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a b s t r a c t

Hydrogen sulfide (H2S) is a gaseous signalling molecule involved in many physiological and pathological
processes. There is increasing evidence that H2S is implicated in aging and lifespan control in the diet-
induced longevity models. However, blood sulfide concentration of naturally long-lived species is not
known. Here we measured blood sulfide in the long-lived naked mole-rat and five other mammalian
species considerably differing in lifespan and found a negative correlation between blood sulfide and
maximum longevity residual. In addition, we show that the naked mole-rat cystathionine β-synthase
(CBS), an enzyme whose activity in the liver significantly contributes to systemic sulfide levels, has lower
activity in the liver and is activated to a higher degree by S-adenosylmethionine compared to other
species. These results add complexity to the understanding of the role of H2S in aging and call for de-
tailed research on naked mole-rat transsulfuration.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydrogen sulfide (H2S) is a gasotransmitter playing a role in
many physiological and pathological processes e.g. inflamma-
tion, apoptosis, cellular energetics, vascular contractility.
Known molecular mechanisms underlying H2S effects include
activation of ion channels, regulation of second messengers
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(cAMP, cGMP, free calcium) levels, and protein sulfhydration
[1]. In mammals, H2S is produced mainly by two enzymes of the
evolutionarily conserved transsulfuration pathway, cystathio-
nine β-synthase (CBS, EC 4.2.1.22) and cystathionine γ-lyase
(CSE, EC 4.4.1.1), as well as 3-mercaptopyruvate sulfurtransfer-
ase (MST, EC 2.8.1.2).

CBS is a key regulatory enzyme at the intersection of the
transsulfuration pathway and methionine cycle, controlling the
flux of methionine into transsulfuration (Fig. 1B). In the canonical
reaction CBS catalyses condensation of homocysteine and serine to
form cystathionine and water. However, when cysteine is used
instead of serine, cystathionine and H2S are produced. CBS is a
pyridoxal 5’-phosphate and heme dependent enzyme consisting of
three structural domains: (i) N-terminal heme binding domain, (ii)
catalytic core, and (iii) C-terminal regulatory domain with an au-
toinhibitory function (Fig. 1A). Binding of a universal methyl group
donor S-adenosylmethionine (SAM) to the regulatory domain ac-
tivates and stabilizes the enzyme [2,3].
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Fig. 1. CBS – an H2S producing enzyme. (A) Six-species CBS sequence alignment. CBS consists of three domains. The mole-rat C412L substitution is located in the regulatory
domain. Hgl – H. glaber, Fme – F. mechowii, Fmi - F. micklemi, Cpo – C. porcellus, Mmu – M. musculus, Hsa – H. sapiens (B) A simplified scheme showing the role of CBS in sulfur
metabolism. Met – methionine, hcy – homocysteine.
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Although there is increasing evidence that H2S is implicated in
aging and lifespan control, its exact role in these processes is still
not clear. Exogenous H2S increases lifespan in Caenorhabditis ele-
gans [4]. Moreover, CBS is required for the life-prolonging effect of
caloric restriction in Drosophila [5], and increased H2S production
in models for diet-induced longevity was observed [6]. In contrast,
a decrease in CBS protein levels and activity in response to me-
thionine and isocaloric protein restriction, respectively, was shown
[2,7].

Importantly, sulfide concentration in naturally long-lived spe-
cies remains unknown. A measure of longevity employed in this
study is maximum longevity residual, which represents the re-
lationship of the observed maximum lifespan of the species to its
expected, body size-based lifespan calculated with the mamma-
lian allometric equation [8]. Human and naked mole-rat belong to
species with the highest maximum longevity residual. The naked
mole-rat (Heterocephalus glaber) is a eusocial subterranean rodent
native to East Africa. It has become the focus of increased attention
in the field of aging and cancer research due to its extremely long
life- and healthspan [9] as well as its resistance to cancer [10].
Here, we determine blood sulfide concentrations in six mammals
(naked mole-rat, human, mouse, guinea pig, Fukomys mechowii,
Fukomys micklemi) differing in their maximum longevity residual.
In addition, since CBS activity in the liver significantly contributes
to the circulating H2S levels [11], we comparatively analyse the
naked mole-rat CBS gene.
2. Material and methods

2.1. Animals

Naked mole-rat colonies are maintained at Leibniz Institute for
Zoo and Wildlife Research, Berlin, Germany in an artificial burrow
system with tunnels and plexiglass boxes. The system is heated to
26–29 °C with a constant high relative humidity of 60%–80%. The
chambers contain wood bedding, twigs and unbleached paper
tissue. Fresh food is given daily ad libitum and includes sweet
potatoes, carrots, fennel, apples, a cereal supplement containing
vitamins and minerals, and oat flakes. Sampling was approved by
the local ethics committee of the “Landesamt für Gesundheit und
Soziales”, Berlin, Germany (#ZH 156).
F. micklemi and F. mechowii are maintained at the animal fa-
cilities of the Department of General Zoology, University of Duis-
burg-Essen, Germany. They are housed as family groups in glass
terraria on horticultural peat and fed ad libitum with carrots and
potatoes every day, apples every second day, and grain and lettuce
once a week. Room temperature and humidity is kept constant at
2471 °C and 4073%, respectively. Sampling was approved by
Landesamt für Natur-, Umwelt- und Verbraucherschutz Nordr-
hein-Westfalen (Az. 84-02.04.2013.A164).

Guinea pigs (Cavia porcellus, Dunkin Hartley HsdDhl:DH) were
purchased from Harlan Laboratories, AN Venray, Netherlands.
Animals are maintained at Leibniz Institute for Zoo and Wildlife
Research, Berlin, Germany under room conditions in plastic cages
with litter and hay as bedding. The range of the room temperature
is 18–20 °C and of the humidity 40–50%. Fresh food is given daily
and includes carrot, cucumber, salad, apples, and dry feed. Sam-
pling was approved by the local ethics committee of the “Land-
esamt für Gesundheit und Soziales”, Berlin, Germany (G02217/12).

Mice (Mus musculus, C57BL/6) were maintained at the Center of
Sepsis Control and Care (Jena University Hospital, Jena, Germany).
They were maintained under artificial day-night conditions at
room temperature, and received a standard diet and water ad li-
bitum. Animals were randomly selected for each experiment.
Sampling was approved by Thüringer Landesamt für Ver-
braucherschutz (02-035/12).

2.2. Human samples

Blood samples were obtained from healthy volunteers of Eur-
opean origin after written informed consent and approval by the
Jena University Ethics Committee (3624-11/12).

2.3. Quantification of sulfide in whole blood

Sulfide was measured by GC/MS after extractive alkylation
using a bis-pentafluorobenzyl derivative. The method and its ca-
libration were described in detail in [12]. 25 ml blood was used and
the volume of the reaction mixture was adjusted accordingly.
Species and sampling information is listed in Table 1.

Blood sulfide level was correlated with maximum longevity
residual obtained from the AnAge database (http://genomics.se-
nescence.info/species accessed on 14.09.2015). Of note, there are



Table 1
Species and sampling information for sulfide measurement in blood.

Species Mean age 7SD Number of females Number of males Source of blood Anesthesia

Breeder Non-breeder Breeder Non-breeder

Hgl 44 months 75 3 2 2 3 Heart puncture/vein Isoflurane
Fme 56 months 715 9 7 Vein Ketamine and xylazine
Fmi 31 months 715 2 6 2 9 Vein Ketamine and xylazine
Mmu 9 months75 4 17 Retro-orbital puncture Isoflurane
Cpo 12 months 1 3 Heart puncture Medetomidine, midazolam, and fentanyl
Hsa 45 years 711 5 9 Vein –

Hgl – H. glaber, Fme – F. mechowii, Fmi – F. micklemi, Cpo – C. porcellus, Mmu – M. musculus, Hsa – H. sapiens.
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no entries for F. mechowii and F. micklemi in the AnAge database.
Therefore, maximum longevity residual for F. mechowii was cal-
culated with the allometric equation provided by the database:
tmax¼4.88M0.153, tmax – maximum longevity, M – body weight.
According to our records, the longest living individual of F. me-
chowii is 21yo breeding female, and the mean body weight of F.
mechowii females is 250 g (unpublished data).

F. micklemi is a small bathyergid occurring in Western and
Southern Zambia. The maximum lifespan of this species is not yet
established because it has been assigned species status only rela-
tively recently [13] and has been bred in laboratories only since
2008. However, F. micklemi is very closely related to the better
studied F. anselli and F. kafuensis, with all three species belonging
to the same “Fukomys micklemi” clade according to [14]. F. micklemi
interbreeds with F. anselli in the lab (own unpublished data), and
both species are nearly undistinguishable regarding their body
measures and biology including mating and social system. We
therefore used the maximum longevity residuals of F. anselli as the
currently best available approximation for F. micklemi.

2.4. Cell culture

HCT116 cells were purchased from ECACC through Sigma
(Sigma-Aldrich, St. Louis, MO, USA). Cells were grown at 37 °C in
the presence of 5% CO2 in McCoy's Medium (Gibco, Invitrogen
GmbH, Karlsruhe, Germany) supplemented with 10% FBS.

HEK293-EBNA cells were a kind gift from Dr. Christoph Kaether
(Leibniz Institute for Age Research-Fritz Lipmann Institute, Jena,
Germany). Cells were grown at 37 °C in the presence of 5% CO2 in
DMEM Medium (Gibco, Invitrogen GmbH, Karlsruhe, Germany)
supplemented with 10% FBS.

2.5. RT-PCR

RNA was isolated using RNeasy Mini Kit (Qiagen, Valencia, CA,
USA) according to manufacturer’s instructions. 900 ng total RNA
was used for reverse transcription with QuantiTect Reverse Tran-
scription Kit (Qiagen, Valencia, CA, USA). CBS and GAPDH were
amplified with the use of primers listed in Table 2 and following
PCR conditions: 95 °C 1 min, followed by 29 cycles with 95 °C 30 s,
Table 2
Primer sequences used for RT-PCR analysis, site-directed mutagenesis, and cloning.

Gene Primer names and sequences (5′-3′)

CBS cbs_qPCRhum_1F: ATGCTGATCGCGCAAGAG; cbs_qPCRhum_
GAPDH hs_GAPDH_1F: AACGGGAAGCTTGTCATCAATGGAAA; hs_GAP
Mmu CBS mcbscDNA_EcoRI_1F: TCTAGGAATTCTCGACCCATCCTTGCTGA
Hgl CBS CT1234TG nmrCBSMut_1F: CCCACCGTCACCTGCGAGCACACCATC; nmrCB
Hgl CBS CT1234TC nmrCBS_L412S_f: TGCTGCCCACCGTCACCTCCGAGCACACCATC
Fme CBS T355C T358G CBSmechToAnsel_2F: GAGGACGCAGAGCGCGCCGGGATCCT; C

Hgl – H. glaber, Fme – F. mechowii, Mmu – M. musculus.
59 °C 30 s, 72 °C 1 min, and final extension at 72 °C for 10 min. PCR
products were analyzed by agarose (1% w/v) gel electrophoresis.

2.6. RNA-seq

For library preparation 1 mg of total RNA was introduced into
Illumina’s (Illumina, San Diego, CA, USA) TruSeq RNA sample prep
kit v2 following the manufacturer’s instruction. Quality checking
and quantification of the library was done using an Agilent Bioa-
nalyzer 2100 in combination with an Agilent DNA 7400 kit (Agilent
Technologies, Inc., CA, USA). The library was sequenced on a Hi-
Seq2500 in high-output, 50 bp single-read mode. SBS sequencing
chemistry v3 was used (Illumina, San Diego, CA, USA). Read in-
formation were extracted in FastQ format using bcl2fastq v1.8.4
(supported by Illumina). The sequencing approach resulted in
57,815,446 single-end reads. The reads were mapped to the hu-
man genome (hg19) taken the RefSeq [15] annotation (release 64)
into account using tophat v.1.4.1 [16]. The mapping result was
introduced into htseq-count [17] using the annotation as men-
tioned above to count reads per gene.

2.7. Test for positive selection

Orthologous genes were determined by best-bidirectional-
blast-hits. Per species (Mus musculus, Rattus norvegicus, Mesocri-
cetus auratus, Cricetulus griseus, Nannospalax galili, Chinchilla lani-
gera, Cavia porcellus, F. mechowii, F. micklemi, Canis lupus, Bos
taurus, Pan troglodytes, Homo sapiens, Oryctolagus cuniculus) that
splice variant was chosen that showed highest similarity to naked
mole-rat transcript (XM_004885703). Codon alignments were
conducted using prank [18]. The alignments were filtered by
gBlocks [19]. Next, PAML's [20] branch-site test of positive selec-
tion was applied using naked mole-rat as foreground branch.

2.8. Plasmids and site-directed mutagenesis

The CBS CDS of naked mole-rat (XM_004885703), F. mechowii
(KR028540), human (NM_000071), C431L and C431S variants, and
human core with naked mole-rat regulatory domain were syn-
thesized and cloned into pCMV6-AC plasmid by Blue Heron
1R: TCGCTCAGGAACTTGGTCAT
DH_1R: GCATCAGCAGAGGGGGCAGAG
GTTTGT; mcbscDNA_PmeI_1R: CTAATGTTTAAACTCGATTGGGTGAGGAAGCTGGTAG
SMut_1R: GATGGTGTGCTCGCAGGTGACGGTGGG
GCCAT; nmrCBS_L412S_r: ATGGCGATGGTGTGCTCGGAGGTGACGGTGGGCAGCA
BSmechToAnsel_2R: AGGATCCCGGCGCGCTCTGCGTCCTC
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Biotechnology, Inc. (Bothell, WA, USA). The naked mole-rat L412C
and L412S variants, and the F. mickelmi CDS (KR028541) were
generated by site-directed mutagenesis using the naked mole-rat
or F. mechowii pCMV6-AC constructs as a template. Primers con-
taining desired mutations were designed with the primer-design
program PrimerX (http://www.bioinformatics.org/primerx. Ac-
cessed 3 September 2014). The template replicated with Pfu/Psp
DNA polymerase (GeneON, Ludwigshafen am Rhein, Germany)
was digested with DpnI (NEB, Ipswich, MA, USA).

CDS with naked mole-rat core and human regulatory domain
was created by exchanging regulatory domains between human
and naked mole-rat pCMV6-AC constructs. Eco47III (Thermo Sci-
entific, Waltham, MA, USA) (restriction site spanning nucleotides
1103 to 1108 of human CBS coding sequence) and PmeI (Thermo
Scientific, Waltham, MA, USA) (restriction site in the multiple
cloning site) were used to cut plasmids. The fragments were se-
parated on a 1% agarose gel, purified with GeneJET Gel Extraction
Kit (Thermo Scientific, Waltham, MA, USA), and ligated with the
Quick Ligation Kit (NEB, Ipswich, MA, USA).

Mouse CDS (NM_178224) was amplified using mouse liver
cDNA from MTC Multiple Tissue cDNA Panels (Clontech, Mountain
View, CA, USA) as a template. Primers contained EcoRI and PmeI
restriction sites. PCR product and pCMV6-AC plasmid were di-
gested with EcoRI (NEB, Ipswich, MA, USA) and PmeI (Thermo
Scientific Waltham, MA, USA) and purified from 1% agarose gel
with GeneJET Gel Extraction Kit (Thermo Scientific, Waltham, MA,
USA). PCR product was ligated into the plasmid with the Quick
Ligation Kit (NEB, Ipswich, MA, USA).

All plasmids were amplified in E.coli TOP10 cells (Life tech-
nologies, Carlsbad, CA, USA) and purified with a Plasmid Maxi Prep
kit (Qiagen, Valencia, CA, USA). Plasmid sequences were confirmed
by Sanger sequencing using BigDye Terminator v3.1 Sequencing
Standard Kit (Applied Biosystems, Foster City, USA) and ABI3730xl
DNA Analyzer. All primer sequences are listed in Table 2.

2.9. CBS activity assay

HCT116 cells were transiently transfected with FugeneHD
(Promega, Madison, WI, USA) according to manufacturer’s protocol
using 4:1 reagent:DNA ratio. Cells were harvested 24 or 48 h after
transfection and cell pellets were lysed in STEN buffer (50 mM Tris
HCl, 150 mM NaCl, 2 mM EDTA, 0.2% NP40, pH 8) supplemented
with Halt Protease Inhibitor Cocktail (Thermo Scientific, Waltham,
MA, USA). Protein concentration was measured with Pierce BCA
Protein Assay Kit (Thermo Scientific, Waltham, MA, USA).

CBS activity was assayed by measurement of H2S production
with an H2S specific probe 7-azido-4-methylcoumarin (AzMC)
(Sigma-Aldrich, St. Louis, MO, USA). The assay was designed after
[21]. The reaction mixture contained: 200 mM Tris HCl pH 8.0,
5 μM pyridoxal 5′-phosphate, 10 mM glutathione, 0.5 mg/mL BSA,
50 mM AzMC and cell lysate. Always the same amount of protein
was used within one assay. The reaction mixture was incubated
with or without SAM (0.5 mM) for 60 min at 37 °C. Always cell
lysate from one transfection was divided and used for the mea-
surement in the absence and the presence of SAM. The fluores-
cence at 450 nm (exc. 365 nm) was read with Infinite M1000
microplate reader (Tecan, Männedorf, Switzerland). Data were
normalized to mock transfected cells. Fold activation was calcu-
lated by dividing CBS activity with SAM by CBS activity without
SAM.

2.10. H2S producing CBS activity in the liver

Liver tissue from 8 non-breeding naked mole-rats and 8 mice
(equal number of both sexes, mean age was 40 months76 and
8 months70.5, respectively) was cut into pieces and frozen
immediately after collection and kept at �20 °C until usage. Liver
pieces were disrupted in Tissue Lyser LT (Qiagen, Valencia, CA,
USA) using stainless steel beads in 1 ml STEN buffer supplemented
with proteinase inhibitor mix. Tissue lysate was incubated 30 min
on ice and centrifuged at 13,000 rpm for 8 min. The supernatant
was dialysed in Slide-A-Lyzer Dialysis Cassettes, 7 K MWCO
(Thermo Scientific, Waltham, MA, USA) overnight at 4 °C in STEN
buffer with one buffer change after 2 hours. Protein concentration
measurement and CBS activity assay were performed as in CBS
activation assay in cell lysates, except for the addition of 2.5 mM
DL-propargylglycine (Sigma-Aldrich, St. Louis, MO, USA), an irre-
versible inhibitor of cystathionine gamma-lyase (CSE). 260 mg
protein was used in the assay and the incubation time was 90 min.
Data were normalized to the reaction mixture containing water
instead of liver lysate.

2.11. Statistical analysis

Unpaired Student's t-test, one-way ANOVA followed by Tukey
test, and Kruskal Wallies test followed by Nemenyi test were used
to analyse differences in CBS activity in the liver, CBS activation,
and sulfide levels in blood, respectively. A p-value of o0.05 was
considered to indicate statistical significance.
3. Results

3.1. Low blood sulfide levels in long-lived species

Using extractive alkylation with a bis-pentafluorobenzyl deri-
vative we quantified sulfide concentration in whole blood of naked
mole-rat, two other mole-rat species (F. mechowii, F. micklemi),
mouse, guinea pig, and human. Sulfide levels differ significantly
between species with human and naked mole-rat exhibiting the
lowest values (Fig. 2A). Surprisingly, we found a negative corre-
lation between maximum longevity residual and mean sulfide
concentration in blood (Fig. 2B).

3.2. Low endogenous CBS activity in the naked mole-rat liver

Next, we compared endogenous CBS activity in the liver of
naked mole-rat and mouse using H2S-specific probe 7-azido-4-
methylcoumarin (AzMC). We observed that H2S producing activity
of CBS is lower in naked mole-rat liver as compared to mouse
(Fig. 3).

3.3. Substitution of a conserved cysteine to leucine in naked mole-rat
CBS does not affect activation

As CBS is a significant contributor to endogenous H2S produc-
tion in mice [11] we screened the naked mole-rat CBS gene for
signs of positive selection but failed (File S1). We noticed, however,
in the regulatory domain at amino acid position 412 a
cysteine4 leucine substitution (C412L) present also in CBS from F.
mechowii and F. micklemi. Cysteine at this position is conserved
among all other analyzed vertebrates (Fig. 4). Notably in human
CBS, the conversion of the corresponding cysteine to serine
(C431S) creates a constitutively active form of the enzyme [22].
We, therefore, tested whether substitution of the conserved cy-
steine to leucine in the regulatory domain of naked mole-rat CBS
affects the degree of activation of the enzyme in the presence of
SAM. To this end, plasmids encoding either canonical or in vitro
mutated human or naked mole-rat CBS were transfected into
HCT116 human colorectal carcinoma cell line. One of the main
criteria for the cell line to be used in this study was its lack of
endogenous CBS expression, which – if present-would create a

http://www.bioinformatics.org/primerx


Fig. 2. Sulfide concentration in blood. (A) Sulfide concentration in blood. p-value:
*o0.05, **o0.01, ***o0.001, ns – not significant (Kruskal Wallies test followed by
Nemenyi test). (B) Corellation between maximum longevity residual and mean
sulfide concentration in blood. In (A) and (B) Hgl – H. glaber, Fmi – F. micklemi, Fme
– F. mechowii, Cpo – C. porcellus, Mmu – M. musculus, Hsa – H. sapiens.
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Fig. 3. CBS activity in the liver. Data represent mean7SD of 8 animals. Data was
normalized to water control (water instead of lysate in the reaction mixture), RFU –
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Fig. 4. Multi-species alignment of sequences flanking the conserved cysteine re-
sidue in CBS regulatory domain. The alignment region corresponds to position 426-
446 of the alignment in File S1.
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background signal in the assay. Zhang et al. described HCT116 cells
as being CBS mRNA free [23]. In contrast, Yamamoto et al. [24] and
Szabo et al. [25] reported low and high CBS expression, respec-
tively. In light of this contradiction, we performed RT-PCR and
RNA-seq which confirmed that the transsulfuration pathway in
HCT116 cells is suppressed (no CBS and negligible CTH transcripts
detectable) (File S2). H2S-producing CBS activity was tested in cell
lysates with the use of AzMC in the presence and in the absence of
SAM. Conversion of leucine at position 412 to cysteine in naked
mole-rat CBS did not affect enzyme activation (Fig. 5A). Similarly,
mutation of the corresponding cysteine to leucine in human CBS
did not show any effect. Mutation to serine resulted in a con-
stitutively active enzyme in both species, which is in agreement
with published data [22].

3.4. Strong activation of naked mole-rat CBS by SAM

The described experiment, however, revealed that the SAM acti-
vation level of naked mole-rat CBS (4-fold) is nearly doubled com-
pared to human CBS (2.3-fold). CBS from F. mechowii, F. micklemi, and
mouse show intermediate degree of activation (Fig. 5C).

To test whether the regulatory domain is responsible for the
high activation of naked mole-rat CBS we exchanged regulatory
domains between human and naked mole-rat CBS. While naked
mole-rat CBS activation is not influenced by the presence of
human regulatory domain, human CBS core with naked mole-rat
regulatory domain shows a 42% decrease in activation (Fig. 5B).
This suggests that the cause for a high degree of activation of
naked mole-rat CBS lies outside of the regulatory domain.
4. Discussion

The data presented in this study reveal an intriguing negative
correlation between blood sulfide levels and maximum longevity
residual. In the light of reported increase of transsulfuration ac-
tivity and high H2S levels in diet-induced longevity models [5,6],
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this observation is unexpected and suggests that the role of H2S in
natural and diet-induced longevity is different.

Given the plethora of reported H2S effects, this finding is dif-
ficult to interpret. H2S is elevated in cardiovascular [26] and
rheumatic disease [27], which suggests that the low sulfide levels
may be beneficial. In addition, low CBS activity and low sulfide
levels in naked mole-rat may contribute to cancer resistance in
this species, as it has been shown that H2S is promoting both tu-
mor growth and vascularisation [28]. However, the vast majority
of studies report beneficial effects of increased H2S levels and most
translational approaches aim to develop H2S-delivering ther-
apeutics [1].

The low sulfide concentration in naked mole-rat blood is con-
sistent with our findings that H2S producing activity of CBS is
lower in naked mole-rat as compared to mouse. Naked mole-rats
feed on the underground parts of plants. Roots and tubers show
very low methionine content [29]. Therefore we hypothesize that
naked mole-rat diet is low in methionine. This was also pointed
out by Buffenstein [30]. Methionine restriction is one of the most
powerful dietary regimens resulting in longer lifespan [31]. Inter-
estingly, it has been reported that methionine restriction leads to a
decrease in CBS protein levels [2]. Hence, low CBS activity in the
naked mole-rat liver may be an adaptation to a low methionine
diet. The described features of naked mole-rat CBS may be bene-
ficial under conditions of limited methionine availability. Namely,
low basal CBS activity allows for remethylation of homocysteine in
order to maintain sufficient methionine levels. However, in case of
methionine surplus, a high degree of CBS activation by SAM effi-
ciently directs toxic homocysteine to degradation by the
transsulfuration pathway. Consistently with our hypothesis, iso-
caloric protein restriction in rats results in increased remethylation
of homocysteine to methionine and decrease in CBS activity [7].
Because of unknown specificity and affinity of commercially
available anti-CBS antibodies against naked mole-rat CBS, we were
not able to compare basal activity and the amount of CBS in the
liver across species. This must be acknowledged as a limitation of
the study.

Naked mole-rat single amino acid changes are used to explain
its phenotype [32, 33]. In the interspecies CBS sequence compar-
ison, we found a mole-rat specific substitution of a conserved
cysteine with leucine in the CBS regulatory domain. The amino
acid change was potentially interesting given the results of mu-
tagenesis of a corresponding cysteine in the human CBS [22]. Since
examples of misleading conclusions on the role of naked mole-rat-
specific amino acid changes based on sequence comparisons were
already elucidated [34], we experimentally studied the functional
consequences of the observed substitution and found that it has
no effect on the CBS activation.

However, this experiment revealed a strong activation of naked
mole-rat CBS in response to SAM. While in our experiments human
CBS show an activation of 2.3 fold, in the literature values ranging
from 2 to 5-fold can be found [2,35]. This discrepancy can be ex-
plained by the fact that SAM binding to CBS is considerably affected
by surface electrostatics [35]. Nevertheless, under normalized con-
ditions used in this study (the same cell line transfected with CBS
from different species under the control of identical promoters)
naked mole-rat CBS shows consistently a higher degree of activation
by SAM than human, mouse, and F. mechowii CBS.
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CBS activity substantially affects plasma homocysteine levels
[36,37]. Since hyperhomocysteinemia is observed in many age-
related diseases [38] and is a strong predictor of mortality among
individuals with coronary artery disease [39], further character-
ization and kinetic studies of naked mole-rat CBS may shed new
light on the mechanisms underlying the extremely long health-
span of this species.

In summary, we found a negative correlation between blood sulfide
concentration and maximum longevity residual and provide the first
insights into naked mole-rat transsulfuration pathway. We report low
H2S producing CBS activity in the naked mole-rat liver and a high
activation of naked mole-rat CBS by SAM. In addition, we determined
that the substitution of the conserved cysteine (C412L) in the reg-
ulatory domain of naked mole-rat CBS does not affect the degree of
activation of the enzyme. The described features of nakedmole-rat CBS
call for detailed research on naked mole-rat transsulfuration pathway.
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