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A B S T R A C T

Background and objectives: Is there a trade-off between children ever born (CEB) and post-reproductive

lifespan in humans? Here, we report a comprehensive analysis of reproductive trade-offs in the

Framingham Heart Study (FHS) dataset using phenotypic and genotypic correlations and a genome-

wide association study (GWAS) to look for single-nucleotide polymorphisms (SNPs) that are related to

the association between CEB and lifespan.

Methodology: We calculated the phenotypic and genetic correlations of lifespan with CEB for men and

women in the Framingham dataset, and then performed a GWAS to search for SNPs that might affect

the relationship between post-reproductive lifespan and CEB.

Results: We found significant negative phenotypic correlations between CEB and lifespan in both

women (rP = �0.133, P< 0.001) and men (rP =�0. 079, P = 0.036). The genetic correlation was large,

highly significant and strongly negative in women (rG =�0.877, P = 0.009) in a model without covariates,

but not in men (P = 0.777). The GWAS identified five SNPs associated with the relationship between

CEB and post-reproductive lifespan in women; some are near genes that have been linked to cancer.

None were identified in men.

Conclusions and implications: We identified several SNPs for which the relationship between CEB and

post-reproductive lifespan differs by genotype in women in the FHS who were born between 1889 and

1958. That result was not robust to changes in the sample. Further studies on larger samples are needed

to validate the antagonistic pleiotropy of these genes.
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BACKGROUND AND OBJECTIVES

Both the theory of life-history evolution and the

evolutionary theory of aging assume a trade-off be-

tween reproduction and survival: a cost of

reproduction paid in lifespan [1–4]. Although well

documented in model organisms, the existence of

this trade-off in humans has been controversial (e.g.

[5]). Negative [6–11], positive [12–17], U-shaped

[18–20] and mixed or insignificant [21–27] relation-

ships between completed family size and lifespan

have all been found. Some results have been

criticized on statistical grounds; some authors

doubt that the trade-off exists at all (e.g. [28–32]).

Two papers suggest that the cost is only expressed in

women of low social class or nutritional status; a

similar effect has been found in model organisms

[5, 21, 27].

Although most of the attempts to measure the

trade-off in humans are based on phenotypic correl-

ations, the standard of evidence for the existence of a

trade-off in evolutionary analyses of model organ-

isms is a negative genetic correlation demonstrated

as a correlated response to selection (e.g. [5, 33]).

Such experiments reveal genetic relationships often

hidden by phenotypic plasticity. This standard can-

not be met in humans, where experimental evolution

is not possible.

Two other types of genetic evidence, however, are

available in humans. First, genetic correlations can

be measured with pedigree analysis using methods

developed for animal breeding. Using such

methods, Gögele et al. [34] found a significantly

‘positive’ genetic correlation between completed

family size and lifespan in a sample of more than

5100 men and women who lived between 1658 and

1907 in South Tyrol, Italy.

Second, genome-wide association studies

(GWAS) can be done on populations where both

the relevant traits and the single-nucleotide poly-

morphisms (SNPs) have been measured. In a

GWAS done on more than 3500 women from

Rotterdam, Kuningas et al. [35] found four chromo-

somal regions that influenced completed family

size; none of them appeared also to affect lifespan.

The aims of this analysis of men and women in the

Framingham Heart Study (FHS) were to add to the

genetic information on reproductive trade-offs in

humans by (i) first measuring the phenotypic correl-

ation of lifespan with children ever born (CEB), (ii)

second estimating the genetic correlation of lifespan

with CEB and (iii) performing a GWAS to search for

SNPs with effects on the relationship of lifespan to

CEB. We found significantly negative phenotypic and

genetic correlations between post-reproductive life-

span and CEB in women. We also found five chromo-

somal regions mediating the trade-off that were

genome-wide significant in several statistical

models but not when we added smoking as a

covariate. Some of the genes in those five regions

are associated with increased risk of cancer.

METHODOLOGY

The Framingham Heart Study

Initiated in 1948 in the town of Framingham (MA),

the FHS includes three generations of participants

that continue to be measured. Beginning with 5209

men and women initially enrolled in the original-

cohort, the study added 5124 offspring-cohort par-

ticipants in 1971 that were mostly offspring of the

original-cohort. In 2002, a third-cohort was added

consisting of offspring of the second cohort.

Original-cohort participants have been examined

every 2 years (28 exams in total to date), the off-

spring-cohort every 4 years (eight exams in total).

Participants are mostly of European ancestry (20%

UK, 40% Ireland, 10% Italy and 10% Quebec). Data

were de-identified by the FHS. Data-use and human

subjects’ approval were obtained from the National

Institutes of Health (dbGaP) and the Yale

Institutional Review Board.

Phenotypic correlations

Our sample included men and women who were

born between the 1890s and the 1950s, except for

age at menarche where the available sample was

much smaller (i.e. 1923–56). Cox regression was

used to calculate risk of death depending on age

at first birth (nmen = 2579; nwomen = 2193), CEB

(nmen = 3833; nwomen = 3658), and age at menarche

(n = 1355) and menopause (n = 2415) in women. In

each regression, potentially confounding effects in

lifespan were controlled by including education,

country of origin and smoking status. To test for

potential nonlinear effects, a separate regression

was run with a quadratic term included for the main

predictor traits. If quadratic terms were significant,

this was explored further by examining the Cox
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regression model (from the survival library in R)

using penalized splines (with 4 df) [36, 37].

The Cox proportional hazards model is a standard

tool for survival analysis, in which the log of the

hazard function h(t) is assumed to be a linear com-

bination of the covariates. Specifically, for a model

containing p covariates x1, . . . ,xp; the fitted model

takes the form of

h tð Þ ¼ h t0ð Þexpð�1x1+� � �+�pxpÞ,

where �i is the coefficient fit to covariate xi and

h t0ð Þ is the unknown baseline hazard function.

Equivalently, this equation can be expressed as

ln
hðtÞ

h t0ð Þ

� �
¼ �1x1+� � �+�pxp:

Note that FHS reports CEB as a value from ‘0’ to

‘5’, where ‘5’ indicates having had five or more chil-

dren. Several variables were pre-adjusted for age and

year measured. For body mass index (BMI), systolic

blood pressure (SBP) and total cholesterol, age and

year effects were removed by taking residuals of each

trait against age (measures between 20 and 60 years

old) and year measured using a generalized addi-

tive model (locally weighted scatterplot smoothing,

LOESS). All residuals for a subject were then

averaged to obtain an average residual for each trait,

which were then used for modelling. As

demonstrated previously, the surface of the

generalized additive model can be accurately

estimated due to the large number of trait measure-

ments [38].

Our initial sample included 4123 women for

whom data on age at death, CEB, education level,

smoking history, estrogen use and BMI were avail-

able. We then removed 941 women who were born in

or after 1941, a period when the correlation between

lifespan and CEB was weaker, possibly because of

the improvement of health care after World War II.

We did so because to have a chance of detecting any

significantly correlated SNPs in the GWAS, we

needed to focus on a period where the phenotypic

correlation is relatively strong. Nineteen women

who died before the age of 50 years were also

excluded, because their CEB records might repre-

sent incomplete observations. Because we excluded

women who died before the age of 50 years, we are

specifically studying the relationship of CEB to post-

reproductive mortality. Of the remaining 3163

women, keeping only those who had genotype data

reduced our sample size to 1810. We required this

sample to have associated genotype data because

we later used the same sample for the GWAS. Note

that our phenotypic analysis used the year 1919 as a

cut-off because the yearly ratio of individuals alive to

individuals deceased increased to about 50% in

1919, and continued to rise thereafter.

For illustrative purposes, we also ran a multiple

linear regression on a smaller sample for women,

including only the deceased subjects who were born

prior to 1919 (n = 680) out of a total of 1810 who

satisfied specific criteria outlined above.

We similarly ran a regression model on a smaller

sample of men who have died (n = 712) out of a total

of 1474 men satisfying similar criteria.

Genetic correlations and heritabilities

We estimated heritabilities and genetic correlations

for traits from pedigrees using a mixed effects

restricted maximum likelihood (REML) model in

ASReml version 3.0 [39]. We considered models in

which there were no covariates as well as adjusted

models where phenotypic variation was partitioned

into additive genetic, residual variance and a single

random effect (maternal ID, paternal ID or educa-

tion level). To be consistent with the phenotypic cor-

relation models, we also considered models in

which fixed effects (smoking status and country of

origin) and both random effects for maternal ID and

education level were included. Sex was not included

as a fixed effect as male and female estimates were

obtained separately. Smoking status (0/1, non-

smoker/smoker) and country of origin (0/1, US

born/foreign born) were coded as binary variables.

Education described number of years completed,

with missing values coded as 8 years (the min-

imum). Maternal variance components ranged from

0.0 (age at first birth) to 0.12 ± 0.04 (lifespan) and 0.0

(age at first birth) to 0.20 ± 0.03 (lifespan) for female

and male analyses, respectively. Education variance

components ranged from 0.0 (age at menarche) to

0.06 ± 0.03 (CEB) and 0.0 (age at first birth) to

0.014 ± 0.009 (CEB) for female and male analyses,

respectively. The Framingham pedigree totals

15 877 individuals in 1538 pedigrees consisting of

both immediate and extended family. Heritability

estimates were tested for significance with likeli-

hood ratios that compared full models with reduced

ones (i.e. �2
1DF = 2� (LogLFULL� LogLREDUCED))

lacking the additive genetic component. Genetic

correlations were also tested for significance by
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comparing likelihood values from full models to

ones where the genetic covariance was fixed at zero.

Our genetic correlation analysis between CEB and

lifespan included a total of 5133 females for whom

age at death and CEB information were available.

Supplementary Fig. S4 summarizes the pedigree in-

formation for these women, grouped by cohort via

the ‘pedantics’ package in R [40]. Pedigree depths

(computed using the same package) for the

Framingham dataset range from 0 to 4, with mean

1.02 (±1.06). On average, each woman had 2.38

(±1.59) children in her lifetime and lived 77.21

(±12.73) years. The average level of education in

years was 11.66. The average age at menarche was

12.81 (±1.54), average age at first birth was 26.49

(±4.81) and average age at menopause was 49.20

(±4.10).

Genome-wide association study

Our association results are based on 444 205 SNPs

from the 500 K and 50 K Affymetrix samples that

satisfied the following criteria: call rate >90%,

Hardy–Weinberg equilibrium P-value >0.00001,

Mendel error rate <2% and minor allele frequency

>0.01. These SNP selection criteria are further dis-

cussed in the Supplementary Information.

We used Cox proportional hazards models, as

done in the phenotypic correlation analysis, to esti-

mate the interactions between survival time past age

50 years, CEB and genotype. For censored individ-

uals, we used their times of last observation past age

50 years as their censoring time.

Several models were run under this setup, which

we number to emphasize that they are nested

models. Model 1 did not adjust for any covariates.

We then added covariates to reduce confounding by

variables that may be correlated with lifespan and

CEB. Model 2 used education level. Model 3 further

added BMI, estrogen use and cohort as covariates.

Models 4a–d were intermediate steps in which one

of the four additional covariates was added: blood

pressure treatment indicator (Model 4a), total chol-

esterol (Model 4b), SBP (Model 4c) and smoking

indicator (Model 4d). Model 5 included all four of

these additional covariates. Models 4a–d were run

retrospectively to pinpoint which covariate, when

added, resulted in removing significance from all

SNPs. A summary of the models fitted can be found

in the Supplementary Information.

Both genotypes and CEB were included as con-

tinuous variables to model an additive effect of the

minor allele. We used both the raw genotypes

provided by FHS as well as an imputed dataset.

The imputation was done in several stages. First,

we incorporated values imputed by MACH that were

included in the FHS dataset. The MACH algorithm

imputes missing genotypes based on shared haplo-

type stretches between subjects and HapMap data

[41]. Of the remaining missing values, we sampled

among the possible genotypes given the genotypes

of parents, when parent genotypes were available.

Any remaining missing values were simply sampled

according to genotype proportions of the entire

group. This sequence of operations created a full

set of genotypes that had no missing values.

Cohort was defined as a categorical variable

computed from the year of birth: born before or in

1917 and born in or after 1918.

In addition to running the above five models on

the full sample of 1810, we tested our models for

robustness by mimicking an out-of-sample analysis.

To that end, we randomly divided our sample into

two equal parts and fitted Models 1–5 to each part

separately to check for consistency in significance of

the top performing SNPs. A true out-of-sample per-

formance check would include the calculation of pre-

diction error based on a model fitted on a training

set. Our method does not aim to validate prediction

out of sample, but rather to ensure that a SNP dis-

covered to be significant in one sample ought to be

significant in another sample—a less stringent, but

still important requirement of consistency. To min-

imize the effects of missing genotypes on each sub-

sample, which would further lower our sample size

in each of the two separate runs, we only used the

imputed genotypes for this portion of our analysis.

The downside of using imputed genotypes is the risk

of imputation error. To verify that our risk of imput-

ation error is low, we used the imputed SNP data to

repeat our full-sample analyses for Models 1–5. Our

aim was to show that our results for these models

are similar, regardless of whether we used imputed

or raw SNP data.

To explore possible non-additive genotypic

effects, we ran a separate Model 6 that used geno-

type as a categorical variable. The covariates used in

Model 6 are identical to those used in Model 3, and

any SNPs for which the homozygous minor geno-

type had fewer than 20 counts were excluded. We

did not apply the half-sample testing to Model 6,

because in many cases, the genotype counts in the

homozygous minor allele category were too small to
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further subdivide the group for categorical

modelling.

Finally, we ran two additional models that are out-

side of the nested framework given above on the raw

data only (and therefore, they are not numbered).

A quadratic model was run to search for a possible

nonlinear effect by adding a quadratic CEB term

along with its interaction with genotype to

Model 1. The ‘matching covariates’ model was run

to provide a frame of reference to the reader; this

model uses exactly the same covariates that were

included in the phenotypic and genotypic correlation

analyses—education, smoking indicator and coun-

try of origin.

RESULTS

Phenotypic correlations

In the Cox regression analysis where as many men

and women were included as possible (birth-year

range 1889–1958), censoring was used to account

for those who were still alive according to the latest

medical records. Risk of mortality beyond age 50

years increased if women (adjusted incidence rate

ratio (RR) = 1.045, P = 0.030) had more children

(Table 1). When a nonlinear term for CEB was

included, it significantly improved the model fit

and became more significant than the linear term.

Penalized splines for unadjusted mortality risk

(Fig. 1) support a predominantly U-shaped pattern

for the association between CEB and lifespan, simi-

lar to that found in some other studies (e.g. [19]).

This is consistent with a cost of reproduction that is

experienced by women with three or more children

and with a benefit of reproduction to those who have

one or two children. Highest mortality risk occurred

in women with no children or more than three to four

children, with lowest risk for those with approxi-

mately two. Mortality risk decreased if the first child

was born later (women, unadjusted RR = 0.971,

P< 0.001; men, adjusted RR = 0.985, P = 0.011; see

Supplementary Fig. S1), but the significance of this

effect depended on whether estimates were adjusted

or not (Table 1). Mortality risk was also reduced if

menopause occurred later in women (unadjusted

RR = 0.970, P = 0.003), although this effect dis-

appeared when other effects were controlled for

(Table 1). Full model results can be seen in

Supplementary Table S1.

In the analysis where only the 680 women were

included in the range of birth years 1889–1918 in

which all had died, the phenotypic correlation be-

tween CEB and lifespan was highly significant and

negative (r =�0.133, P = 0.0005; Fig. 2). Linear re-

gression indicated that every additional child cost

0.74 years of lifespan (standard error (SE) = 0.21

years). There was, however, significant variation in

Table 1. Incidence RR (±95% confidence interval) for age at death due to stroke, heart attack or cancer

(beyond age 50 years)

Trait Women Men

Unadjusted Adjusted Unadjusted Adjusted

CEB 1.050* 1.045* 0.995 1.031

(1.011–1.092)NL** (1.005–1.087)NL*** (0.960–1.033) (0.993–1.071)

n = 3729 n = 3888

Age first birth 0.971*** 0.977* 0.990 0.985**

(0.955–0.988)NL** (0.960–0.994)NL* (0.979–1.001) (0.974–0.995)

n = 2236 n = 2613

Menarche 0.891 0.917

(0.757–1.050) (0.782–1.077)

n = 1367

Menopause 0.970** 0.984

(0.951–0.990) (0.965–1.005)

n = 2461

Unadjusted Cox regression estimates included only the main predictor trait. Cultural effects (smoking, education and country-of-origin) were accounted
for in adjusted estimates. ‘NL’ indicates that a significant nonlinear effect was also detected for the association between this trait and longevity.
*P< 0.05, **P< 0.01, ***P< 0.001.
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the phenotypic correlation by birth year (Fig. 3); it

was positive (with one exception) from 1893 to 1907

and negative from 1908 to 1913. Many in the earlier

group were giving birth before the Great Depression

and World War II. Some of the latter group encoun-

tered those two major environmental perturbations.

The correlation between CEB and lifespan for the 712

men was slightly negative (r =�0.079, P = 0.0355;

Supplementary Fig. S2). An additional child cost

0.54 years of male lifespan (SE = 0.26 years).

Again, the correlation varied by birth year, but the

variations were less pronounced than for females

(Supplementary Fig. S3). The observation that

phenotypic correlations are dependent on birth

year is consistent with previous findings that

selection pressures changed over time in

Framingham [38].

Heritabilities and genetic correlations

In women (Table 2), the heritabilities of most major

life-history traits differed significantly from zero,

including age at death (h2 = 0.12, P = 0.01), CEB

(h2 = 0.09, P = 0.03), age at first birth (h2 = 0.18,

P< 0.001) and menopause (h2 = 0.44, P< 0.001).

In women, the genetic correlation of CEB with age

at death was large, negative and significant

(rG =�0.88, P = 0.01) in a model without covariates

(Supplementary Table S2). When we included edu-

cation as a random effect, the genetic correlation

decreased to �0.70 but was still significant

(P = 0.02). When we included either the mother or

the father identifiers in place of education as a ran-

dom effect, the genetic covariance remained large

and negative, but was no longer significant (mother:

rG =�1.58, P = 0.11; father: rG =�1.46, P = 0.15). The

model in which we adjusted for education, smoking

status and country of origin also produced a large

negative genetic correlation, but the correlation was

not significant (rG =�0.69, P = 0.14).

The correlation between the quadratic term CEB2

and lifespan was large, negative and significant in

Figure 3. Correlation between CEB and lifespan by birth year

for women. Women (n = 680) were grouped by overlapping

10-year intervals of birth year, and the correlation between

CEB and lifespan was computed for each group. Individual

points indicate the sample size of each 10-year group, with

the mean birth year plotted on the x-axis and correlation

plotted on the y-axis

Figure 2. Relationship between CEB and lifespan for women.

Scatterplot illustrating correlation between CEB and lifespan

(r =�0.133, P< 0.001) (n = 680). Both variables have been

jittered to minimize overlap of points

Figure 1. Summary of CEB and mortality risk in Framingham

women. A histogram of CEB and log-relative mortality risk

values for each CEB value with 95% confidence bands

(n = 5133)
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three of four models (no covariates: rG =�1.09,

P = 0.003, only mother identifier as random effect:

rG =�1.73, P = 0.04, only education as random ef-

fect: rG =�0.85, P = 0.01), and borderline non-sig-

nificant in the model with only the father identifier

(rG =�1.61, P = 0.06).

Furthermore, we looked to see if the genetic cor-

relation between CEB and lifespan was robust to

pedigree depth in the simplest model where no

covariates were included. Including only those

women with pedigree depth of 1 or higher (n = 2540),

we got rG =�0.46 (P = 0.14) and including only those

women with pedigree depth of 2 or higher (n = 948),

we got rG =�0.21 (P = 0.60); both correlations were

no longer significant in the reduced samples.

The genetic correlation of CEB with age at menar-

che was relatively large, positive and highly signifi-

cant (rG = 0.31, P< 0.001). In men (Table 2), the

heritability of age at first birth (inferred from their

spouses) was small and only just significant

(h2 = 0.12, P = 0.03). All other male heritability and

genetic correlation estimates were non-significant.

Full model results for heritability can be seen in

Supplementary Table S2.

Genome-wide association study

GWAS results are summarized in Tables 3–10; the

birth years for the 1810 women included in

the GWAS are shown in the Supplementary

Information. We deemed a SNP to be genome-wide

significant if its interaction coefficient with CEB had

a P-value that was less than a Bonferroni-adjusted

threshold of 1.13� 10�7 (� = 0.05), unless otherwise

indicated. For females, we found two SNPs that at-

tained genome-wide significance using the full

Table 2. Heritabilities (h2, on the diagonal) and genetic correlations (rG, off the diagonal) of life history

traits (±SE)

Age at death CEB Age first birth Menarche Menopause

Women

Age at death 0.12 ± 0.08 �0.69 ± 0.52 0.20 ± 0.25 0.07 ± 0.23 0.15 ± 0.17

P = 0.0176 P = 0.1420 P = 0.2083 P = 0.3886 P = 0.1917

n = 3010

CEB 0.09 ± 0.05 �0.40 ± 0.35 0.31 ± 0.24 �0.21 ± 0.21

P = 0.0394 P = 0.1545 P< 0.0001 P = 0.1377

n = 4123

Age first birth 0.18 ± 0.06 �0.38 ± 0.33 �0.06 ± 0.14

P = 0.0008 P = 0.0911 P = 0.3541

n = 2912

Menarche 0.16 ± 0.13 0.10 ± 0.21

P = 0.0948 P = 0.3121

n = 1638

Menopause 0.44 ± 0.06

P< 0.0001

n = 3400

Men

Age at death <0.01 ±<0.01 <0.01 ±<0.01 <0.01 ±<0.01

P = 0.8875 P = 0.7773 P = 0.6101

n = 2963

CEB <0.01 ±<0.01 <0.01 ±<0.01

P = 0.5485 P = 0.3884

n = 4051

Age first birth 0.12 ± 0.07

P = 0.0300

n = 2688

SEs and P-values were obtained from maximum-likelihood estimates. Cultural (smoking, education and country-of-origin) and maternal effects were
accounted for in all estimates. P-values< 0.05 are in bold.
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Table 6. GWAS for SNPs that affect the relationship between CEB and lifespan: re-evaluating significant

SNPs in Models 1–3 and 5 (split samples)

Ssid Sample half 1 Sample half 2

P-values (genotype�CEB) P-values (genotype�CEB)

Model 1 Model 2 Model 3 Model 5 Model 1 Model 2 Model 3 Model 5

ss66450977 0.00032 0.00041 0.00097 0.007 9.39E�08a 7.04E�08a 1.36E�06 4.58E�06

ss66475987 0.0002 0.00012 0.0021 0.001 5.46E�04 4.46E�04 1.56E�03 1.39E�02

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.

Table 3. GWAS for SNPs that affect the relationship between CEB and lifespan: summary of significant

SNPs in Models 1–3 and 5 (full sample)

Ssid Rsid Chr Position Near P-values (genotype�CEB)

Model 1 Model 2 Model 3 Model 4 Model 5 Matching

covariates

ss66450977 rs6768456 3 27867272 EOMES 4.03E�10a 4.38E�10a 8.40E�09a

(see Table 4)
7.99E�07 4.93E�08a

ss66475987 rs2575533 4 42432336 ATP8A1 8.02E�08a 5.30E�08a 3.06E�06 2.49E�05 2.11E�07

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.

Table 5. GWAS for SNPs that affect the relationship between CEB and lifespan: summary of nominally

significant SNPs in Model 6

Ssid Rsid Chr Position Near P-value P-value Homozygous minor

genotype countAa�CEB aa�CEB

ss66450977 rs6768456 3 27867272 EOMES 1.00E�07 2.40E�03 21

ss66500131 rs1777023 9 92008266 OR7E31P 1.00E�01 3.00E�07 26

ss66392234 rs7132724 12 65001044 HELB 1.30E�01 9.60E�08 102

ss66495977 rs2180957 14 68238574 RAD51B 1.20E�01 8.70E�07 21

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.

Table 4. GWAS for SNPs that affect the relationship between CEB and lifespan: summary of significant

SNPs in Models 4 (full sample)

Ssid Rsid Chr Position Near P-values (genotype�CEB)

Model 4a Model 4b Model 4c Model 4d

ss66450977 rs6768456 3 27867272 EOMES 1.40E�09a 7.44E�09a 8.65E�09a 4.02E�07

ss66475987 rs2575533 4 42432336 ATP8A1 1.02E�05 3.56E�06 5.23E�06 1.35E�05

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.
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sample: ss66450977 on Chromosome 3 (close to

EOMES) and ss66475987 on Chromosome 4 (close

to ATP8A1). Their levels of significance decreased as

additional covariates were included in the model;

however, these SNPs were also significant in the

matching covariates model (Tables 3 and 4). We

also found two nominally significant SNPs that

exhibited possibly non-additive effects: ss66392234

Table 8. GWAS for SNPs that affect the relationship between CEB and lifespan: top SNPs in Model 5

(split sample)

Ssid Rsid Chr Position P-values (genotype�CEB)

Sample 1 Sample 2

ss66092635 rs6581676 12 64992353 9.12E�06 4.58E�01

ss66508254 rs2961258 7 15150223 1.41E�05 7.86E�01

ss66392234 rs7132724 12 65001044 1.82E�05 4.86E�01

ss66328248 rs13248967 8 114920075 2.81E�05 6.86E�01

ss66531142 rs11219832 11 124272500 3.65E�05 1.79E�01

ss74823403 rs7860830 9 26882137 3.27E�01 7.19E�10a

ss66231005 rs10899741 7 52215028 4.62E�01 9.84E�08a

ss66273879 rs1728810 3 10992443 4.15E�01 1.07E�07a

ss66526690 rs1602160 6 94277193 9.00E�01 1.57E�07

ss66490007 rs11009744 10 34675601 9.86E�01 2.37E�07

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.

Table 7. GWAS for SNPs that affect the relationship between CEB and lifespan: re-evaluating significant

SNPs in Models 4a–d (split samples)

Ssid Sample half 1 Sample half 2

P-values (genotype�CEB) P-values (genotype�CEB)

Model 4a Model 4b Model 4c Model 4d Model 4a Model 4b Model 4c Model 4d

ss66450977 8.40E�04 1.30E�03 8.00E�04 7.40E�03 3.33E�06 1.19E�06 1.32E�06 3.35E�06

ss66475987 3.00E�03 9.40E�04 1.80E�03 3.70E�03 2.00E�03 2.30E�03 3.80E�03 3.40E�03

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.

Table 9. GWAS for SNPs that affect the relationship between CEB and lifespan: summary of significant

SNPs in Models 1–3 and 5 (full sample) (imputed SNPs)

Ssid Rsid Chr Position Near P-values (genotype�CEB)

Model 1 Model 2 Model 3 Model 4 Model 5

ss66450977 rs6768456 3 27867272 EOMES 2.91E�10a 2.20E�10a 6.44E�09a

(see Table 10)
5.56E�07

ss66475987 rs2575533 4 42432336 ATP8A1 1.50E�07 6.57E�08a 5.03E�06 2.94E�05

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.
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on Chromosome 12 (in HELB) and ss66500131

on Chromosome 9 (close to the pseudogene

OR7E31P) (Table 5). Nearby genes/pseudogenes

were determined based on a radius of 150 kb from

each SNP.

In the split-sample analysis using imputed SNP

data (see ‘Methodology’ section regarding details

on imputation), no SNPs were found to be signifi-

cant for females (Tables 6–8), even when the ran-

domization used in the split-sample assignment

was replicated 100 times. We verified that using

the imputed data for the full-sample analysis would

have yielded comparable levels of significance for

the two SNPs previously discovered in Models 1–5

(Tables 9 and 10).

No significant SNPs were detected for males in

Models 1–3. As in the GWAS for females, the add-

ition of more covariates decreased levels of signifi-

cance, and therefore no further models were run.

No significant SNPs were detected in a model that

included a quadratic effect of CEB. Further details on

the GWAS for females are in the Supplementary

Information.

CONCLUSIONS AND IMPLICATIONS

Phenotypic and genetic correlations

The phenotypic correlation between CEB and

lifespan in women differed with birth year,

demonstrating the importance of phenotypic plasti-

city on the relationships among life-history traits.

Secular cultural and environmental changes affect

that correlation and probably account for much of

the variation among studies [6, 15, 19, 21, 22]. The

estimate of a negative genetic correlation in women

when not accounting for covariates (rG =�0.88) was

large. The effects of shared environment reduced the

strength of the linear correlation and increased the

strength of the quadratic correlation, and education

mimicked the effects of a cost of reproduction in that

increased level of education was associated with

both fewer children and longer life: including educa-

tion decreased the estimate of the genetic

correlation.

Some of our genetic correlation estimates were

below�1. This indicates that the estimated variance

component is negative, known to be a possible re-

sult of REML estimation [42].

When we controlled for the effects of smoking,

education, country of origin and maternal effects,

the correlation was still negative (rG =�0.69) yet

no longer significant. This mirrors the pattern we

observed in the GWAS; as covariates were

introduced into the model, associations became

insignificant.

The mean pedigree depth of 1.02 implies that our

pedigree is dominated by parent–offspring relation-

ships. This may result in some difficulty distinguishing

parental, environmental and additive genetic effects.

For example, cultural and lifestyle habits that are

unique to nuclear families (such as diet) are known

to affect lifespan, but these habits are not recorded,

and therefore the genetic correlations that we see may

be confounded by these unobservable factors.

One can only find a genetic correlation when the

phenotypic correlation is significant, and one can

only find significant effects of SNPs on a phenotypic

correlation when it differs from zero. Our chain of

inference thus depends on genetic effects not being

too masked by phenotypic plasticity.

Gene functions

We found several SNPs with nominally significant

effects on the correlation of CEB with post-repro-

ductive lifespan; two of them are near EOMES and

RAD51B, genes that are related to cancer when

under-expressed. The effect of the SNP close to

EOMES reached genome-wide significance. The

Table 10. GWAS for SNPs that affect the relationship between CEB and lifespan: summary of

significant SNPs in Model 4 (full sample) (imputed SNPs)

Ssid Rsid Chr Position Near P-values (genotype�CEB)

Model 4a Model 4b Model 4c Model 4d

ss66450977 rs6768456 3 27867272 EOMES 1.40E�08a 6.30E�09a 4.30E�09a 3.87E�07

ss66475987 rs2575533 4 42432336 ATP8A1 1.02E�05 5.80E�06 5.40E�06 2.30E�05

n = 1810 women. The chromosome (Chr) and position information provided below correspond to the GRCh37.p5 genome assembly, genome build 37.3.
aSNP attained genome-wide significance.
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EOMES gene has been associated with multiple

sclerosis and bladder cancer [43, 44]. RAD51B, a

gene involved in encoding proteins that participate

in DNA repair, has been linked to breast cancer and

brain cancer [45–48]. Further details on the genes in

proximity to the SNPs found significant in our GWAS

are included in the Supplementary Information.

Although these SNPs were close in physical distance

to their respective genes (<130 kb), further study of

linkage disequilibrium would help to understand

their possible association.

Other studies

Voorhuis et al. [49] collated the results of many gen-

etic studies of age at natural menopause. None of

the SNPs that we discovered were found in the

studies included in their summary.

Several other recent genetic studies relate fertility

to genotype. Kosova et al. [50] found 41 SNPs

(P< 10�4) that were associated with decreased male

fertility. Adachi et al. [51] found 36 SNPs (P< 10�4)

with possible links to endometriosis in Japanese fe-

males. Both were GWAS studies that did not find any

genome-wide significant SNPs. Murray et al. [52] re-

ported confirmations for four SNPs previously

identified as associated with age at menopause.

Ewens et al. [53] examined 15 SNPs linked with obes-

ity to evaluate possible associations with polycystic

ovary syndrome, the cause of a form of infertility in

women; only one SNP had a nominal level of signifi-

cance, and the significance did not hold up in an-

other case–control study. Our methods differ

fundamentally from these four studies in that we

considered lifespan in conjunction with fertility,

and the significant SNPs we found were not reported

in their analyses [50–53].

Although the Kuningas Rotterdam study

incorporated mortality in its analysis and was there-

fore more similar to our study [35], it differs from our

approach in three ways: (i) our analysis included

many more SNPs (444 205 versus their 1664), (ii)

we adjusted for the effects of several direct mortal-

ity-affecting covariates such as smoking and SBP,

(iii) Kuningas used an initial screening of the 1664

SNPs with a set-based test (with a threshold of

P< 0.05), whereas we started with a GWAS across

444 205 SNPs in models that relate each SNP to

both CEB and lifespan (with a threshold of

P< 1.13� 10�7). We did not find Bonferroni-level

significance with SNPs near the four gene regions

identified in [35].

Summary

We have analysed phenotypic and genetic correl-

ations between reproductive success and survival

and have identified a small set of genes that may

mediate a trade-off between them. This warrants fur-

ther studies in other samples.

The Framingham dataset has some shortcom-

ings. In particular, women born before the start

of the study would only have been included

in the study if they survived until 1948–52

(when the study began). Therefore, our dataset

does not include anyone who died during

World War I, the 1918 flu pandemic, the

Great Depression and World War II. If these cata-

strophic events affected women differently depend-

ing on their fertility and lifespan, then excluding

these women from our analysis would bias our

results. The issue is inherent in such observational

studies of humans, and unfortunately cannot be

avoided.

We failed to find any significant SNPs when

covariates (i.e. smoking, country of origin and

average cholesterol levels) were included and

when we did a rough check for consistency out

of sample. It is unknown how often such checks

modify significance of SNP associations, for many

other published GWAS studies do not account for

the effects of covariates or do out-of-sample

predictions.
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