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Abstract

Background: An infectious aetiology for prostate cancer has been conjectured for decades but the evidence gained from
questionnaire-based and sero-epidemiological studies is weak and inconsistent, and a causal association with any
infectious agent is not established. We describe and evaluate the application of new technology to detect bacterial and
viral agents in high-grade prostate cancer tissues. The potential of targeted 16S rRNA gene sequencing and total RNA
sequencing was evaluated in terms of its utility to characterise microbial communities within high-grade prostate tumours.

Methods: Two different Massively Parallel Sequencing (MPS) approaches were applied. First, to capture and enrich for
possible bacterial species, targeted-MPS of the V2-V3 hypervariable regions of the 16S rRNA gene was performed on DNA
extracted from 20 snap-frozen prostate tissue cores from ten “aggressive” prostate cancer cases. Second, total RNA
extracted from the same prostate tissue samples was also sequenced to capture the sequence profile of both bacterial
and viral transcripts present.

Results: Overall, 16S rRNA sequencing identified Enterobacteriaceae species common to all samples and P. acnes in
95% of analyzed samples. Total RNA sequencing detected endogenous retroviruses providing proof of concept but
there was no evidence of bacterial or viral transcripts suggesting active infection, although it does not rule out a
previous ‘hit and run’ scenario.

Conclusions: As these new investigative methods and protocols become more refined, MPS approaches may be
found to have significant utility in identifying potential pathogens involved in disease aetiology. Further studies,
specifically designed to detect associations between the disease phenotype and aetiological agents, are required.
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Background
First proposed in the early 1950s, an infectious aetiology
for prostate cancer has since been widely investigated
using conventional and serology-based case–control
designs and some cohort studies but the evidence from
these has been generally weak and inconsistent. A causal
association is yet to be established.
Recent support for a role of infection in prostate can-

cer risk came from the detection of a novel candidate,
Propionibacterium acnes, within prostate cancer tissues
[1, 2]. There is also evidence of association between
prostate cancer risk and gene variants of COX-2 [3],
RNASEL [4] and TLR4 [5], identified in cases of hereditary
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prostate cancer, indicating that infection and the host re-
sponse to infection may be involved in the development of
prostate cancer.
Studies that have investigated the role of infectious

agents in the aetiology of prostate cancer have adopted
single organism targeted approaches or have identified
microbial constituents based on amplification of various
hypervariable regions of the 16S rRNA gene in concert
with traditional cloning and sequencing methods [6–9].
Single organism targeted approaches are limited by their
specificity while traditional broad-range 16S rRNA gene
amplification, cloning and Sanger sequencing can be la-
borious and costly, depending on the scale of the study,
number and complexity of samples. When compared
with conventional sequencing methods, cyclic array-
based massively parallel sequencing (MPS) methods,
albeit with shorter read length capability and less
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accuracy in base calling, offer efficiencies in terms of
cost, time and scalability.
The principal hypothesis that guided the direction of

the work presented in this study was that persistent, ra-
ther than transient, infection of the prostate gland by a
sexually transmitted or other infectious agent would be
associated with risk. Thus, evidence of infection at the
tissue level was sought by utilising two different molecu-
lar approaches, targeted partial 16S rRNA gene sequen-
cing and total RNA sequencing using MPS. The overall
objective of this study was to investigate the presence of
infectious agent(s) in histopathologically determined ag-
gressive prostate cancer cases (Gleason score ≥ 8).
Methods
Samples
Fresh-frozen scalpel-excised prostate tissue from males
that had undergone radical prostatectomy with a
Gleason score of ≥ 8 and tumour stage ranging from pT2c
to pT3b (inclusive) were obtained from the Australian
Prostate Cancer Bioresource [10] (n = 10). Tumour and
benign tissues were provided for each case and the pres-
ence/absence of malignant tissue was confirmed by histo-
pathology by a single pathologist (JP).
Nucleic acid extraction
Frozen tissue was disrupted by freeze fracture, Buffer
RLT Plus (Qiagen, Hilden, Germany) containing β-
mercaptoethanol was added. The lysate was further
homogenised using a QIAshredder® (Qiagen, Hilden,
Germany) column and then underwent enzymatic di-
gestion and nucleic acid extraction with the AllPrep
DNA/RNA Mini Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. Both DNA and
RNA isolates were stored at −80 °C (Additional file 1).
Quantitative and qualitative assessment of extracted DNA
and RNA
The concentration and integrity of sample RNA was
assessed with the Bioanalyzer 2100 instrument (Agilent
Technologies) using RNA 6000 Nano Kit (Agilent
Technologies). The concentration of sample DNA was
assessed by Qubit® 1.0 Fluorometer (Life Technologies,
Carlsbad, California, USA) and the Qubit® dsDNA BR
Assay Kit (Life Technologies, Carlsbad, California, USA).
Quantification, normalisation and pooling of libraries
Each RNA sample was normalised to 100 μg/μL in Ul-
traPure™ DNAse/RNAse-Free Distilled Water (Invitro-
gen™, Burlington, USA). Normalised RNA samples
were pooled in equimolar amounts according to tissue
type i.e. “malignant” or “benign”.
16S rRNA amplicon sequencing
16S rRNA polymerase chain reaction
Each PCR reaction contained 1X GeneAmp® PCR Buffer
II (Roche Molecular Systems, Inc. Branchburg Town-
ship, USA), 10 μM (each) forward and reverse primer,
0.1 U AmpliTaq Gold® DNA polymerase (ThermoFisher
Scientific, Waltham, Massachusetts, USA), 2.5 μM
MgCl2, 400 μM dNTPs, 2 μL of template DNA in a final
volume of 20 μL with UltraPure™ DNAse/RNAse-Free
Distilled Water (Invitrogen™, Burlington, USA). Amplifi-
cation of each sample was performed in triplicate using
a Veriti® 96-well Thermal Cycler (Applied Biosystems,
Forster City, CA, USA). Negative amplification controls
included dH2O and TE buffer and the positive amplifica-
tion control was Salmonella typhimurium (0.5 ng/μL).
Cycling conditions were as follows: 95 °C for 5 min,
35 cycles at 95 °C for 45 s, 56 °C for 60 s and 72 °C for
90 s, with a final extension at 72 °C for five minutes.
Primers
Universal primers 101F/534R and 515F/806R were
used to amplify the V2-V3 and V4 hypervariable region
of the 16S rRNA gene, respectively. The V4 region pri-
mer constructs were taken from Caporaso et al. (2011)
[11] (supplementary methods). The V2-V3 region primer
constructs were modified from [11] using V2-V3 region
specific primers [12] to target the 16S rRNA V2-V3 hy-
pervariable region (Additional file 1). Reverse primers
were barcoded to enable multiplexing of samples.
Purification of PCR products
Replicate wells were combined for each sample and ex-
cess primers, primer dimers and extraneous products
were removed using a double-sided size selection/clean-
up with Agencourt® AMPure® XP beads (Beckman
Coulter, Inc., Massachusetts, U.S.A). Purified product
was eluted in 30 μL dH2O.
Quantification and normalization of library pools
Library size and quantity were assessed using the
Bioanalyzer 2100 using the High Sensitivity DNA kit
(Agilent Technologies Inc., Waldbronn, Germany). In-
dividual samples were combined in equimolar quan-
tities for sequencing.
Sequencing
Three custom primers were used for sequencing of the
16S rRNA V4 region amplicons as described in [11] and
the 16S rRNA V2-V3 region amplicons as adapted
from Caporaso et al. (2011) [11]. The libraries were
sequenced by using the MiSeq® 500 cycle Reagent Kit
v2 (Illumina, Inc., San Diego, CA, USA).
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Data analysis
The quality of raw reads was assessed using FastQC
v0.10.1 [13]. Paired-end reads were then stitched using
FLASh (Fast Length Adjustment of Short reads) v1.2.6
[14] to generate full length reads of the of the sequenced
amplicons. The quality of the FLASh-stitched reads were
again assessed using FastQC v0.10.1 [13].
The QIIME (Quantitative Insights Into Microbial

Ecology) pipeline and software package (version 1.7.0)
[15] were used for data analyses using Closed-reference
Operational Taxonomic Unit (OTU) picking. The se-
quences were clustered against a reference sequence col-
lection [16] (Greengenes 12_10 reference collection) and
any reads that did not hit a sequence at 97% sequence
similarity to the reference sequence collection were ex-
cluded from downstream analysis.

Total RNA/cDNA sequencing
Library preparation and sequencing
Library preparation was performed using the Illumina®
TruSeq® Stranded Total RNA Sample Preparation Kit in
accordance with the manufacturer’s instructions, how-
ever, did not include the initial poly(A) purification step
(supplementary methods). The libraries were assessed
with the Bioanalyser 2100 using the Bioanalyser DNA
1000 kit (Agilent). Individual libraries (tumour and
cancer-unaffected prostate pools) were normalised to 2
nM. Sequencing was performed on the HiSeq™ 2000.

Data analysis
Raw data underwent quality control and sequencing
adapters were removed using Nesoni [17]. The full data
set was queried for specific viral genomes (including hu-
man papillomaviruses 16 and 18, Herpes simplex virus 2
and Polyomaviruses) using human endogenous retrovi-
ruses (HERVs) as internal control as HERVs are remnant
ancient retroviral sequences integrated into human
germline DNA, some of which are actively transcribed.
Reads were mapped to human rRNA (and other non-
coding RNA) and to human mRNA using the SHort
Read Mapping Package (SHRiMP) [18] and Burrows-
Wheeler Aligner (BWA) [19], respectively. Aligned reads
were removed from the dataset. Unmapped reads were
assembled into contiguous sequences using the de novo
assembler Velvet [20], under kmer values of 55, 65, 75
and 85. The assemblies were queried with Easy-Web-
BLAST+ [21] for 16S rRNA sequences and the presence
of viral proteins (specifically all viral polymerases within
the NCBI’s RefSeq viral protein reference database [22]).

Results
Characteristics of the case series
The mean age at radical prostatectomy of patients was
64.5 years. Three cases underwent radical laparoscopic
robotic prostatectomy while the remaining seven cases
had open radical retropubic prostatectomy. All cases
were considered to be of an aggressive nature and were
selected on the basis of a Gleason score of ≥ 8 and a
TNM stage of at least PT2c (Table 1).
16S rRNA V4 hypervariable region
One thousand three hundred and twenty four unique
OTUs were identified in all 20 prostate tissue samples
combined. Per sample, the mean number of OTUs
present was 231.55 (SD 48.45) and ranged from 151 to
314. Community composition was reasonably complex.
Overall, the most abundant taxa identified were

assigned to the family Enterobacteriaceae (70.1%) and
the genus Escherichia (6.9%). There were five other
unique OTUs that represented ≥ 1% of the microbial
community observed across all samples. These taxa in-
cluded Pseudomonadaceae (1.2%), Comamonadaceae
(1.2%), Ralstonia (1.7%), Pseudomonas (1.3%) and Acine-
tobacter (1.1%). There were five OTUs that represented
0.5 < 1% of the microbial community observed and these
included Corynebacterium (0.8%), Caulobacteriaceae
(0.7%), Curvibacter (0.7%) Aerococcus (0.6%) and Bradyr-
hizobium (0.6%) The remaining 13.7% of sequences were
assigned to 308 other unique OTUs (Additional file 2).
The greatest proportion of sequences, ranging from

37.2 to 81.2%, for each individual sample was repre-
sented by the family Enterobacteriaceae.. The prevalence
of Escherichia ranged from 3.1 to 10.3% in the samples.
Both taxa were represented in every sample. While there
was up to a two-fold difference in the number of
observed OTUs (151 to 314) among samples, the com-
munity composition of the most abundant samples
(abundance > 0.5%) was reasonably consistent across
individual samples, however, some taxa including
Pseudomonadaceae, Aerococcus, Corynebacterium and
Actinobacter lwoffii were overrepresented in a number
of samples when compared to their contribution to over-
all abundance (Additional file 2).
A group of 18 OTUs was found to be present in 95%

of samples (Table 2). While these 18 OTUs only repre-
sented a small proportion (on average 7.8%) of the over-
all membership of prostatic microbial community, they
contributed to a large proportion (84.6%) of the relative
abundance of the total communities of the 20 samples
sequenced. The relative contribution of each ‘core’ OTU
was reasonably consistent across samples (Fig. 1) with
Enterobacteriacae (84.4%) and Escherichia (8.3%) the
most abundant taxa contributing the ‘core’ community.
16S rRNA V2-V3 hypervariable region
Six hundred and thirty four unique OTUs were present
in all 20 prostate tissue samples combined. On a per



Table 1 Histopathological features (Gleason score and TNM stage), age at radical prostatectomy and pre-operative PSA (ng/μL) for
ten prostate cancer cases obtained from the Australian Prostate Cancer BioResource

Patient ID Gleason Score TNM Stage Age (years) at resection Surgical type Pre-operative PSA (ng/μL)

PI 8 PT3AN0 67.6 Open 26.7

P2 9 PT3B 68.9 Open 6.2

P3 9 PT3AN1MX 73.3 Open 1.9

P4 9 PT2CN0 61.5 Open 3.1

P5 9 PT2C 59.2 Robot 5.7

P6 9 PT3BN0 64.4 Robot n/a

P7 8 PT3AN0 68.1 Open 13.9

P8 9 PT3A 61.1 Open 9.2

P9 9 PT3AN0 53.4 Open n/a

P10 8 PT3AN0 67.8 Robot 8.8
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sample basis, the mean number of OTUs present was
117.95 (SD 23.95) and ranged from 71 to 160.
All samples combined, Enterobacteriaceae was domin-

ant taxon (55.4%), followed by Escherichia (20.9%). There
were seven additional OTUs with an abundance ≥ 1%
including Comamonadaceae (1.8%), Hyphomonadaceae
(1.5%), Pseudomonas (3.4%), Corynebacterium (1.3%),
Tepidimonas (1.2%), P. acnes (1.1%) and Acinetobacter
Table 2 Taxonomic assignments of the 18 OTUs present in 95% of
hypervariable region of the 16S rRNA gene and their relative abund

Core OTUs shared by 95% of samples

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Ente

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Oxalobact

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_P

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebac

k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Comamonad

k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Caulobacterales; f_Caulo

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_Aeroco

k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Staphylo

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Microbacte

k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_; s_

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Ente

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_M

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Strep

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_M

Sum of “core” OTUs (across 95% of samples)

The letters in the taxonomy column refer to k – kingdom, p – phylum, c –class, o –
(1.0%). Ralstonia and Lutemonas represented 0.8 and 0.6%
of the total microbial community, respectively. The
remaining 11% of sequences comprised of the 194 other
OTUs (Additional file 3).
The highest proportion of sequences for each individ-

ual sample was assigned to Enterobacteriaceae with an
abundance ranging from 21.9 to 69.4% followed by
Escherichia with an abundance ranging from 6.5 to
samples (n = 20) that underwent sequencing of the V4
ance

Relative abundance
of OTU within the
total community

%

robacteriaceae; g_; s_ 70.1%

terobacteriaceae; g_Escherichia; s_ 6.9%

eraceae; g_Ralstonia; s_ 1.7%

seudomonadaceae; g_Pseudomonas; s_ 1.3%

teriaceae; g_Corynebacterium; s_ 0.8%

aceae; g_Curvibacter; s_ 0.7%

bacteraceae; g_; s_ 0.7%

ccus; s_ 0.6%

coccus; s_ 0.4%

riaceae; g_; s_ 0.4%

0.3%

robacteriaceae; g_Enterobacter; s_hormaechei 0.3%

oraxellaceae; g_; s_ 0.2%

terobacteriaceae; g_Plesiomonas; s_ 0.1%

tococcus; s_ 0.1%

terobacteriaceae; g_Erwinia; s_ <0.1%

terobacteriaceae; g_Serratia; s_marcescens <0.1%

oraxellaceae; g_Moraxella; s_ <0.1%

84.6%

order, f – family, g – genus, s – species



Fig. 1 (See legend on next page.)
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Fig. 1 Taxa summary of ‘core’ OTUs identified in 95% of samples (n = 20) that underwent sequencing of the V4 hypervariable region of the 16S
rRNA gene. The figure depicts the relative contribution of each member of the ‘core’ community to each sample in addition to its overall
contribution to the core community over all samples combined. The contribution of taxa to the core community is expressed as a percentage.
The letter A next to the patient ID denotes “adjacent” tissue and M denotes “malignant” tissue. The letters in the taxonomy column refer to k –
kingdom, p – phylum, c –class, o –order, f – family, g – genus, s – species
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29.9%. Both were represented in every sample. The contri-
bution of the most abundant taxa (>0.5%) to the commu-
nity composition of each sample was reasonably consistent
despite a two-fold difference in the number of observed
OTUs (71 to 160). However, some taxa were overrepre-
sented in a number of samples when compared to their
contribution to overall abundance (Additional file 3).
Seven OTUs were represented in 95% of samples (n =

20) and together they constituted the ‘core’ community
within these prostate tissue samples (Table 3). These OTUs
were assigned to Enterobacteriaceae and Streptococcaceae,
Staphylococcus, Escherichia, Moraxella, Propionibacterium
acnes and Streptococcus pseudopneumoniae. Despite these
‘core’ OTUs representing only a small proportion (on aver-
age 5.9%) of the mean number of OTUs that comprise the
overall prostatic microbial community, they contributed to
a very large proportion (77.9%) of the relative abundance
of the total communities of the 20 samples sequenced.
The relative contribution of each of the seven ‘core’ OTUs
was reasonably consistent across individual samples
(Fig. 2). Enterobacteriaceae and Escherichia were observed
to be the most abundant taxa contributing to the ‘core’
community with a relative abundance of 72.2 and 26.6%
respectively.

Total RNA sequencing
Human endogenous retroviral sequences (HERVs) were
successfully detected in both benign and malignant data-
sets. After removing human ribosomal RNA and other
non-coding read pairs, approximately 20 million read
Table 3 Taxonomic assignments of the 7 OTUs present in 95% of sa
of the 16S rRNA gene and their relative abundance

Core OTUs shared by 95% of samples

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_En

k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Propioniba

k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Staphylococcaceae; g_Staphylo

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_; s_

k_Bacteria; p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Streptococcaceae; g_Strep

k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_M

Sum of “core” OTUs (across 95% of samples)

The letters in the taxonomy column refer to k – kingdom, p – phylum, c –class, o –
pairs remained for each of the malignant and benign
prostate tissue datasets. Removing human mRNA left
approximately 2.8 million unmapped read pairs for both
the malignant and benign datasets. The unmapped reads
were assembled into contiguous sequences using Velvet
at kmer values of 55, 65, 75 and 85 and were queried for
sequences of interest using BLAST. Sequences identified
as belonging to Pseudomonas spp. were detected in the
benign prostate tissue dataset. No sequences analogous
to the NCBI RefSeq [22] library of viral polymerases
(with the exception of HERVs) were detected. No spe-
cific viral sequences including human papillomaviruses,
polyomaviruses, herpes simplex virus 1 and 2, were de-
tected in either dataset.

Discussion
We used broad-range methods (one targeted and one
agnostic) to explore and characterise microbial constitu-
ents within the prostate tissue of men with aggressive
prostate cancer.
Previous studies have investigated the presence of bac-

terial, viral and prokaryotic organisms and their associ-
ation with prostate cancer [9, 23, 24] using other
methodologies including traditional bacterial culture,
specific, targeted PCR and bacterial 16S rRNA amplifica-
tion, traditional cloning and capillary sequencing
methods. The advantage of MPS, in this context, is the
capacity to sequence the entire genomic/transcriptomic
content of samples without a priori knowledge of spe-
cific genes and targets [25], in addition to its sensitivity
mples (n = 20) that underwent sequencing of the V2-V3 region

Relative abundance
of OTU within the
total community

%

terobacteriaceae; g_; s_ 55.4%

terobacteriaceae; g_Escherichia; s_ 20.9%

cteriaceae; g_Propionibacterium; s_acnes 1.1%

coccus; s_ 0.4%

0.1%

tococcus; s_pseudopneumoniae <0.1%

oraxellaceae; g_Moraxella; s_ <0.1%

77.90%

order, f – family, g – genus, s – species



Fig. 2 Taxa summary of ‘core’ OTUs identified in 95% of samples (n = 20) that underwent sequencing of the V2-V3 region of the 16S rRNA gene.
The figure depicts the relative contribution of each member of the ‘core’ community to each sample in addition to its overall contribution to the
core community over all samples combined. The contribution of taxa to the core community is expressed as a percentage. The letter A next to
the patient ID denotes “adjacent” tissue and M denotes “malignant” tissue. The letters in the taxonomy column refer to k – kingdom, p – phylum,
c –class, o –order, f – family, g – genus, s – species
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and high-throughput capability. However, despite the ad-
vantages of applying new technology to a decades-old
question, the data generated and the methods used for
data analysis were still in early development. As this field
evolves, the methods, data, analytical tools and strategies
will become more refined and enable further elucidation
of these study questions.
To date, five studies [8, 9, 26–28] have investigated

and characterised bacterial 16S rRNA sequences in pros-
tate tissue collected from prostate cancer patients. Only
one of these studies [28] found no evidence of 16S rRNA
sequences in prostate cancer tissues. Four studies [8, 9,
26, 27] demonstrated the presence of bacterial sequences
in 88.9, 85.7, 19.6 and 87% of patients, respectively. The
most common organisms identified in these studies were
members of the family Enterobacteriaceae and specific-
ally species related to Escherichia coli. These findings
are consistent with the results of the present study. In
addition, analysis of the 16S rRNA V4 region sequencing
data identified Actinobacter spp., Pseudomonas spp. and



Yow et al. Infectious Agents and Cancer  (2017) 12:4 Page 8 of 10
Streptococcus spp. as being present in 95% of all prostate
samples therefore members of the ‘core’ community, in
accordance with Sfanos et al. (2008). Analysis of the V2-
V3 region also identified Enterobacteriaceae, Escherichia
spp. as the predominant taxa within this sample of pros-
tate tissues in addition to Staphylococcus spp, Streptococ-
cus spp, Moraxella spp., and Propionibacterium acnes as
members of the ‘core’ community.
Distinguishing between contamination of tissue and

‘true’ prostatic microbial constituents is one of the
main challenges of bacterial community studies. Studies
[8, 27] have suggested that the presence of bacterial
sequences in prostate cancer tissues reflects bacterial
contamination of the prostate via transrectal prostate
biopsy of prostate which is routinely performed to confirm
a diagnosis of prostate cancer. This could explain the pres-
ence of bacterial 16S rRNA sequences in prostate tissue
samples from prostate cancer patients and the range of
organisms detected in our dataset also supports this
hypothesis.
Catheterization of patients has also been suggested as

a way in which the prostate may be contaminated with
bacteria. Hochrieter et al. (2000) detected 16S rRNA se-
quences in all four prostate tissue samples taken from a
benign prostatic hyperplasia (BPH) patient that had an
indwelling catheter for several weeks before radical
prostatectomy [27]. Gorelick et al. (1988) performed
quantitative bacterial culture of prostate tissues from
prostatectomy patients to determine the prevalence of
prostate bacterial infection or colonization [29]. They re-
ported that 34% of patients with a pre-operative indwell-
ing catheter returned a positive prostatic culture.
Organisms were identified as common urinary tract
pathogens including E. coli and Streptococcus fecalis.
The pre-operative status with respect to catheterization
of patients included in this study is unknown, however,
it is a possibility that bacterial sequences identified in
our samples could have been introduced in this way.
Sequences representing Propionibacterium acnes were

detected in the V2-V3 16S rRNA dataset in 95% of sam-
ples albeit at low abundance. This study reports a 95%
prevalence of P. acnes in prostate tissue samples which
is consistent with the 100% prevelance of P. acnes de-
tected in prostatic intraepithelial neoplasia (PIN) lesions
and 78% of prostate cancer tissues reported by Fehri
et al. (2011) but approximately two-fold higher than the
prevalence of P. acnes reported by other studies [1, 2, 9,
30]. The present study could not determine whether the
P. acnes sequences detected in the V2-V3 dataset
represented either urogenital or cutaneous strains.
Therefore, it is difficult to ascertain if the P. acnes de-
tected in these samples represent contamination through
laboratory handling and reagents or if they have bio-
logical significance.
The study design and methods employed in this study
had several limitations that may have diminished the
ability to detect infectious organisms in prostate tissues
that were of clinical significance. The study design
employed to identify potential infectious agents associ-
ated with prostate cancer was limited by study sample
collection methods, the sampling of prostate tissue,
small sample size and sensitivity of detection (total RNA
sequencing). In addition, there were inherent limitations
to our study design including the presence of multiple
16S rRNA gene copies, extraction methods, library
preparation, experimental controls and bioinformatics
approaches.
The 16S rRNA gene occurs in at least one copy of

every bacterial genome, however can also occur as mul-
tiple and heterogeneous copies with copy number ran-
ging from 1 to 15 [31]. The E. coli genome contains
seven copies of the 16S rRNA gene and the P. acnes
genome three copies [32]. Most 16S rRNA gene surveys
assume that the relative abundance of 16S sequences are
an accurate surrogate measure of the relative abundance
of microorganisms in studies of community composition
[31]. However, differences in the copy number/hetero-
geneity of the target 16S rRNA gene may result in
overestimation of diversity and abundance [33, 34].
Therefore, inferences made on the basis of relative abun-
dance of 16S rRNA genes may not be an accurate repre-
sentation of actual community composition [31, 35] and
variation in 16S rRNA gene copies can be a source of
significant systemic bias within 16S rRNA gene surveys
[33]. This study did not normalize for variation in 16S
rRNA copy number and therefore it is unlikely that the
reported relative abundances of taxa identified reflected
actual taxa abundance. However, there are software
tools [31] and a publicly available curated database
(ribosomal RNA operon copy number database or rrnDB
[35]) that could be applied to estimate actual organism
abundance from 16S rRNA gene abundance data in
future work.
There is considerable scope to extend and improve

upon the experimental design of this study in investigat-
ing a persistent infectious aetiology for prostate cancer.
Incorporating a prospective study design that collected
tissues specifically for PCR- and sequencing-based ana-
lyses may reduce the prevalence of contaminating se-
quences. Inclusion of (a) control group(s) that included
samples from lower grade and less aggressive prostate
cancer cases and cancer-unaffected prostates such as
those from organ donors, cystoprostatectomy and/or
BPH cases would allow comparison between the micro-
bial constituents of different prostate pathologies (if any)
and normal prostate tissue. In addition, a greater num-
ber of cases would ensure that the study is sufficiently
powered to detect differences in microbial communities
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(if any) between groups. Sampling a greater proportion
of the prostate gland at several anatomical sites would
provide comprehensive coverage of the prostate gland as
a whole. With regard to 16S rRNA amplicon sequencing,
the inclusion of extraction, PCR and water controls in
sequencing runs would also provide a profile of labora-
tory contaminants so that ‘true’ microbial constituents
(if any) could be distinguished from contaminating
sequences. Normalization of 16S rRNA datasets to ac-
count for heterogeneity of 16S rRNA gene copies would
also provide more accuracy with respect to relative or-
ganismal abundance. In terms of RNA sequencing, de-
pletion of host RNA and enrichment of microbial rRNA
and mRNA may increase detection sensitivity. If micro-
organisms of interest were detected, follow-up studies
including verification of specific infectious agents in
original nucleic acid samples via PCR and tissue
localization studies would be warranted.

Conclusions
An infectious aetiology for prostate cancer has long been
conjectured. We evaluated new technology to assess if
its use could clarify the inconsistency in evidence related
to the nature of possible infection(s) and their relation-
ship to prostate tumour grade. We applied targeted and
agnostic approaches both involving MPS. This technol-
ogy detected endogenous retroviruses providing proof of
concept but there was no clear evidence of clinically sig-
nificant bacterial or viral sequences in prostate cancer
tissue. As these investigative methods and protocols be-
come more refined, MPS approaches are anticipated to
have significant utility in identifying potential pathogens
involved in disease aetiology. Further studies, specifically
designed to detect associations between the disease
phenotype and aetiological agents, are required.
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