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A B S T R A C T

Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects extensive regions of the central
nervous system. In this work, we evaluated the structural connectome of patients with PD, as mapped by dif-
fusion-weighted MRI tractography and a multi-shell, multi-tissue (MSMT) constrained spherical deconvolution
(CSD) method to increase the precision of tractography at tissue interfaces. The connectome was mapped with
probabilistic MSMT-CSD in 21 patients with PD and in 21 age- and gender-matched controls. Mapping was also
performed by deterministic single-shell, single tissue (SSST)-CSD tracking and probabilistic SSST-CSD tracking
for comparison. A support vector machine was trained to predict diagnosis based on a linear combination of
graph metrics. We showed that probabilistic MSMT-CSD could detect significantly reduced global strength, ef-
ficiency, clustering, and small-worldness, and increased global path length in patients with PD relative to healthy
controls; by contrast, probabilistic SSST-CSD only detected the difference in global strength and small-worldness.
In patients with PD, probabilistic MSMT-CSD also detected a significant reduction in local efficiency and de-
tected clustering in the motor, frontal temporoparietal associative, limbic, basal ganglia, and thalamic areas. The
network-based statistic identified a subnetwork of reduced connectivity by MSMT-CSD and probabilistic SSST-
CSD in patients with PD, involving key components of the cortico–basal ganglia–thalamocortical network.
Finally, probabilistic MSMT-CSD had superior diagnostic accuracy compared with conventional probabilistic
SSST-CSD and deterministic SSST-CSD tracking. In conclusion, probabilistic MSMT-CSD detected a greater extent
of connectome pathology in patients with PD, including those with cortico–basal ganglia–thalamocortical net-
work disruptions. Connectome analysis based on probabilistic MSMT-CSD may be useful when evaluating the
extent of white matter connectivity disruptions in PD.

1. Introduction

Parkinson's disease (PD) is the second most common neurological
disorder after Alzheimer's disease, affecting 6 million individuals

worldwide (Vos et al., 2016). The disease is characterized by motor
symptoms (i.e., akinesia or bradykinesia, rigidity, and tremor) as well
as non-motor symptoms such as cognitive impairment and psychiatric
symptoms (Kalia and Lang, 2015). Motor symptoms primarily result
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from dopamine neurodegeneration in the substantia nigra pars com-
pacta and striatum (putamen and caudate nucleus), which are the main
targets of nigral dopaminergic axons. However, dopamine loss is asso-
ciated with neuronal activity changes in cortico–basal gang-
lia–thalamocortical circuits, which are also linked to motor and non-
motor symptoms (Rodriguez-Oroz et al., 2009). These circuits are large,
functional, parallel, and segregated cortical–subcortical re-entrant cir-
cuits that are topographically and functionally divided into motor, as-
sociative, and limbic sub-circuits (Alexander et al., 1990). Therefore,
disruption to these complex circuits may account for the many motor
and non-motor symptoms observed in PD (Galvan et al., 2015).

Evidence for brain circuit and axonal pathology has been widely
reported for PD. The pathological hallmark of PD is the presence of
Lewy bodies and Lewy neurites, which are protein inclusions whose
main constituent is fibrillary-aggregated α-synuclein (Spillantini et al.,
1998). These abnormal aggregates predominantly occur at presynaptic
sites, where they cause synaptic and axonal degeneration that can po-
tentially result in widespread macroscopic disruption in connectivity.

The connectome is a network representation of whole-brain con-
nectivity, which can be mapped to reveal circuit-based alterations in
neurological and psychiatric conditions (Fornito et al., 2015; Fornito
et al., 2012; Zalesky et al., 2016). Macroscale connectome studies
combine diffusion-weighted magnetic resonance imaging (DW-MRI)
and graph theory to generate a network representation of the brain,
comprising gray matter (GM) brain regions (nodes) and axonal con-
nections (edges) (Craddock et al., 2013).

Recent studies have used DW-MRI data to infer interregional
structural connectivity (Behrens and Sporns, 2012) when evaluating
connectome dysfunction in PD (Aarabi et al., 2015; Barbagallo et al.,
2017; Galantucci et al., 2017; Li et al., 2016; Nigro et al., 2016; Shah
et al., 2017; Tinaz et al., 2017). These studies report reduced structural
connectivity between the basal ganglia, thalamic, limbic, frontal, tem-
poral, and parietal regions in PD (Aarabi et al., 2015; Barbagallo et al.,
2017; Galantucci et al., 2017; Kim and Park, 2016; Li et al., 2016; Nigro
et al., 2016). Disrupted connectivity has shown associations with clin-
ical and non-motor symptoms of PD (Barbagallo et al., 2017; Galantucci
et al., 2017; Shah et al., 2017). Graph theory analyses have identified
reduced global clustering and efficiency, as well as increased global
path length (Nigro et al., 2016). In addition, local network measures
have been shown to be disrupted in PD, including decreased “functional
segregation,” as indicated by decreased local efficiency and clustering,
and decreased “functional importance,” as indicated by decreased
nodal strength and betweenness centrality in the basal ganglia, tha-
lamus, limbic, frontal, temporal, parietal, and occipital cortices (Li
et al., 2016; Nigro et al., 2016). Together, diffusion tensor imaging-
based connectome studies have identified global and local connectome
disruptions in PD in vivo.

These previous studies employed deterministic or probabilistic
tractography to trace the trajectories of white matter (WM) streamlines
(edges) and map structural connectomes per individual. A major lim-
itation of deterministic fiber tracking based on unimodal diffusion
tensor imaging is the difficulty in estimating neural fiber connections in
a voxel in which there are crossing or kissing fibers (Mori and van Zijl,
2002). Probabilistic tractography algorithms that estimate multiple
fiber directions have been proposed to overcome this limitation
(Behrens et al., 2007), and one of the most commonly applied techni-
ques is constrained spherical deconvolution (CSD), which can improve
the reliability of whole-brain tractography by using a high-quality fiber
orientation distribution function (fODF) (Jeurissen et al., 2011). How-
ever, CSD cannot yield accurate fODFs in voxels containing GM and
cerebrospinal fluid (CSF) (Roine et al., 2014), and the method parti-
cularly struggles to reconstruct the GM–WM interface. Given that the
connectome contains nodes (corresponding to GM regions) and edges
between nodes (i.e., tractographic streamlines), accurate delineation of
GM and WM is very important for accurate tractogram generation to be
achieved.

To circumvent the limitations of deterministic tractography and the
difficulties in resolving the GM–WM interface with existing CSD
methods, we employed a new, multi-shell, multi-tissue CSD (MSMT-
CSD) method (Jeurissen et al., 2014) to map whole-brain connectomes.
To estimate the ODF in multiple tissues, MSMT-CSD employs multi-
shell DW-MRI data with unique b-value dependences for different
macroscopic tissue types (WM, GM, or CSF) (Jeurissen et al., 2014).
Because MSMT-CSD can produce reliable volume fraction maps of WM,
GM, and CSF directly from DW-MRI data, it can substantially increase
the precision of the fODF and the resulting tractograms at tissue in-
terfaces (Jeurissen et al., 2014).

We hypothesized that connectome disruption would be evident in
PD, and that it would involve cortico–basal ganglia–thalamocortical
networks (Rodriguez-Oroz et al., 2009). We further hypothesized that
connectomes derived from the MSMT-CSD method would be more
sensitive to connectivity deficits compared with conventional methods.
To test this hypothesis, we compared connectivity strength as well as
global and local graph theory metrics obtained by probabilistic MSMT-
CSD with those obtained by deterministic single-shell, single tissue
(SSST)-CSD tracking and probabilistic SSST-CSD tracking. Then, we
used machine learning to evaluate which of MSMT-CSD, deterministic
SSST-CSD tracking, and probabilistic SSST-CSD tracking yielded the
highest accuracy for classifying cases and controls based on topological
descriptors of the brain network.

2. Material and methods

2.1. Participants

This study was approved by the institutional review board of
Juntendo University Hospital, Japan, and was conducted in accordance
with the criteria of the Helsinki Declaration. Written informed consent
was obtained from all participants before evaluation. In total, 21 pa-
tients with PD were recruited and the diagnosis of a movement disorder
was confirmed by specialists according to the United Kingdom
Parkinson's Disease Society Brain Bank criteria (Hughes et al., 1992).
Disease severity was evaluated using the motor scores of the Unified
Idiopathic Parkinson's Disease Rating Scale (UPDRS)-III (Martinez-
Martin et al., 1994), and the Hoehn and Yahr staging scale (Hoehn and
Yahr, 1967). All patients were receiving levodopa in combination with
a dopamine decarboxylase inhibitor (benserazide or carbidopa) at the
time of scanning, were required to have responded to antiparkinsonian
therapy, and were required to have remained free of atypical parkin-
sonism at 12 months (or longer) after diagnosis. For comparison, we
recruited 21 age- and gender-matched healthy controls with no history
of neurological disease. The demographic and clinical characteristics of
all participants are shown in Table 1.

2.2. Image acquisition

Neuroimaging data were obtained on a 3.0-T system (Achieva;

Table 1
Demographic characteristics of the participants.

Controls
(n = 21)

Patients with
PD (n = 21)

χ2/t P value

Sex, male:female 8:13 12:9 1.53 0.35
Age in years, mean (SD) 63.7 (9.8) 64.5 (9.1) −0.27 0.78
Disease duration in years,

mean (SD)
0 5.0 (3.0) – –

Hoehn–Yahr stage (SD) 0 1.5 (0.7) – –
UPDRS-III motor subscale

score, median (SD)
0 14.4 (8.9) – –

Abbreviations NA, not applicable; NS, not significant; PD, Parkinson disease; UPDRS,
Unified Idiopathic Parkinson's Disease Rating Scale; SD, standard deviation.
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Philips Healthcare, Best, the Netherlands) equipped with an eight-
channel head coil for sensitivity-encoding parallel imaging. DW-MRI
was acquired at b-values of 1000 and 2000 s/mm2 along 32 uniformly
distributed directions with a spin-echo echo-planar imaging scheme in
an anterior–posterior phase encoding direction. The same diffusion
directions were used for each shell. Each DW-MRI acquisition was
complemented with a non-weighted diffusion image (b = 0 s/mm2).
Standard- and reverse-phase encoded blipped non-diffusion-weighted
images were also obtained to correct for the echo-planar imaging dis-
tortion correction (Andersson et al., 2016).

Acquisition parameters were as follows: repetition time, 9810 ms;
echo time, 100 ms; voxel size, 2.0 × 2.0 × 2.0 mm3; matrix:
128 × 128; slices, 65; number of excitations, 1; and acquisition time,
13.07 min. T1-weighted images (T1WI) were also acquired for struc-
tural data by three-dimensional (3D) magnetization-prepared rapid
gradient-echo sequence. The acquisition parameters were: repetition
time, 15 ms; echo time, 3.54 ms; inversion time, 1100 ms; voxel size,
0.86 × 0.86 × 0.86 mm3; and acquisition time, 5.14 min.

2.3. Data preprocessing

Fig. 1 shows a schematic of the connectome mapping methodology.
Preprocessing was performed using the Functional MRI of the Brain
(FMRIB) Software Library, Version 5.0.9 (Greve and Fischl, 2009). For
each subject, anatomical 3D–T1WIs were affine-aligned to the corre-
sponding b0 maps using boundary-based registration. Partial volume
fraction maps of WM, cortical GM, deep GM, and CSF, calculated from
the T1WI data and then were processed for the multi-shell MSMT-CSD
and anatomically-constrained tractography (ACT) framework. This in-
volved the following steps.

First, the Brain Extraction Tool (Smith, 2002) was used to remove
non-brain tissue from the 3D-T1WIs. Second, the FMRIB Automated
Segmentation Tool (Zhang et al., 2001) estimated the partial volume
fractions of WM, cortical GM, and CSF. Third, the FMRIB Integrated
Registration and Segmentation Tool (Patenaude et al., 2011) were used
to estimate partial volume fractions of the deep GM for all voxels within
the brain. Fourth, the GM–WM interface mask was obtained using the
“5tt2gmwmi” command, which was implemented in the MRtrix
(http://www.mrtrix.org/). Although WM masks are commonly used for
seeding, over-reconstruction of streamline density for longer fiber
pathways can be induced by homogeneously seeding streamlines
throughout the WM (Yeh et al., 2016). In this study, we used the
GM–WM interface as a seeding point for tractogram generation, as it is
reported that this method can avoid the over-reconstruction problem
(Girard et al., 2014); however, this approach can result in an under-
estimation of the prevalence of long-distance fibers (Zalesky and
Fornito, 2009).

DW-MRI data were checked visually in all three orthogonal views,
which did not reveal severe artifacts related to gross geometric distor-
tion, signal dropout, or bulk motion. The data were corrected for sus-
ceptibility-induced geometric distortions, eddy currents, and inter-vo-
lume motion using the TOPUP and EDDY toolboxes (Andersson and
Sotiropoulos, 2016).

2.4. Node definition

A default reconstruction pipeline was performed in FreeSurfer (Dale
et al., 1999) to obtain 84 brain nodes according to Desikan–Killiany
cortical atlas segmentation (Desikan et al., 2006). Due to high varia-
bility in the spatial location and extent of subcortical GM segmentations
produced by FreeSurfer (Dale et al., 1999), the subcortical structures
were obtained from subcortical GM partial volume fraction maps using
the FMRIB Integrated Registration and Segmentation Tool in the FMRIB
Software Library (see the Data preprocessing section).

2.5. Edge definition

Whole-brain tractograms were generated using 1) deterministic
SSST-CSD tracking (b-value of 2000 s/mm2), (2) probabilistic SSST-CSD
tracking (b-value of 2000 s/mm2), and (3) probabilistic MSMT-CSD
probabilistic tracking from multi-shell DW-MRI data (b-values of 0,
1000, and 2000 s/mm2). For all three methods (deterministic SSST-CSD
tracking, probabilistic SSST-CSD tracking and probabilistic MSMT-CSD
probabilistic tracking), spherical deconvolution informed filtering of
tractograms (Smith et al., 2013) and ACT (Smith et al., 2012) were
applied to reduce bias in streamline density and to prevent biologically
unrealistic connection terminations (Smith et al., 2012). Tractography
for all three methods was performed with the MRtrix software package
(Brain Research Institute, Melbourne, Australia, http://www.brain.org.
au/software/).

2.5.1. Response function and fODF estimation for deterministic and
probabilistic SSST-CSD tracking

For conventional CSD and deterministic tractography, voxels were
assigned to WM if the tissue segment WM volume fraction was> 0.95
and the fractional anisotropy (FA) was> 0.7. Subsequently, the DW-
MRI signal was reoriented to ensure that the principal axis of diffusion
was aligned. Finally, the anisotropic response functions for WM were
estimated from single shell data (b = 2000) by averaging the DW-MRI
profiles over these voxels. The WM fODF was obtained using the
dwi2fod command with the msmt-csd option, using WM response
function. The maximal SH order lmax = 6 for WM was used. We gen-
erated probabilistic tractography (CSD) and deterministic tractography
using these WM fODFs.

2.5.2. Response function and fODF estimation for probabilistic MSMT-CSD
tracking

For MSMT-CSD (Jeurissen et al., 2014), multiple response functions
were estimated as a function of b-value and tissue type. Specifically,
voxels were assigned to WM if the tissue segment WM volume fraction
based on the structural image was> 0.95 and the fractional anisotropy
(FA) was> 0.7. Subsequently, the DW-MRI signal was reoriented to
ensure alignment of the principal axis of diffusion. Finally, the aniso-
tropic response functions for WM were estimated per shell by averaging
the DW-MRI profiles over these voxels. If a tissue segmentation had a
volume fraction> 95% and an FA< 0.2, voxels were assigned to GM
and CSF. The response functions for GM and CSF were obtained by
averaging DW-MRI profiles per shell. Finally, the WM fODF, GM fODF,
and CSF fODF were obtained using the dwi2fod command with the
msmt-csd option. A maximal spherical harmonic (SH) order of
lmax = 6 for WM, lmax = 0 for GM and CSF were used. The WM-fODFs
obtained here were used for probabilistic MSMT-CSD tracking.

2.5.3. Fiber tracking
Data with a b-value of 2000 s/mm2 were used for deterministic and

probabilistic SSST-CSD tracking, which is the basic requirement for
ODF reconstruction of high angular resolution diffusion imaging
(Pichon et al., 2005). In addition, data with b-values of 1000 and
2000 s/mm2 were used for probabilistic MCMT-CSD tracking.

For deterministic SSST-CSD tracking, we employed a deterministic
algorithm based on spherical deconvolution (SD) (Tournier et al.,
2012), referred to as SD_STREAM in MRtrix software, with the fol-
lowing parameters: step size = 0.2 mm, maximum curvature = 45° per
step, length = 4–200 mm, and fiber orientation distributions
threshold = 0.1.

For probabilistic SSST-CSD and MSMT-CSD tracking, second-order
integration was employed over the FOD (iFOD2) algorithm (Tournier
et al., 2010), using the following parameters: step size, 1.0 mm; max-
imum curvature, 45° per step; length, 4–200 mm; and fiber orientation
distribution threshold, 0.06 for probabilistic MSMT-CSD tracking, 0.1
for deterministic and probabilistic SSST-CSD tracking.
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For all tracking methods, in total, 5 × 107 streamlines were seeded
from WM fODFs. Seed points were determined dynamically using the
Spherical deconvolution informed filtering of tractograms (SIFT) model
(Smith et al., 2013). Furthermore, “back-tracking” was used within the
ACT framework (Smith et al., 2012). SIFT was also applied to filter the
reconstruction from 5 × 107 to 5 × 106 streamlines.

2.6. Connectome construction

Connectomes were constructed for each subject based on con-
nectivity derived from the three tractography methods (i.e., determi-
nistic SSST-CSD tracking, probabilistic SSST-CSD tracking and prob-
abilistic MSMT-CSD probabilistic tracking). WM connectivity was
modeled as a weighted, undirected network (connectome). Nodes were
defined as the 84 brain regions of the Desikan–Killiany GM parcellation,
and the number of streamlines interconnecting each pair of nodes was

enumerated. Specifically, streamlines were assigned to the closest node
within a 2 mm radius of each streamline endpoint in ACT (Smith et al.,
2015). This resulted in an 84 × 84 interregional connectivity matrix,
with each element populated by the number of streamlines that served
as a measure of connectivity strength. The diagonal elements re-
presented self-connections and were excluded from analysis. A con-
nection density threshold (T) was applied to discard spurious links
(Rubinov and Sporns, 2010). Pairs of regions with the lowest streamline
counts were set to a value of zero, and the top T% of regions according
to streamline count were left unaltered. To avoid bias from using a
single threshold, global network metrics were examined across a range
of thresholds (10% < T < 30% in 5% increments) (Zhang et al.,
2011).

Fig. 1. Schematic of structural network mapping.
Structural brain networks were mapped according to the following sequence: (i) registration of T1WIs to the DW-MRIs; (ii) estimation of FODs using MSMT-CSD; (iii) estimation of FODs
using SSST-CSD; (iv) estimation of tissue partial volume maps, parcellation of cortical and subcortical GM; (v) reconstruction of streamline tractogram using MSMT-CSD, CSD and
deterministic tractography; (vi) construction of structural connectomes; (vii) structural brain network analysis. Abbreviations: CSD, constrained spherical deconvolution; GM, gray
matter; iFOD2; a second-order integration over FOD algorithm; MSMT, multi-shell multi-tissue; SD, spherical deconvolution; SSST, single-shell single-tissue; WM, white matter.
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2.7. Graph theory analyses

Topological measures were analyzed for the three sets of con-
nectivity matrices, as derived from deterministic SSST-CSD tracking,
probabilistic SSST-CSD tracking and probabilistic MSMT-CSD prob-
abilistic tracking, using the Brain Connectivity Toolbox (http://www.
brain-connectivity-toolbox.net/). The following five global network
metrics were computed: global path length, clustering coefficient,
global efficiency, mean strength, and the small-worldness ratio. In ad-
dition, four local network metrics were computed: nodal strength, be-
tweenness centrality, local clustering, and local efficiency. Detailed
descriptions of the global and local network metrics are summarized in
Supporting information Table S1. To estimate effect sizes, Cohen's d was
computed for each global network metric, across the range of thresh-
olds to discard spurious links (10% < T < 30% in 5% increments) for
comparison between PD and control groups. Cohen's d was typically
largest for a threshold of 30% (Supporting information Table S2), so
this was applied as the threshold for both global and local network
metrics.

2.8. Identification of disrupted WM connections

The network-based statistic (NBS) was used to identify subnetworks
(clusters of nodes and edges) comprising connections with a reduced
streamline count in patients with PD. The NBS was separately applied to
the connectivity matrices derived from the three methods being com-
pared (i.e., deterministic SSST-CSD tracking, probabilistic SSST-CSD
tracking and probabilistic MSMT-CSD probabilistic tracking). A de-
tailed description of NBS can be found elsewhere (Zalesky et al., 2010).
In brief, a two-sample t-test was independently performed at each edge
to test the null hypothesis of equality in mean streamline count between
patients and controls. A set of suprathreshold edges was defined by
applying a primary component-forming threshold (e.g., P = 0.005,
t = 2.97, two-tailed t-test) to the test statistic computed for each edge
(results across different thresholds are reported in Supporting in-
formation Table S3). The statistical significance of each connected
component was obtained with respect to an empirical estimate of the
null distribution of maximal component sizes (5000 permutations),
with the component size measured as the number of edges it comprised.
We reported any components that were significant at a P-value of 0.05
after family-wise error correction.

Connections comprising significant components (subnetworks) were
assigned to motor, associative, or limbic circuits that constitute the
cortico–basal ganglia–thalamocortical network (Galvan et al., 2015;
Ikemoto et al., 2015). Further details are provided in Supporting in-
formation Fig. S1.

2.9. Classification of diagnostic status

A support vector machine (SVM) classifier was trained to predict an
individual's diagnostic status (case or control), based on topological
measures derived from the three tractography methods (i.e., determi-
nistic SSST-CSD tracking, probabilistic SSST-CSD tracking and prob-
abilistic MSMT-CSD probabilistic tracking). A linear kernel was used to
train the SVM. The feature space comprised five global measures and
two local measures (local clustering and local efficiency) from eight
regions of interest. The selected regions of interest were subcortical
structures spanning the cortico–basal ganglia–thalamocortical circuit
(Galvan et al., 2015), including the putamen, globus pallidus, caudate,
and thalamus. Local efficiency and clustering were used to measure the
efficiency with which these regions, and by extension, the circuit of
interest, could exchange neural information.

To train the SVM and to evaluate classification accuracy, we used
stratified ten-fold cross-validation. The patient and control groups were
partitioned into validation and training subgroups. The validation
subgroup comprised 10% of all individuals in either the patient or

control group (i.e., two controls and two patients), and all other in-
dividuals were randomly assigned to the training subgroup (i.e., 19
controls and 19 patients). The SVM was trained to classify patients and
controls in the training subgroup based on latent patterns among the
topological features described above. The validation subgroup was then
used to evaluate the classification accuracy of the SVM. This process
was repeated for ten unique validation subgroups (i.e., ten folds), with
each individual only ever assigned to one validation subgroup.
Classification performance was then averaged over these ten folds.

2.10. Statistical analysis

All statistical analyses were performed using IBM SPSS for
Windows, Version 22.0 (IBM Corp., Armonk, NY, USA). Demographic
and clinical variables were normally distributed, as confirmed with the
Kolmogorov–Smirnov test. Between-group differences were analyzed
by Student's t-tests for continuous variables (age, global, and local to-
pological metrics) and by chi-squared tests for gender. Pearson's cor-
relation coefficient was used to test for relationships between brain
measures (e.g., connectivity strength and topological metrics) ex-
hibiting significant between-group differences and clinical measures
(e.g., disease duration and UPDRS-III score). The false discovery rate
(FDR) was used to correct for multiple comparisons, using a sig-
nificance threshold of P < 0.05.

3. Results

3.1. Disrupted WM connections

NBS did not identify any between-group differences when applied to
connectivity matrices from deterministic SSST-CSD tracking. For both
probabilistic SSST-CSD and MSMT-CSD tracking, the null hypothesis of
equality in mean streamline count between patients with PD and con-
trols was rejected (P < 0.05) for networks involving the basal ganglia,
thalamic, limbic, frontal, temporal, and parietal areas (Fig. 4, Sup-
porting information Table S4). The streamline count was reduced in the
PD group relative to the control group. Specifically, probabilistic SSST-
CSD tracking identified a comparable subnetwork of reduced con-
nectivity comprising 44 edges connecting 43 regions (P = 0.007).
These included 15 associative edges, 1 limbic edge, and 5 motor edges.
By contrast, probabilistic MSMT-CSD tracking identified a significant
subnetwork comprising 58 edges that connected 45 regions (P = 0.006)
with a reduced streamline count in patients with PD. These included 17
edges classified as associative, 3 as limbic, and 7 as motor circuits. In
addition, significant correlations were not detected between disease
severity and the streamline count averaged across the subnetworks
associated with significant between-group differences, although a trend
involving the UPDRS-III score was evident for probabilistic MSMT-CSD
tracking (Supporting information Table S5).

3.2. Global metrics

No between-group differences were found in any global metrics
derived with deterministic SSST-CSD tracking. Probabilistic SSST-CSD
tracking only detected significant differences in global connectivity
strength and small-worldness, which were significantly decreased in
patients with PD compared with healthy controls (Table 2). There were
significant between-group differences across the five global measures
with probabilistic MSMT-CSD tracking. Specifically, patients with PD
displayed significantly decreased global connectivity strength, effi-
ciency, and clustering, as well as increased global path length (Table 2).
In addition, although both patients and controls demonstrated small-
world organization (σ > 1), the small-worldness ratio was sig-
nificantly decreased in the PD group. No correlations were found be-
tween global network metrics and clinical measures (e.g., the UPDRS-III
score and disease duration) in the PD group.
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3.3. Local metrics

Only probabilistic MSMT-CSD tracking detected significantly de-
creased local efficiency, predominantly localized to motor, frontal
temporoparietal associative, limbic, basal ganglia, and thalamic areas
(Fig. 2A, Table 3). The PD group also displayed reduced local efficiency,

most evidently in the motor, frontal temporoparietal associative,
limbic, basal ganglia, and thalamic areas (Fig. 2B, Table 4). Significant
negative correlations were observed between UPDRS-III scores and
local efficiency in the bilateral putamen, bilateral pars triangularis,
right caudate nucleus, right lateral orbitofrontal gyrus, right post cen-
tral gyrus, left supramarginal gyrus, left transverse temporal gyrus

Table 2
Between-group comparison of global network measures.

Controls Patients with PD t P⁎⁎ d⁎⁎⁎

Global clustering Deterministic SSST-CSD (SD) 0.024 (0.006) 0.021 (0.004) 1.78 0.21 0.56
Probabilistic SSST-CSD (SD) 0.013 (0.003) 0.011 (0.003) 2.23 0.053 0.70
Probabilistic MSMT-CSD (SD) 0.018 (0.004) 0.015 (0.003) 2.33 0.036⁎ 0.74

Global efficiency Deterministic SSST-CSD (SD) 0.039 (0.006) 0.038 (0.009) 0.45 0.655 0.14
Probabilistic SSST-CSD (SD) 0.036 (0.008) 0.031 (0.010) 1.73 0.094 0.55
Probabilistic MSMT-CSD (SD) 0.044 (0.010) 0.038 (0.008) 2.15 0.037⁎ 0.68

Global strength Deterministic SSST-CSD (SD) 2738.62 (291.67) 2328.66 (831.24) 2.08 0.21 0.66
Probabilistic SSST-CSD (SD) 3899.52 (232.29) 3501.76 (629.64) 2.65 0.025⁎ 0.84
Probabilistic MSMT-CSD (SD) 6442.84 (643.74) 5821.95 (808.86) 2.69 0.025⁎ 0.85

Characteristic path length Deterministic SSST-CSD (SD) 4.47 (0.31) 4.55 (0.56) −0.54 0.655 −0.17
Probabilistic SSST-CSD (SD) 4.69 (0.22) 4.84 (0.33) −1.72 0.094 −0.54
Probabilistic MSMT-CSD (SD) 4.55 (0.19) 4.70 (0.24) −2.27 0.036⁎ −0.72

Small-worldness ratio Deterministic SSST-CSD (SD) 3.05 (0.54) 2.64 (1.21) 1.39 0.286 0.44
Probabilistic SSST-CSD (SD) 2.18 (0.49) 1.69 (0.65) 2.70 0.024⁎ 0.85
Probabilistic MSMT-CSD (SD) 4.44 (1.38) 3.01 (1.24) 3.45 0.005⁎ 1.09

Notes: Data are expressed as mean (SD). Abbreviations: CSD, constrained spherical deconvolution; MSMT-CSD; multi-shell multi-tissue CSD; SD, standard deviation, SSST-CSD; single-
shell single-tissue CSD.

⁎ Denotes statistical significance.
⁎⁎ P-values are corrected for the false discovery rate.
⁎⁎⁎ Cohen's d.

Fig. 2. Local metrics results.
(A) Regions with decreased local efficiency in patients with PD, as compared to healthy controls (P < 0.025, FDR corrected). (B) Regions with decreased local clustering in patients with
PD as compared to healthy controls (P < 0.025, FDR corrected). Probabilistic MSMT-CSD was the only algorithm that detected significant between-group differences in local topological
measures. Local efficiency and clustering were reduced in patients with PD in several regions, including the motor area, frontal temporoparietal associative area, limbic area, basal
ganglia, and thalamus. Abbreviations: lh, left hemisphere; rh, right hemisphere; CAC, caudal anterior cingulate gyrus; Cd, caudate; Ce, cerebellum; FDR, false discovery rate; HC,
hippocampus; LOF, lateral orbitofrontal; MSMT-CSD, multi-tissue constrained spherical deconvolution; PaC, paracentral gyrus; PC, precentral gyrus; PD, Parkinson's disease; PoC,
postcentral gyrus; PoP, pars opercularis; PT, pars triangularis; Pu, putamen; SM, supramarginal gyrus; Thal, thalamus; TT, transverse temporal gyrus.

K. Kamagata et al. NeuroImage: Clinical 17 (2018) 518–529

523



(Fig. 3, Table 5). This correlation was mainly seen in the motor area,
frontal temporoparietal associative area, and basal ganglia, and no
significant correlations were detected between local metrics and disease
duration.

3.4. Prediction of diagnosis

SVM based on probabilistic MSMT-CSD tracking yielded improved
classification accuracies compared to deterministic and probabilistic
SSST-CSD tracking (see Table 6). A feature space comprising all five
global measures yielded the highest classification accuracy (78.33%),
precision (85.00%), recall (81.67%), and area under the curve
(85.28%). However, a feature space comprising only two local mea-
sures (i.e., clustering and efficiency) across eight regions (i.e., bilateral
putamen, globus pallidus, caudate, and thalamus) yielded lower, but
reasonable accuracy (61.67%), precision (46.67%), recall (51.67%),

and area under the curve (68.06%). SVM based on probabilistic MSMT-
CSD tracking with the five global and two local measures combined
yielded modest accuracy (76.67%), precision (81.67%), recall
(76.67%), and area under the curve (81.39%).

4. Discussion

We compared DW-MRI-based connectomes derived from three dif-
ferent algorithms (i.e., deterministic SSST-CSD tracking, probabilistic
SSST-CSD tracking, and probabilistic MSMT-CSD tracking) between
patients with idiopathic PD and healthy controls. Across all analyses,
probabilistic MSMT-CSD tracking outperformed the deterministic and
probabilistic SSST-CSD tracking methods when detecting connectome
abnormalities and accurately predicting PD diagnosis. At the global
level, probabilistic MSMT-CSD tracking detected significant between-
group differences across all five global measures, while probabilistic

Table 3
Regions with a significant between-group difference in local efficiency.

Regions Controls Patients with PD FDR corrected FDR-corrected P value Cohen's d

Right putamen 0.028 (0.007) 0.021 (0.006) 3.49 0.041⁎ 1.10
Right thalamus 0.031 (0.006) 0.024 (0.006) 3.46 0.041⁎ 1.09
Right postcentral gyrus 0.034 (0.008) 0.027 (0.005) 3.26 0.041⁎ 1.03
Left putamen 0.027 (0.007) 0.021 (0.006) 3.20 0.041⁎ 1.01
Left paracentral 0.034 (0.009) 0.026 (0.007) 3.01 0.041⁎ 0.95
Left cerebellum 0.033 (0.007) 0.026 (0.008) 2.95 0.041⁎ 0.93
Right caudate 0.024 (0.006) 0.018 (0.006) 2.94 0.041⁎ 0.93
Left pars triangularis 0.030 (0.009) 0.023 (0.006) 2.92 0.041⁎ 0.92
Left transverse temporal gyrus 0.021 (0.004) 0.017 (0.005) 2.91 0.041⁎ 0.92
Right supramarginal gyrus 0.033 (0.008) 0.027 (0.005) 2.90 0.041⁎ 0.92
Right pars triangularis 0.030 (0.007) 0.024 (0.006) 2.83 0.041⁎ 0.89
Left caudal anterior cingulate gyrus 0.027 (0.009) 0.021 (0.005) 2.83 0.041⁎ 0.89
Right lateral orbitofrontal gyrus 0.024 (0.006) 0.020 (0.004) 2.82 0.041⁎ 0.89
Right precentral gyrus 0.044 (0.009) 0.036 (0.009) 2.81 0.041⁎ 0.89
Left supramarginal gyrus 0.033 (0.007) 0.027 (0.006) 2.81 0.041⁎ 0.89
Left precentral gyrus 0.042 (0.009) 0.034 (0.008) 2.80 0.041⁎ 0.89
Right hippocampus 0.025 (0.006) 0.021 (0.004) 2.74 0.043⁎ 0.87
Left pars opercularis 0.029 (0.007) 0.023 (0.006) 2.74 0.043⁎ 0.87

Notes: Data are expressed as mean (SD). Abbreviations: CSD, constrained spherical deconvolution; FDR, false discovery rate; MSMT-CSD, multi-shell multi-tissue CSD; SD, standard
deviation.

⁎ Statistical significance.

Table 4
Regions with a significant between-group difference in local clustering.

Regions Controls Patients with PD t P value⁎⁎ Cohen's d

Right supramarginal gyrus 0.020 (0.005) 0.015 (0.003) 3.39 0.032⁎ 1.07
Right insula 0.012 (0.003) 0.009 (0.002) 3.25 0.032⁎ 1.03
Right postcentral gyrus 0.022 (0.005) 0.018 (0.004) 3.24 0.032⁎ 1.02
Right thalamus 0.014 (0.003) 0.011 (0.003) 3.23 0.032⁎ 1.02
Left pars triangularis 0.020 (0.003) 0.014 (0.005) 3.21 0.032⁎ 1.02
Left paracentral gyrus 0.023 (0.006) 0.017 (0.005) 3.15 0.032⁎ 0.99
Right putamen 0.012 (0.003) 0.009 (0.002) 3.14 0.032⁎ 0.99
Left supramarginal gyrus 0.021 (0.005) 0.016 (0.004) 3.08 0.032⁎ 0.97
Left caudal anterior cingulate gyrus 0.017 (0.005) 0.013 (0.003) 3.04 0.032⁎ 0.96
Right lateral orbitofrontal gyrus 0.014 (0.004) 0.011 (0.003) 3.03 0.032⁎ 0.96
Right pars triangularis 0.020 (0.005) 0.016 (0.004) 3.01 0.032⁎ 0.95
Left pars opercularis 0.017 (0.004) 0.013 (0.004) 3.00 0.032⁎ 0.95
Right precentral gyrus 0.024 (0.005) 0.020 (0.005) 2.97 0.033⁎ 0.94
Left transverse temporal gyrus 0.018 (0.003) 0.014 (0.004) 2.94 0.033⁎ 0.93
Left superior temporal gyrus 0.012 (0.003) 0.010 (0.002) 2.88 0.034⁎ 0.91
Right inferior temporal gyrus 0.018 (0.003) 0.014 (0.004) 2.85 0.034⁎ 0.90
Left insula 0.011 (0.003) 0.009 (0.002) 2.84 0.034⁎ 0.90
Left putamen 0.011 (0.003) 0.009 (0.002) 2.83 0.034⁎ 0.90
Left cerebellum 0.023 (0.005) 0.018 (0.006) 2.73 0.041⁎ 0.86
Right hippocampus 0.012 (0.003) 0.010 (0.002) 2.67 0.046⁎ 0.84

Notes: Data are expressed as mean (SD). Abbreviations: CSD, constrained spherical deconvolution; FDR, false discovery rate; MSMT-CSD, multi-shell multi-tissue CSD; SD, standard
deviation.

⁎ Statistical significance.
⁎⁎ P-values are corrected for the false discovery rate.
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SSST-CSD tracking only detected lower global strength and small-
worldness in the PD group. At the local level, probabilistic MSMT-CSD
tracking detected significantly reduced local efficiency and clustering in
patients, indicating greater functional segregation in the motor, frontal
temporoparietal associative, limbic, basal ganglia, and thalamic areas.
NBS identified subnetworks of reduced connectivity from the corti-
co–basal ganglia–thalamocortical network in patients with PD via both
the probabilistic SSST-CSD and MSMT-CSD tracking methods.

Our data suggest that probabilistic MSMT-CSD tracking provides
improved sensitivity to the WM connectivity disruptions typically as-
sociated with PD, though it should be noted that we did not evaluate
the specificity of this approach. The improved sensitivity of probabil-
istic MSMT-CSD tracking may be due to the use of more precise fODF
estimates at the GM–WM interface (Jeurissen et al., 2014), which is
essential for accurately characterizing both nodes (GM regions) and the
edges between nodes. Although probabilistic SSST-CSD tracking could

Fig. 3. Regions where local efficiency were significantly correlated with the unified Parkinson's Disease Rating Scale (UPDRS)-III-motor subscale scores in the PD group.
Abbreviations: lh, left hemisphere; rh, right hemisphere; Cd, caudate; LOF, lateral orbitofrontal; PoC, postcentral gyrus; PT, pars triangularis; Pu, putamen; SM, supramarginal gyrus; TT,
transverse temporal gyrus.

Table 5
Regions where local efficiency was significantly correlated with UPDRS-III.

Regions FDR-corrected P value R

Right putamen 0.033⁎ −0.621
Left pars triangularis 0.033⁎ −0.583
Left putamen 0.033⁎ −0.572
Right lateral orbitofrontal gyrus 0.033⁎ −0.545
Right post central gyrus 0.033⁎ −0.543
Right caudate 0.036⁎ −0.528
Left supramarginal gyrus 0.038⁎ −0.516
Right pars triangularis 0.038⁎ −0.508
Left transverse temporal gyrus 0.049⁎ −0.483

Abbreviations: FDR, false discovery rate; UPDRS, Unified Idiopathic Parkinson's Disease
Rating Scale.

⁎ Statistical significance.
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partially detect connectivity disruptions, deterministic SSST-CSD
tracking could not detect significant between-group differences in to-
pological measures or connectivity strength. This may be due to dif-
ferences in the algorithms used for global tracking (e.g., edge genera-
tion). In the present study, we adopted a fODF-based deterministic
tracking algorithm (deterministic SSST-CSD tracking). This tracking
method provides fiber distributions that are thought to correspond
more closely with known brain anatomy, compared to conventional
deterministic tensor tracking algorithms (Jeurissen et al., 2011).
However, the probabilistic fODF-based algorithm has been shown to
provide more accurate tractography compared to the deterministic
fODF-based algorithm (Tournier et al., 2012). Although deterministic
tracking provides a single best fit streamline, probabilistic tracking

algorithms can explore other possible directions to account for the
uncertainty of fiber orientation distributions. Therefore, in many cases,
probabilistic methods can identify peripheral branches of tracts, where
these branches might be difficult to detect with deterministic tracto-
graphy. However, an important disadvantage of probabilistic tracto-
graphy is that its high sensitivity typically comes at the cost of low
specificity; namely, there is an increased likelihood of identifying
spurious fibers (false positives) with probabilistic methods (Knosche
et al., 2015; Thomas et al., 2014). The estimation of spurious fibers is
particularly detrimental to the characterization of the connectome's
topological properties (Zalesky et al., 2016).

For probabilistic MSMT-CSD tracking, using stratified ten-fold cross-
validation, we could predict an individual's diagnostic status with

Fig. 4. Subnetworks for which the streamline count was significantly reduced in patients with PD relative to healthy controls.
(A) Result of probabilistic MSMT-CSD. (B) Result of probabilistic SSST-CSD. The first row shows all connections comprising subnetworks associated with significant between-group
differences. The second, third, and fourth rows show these connections stratified according to motor, limbic, and associative circuits, respectively. Abbreviations: L, left hemisphere; R,
right hemisphere; AC, accumbens; Cd, caudate; CMF, caudal middle frontal gyrus; CSD, constrained spherical deconvolution; FP, frontal pole; FF, fusiform gyrus; HC, hippocampus; Ins,
insular; IT, inferior temporal gyrus; MSMT, multi-shell multi-tissue; MT, middle temporal gyrus; PC, precentral gyrus; PoC, postcentral gyrus; PT, pars triangularis; Pu, putamen; RMF,
rostral middle frontal gyrus; SF, superior frontal gyrus; SP, superior parietal gyrus; SSST, single-shell single-tissue; ST, superior temporal gyrus; Thal, thalamus; TP, temporal pole.

Table 6
Classifier performance for distinguishing between patients with PD and healthy controls.

Features set Accuracy SD of accuracy Precision Recall AUC

All global metrics (deterministic SSST-CSD) 60.00% 25.50% 45.00% 35.00% 66.94%
All global metrics (probabilistic SSST-CSD) 56.67% 21.98% 50.00% 51.67% 41.94%
All global metrics (probabilistic MSMT-CSD) 78.33% 13.54% 85.00% 81.67% 85.28%
Local clustering and local efficiency (deterministic SSST-CSD) 50.00% 27.39% 45.00% 46.67% 43.33%
Local clustering and local efficiency (probabilistic SSST-CSD) 45.83% 17.97% 41.67% 48.33% 53.33%
Local clustering and local efficiency (probabilistic MSMT-CSD) 61.67% 11.90% 46.67% 51.67% 68.06%
All global metrics, local clustering, and local efficiency (deterministic SSST-CSD) 41.67% 24.15% 36.67% 36.67% 41.67%
All global metrics, local clustering, and local efficiency (probabilistic SSST-CSD) 57.50% 25.12% 60.00% 48.33% 71.67%
All global metrics, local clustering, and local efficiency (probabilistic MSMT-CSD) 76.67% 13.84% 81.67% 76.67% 81.39%

Abbreviations: AUC, area under the curve; CSD, constrained spherical deconvolution; MSMT, multi-shell, multi-tissue; PD, Parkinson's disease; SSST, single-shell single-tissue.
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modest accuracy (approximately 78%) based on graph theory. The most
accurate prediction of diagnostic status was achieved with all global
measures computed in the probabilistic MSMT-CSD tracking con-
nectivity matrices (78.33%). The global measures for deterministic and
probabilistic SSST-CSD tracking performed substantially less well than
those in probabilistic MSMT-CSD tracking, with no parameter yielding
an accuracy of> 70%. Although diagnostic accuracy was low when we
used local graph metrics of the basal ganglia and thalamus, diagnostic
accuracy (61.67%) was highest for local graph metrics derived from
probabilistic MSMT-CSD tracking. This provides further evidence of the
increased sensitivity of probabilistic MSMT-CSD tracking for detecting
connectome pathology compared with deterministic and probabilistic
SSST-CSD tracking.

Although our findings indicate that PD can be predicted with
modest accuracy by probabilistic MSMT-CSD tracking, further work is
needed to establish whether the classifier performance is robust to al-
ternative image acquisition sequences and alternative probabilistic
tractography algorithms. Deep learning methods, decision trees, and
other supervised learning methods appropriate for neuroimaging data
might improve the achieved classification accuracies (Vieira et al.,
2017). Indeed, a criticism of SVM is the need to extract less redundant
and more informative data from the raw data during feature selection
(Plis et al., 2014). In this study, we selected features based on sub-
cortical regions spanning a circuit known to be affected by PD pa-
thology. Deep learning methods can automatically identify the optimal
representation of features within a high-dimensional dataset, without
requiring prior feature selection. Longitudinal studies are now required
to determine the accuracy with which machine learning techniques
trained on probabilistic MSMT-CSD tracking data can predict patient
outcome and prognosis.

In the graph theory analysis using probabilistic MSMT-CSD
tracking, we found decreased global clustering, efficiency, strength, and
small-worldness, as well as increased global path length in PD. Reduced
global clustering suggests poor network segregation (i.e., reduced spe-
cialized information processing), whereas decreased global efficiency
and increased global path length indicate compromised network in-
tegration (i.e., reduced parallel information transfer). These global,
local, and connectivity alterations are consistent with the results of
previous studies (Li et al., 2016; Nigro et al., 2016) and probably reflect
the presence of extensive pathological changes in the WM of PD brains.
In particular, the α-synuclein inclusions that are deposited in the pre-
synapse of patients with PD may cause synaptic collapse and impaired
axonal transport, resulting in widespread axonal degeneration (Braak
and Del Tredici, 2008). Structural WM disintegration (reduced con-
nectivity) can impair efficient information exchange, resulting in net-
work disorganization (poor segregation and integration).

Previous connectome studies report unimpaired small-world orga-
nization (Li et al., 2016; Nigro et al., 2016). While we also found that
small-world organization was maintained in PD (σ > 1), the small-
world ratio measured by probabilistic MSMT-CSD tracking was de-
creased relative to that in controls. Previous studies have evaluated
small-worldness by deterministic tracking based on the “Fiber Assign-
ment by Continuous Tracking” algorithm (Li et al., 2016; Nigro et al.,
2016), but this cannot accurately estimate neural fiber connections in
regions with crossing and kissing fibers at the voxel level (Mori et al.,
2004). By contrast, we applied probabilistic tracking that can deal with
the crossing/kissing problem, and therefore yielded more accurate es-
timates of the connectome. Small-world organization is considered to
reflect the optimal balance of functional integration and segregation,
with the reduced small-world property in this study suggesting that this
balance may be disrupted in PD.

At the local level, decreased segregation was found among key
components of the cortico–basal ganglia–thalamocortical network, as
indicated by decreased local efficiency and clustering. These changes
were correlated with the UPDRS-III motor score, thereby strongly
supporting involvement of this network in PD pathophysiology. Nigro

et al. reported reduced local efficiency and clustering in the globus
pallidus and inferior occipital gyrus (Nigro et al., 2016), but we found
similar reductions across a more extensive area, including the motor,
frontal temporoparietal associative, and basal ganglia areas. This dif-
ference might be due to discrepant connectome generation methods (as
described above); however, discrepancies in disease durations between
studies may be important. The participants in the study by Nigro et al.
(2016) had early PD (mean duration of 1 year 7 months) and had not
received medications, whereas participants in our study had a mean
illness duration of 5 years and all had already received levodopa
treatment. Therefore, pathological changes may have progressed to a
wider area among the patients in our study.

Both probabilistic SSST-CSD and MSMT-CSD connectomes revealed
subnetworks of reduced connectivity between key components of the
cortico–basal ganglia–thalamocortical network. The results of NBS
analysis also provide evidence supporting involvement of this network
in PD pathophysiology. Other studies using NBS have reported reduced
connectivity strength between the basal ganglia, thalamic, limbic,
frontal, temporal, and parietal areas in patients with PD (Aarabi et al.,
2015; Kim and Park, 2016; Li et al., 2016; Nigro et al., 2016), which is
also in agreement with our results.

This study has some limitations: First, the sample size was small and
the study design was retrospective in nature. Larger, multicenter, pro-
spective studies are therefore required. In addition, we only included
patients with relatively long durations of PD, so a longitudinal study of
prodromal or early PD is required to confirm whether connectome
analyses based on probabilistic MSMT-CSD tracking is effective for
monitoring and predicting disease progression. Second, we did not
evaluate the non-motor symptoms of PD, such as cognitive and psy-
chiatric symptoms. Because connectivity disruptions in the basal
ganglia–thalamocortical circuits might contribute to non-motor symp-
toms in PD, future studies should investigate the relationship between
non-motor symptoms and connectome dysfunction more closely.
Finally, because the PD diagnoses were not confirmed histopathologi-
cally, misdiagnosis remains possible; however, the validity of each di-
agnosis was supported by continued response to therapy and continued
freedom from atypical parkinsonism at 12 months after scanning.

5. Conclusion

We mapped the connectomes of patients with PD and healthy con-
trols to determine which of deterministic SSST-CSD tracking, prob-
abilistic SSST-CSD tracking, and probabilistic MSMT-CSD probabilistic
tracking was most sensitive for detecting associated WM connectivity
disruptions. Probabilistic MSMT-CSD tracking detected WM disruptions
most extensively among the three methods, and these disruptions were
characteristic of known PD pathophysiology, including connectivity
loss in cortico–basal ganglia–thalamocortical networks. Moreover,
when compared with deterministic and probabilistic SSST-CSD tracking
connectome methods, probabilistic MSMT-CSD tracking more accu-
rately classified patients with PD from healthy comparison subjects.
We, therefore, conclude that connectome analysis based on probabil-
istic MSMT-CSD tracking offers greater sensitivity and accuracy when
assessing aberrant WM connectivity in cases of suspected PD. However,
further research is needed to confirm our results in larger studies, and
specific research is needed to look at the specificity of probabilistic
MSMT-CSD tracking in prodromal or early stages of PD when there is
diagnostic uncertainty.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.11.007.
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