (2.86% MAF) also detected in the

plasma, but not detected by SOC tissue testing.

As a patient’s CEA concentration is used as a prog-

nostic indicator of disease status, we examined whether

CEA concentration may be related to the likelihood of

detecting a plasma mutation that might explain

Table 4. Concordance of plasma and tissue RAS mutation results.

Tumor tissue RAS result

RAS Mutant WT Total PPA (95% CI) NPA (95% CI) OPA (95% CI)

Plasma ctDNA RAS result Mutant 47 3 50 100 9 47/52 = 90.4%

(79%, 96%)

100 9 43/46 = 93.5%

(82%, 98%)

100 9 90/98 = 91.8%

(85%, 96%)WT 5 43 48

Total 52 46 98

Table 5. Discordant analysis. In cases where no tissue re-evaluation was possible, the final call remained discordant.

Sample ID Stage

Site of tissue

biopsy Tissue result

Plasma

result

Plasma

MAF%

Tissue

re-evaluation Final call CEA (ng�mL�1)

AUS007 IV MET (lung) KRAS

G12C

WT KRAS

G12C (12.1%)

P-FN 2.4

AUS030 IIIB Primary KRAS

G12D

WT Low DNA/NA Discordant Not available

GER010 IV Primary WT NRAS

Q61R

0.258% NTA Discordant 1452

GER016 IV Primary KRAS

G12D

WT NTA Discordant 18.4

GER024 IV Primary WT NRAS

Q61R

0.237% NTA Discordant 7.1

GER028 IV Primary WT KRAS

G12D

0.425% KRAS

G12D (2.9%)

Concordant 27.5

GER029 IV Primary KRAS

G12D

WT NTA Discordant 41.4

GER051 IV Primary KRAS

G12V

WT NTA Discordant 42.6

GER056 IV Primary WT KRAS

G12A

0.111% WT P-FP 4.52

WT, wild-type; NA, nonanalyzable; NTA, no tissue available; P-FN, plasma false-negative; P-FP, plasma false-positive.

Comparisons of RAS mutation results obtained by BEAMing analyses of tissue and those obtained by the SOC tissue test are designated in

boldface type.
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discordance in the eight stage IV patients (e.g., low

CEA levels correspond to undetectable ctDNA). As

shown in Table 5, one patient with a KRAS codon 12

mutation in the tumor but showing no detectable RAS

mutation in plasma had a normal CEA concentration

(2.4 ng�mL�1). The median CEA concentration in

patients for whom a mutation was detected in plasma,

but not in the tissue, was 17.3 ng�mL�1. In patients

for whom a mutation was present in the tissue, but

not detected in plasma, the median CEA concentration

was 29.9 ng�mL�1. Based on the available samples, we

did not observe any correlation between CEA levels

and the ability to detect RAS mutations.

3.4. Plasma mutant allele frequency and

correlation with tumor burden

A unique feature of BEAMing ctDNA analysis is the

ability to determine the fraction of cell-free mutant

alleles as a proportion of the overall cell-free DNA

content in circulation at the time of sampling. For the

50 patients with detectable plasma RAS mutations, the

average MAF was 6.82% (Fig. 1). Given the possibil-

ity that the frequency of circulating mutant alleles is

related to overall tumor burden or extent of metastatic

invasion, MAF values in plasma were compared

between newly diagnosed mCRC patients and those

having metastatic recurrence. A statistically significant

relationship was observed between the patient clinical

diagnosis status and mean proportion of mutant RAS

alleles in circulation. In stage IV newly diagnosed

patients with intact primary tumors of the colorectum,

the MAF was 6.5-fold higher (9.63%) compared with

those patients who presented with recurrent disease

after removal of their primary tumors (1.49%)

(P = 0.0055, Fig. 1). In patients presenting with stage

III newly diagnosed disease, the average MAF was

also lower (0.55%); this is in line with results of previ-

ous reports that earlier-stage tumors tend to release

lower amounts of tumor DNA into circulation (Bette-

gowda et al., 2014). There appeared to be no correla-

tion between CEA concentration and MAF among

those patients whose CEA levels were available at the

time of blood collection for ctDNA analysis (Pearson’s

r = 0.231, P = 0.1822).

4. Discussion

The accurate prescription of anti-EGFR therapy is of

high clinical importance for patients with mCRC.

Fig. 1. (A) Bar chart showing the average plasma DNA-mutant fractions detected in ctDNA of patients with newly diagnosed compared to

recurrent disease as well as the overall cohort of patients with RAS mutations detected in the plasma by BEAMing. (B) Average value and

standard error for all patients (stage III and stage IV), those with newly diagnosed and recurrent disease are 6.82 � 1.73, 9.11 � 2.36, and

1.49 � 0.67, respectively. P = 0.004 for MAF% in newly diagnosed patients compared to those with recurrent disease. P values were

derived from a Welch’s unequal variances t-test.
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Retrospective analyses of data from randomized con-

trolled clinical trials consistently demonstrate that

KRAS exon 2 mutation is a contraindication for the

administration of anti-EGFR therapy, regardless of

the chemotherapy backbone (Amado et al., 2008;

Bokemeyer et al., 2011; Douillard et al., 2010; Kara-

petis et al., 2008; Peeters et al., 2010; Van Cutsem

et al., 2011). In 2009, KRAS testing was thus estab-

lished in both European and US clinical practice

guidelines as a predictive marker of response to anti-

EGFR therapy (Allegra et al., 2009; Benson et al.,

2014; Van Cutsem et al., 2009b). With KRAS exon 2

mutation status widely accepted as a predictor for a

lack of response to anti-EGFR therapy, it became

clear that not all KRAS exon 2 wild-type patients

responded to treatment. Further refinement in biomar-

ker testing was pursued to improve patient outcomes

and avoid unnecessary treatment-related side effects

and costs, with a focus on KRAS exon 3 and 4 muta-

tions—shown to confer resistance to EGFR antibodies

similar to KRAS exon 2 mutations (Janakiraman

et al., 2010; Smith et al., 2010). Subsequent evaluation

of NRAS mutations revealed their occurrence in CRC

tumors with persistent GTPase activity similar to alter-

ations in KRAS (Irahara et al., 2010). Incorporation

of expanded RAS testing into practice is expected to

increase the proportion of patients ineligible for anti-

EGFR therapy from ~45% to ~55% (Sorich et al.,

2015). Current clinical practice guidelines now recom-

mend expanded RAS analysis be performed to more

precisely identify patients for anti-EGFR therapy

(Allegra et al., 2016; Benson et al., 2014; Van Cutsem

et al., 2014).

Phase III clinical trials utilizing the BEAMing

expanded RAS mutation panel have shown superior

overall survival for RAS WT vs. RAS-mutant mCRC

patients when treated in first line with EGFR antibod-

ies (Bokemeyer et al., 2015; Van Cutsem et al., 2015;

Venook et al., 2014). Notably, specimens from 548

patients with mCRC previously defined as KRAS exon

2 WT in CRYSTAL and OPUS studies re-examined

with BEAMing detected other RAS mutations in

14.7% and 26% of patients, respectively. These results

validated the use of BEAMing to evaluate expanded

RAS testing in order to select patients for anti-EGFR

therapy. Although great strides have been made, the

standardization of RAS testing has been difficult to

achieve, largely due to variability of testing method-

ologies and DNA quality and quantity of FFPE speci-

mens. Implementation of reliable tumor tissue

genotyping programs has also been challenging. For

instance, a recent external quality assessment (EQA)

revealed significant interlaboratory variability within

routine approaches to testing of RAS in Europe (Tack

et al., 2015). Moreover, obtaining suitable tumor tissue

samples can pose a challenge—particularly in recurrent

mCRC patients with distant metastases (Wang et al.,

2010). At initial diagnosis, the timing of molecular

testing results is of critical importance for first-line

treatment. However, in a recent study of patients with

mCRC evaluated for first-line therapy, ~25% of

patients did not have RAS testing requested at or at

least one month after their initial diagnosis of meta-

static disease (Longin, 2015). These findings are sup-

ported by a survey of European physicians, which

revealed that RAS testing turnaround times and the

unavailability of tissue were the most frequent factors

cited for treating mCRC patients with unknown KRAS

status (Trojan et al., 2015). Moreover, a recent EQA

survey found that half of all participating laboratories

exceeded the required turnaround time of 14 days for

RAS testing (Tack et al., 2015). This presents a chal-

lenge to the broad realization of individualizing ther-

apy and providing an accurate blood-based RAS

mutation assay with rapid turnaroundtime would help

circumvent these issues.

The primary objective of this study was to validate

blood-based RAS mutation analysis as an alternative

to tissue-based RAS mutation analysis prior to anti-

EGFR therapy. Two geographically isolated cohorts

of patients with CRC from Australia and Germany

were examined for concordance of RAS mutations in

plasma and tissue. The Australian cohort mainly com-

prised patients with metastatic recurrences and was

representative of the clinical practice of assessing eligi-

bility for anti-EGFR therapy following first-line

chemotherapy. In contrast, the German cohort was

comprised predominantly of newly diagnosed, treat-

ment-na€ıve mCRC patients, a cohort eligible for first-

line anti-EGFR therapy. The entire patient group in

this study represented a reasonable cross-section of the

anti-EGFR intended use population.

Previous concordance studies of SOC FFPE KRAS

mutation detection assays showed minimal variation in

the presence or absence of KRAS mutations, most

likely due to differential tumor cell selection from for-

malin-fixed tumor tissue (Whitehall et al., 2009). Over-

all, the concordance between plasma and tissue RAS

mutation status determined in this study was 93% and

suggests that plasma RAS mutation detection is as

good as tissue-based detection strategies, but has the

advantage that it does not rely on the testing of DNA

isolated from fixed tissue. The most notable difference

was the threshold cutoffs for RAS positivity between

the two sites. Due to this variability, any tissue sam-

ples exhibiting RAS mutation status that differed from
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plasma were, if available, re-examined by BEAMing.

For one such case, BEAMing identified the same

KRAS mutation in tissue that was identified in plasma,

contrary to the original SOC RAS WT result. Interest-

ingly, the MAF obtained by tissue BEAMing was

2.86%, falling between the 2% and 5% cutoffs of the

SOC methods. This circumstance highlights the vari-

ability in SOC RAS testing techniques, and with the

possibility to apply an orthogonal assay, this case was

determined to be concordant. These comparisons also

suggest that further improvements in the agreement of

plasma and tissue RAS testing results may be achieved

when both the methods of plasma preparation and

FFPE RAS testing are standardized.

A systemic assessment of mutation status in a patient

with metastatic CRC represents a key advantage of

blood-based testing. However, in a patient with widely

metastatic disease, blood-based mutation testing does

not yet have the ability to discern the site of ctDNA ori-

gin. In our study for example, three patients had a RAS

mutation that was detected in plasma, but not in the pri-

mary colorectal tumor. All three patients were newly

diagnosed, treatment na€ıve with intact primary tumors,

and presented with hepatic metastases; one patient had

additional pulmonary metastases. As all three patients

presented with distant metastases at the time of blood

draw, a reasonable explanation of discordance may be

attributed to heterogeneity of the genotype between

metastatic and primary tumors. Indeed, several studies

evaluating intertumor molecular heterogeneity between

primary tumors and metastases in the same patient have

shown mutational discordance in 3.6–32.4% of cases

(Artale et al., 2008; Italiano et al., 2010; Kim et al.,

2012; Knijn et al., 2011; Tie et al., 2011). As we have

observed a lower plasma RAS MAF in patients with

recurrent metastatic disease (Fig. 1), a tenable hypothe-

sis is that in these three newly diagnosed patients lacking

RAS mutations in their primary tumor, but having low

plasma RAS MAF (0.111–0.258%), the RAS ctDNA in

these three patients may be contributed by a single or

few metastatic sites.

5. Conclusions

Determination of a patient’s RAS mutational status

from plasma may provide distinct advantages com-

pared to RAS testing of FFPE samples. A specific

application with future clinical utility may be the rou-

tine surveillance of plasma mutation status to assess

RAS-mediated resistance in patients receiving anti-

EGFR therapy. This approach has been shown to pro-

vide a more precise gauging of the efficacy/failure of

anti-EGFR therapy (Diaz et al., 2012; Morelli et al.,

2015). Indeed, BEAMing has already revealed substan-

tial differences in RAS mutation status between base-

line mCRC tumor samples as compared with current

plasma mutation status. This advantage was demon-

strated in a clinical trial of 503 patients with mCRC

that investigated whether plasma RAS mutation status

was associated with response to regorafenib (Taber-

nero et al., 2015). In a cohort of patients whose archi-

val tumor was KRAS WT and consequently received

anti-EGFR therapy, KRAS mutations were detected

by BEAMing in the plasma of 48% of patients at dis-

ease progression. This exemplifies the use of plasma

ctDNA testing to provide a real-time assessment of

mutation status. Blood-based mutation assessment

may therefore help define critical decision points for

the individualized management of patients with CRC,

providing a finer resolution of molecular cues to signal

optimal timing for treatment hiatus and re-initiation of

targeted therapy.

A necessary first step toward implementing blood-

based RAS testing in clinical practice is to demonstrate

concordance between ctDNA and tissue RAS mutation

testing. The results presented herein provide a high level

of confidence that the clinical performance of plasma

RAS testing using BEAMing is comparable to FFPE tis-

sue testing and can be useful in a clinical setting to select

patients with mCRC for anti-EGFR therapy.
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