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RYTHROPOIETIN (EPO) ~ is a serum glycoprotein 
hormone required for the survival, proliferation, and 
differentiation of committed erythroid progenitor 

cells (21), and is the principal hormone regulating the level 
of circulating red blood cells. The administration of recom- 
binant human EPO to anemic patients suffering from chronic 
renal failure, AIDS, or bone marrow suppression due to che- 
motherapy has dramatically alleviated their need for blood 
transfusions. In this review we focus on several aspects of the 
cellular receptor for EPO (EPO-R): its expression, its struc- 
ture and function, the role of receptor mutations in human 
disease, and two ways in which the receptor can be activated 
for proliferation independent of hormone. In animal models 
such growth factor-independent activation of the EPO-R can 
initiate the development of leukemia. 

Erythropoietin Receptor Expression 
In contrast to many other hematopoietic growth factors, 
EPO acts primarily on erythroid progenitors within the fetal 
liver and adult bone marrow. The earliest erythroid progeni- 
tors identified by cell culture are the slowly proliferating 
burst-forming unit-erythroid (BFU-E) cells, which are not 
responsive to EPO alone. After growth in the presence of ad- 
ditional growth factors (GM-CSF, IL-3, or SCF), "mature" 
BFU-E develop which are weakly responsive to EPO. Fur- 
ther proliferation in culture gives rise to colony-forming 
units-erythroid (CFU-E) which are highly responsive to 
EPO and generate erythroblast colonies. The sensitivity of 
these erythroid progenitors to EPO is transient. Beyond the 
late basophilic erythroblast stage, a nondividing cell, the 
level of the EPO-R drops and the cells are no longer depen- 
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dent on EPO for continued maturation. Whether EPO affects 
differentiation as well as proliferation is not clear. 

An EPO-R is also expressed by other nonerythroid hema- 
topoietic cells, including megakaryocytes (14), embryonic 
stem cells and their differentiated hematopoietic progeny 
(18, 33), and a number of cell lines arrested at different 
stages of lineage development (18). The functional relevance 
of this developmentally diverse EPO-R gene expression is 
not clear. Also, an EPO-R has been detected in placenta 
(32), where it may function in transepithelial transport of 
EPO (20), and in endothelial cells (1). Quite apart from its 
function in hematopoiesis, EPO-Rs may play other roles in 
non-hematopoietic cells. 

Erythropoietin Receptor Structure 
A murine EPO-R eDNA was isolated by expression cloning 
(8) and encodes a type I membrane-spanning protein of 66 
kD which is a member of the cytokine, or hematopoietin, 
receptor superfamily (Fig. 1). Initial binding studies on tran- 
siently transfected COS cells detected two affinities for EPO 
(kv = 30 pM and 210 pM) (8); however, subsequent studies 
have detected a single binding affinity for EPO (kv = 
300-800 pM) in heterologous hematopoietic cells (10, 27), 
fibroblasts (9), or COS cells transfected with the EPO-R 
eDNA (D. J. Hilton, S. S. Watowich, and H. E Lodish, un- 
published results). Binding studies on human and murine 
erythroid progenitor cells have detected either one (4) or two 
(30) affinities for radioiodinated EPO. Two affinities for EPO 
may suggest the presence of other components which modu- 
late the binding activity of the cloned EPO-R. However, it 
is unresolved whether there are indeed EPO-Rs of multiple 
affinities. 

Proteins of ,'~100 and '~85 kD that cross-link to EPO are 
detected on the surface of a variety of cell types examined 
and limited peptide mapping suggests that these two proteins 
may be related (31). Conflicting studies have suggested that 
the 100-110- and 75-85-kD proteins are or are not immuno- 
logically related to the cloned EPO-R (25, 26). A third com- 
ponent of "~95 kD, specific to hematopoietic cells and im- 
munologieally unrelated to the EPO-R, was also detected by 
EPO cross-linking (26). Clearly, further work remains to 
delineate the molecular structure of the cell-surface EPO-R 
complex. 

A constitutively active (hormone-independent) form of the 
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Figure 1. Functional organization of the EPO-R molecule. The 
schematic diagram shows the relative position of the four conserved 
Cys residues (initial 4 horizontal black bars from NH2 end; C), a 
fifth Cys (black bar; C) unique to the EPO-R, the activating point 
mutations R129C, E132C, E133C, the conserved WSXWS motif, 
the inactivating W282R mutation, and cytoplasmic positive and 
negative regulatory domains of signal transduction. 

EPO-R was isolated from a retrovirai transduction system 
and found to contain a single point mutation, resulting in an 
Arg to Cys change at residue 129 of the exoplasmic domain 
(Fig. 1) (37). The R129C receptors form disulfide-linked 
homodimers independent of hormone, which are assembled 
in the ER and are transported to the plasma membrane, 
where they bind EPO with a single affinity (kD = 700 pM) 
(34). Since several members of the cytokine receptor family 
are active as ligand-induced homodimers (12, 15), we 
hypothesized that the disulfide-linked dimers might mimic 
the structure of the hormone-bound form of the EPO-R (Fig. 
2). Crystal structure analysis of the related human growth 
hormone receptor (hGH-R) demonstrated that a single non- 
symmetrical GH molecule induces homodimerization (12). 
Residues in the membrane-proximal region of hGH-R stabi- 
lize the ligand-induced homodimer and an alignment of the 
hGH-R and EPO-R sequences shows that Arg129 of the 
EPO-R maps to this dimer interface region. Mutation of 
residues flanking Arg129 to cysteine also generates constitu- 
tively active EPO-Rs, which form disulfide-linked homo- 
dimers in the absence of EPO (Fig. 1; S. S. Watowich, D. J. 
Hilton, and H. E Lodish, manuscript submitted for publica- 

Figure 2. Schematic model of the EPO-R complex. Ligand(s) 
(EPO) induce homodimerization of the EPO-R. By analogy with 
the structure of the hGH-R, the amino acids that generate the ac- 
tivating mutations R129C, E132C, and E133C, are thought to be at 
the dimer interface. The WSXWS motif is not at the dimer interface 
or ligand binding site(s). Phosphorylation (P) of both the EPO-R 
and additional substrates may occur following dimerization initiat. 
ing the intracellular signaling pathway. The identity and role(s) of 
accessory proteins in the EPO-R complex is not clear. 

tion), further suggesting that ligand-induced dimerization of 
the wild-type EPO-R is crucial for transmembrane sig- 
naling. 

Signaling by the Erythropoietin Receptor 

Although the cytosolic domain of the EPO-R does not con- 
tain an obvious protein kinase domain, phosphorylation of 
cytoplasmic proteins appears to be important for EPO- 
induced proliferation (27). A recent study using chimeric 
cytokine receptors suggests that the exoplasmic domain is 
responsible for determining the pattern of receptor-specific 
cellular protein phosphorylation (7). In contrast, however, 
other studies implicate the membrane-proximal region, and 
specifically residue W282, of the EPO-R cytoplasmic do- 
main as crucial for EPO-dependent proliferation (10, 27, 28). 
The EPO-R is tyrosine phosphorylated upon EPO binding 
and associates with the cytoplasmic tyrosine kinase JAK2; 
activating its kinase activity (18a, 27, 35). Whether JAK2 
phosphorylates the EPO-R is not known. It is essential to 
identify proteins interacting with the EPO-R and determine 
the role they play in EPO-induced proliferation; some of 
these proteins may be specific for the EPO-R while others, 
such as JAK2 kinase, may interact with several cytokine 
receptors. 

Deletion of 40 or 91 amino acids from the carboxy termi ~- 
nus of the EPO-R enhances the activity of the receptor with~ 
out altering its affinity for EPO or cell surface number, sug- 
gesting that the COOH-terminai cytoplasmic region of the 
EPO-R contains a domain that down modulates EPO-R sig- 
naling (Fig. 1) (10, 37). Affected members of a Finnish faro- 
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ily with autosomal dominant benign erythrocytosis were 
shown to have a mutation in one allele of the EPO-R, which 
introduces a premature stop codon and predicts the synthesis 
of an EPO-R lacking the carboxy-terminal 70 amino acids 
(11). Cultured bone marrow erythroid progenitors from these 
individuals are hypersensitive to EPO (19). Thus, carboxy- 
terminal deletions have phenotypically the same effects on 
murine and human EPO-Rs, and in humans contribute, in a 
dominant fashion, to a mild pathologic condition. Deletion 
of the carboxy-termina140 amino acids of the routine EPO-R 
reduces receptor tyrosine phosphorylation (35), suggesting 
that a phosphorylated tyrosine in this region may serve as a 
recognition site for a protein which negatively modulates 
EPO-R signaling. Alternatively, truncated EPO-Rs may 
preferentially interact with positive signaling molecules. As- 
suming that the functional EPO-R is a homodimer, it re- 
mains to be determined if heterodimers of the wild-type 
receptor and carboxy-terminal truncated EPO-Rs are func- 
tionally distinct from wild-type receptor homodimers. 

The Erythropoietin Receptor and Murine Leukemia 

The role of growth factors and their receptors in the leu- 
kemic process has been the focus of a great deal of investiga- 
tion. Activating mutations in some hematopoietic growth 
factor receptors (CSF-1R, EPO-R) have, in experimental 
murine models, led to the development of leukemia in a mul- 
tistep process (17, 24). Specifically, the EPO-R has been im- 
plicated in two modes of leukemia induction in mice. 

Friend virus, an acutely transforming murine erythroleu- 
kemia retrovirus has long served as a model for the study of 
the multistep nature of leukemia (3). A replication-defective, 
pathogenic, spleen focus-forming virus (SFFV) and a repli- 
cation-competent, helper, Friend murine leukemia virus 
(F-MuLV) comprise the Friend virus complex. The SFFV 
genome lacks any known oncogenic sequences, but the env 
gene encodes a recombinant/deletion membrane glycopro- 
tein, gp55, that is directly involved in leukemogenesis. 
Co-expression of the murine EPO-R and the gp55 envelope 
protein of SFFV in hematopoietic cell lines confers 
hormone-independent cell proliferation (23, 29). The EPO-R 
and gp55 interact, as judged by co-immunoprecipitation, 
in the ER (36) as well as the cell surface (6). The cell surface, 
disulfide-linked dimeric form ofgp55 (16) is the biologically 
active form (22), and can be cross-linked to radioiodinated 
EPO (6). Since gp55 itself cannot bind EPO, these results 
demonstrate that gp55 molecules are associated with cell 
surface EPO-Rs, and that the gp55 binding site on the EPO-R 
is distinct from the ligand-binding domain (6). 

This association between the EPO-R and gp55 is likely to 
be the principal cause of the initial stage of Friend disease: 
EPO-independent polyclonal erythroblastosis. The later 
evolution to clonal erythroleukemia is thought to result from 
inactivation of the p53 suppressor oncogene and clonal ex- 
pansion of cell lines expressing one of the members of the 
ets gene family of transcription factors, PU.1/spi-1, or ilia 
(3). The target cell for transformation by SFFV is the "ma- 
ture " BFU-E or CFU-E (2), the erythroid progenitor max- 
imally responsive to EPO. Thus, induction of proliferation 
by the gp55 gene of SFFV is restricted to those cells express- 
ing a functional EPO-R. 

If the env gene of SFFV is replaced by a eDNA encoding 

a constitutively active form of the erythropoietin receptor, 
~ R ( R I 2 9 C ) ,  the resultant recombinant virus SFFVcEPO-R 
also induces erythrocytosis and leukemia in adult mice (24). 
Analysis of mice infected by the SFFVcEPO-R virus indi- 
cates that, in contrast to gp55 of SFFV, EPO-R(R129C) can 
signal proliferation and induce transformation of cells other 
than erythroid progenitors (G. D. Longmore, H. E Lodish, 
manuscript submitted for publication). Erythrocytosis in 
SFFVcEPO-R-infected mice is associated with a transient 
rise in platelet count (24a). Clonogenic progenitor cell as- 
says of marrow cells from infected mice suggest that the tar- 
get cell of SFFVcEPO-R can be a multipotent committed 
progenitor with predominant erythroid-megakaryocytic fea- 
tures. Several factor-independent leukemic cell lines, de- 
rived from the spleens of infected mice, exhibited properties 
of primitive erythroid, lymphoid, and monocytic cells. 
Thus, when aberrantly expressed in vivo the EPO-R is capa- 
ble of transducing functional growth signals in nonerythroid 
as well as early erythroid progenitor cells. 

Similar to those generated by infection of SFFV, all leu- 
kemic cell lines generated after SFFVcEPO-R infection con- 
rained mutations in the p53 gene (24). However, in contrast 
to infection by SFFV, activation of PU-1 gene expression by 
retroviral integration was not observed (24) ((3. D. Long- 
more, and H. E Lodish, manuscript submitted for publica- 
tion). Thus, infection by SFFVcEPO-R, in contrast to SFFV, 
can lead to transformation of nonerythroid as well as 
erythroid cells, and the sites of proviral integration in clonal 
leukemic cell lines are distinct from those formed by SFFV. 

Patients with polycythemia vera (PV), a clonal my- 
eloproliferative disorder, present primarily with erythrocy- 
tosis, although elevations in granulocytes and platelets also 
occur. Erythroid progenitors from patients with PV can, in 
culture, be hypersensitive to or independent of EPO for 
maturation (5, 13). This situation is reminiscent of activation 
of the murine EPO-R either by COOH-terminal truncation, 
constitutive point mutation, or by binding of gp55. There are 
no specific cytogenetic markers or genetic linkage data that 
implicate mutations in the EPO-R gene in the pathophysiol- 
ogy of PV, but appropriate molecular diagnostic techniques 
should help resolve the role of EPO-R in this disorder. Alter- 
natively, a human equivalent of the SFFV gp55 protein may 
activate the EPO-R in PV. 

Future Directions 

The provocative parallels between mouse and human pheno- 
types expressing mutant EPO-Rs have shown the utility of 
in vitro mutational analysis and animal models of disease in 
understanding human pathophysiology. With the identifica- 
tion of disease processes involving mutations in the EPO-R, 
work needs to be concentrated upon defining the cell surface 
organization of the EPO-R complex, the identification of sig- 
naling molecules activated by or associated with the EPO-R, 
and the molecular nature of the EPO-R that contributes to 
these associations. 
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