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Introduction

Abstract

Mitochondria are morphologically dynamic organelles constantly undergoing
processes of fission and fusion that maintain integrity and bioenergetics of the
organelle: these processes are vital for cell survival. Disruption in the balance of
mitochondrial fusion and fission is thought to play a role in several pathologi-
cal conditions including ischemic heart disease. Proteins involved in regulating
the processes of mitochondrial fusion and fission are therefore potential targets
for pharmacological therapies. Mdivi-1 is a small molecule inhibitor of the
mitochondrial fission protein Drpl. Inhibiting mitochondrial fission with
Mdivi-1 has proven cytoprotective benefits in several cell types involved in a
wide array of cardiovascular injury models. On the other hand, Mdivi-1 can
also exert antiproliferative and cytotoxic effects, particularly in hyperprolifera-
tive cells. In this review, we discuss these divergent effects of Mdivi-1 on cell
survival, as well as the potential and limitations of Mdivi-1 as a therapeutic
agent.

Abbreviations

AMPK, 5 adenosine monophosphate-activated protein kinase; CREB, cAMP
response element bindingg MOMP, mitochondrial outer membrane permeabiliza-
tion; PLD, phosphatidylcholine hydrolyzing phospholipase D; RISK, reperfusion
injury salvation kinase; ROS, reactive oxygen species; SENP3, SUMO1/Sentrin/
SMT3-specific peptidase 3; SLP2, stomatin-like-protein 2.

homeostasis (Palmer et al. 2011). A homogeneous mix of
mitochondrial matrix proteins, mitochondrial DNA, and
maintenance of optimal pH and mitochondrial membrane

Under both physiological and pathological conditions,
mitochondria change their shape through fusion and fis-
sion. These processes play central roles in quality control
of mitochondria and are important for maintaining vari-
ous cellular functions and viability, as well as regulating
bioenergetic metabolism. Mitochondrial fusion is required
for appropriate distribution of mitochondrial DNA,
lipids, and proteins across all mitochondria. The main
purpose of fusion is to ensure optimal conditions for
mitochondria to carry out key cellular processes, such as
energy metabolism, cellular differentiation, and calcium

© 2016 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
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potential are essential for successful mitochondrial fusion
(Kane and Youle 2010). Mitochondrial fusion is thus a
complex sequential process which involves integration of
the outer mitochondrial membrane, inner mitochondrial
membrane, and matrix content. The main regulators of
these processes are the GTP-ase dynamin-related proteins:
mitofusin 1 (Mfnl), mitofusin 2 (Mfn2), and optical
atrophy 1 (Opal). Other profusion proteins include pro-
hibitin 2, stomatin-like-protein 2 (SLP2), and the phos-
phatidylcholine hydrolyzing phospholipase D (PLD)
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(Fig. 1). The integration of theses enzymatic processes has
been reviewed elsewhere and will not be detailed here
(Palmer et al. 2011; Da Silva et al. 2014; Kasahara and
Scorrano 2014).

The opposite process, mitochondrial fission, plays an
important role in mitochondrial proliferation following
mitosis and is involved in removing damaged mitochon-
dria from the cells through mitophagy (Otera and Mihara
2012). Mitochondrial fission is regulated by the large
GTP-ase dynamin-related protein, Drpl (the human
homolog of the yeast mitochondrial dynamin, Dnml).
Similar to other dynamin-related proteins, Drpl has a
GTP-ase effector domain which is important for its GTP-
ase activity. However, it lacks membrane binding domains
and thus is heavily dependent on proteins at the outer
mitochondrial membrane for anchorage to the mitochon-
drion (Chan 2012; Dorn 2013). These profission docking
proteins include Fisl (mitochondrial fission 1), Mff (mi-
tochondrial fission factor), MiD49 (mitochondrial
dynamic protein of 49 kDa), MiD51 (mitochondrial
dynamic protein of 51 kDa, also known as mitochondrial
elongation factor 1, MIEF1), miR-30, and miR-499
(Fig. 1). Again these mechanisms have been thoroughly
reviewed recently (Chan 2012; Da Silva et al. 2014; Lee
and Yoon 2014).
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Drpl predominantly localizes in the cytosol as a
tetramer and translocates to the outer mitochondrial
membrane during mitochondrial fission, where it poly-
merizes into ring-like structures around the mitochondria
to induce fission (Shin et al. 1999; Cassidy-Stone et al.
2008; Bossy et al. 2010). Translocation of Drpl from the
cytosol to the mitochondria is regulated by multiple post-
translational modifications including phosphorylation,
ubiquitination, SUMOylation, and S-nitrosylation (Kar-
bowski et al. 2007; Taguchi et al. 2007; Wasiak et al.
2007; Cho et al. 2009). Phosphorylation is the most well-
studied mechanism, with known sites for phosphorylation
being the serine residues 616 and 637 (equivalent to ser-
ine 585 and 656 in rats) which promote and inhibit
translocation of Drpl into the mitochondria, respectively
(Taguchi et al. 2007; Qi et al. 2011).

Mitochondrial dynamics have been implicated in deter-
mining survival of many cell types including cardiomy-
ocytes and neurons. Mitochondria fragmented as a result
of fission are associated with apoptosis and autophagy
(Ong et al. 2010; Chan 2012). Shifting the balance of
mitochondrial morphology toward fission enhances sus-
ceptibility to death in various cell types. In contrast, fused
mitochondria are energetically more active, preserve cell
functions, and can better withstand oxidative stress (Ong

OCH3

N)\SHCI

Figure 1. Mitochondrial fusion and fission cycle and its key players. (A) Mitochondrial interconnectivity is maintained by fusion which is regulated
by proteins such as Mfn1, Mfn2, Opal, SLP2, and PLD. Mitochondrial fragmentation follows fission, governed by several factors including Fis1,
MiD49/51, Mff, miR-30, miR-499, and Drp1. Mitochondrial fission is suppressed via inhibition of Drp1 by the synthetic small molecule Mdivi-1. (B)
Proposed binding orientation of Mdivi-1 (green carbons, sticks) to Drp1 (gray, surface rendered). Mdivi-1 was computationally docked onto the
Drp1 crystal structure (Wenger et al. 2013) using default conditions for the Geom-dock module in Sybyl-X 2.1.1 (Certara L.P.). Shown is a
representative of the highest scoring cluster of solutions. Drp1, dynamin-related protein 1; Fis1, fission 1; Mff, mitochondrial fission factor; Mfn1,
mitofusin 1; Mfn2, mitofusin 2; MiD49/51, mitochondrial dynamics protein-49/51; miR30/499, micro-RNA 30/499; Opal, optic atrophy protein;
PLD, phosphatidylcholine hydrolyzing phospholipase D; SLP2, stomatin like protein-2.

2016 | Vol. 4 | Iss. 3 | e00235
Page 2

© 2016 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.



A. A. Rosdah et al.

et al. 2010). The discovery of Mdivi-1, a small molecule
that selectively and reversibly inhibits the mitochondrial
fission protein Drpl (Cassidy-Stone et al. 2008), has led
to a better understanding of the role of mitochondrial
dynamics in the survival of various cell types under dif-
ferent pathophysiological conditions.

Mdivi-1 as an Inhibitor of Drp1

Mdivi-1 (mitochondrial fission inhibitor-1) is the first
selective inhibitor of the mitochondrial fission protein
Drpl (Cassidy-Stone et al. 2008). It contains a quinazoli-
none core substituted with a thiol moiety and an aryl
(2,4-dichloro-5-methoxyphenyl) side chain attached to
the N3 position (Figs. 1, 2) (Cassidy-Stone et al. 2008;
Qian et al. 2015). Structure—activity relationship analysis
has shown that Mdivi-1 is a mixture of two atropisomers
which arise due to hindered rotation at its chiral axis
around the nitrogen-phenyl bond. The axial chirality at
the aryl side chain greatly influences the selectivity of
Mdivi-1 for Drpl (Cassidy-Stone et al. 2008; Qian et al.
2015).

Mdivi-1 has been shown to target Drpl selectively in
mammalian cells by binding at an allosteric site and sup-
pressing Drpl capacity to catalyze GTP hydrolysis as well
as self-assembly into ring-like structures around the mito-
chondria. Mdivi-1 can induce rapid and reversible forma-
tion of interconnected mitochondria without affecting

Cytoprotection
* Dependent on Drp1
* Inhibits Bax/Bak-mediated
apoptosis
» Activates RISK pathway
» Upregulates Mito-BK
channels

Mdivi-1 CH,

o
'
N
CEL/‘\ cl
N SH

Targeting Mitochondrial Fission for Cytoprotection

other cellular structures such as the cytoskeleton and
endoplasmic reticulum, suggesting selectivity for mito-
chondrial fission. The half maximal inhibitory concentra-
tion of Mdivi-1 ranges from 1 to 50 umol/L depending
on the cell and assay types (Cassidy-Stone et al. 2008;
Qian et al. 2015). Since its discovery in 2008 (Cassidy-
Stone et al. 2008), Mdivi-1 has been widely employed as
an inhibitor of Drpl in multiple cell types (Table 1) and
organs in different disease settings (Table 2). Interestingly,
Mdivi-1 exerts divergent effects on cell survival depending
on the cell type and experimental setting.

Divergent Effects of Mdivi-1 on Cell
Survival

The cytoprotective effect of Mdivi-1 was first demon-
strated by Cassidy-Stone et al. (2008). They showed that
treatment with Mdivi-1 significantly reduced mitochon-
drial fragmentation and apoptosis induced by stau-
rosporine, to an extent similar to that observed in cells
expressing the dominant negative DrplK38A mutant
(Cassidy-Stone et al. 2008). Furthermore, Mdivi-1 has
been shown to attenuate Bax/Bak-dependent mitochon-
drial outer membrane permeabilization (MOMP) induced
by caspase 8-cleaved recombinant Bid (Cassidy-Stone
et al. 2008). These findings suggested that Mdivi-1 inhi-
bits Drpl-mediated mitochondrial fragmentation and the
intrinsic apoptotic pathway. Other researchers have since

Cytotoxic
Independent of Drp1

Noxa-mediated apoptosis
Impairs DNA replication
Induces G2/M cell cycle
arrest

0/ .

Cl o

e Reduces ROS

Potential side effects
Arrhythmia
Cytotoxic to non-targeted cells

Limitation
Poor water solubility

Figure 2. Pharmacodynamic profile of Mdivi-1. Mdivi-1 confers cytoprotection by employing a Drp1-dependent inhibition of Bax/Bak-mediated
apoptosis, activating the RISK pathway, upregulating mitochondrial large conductance Ca®*and voltage activated K* (Mito-BK) channel as well as
reducing ROS. Its cytotoxic effect is exerted independent of Drp1 and through activation of Noxa-mediated apoptosis. Mdivi-1 also exerts an
inhibitory effect on hyperproliferative cells by inducing G2/M cell cycle arrest and impairs mitosis. Bak, Bcl2-antagonist/killer 1; Bax, Bcl2-
associated X protein; DNA, deoxyribonucleic acid; Drp1, dynamin-related protein 1; G2/M, second gap/mitosis; Mito-BK, mitochondrial big
potassium channel; RISK, reperfusion injury salvation kinase; ROS, reactive oxygen species.
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confirmed the cytoprotective effect of Mdivi-1 in various
cell types, particularly in cardiovascular cells and neurons.
In contrast, Mdivi-1 has been shown to exert antiprolifer-
ative and cytotoxic effects in hyperproliferative cells such
as in tumors and immortalized cells (Table 1).

Cardiomyocytes

Studies of Mdivi-1 in cardiomyocytes utilized a wide
array of injury models to simulate pathological conditions
such as ischemia-reperfusion injury and doxorubicin-
induced cardiotoxicity (Ong et al. 2010; Gharanei et al.
2013; Sharp et al. 2014). Death of cardiomyocytes and
HL-1 cells (a cardiac cell line derived from a mouse atrial
tumor) was moderately repressed when pretreated with
Mdivi-1 prior to ischemic insult (Ong et al. 2010; Sharp
et al. 2014). The cytoprotective effect of Mdivi-1 was
associated with increased phosphorylation of Drpl at ser-
ine 637, thus preventing translocation of Drpl into the
mitochondria and consequently attenuating mitochondrial
fragmentation (Ong et al. 2010; Sharp et al. 2014).
Mdivi-1 has also been shown to confer cytoprotection by
reducing production of reactive oxygen species (ROS),
attenuating cytosolic calcium overload, restoring mito-
chondrial membrane potential, and delaying hypercon-
tracture of cardiomyocytes in ischemia-reperfusion injury
and doxorubicin-induced cardiotoxicity (Ong et al. 2010;
Gharanei et al. 2013; Sharp et al. 2014).

Interestingly, So et al. (2012) recently reported that
Mdivi-1 can alter the electrical activity of HL-1 cells.
Treatment with Mdivi-1 prolonged the duration of the
action potential, but increased the firing rate of sponta-
neous action potentials, inhibited the rapidly activating,
delayed-rectifier K" current (Ix,) and reduced the open
probability of the muscarinic inward rectifier K channels
(Kaen) (So et al. 2012). The inhibitory effect of Mdivi-1
on Iy, was shown to be concentration-dependent with a
half maximal concentration of 11.6 umol/L, similar to
that which showed cytoprotection in other studies (Ong
et al. 2010; So et al. 2012; Gharanei et al. 2013; Sharp
et al. 2014). This raises a concern that Mdivi-1 may have
arrhythmogenic side effects.

It is important to note that outcomes of studies in HL-
1 cells and neonatal cardiomyocytes require cautious
interpretation for these cells are not truly representative
of primary adult cardiomyocytes. Differences in cell mor-
phology, electrophysiology, and biogenesis can contribute
to their individual resistance or susceptibility toward
pathological stimuli and pharmacological agents (Bass
et al. 2001; Milerova et al. 2010; Kuznetsov et al. 2015).
Mitochondria in adult cardiomyocytes have spatio-tem-
poral restraint as well as slower rates of fusion—fission
cycle when compared with neonatal cardiomyocytes

2016 | Vol. 4 | Iss. 3 | e00235
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and HL-1 cells (Beraud et al. 2009; Chen et al. 2011;
Piquereau et al. 2013). The relatively short and discrete
mitochondria in adult cardiomyocytes are arranged in a
regular pattern between myofibrils alongside the sarcom-
ere. They do not form an interconnected network which
might otherwise impose biomechanical restriction during
cardiomyocyte contraction (Chen et al. 2011; Dorn and
Kitsis 2015). In contrast, neonatal cardiomyocytes and
HL-1 cells have relatively longer and more dynamic mito-
chondria which usually form interconnected networks
throughout the cell (Amchenkova et al. 1988; Anmann
et al. 2006). Furthermore, cellular metabolism in adult
cardiomyocytes is more dependent on oxidative phospho-
rylation, whereas neonatal rat cardiomyocytes and HL-1
cells rely more on glycolysis (Bass et al. 2001; Anmann
et al. 2006; Monge et al. 2009). Taken together, the mor-
phological and bioenergetic differences between these cell
types could lead to different outcomes in cell survival
within similar experimental settings (Bass et al. 2001;
Milerova et al. 2010; Kuznetsov et al. 2015).

Vascular cells

Mitochondrial fission is essential in smooth muscle cells for
their proliferation and migration, processes that are rele-
vant to several pathophysiological conditions such as pre-
mature closure of ductus arteriosus and pulmonary
hypertension (Marsboom et al. 2012; Hong et al. 2013;
Lim et al. 2015). Under oxidative stress and angiotensin II
stimulation, ROS-induced smooth muscle cell proliferation
and migration have been attributed to activation of protein
kinase CO which phosphorylates Drpl, resulting in translo-
cation of Drp1 to the mitochondria and fission (Hong et al.
2013; Qi et al. 2013; Lim et al. 2015). Thus, Mdivi-1 has
been shown to suppress smooth muscle cell proliferation
and migration through attenuation of ROS production and
Drpl phosphorylation (Hong et al. 2013). In arterial
smooth muscle cells derived from subjects with pulmonary
arterial hypertension, Mdivi-1 was shown to suppress cell
proliferation in a dose-dependent manner, an effect attrib-
uted to G2/M cell cycle arrest and shown to be independent
of cyclin B1/CDKI-mediated phosphorylation of Drpl at
Serine 616 (Marsboom et al. 2012).

In addition to regulating proliferation and migration of
smooth muscle cells, Drpl-mediated mitochondrial fission
plays an important role in metabolism. Oxygen-induced
mitochondrial fission in smooth muscle cells derived from
ductus arteriosus has been shown to increase oxidative
metabolism, oxygen consumption, and cytosolic calcium
levels, which were all effectively prevented by Mdivi-1
(Hong et al. 2013).

In endothelial cells, inhibition of Drpl with Mdivi-1
has been reported to induce premature senescence and

© 2016 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
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impair the angiogenic function of human umbilical cord
vein endothelial cells by increasing mitochondrial ROS
production and reducing autophagic flux (Lin et al
2015). These studies suggest a key regulatory role of Drpl
in maintaining vascular homeostasis and angiogenesis,
and therefore may be a therapeutic target for vascular
repair.

Neurons

Similar to cardiomyocytes, neurons contain metabolically
active mitochondria and are susceptible to bioenergetic
dysfunction and cell death. Therefore, preservation of
normal mitochondrial function through manipulation of
mitochondrial morphology is a potential therapeutic
approach to neuroprotection. The cytoprotective effect of
Mdivi-1 in neurons has been well illustrated in several
experimental injury models such as simulated ischemia-
reperfusion and toxicity of glutamate and propofol
(Zhang et al. 2013b; Wang et al. 2014; Liu et al. 2015;
Twaroski et al. 2015). Mechanistic insights include
delayed mitochondrial permeability transition pore open-
ing, preserved mitochondrial membrane potential,
increased adenosine levels, attenuated oxidative stress,
and reduced endoplasmic reticulum stress (Zhang et al.
2013b; Wang et al. 2014; Liu et al. 2015; Twaroski et al.
2015; Xie et al. 2016). Cui et al. (2016) demonstrated that
Mdivi-1 increases release of the neuroprotective agent,
adenosine, through the cAMP/PKA/CREB pathway.
Under oxidative stress, ROS trigger apoptotic cell death
by increasing intracellular calcium levels and promoting
outer mitochondrial membrane permeabilization, leading,
in turn, to the release of cytochrome ¢ and activation of
the caspase cascade (Cardoso et al. 2004; Bajic et al.
2013). Treatment with Mdivi-1 has been shown to reduce
ROS levels partly by augmenting the activity of intracellu-
lar antioxidant enzymes such as superoxide dismutase
and catalase (Liu et al. 2015). The cytoprotective effect of
Mdivi-1 in neurons has also been attributed to the open-
ing of the large-conductance calcium- and voltage-acti-
vated potassium channels (Liu et al. 2015), which have
long been implicated in cytoprotection against ischemic
injury in the heart and are found in abundance in the
central nervous system (Xu et al. 2002; Bentzen et al.
2014). The influx of potassium through these channels in
the inner mitochondrial membrane can cause mild
uncoupling of oxidative phosphorylation, ultimately
inhibiting ROS production via Complex I (Kulawiak et al.
2008).

In a glutamate toxicity model, Mdivi-1 has been
reported to protect primary rat cortical neurons and HT-
22 cells (immortalized hippocampal neurons), from apop-
tosis. Moreover, Mdivi-1 remains protective when given

© 2016 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
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2-8 h after the onset of glutamate challenge (Grohm
et al. 2012). Using a different injury model, Zhang et al.
(2013c) has suggested that the therapeutic window of
Mdivi-1 in protecting rat cortical neurons against simu-
lated ischemia-reperfusion injury is limited to the
ischemic period, for Mdivi-1 fails to confer protection
when given during reperfusion. They showed that mito-
phagy-mediated mitochondrial clearance during reperfu-
sion after ischemia is neuroprotective and inhibition of
mitochondrial fission by Mdivi-1 may suppress mito-
phagy and aggravate ischemia-induced injury (Zhang
et al. 2013c). These studies have demonstrated the impor-
tance of precise temporal regulation of the mitochondrial
fission protein Drpl, in neurons under different patho-
physiological conditions. Whether a similar therapeutic
window for Mdivi-1 is applicable to other types of neu-
rons and other cell types or in other injury models
remains unclear and warrants further investigation.

Skeletal myoblasts

Mitochondrial dynamics play an important role in mito-
chondrial quality control and skeletal muscle homeostasis.
Dysregulation of mitochondrial dynamics has been impli-
cated in various pathological conditions of muscular dys-
function (Jheng et al. 2015). Inhibiting mitochondrial
fission with Mdivi-1 has been shown to attenuate palmi-
tate-induced mitochondrial dysfunction and insulin resis-
tance in C2C12 skeletal myoblasts (Jheng et al. 2012). In
L6 rat skeletal muscle cells, Mdivi-1 suppressed dexam-
ethasone-induced autophagic flux and enhanced expres-
sion of muscle atrophy-related genes. This suggests a
regulatory role for mitochondrial fission in mitochondrial
quality control in skeletal muscles via activation of autop-
hagy (Troncoso et al. 2014). Mitochondrial dynamics also
play a significant role in the myogenic differentiation of
myoblasts. Inhibition of Drpl-mediated mitochondrial
fission with Mdivi-1 impaired myotube formation in both
C2C12 myoblasts and primary murine myoblasts, which
was accompanied by increased apoptosis and impaired
mitochondrial biogenesis (Kim et al. 2013).

Cancer cells

In contrast to the cytoprotective effect in cardiovascular
cells and neurons, Mdivi-1 exerts a cytodestructive effect
in most hyperproliferative cancer and immortalized cell
lines (Table 1). A hallmark of cancer cells is their unregu-
lated proliferation and Drpl-mediated mitochondrial fis-
sion has been shown to play an important role in cancer
cell growth (Rehman et al. 2012; Xie et al. 2015). Inhibit-
ing mitochondrial fission with Mdivi-1 has been reported
to exert a cytotoxic effect on cancer cells by reducing
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progression of mitosis and inducing apoptosis (Qian et al.
2014, 2015; Suzuki-Karasaki et al. 2015; Wang et al.
2015a,b). As demonstrated in several cancer cell lines,
Mdivi-1 induced G2/M cycle arrest by interfering with
DNA replication and synthesis, and activating checkpoint
kinase-1 (Qian et al. 2014; Wang et al. 2015b). The mito-
tic phase specifically is halted by Mdivi-1 as a result of
impaired assembly of mitotic spindles and cytokinesis,
consequently disrupting chromosome segregation leading
to aneuploidy (Wang et al. 2015a). Importantly, the
proapoptotic and antiproliferative effects of Mdivi-1 were
absent in nontransformed normal human cells such as
fibroblasts and epithelial cells, suggesting this effect is
selective for tumor cells (Qian et al. 2014, 2015; Wang
et al. 2015a,b; Xie et al. 2015).

Mdivi-1 has also been shown to enhance the cytotoxic
effect of the anticancer compound cisplatin; it does so by
triggering Noxa-dependent mitochondrial outer mem-
brane permeabilization, bypassing the usual Bax/Bak-
dependency (Qian et al. 2014). However, whether the
cytotoxic effect of Mdivi-1 actually involves Drpl remains
controversial. Studies which suggest a Drpl-independent
pathway have been conducted in Drpl-deficient, mouse
immortalized embryonic fibroblasts without direct evi-
dence in cancer cells (Qian et al. 2014, 2015; Wang et al.
2015a,b). There is other indirect evidence suggesting the
involvement of the Bax/Bak pathway in the cytotoxic
effect of Mdivi-1, using mouse embryonic fibroblasts defi-
cient in Bax/Bak (Qian et al. 2014, 2015; Wang et al.
2015a,b). However, just one study in brain tumor initiat-
ing cells showed support for the involvement of Drpl in
proliferation and survival of cancer cells, for Drpl knock-
down or treatment with Mdivi-1 significantly reduced the
tumorigenicity of the cells both in vitro and in vivo (Xie
et al. 2015). In this study, the anticancer effect of Mdivi-1
was suggested to involve upregulation of AMP-activated
protein kinase (AMPK), a downstream enzyme mediator
of Drpl (Xie et al. 2015).

Therapeutic Potential of Mdivi-1

Several studies in animal disease models have highlighted
the therapeutic potential of Mdivi-1 in settings of ische-
mia-reperfusion injury (Table 2). In myocardial ischemia-
reperfusion injury, treatment with Mdivi-1 increased ani-
mal survival rate, reduced myocardial infarct size, and
improved heart function (Gharanei et al. 2013; Sharp
et al. 2014, 2015). Consistent with in vitro findings, the
cardioprotective effect of Mdivi-1 has been associated
with activation of Akt signaling, a component of the
reperfusion injury salvation kinase (RISK) pathway, and
delayed the opening of mitochondrial permeability transi-
tion pores (Gharanei et al. 2013; Ong et al. 2015).
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Therapeutic benefits of Mdivi-1 have also been found in
other cardiovascular conditions such as pressure over-
load-induced heart failure (Givvimani et al. 2012), cardiac
arrest (Sharp et al. 2015) and pulmonary artery hyperten-
sion (Marsboom et al. 2012). Regarding vascular diseases,
Mdivi-1 prevented premature ductus arteriosus closure
(Hong et al. 2013) and reduced neointima formation after
carotid artery balloon injury (Lim et al. 2015) by sup-
pressing proliferation of smooth muscle cells and fibrosis
(Hong et al. 2013; Lim et al. 2015).

Disruption of mitochondrial dynamics has been associ-
ated with impaired mitochondrial biogenesis in the brain,
which contributes to several neuropathologies. The lipo-
philic nature of Mdivi-1 enables the small molecule to
penetrate the blood-brain barrier, reaching its peak con-
centration in brain tissue 4 h after intravenous injection
(Cui et al. 2016), and treatment has enabled cytoprotec-
tion against neuronal loss following ischemia-reperfusion
injury, diabetes-induced neuropathy, virus-sensory neu-
ropathy, and seizures (Qiu et al. 2013; Xie et al. 2013;
Zhang et al. 2013b; Zhao et al. 2014; Huang et al. 2015;
Cui et al. 2016; Kanda et al. 2016). The neuroprotective
effect of Mdivi-1 is manifest as improved brain hemody-
namics and neurological outcome (Zhao et al. 2014; Li
et al. 2015a,b; Liu et al. 2015), and the beneficial effects
were associated with reduced ROS levels (Qiu et al. 2013;
Li et al. 2015a; Kanda et al. 2016), enhanced activity of
antioxidant enzymes (Qiu et al. 2013; Li et al. 2015a),
preserved mitochondrial function (Huang et al. 2015; Cui
et al. 2016), and increased expression of large-conduc-
tance Ca’" and voltage-activated K* channels (Liu et al.
2015).

The therapeutic potential of Mdivi-1 has also been
reported in other organs such as retina (Park et al. 2011),
kidney (Tang et al. 2013) and liver (Gonzalez et al. 2014),
where in vivo administration of Mdivi-1 conferred cyto-
protection of important cell types in these organs (i.e.,
retinal ganglion cells, renal tubular epithelial cells, and
hepatocytes, respectively). Despite these promising results,
many challenges (as discussed in the next section) await
before Mdivi-1 might be suitable for patients.

Future Perspectives

In addition to cell survival, mitochondrial fission plays
important roles in related cellular functions such as pro-
liferation and differentiation which are particularly
important in organ development. Permanent alterations
of mitochondrial dynamics are detrimental, often leading
to mitochondrial diseases such as autosomal dominant
optical atrophy (heterozygous mutation in Opal), Char-
cot-Marie-Tooth type 2A neuropathy (heterozygous
mutations in Mfn2) and abnormal brain development
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(A395D mutation in Drpl). The physiological importance
of mitochondrial dynamics in the heart has also been
demonstrated in various mouse models with genetic dele-
tion of mitochondrial fusion (Mfnl, Mfn2, and Opal) or
fission (Drpl, Mff, and Fisl) proteins, exhibiting develop-
mental cardiac defects and increased susceptibility to car-
diac injury (Chan 2012; Babbar and Sheikh 2013).
Therefore, pharmacological agents such as Mdivi-1, that
allow timely and reversible manipulation of mitochondrial
morphology in different pathological conditions may have
therapeutic potential. However, effective application of
Mdivi-1 to manipulate mitochondrial dynamics will
require further studies to identify the optimal therapeutic
window through a better understanding of the temporal
correlation between disease progression and changes in
mitochondrial morphology, which can often be disease-
specific.

The divergent effects of Mdivi-1 on cell survival is
likely to be dependent on cell type. While Mdivi-1 exerts
protection of cardiovascular cells and neurons, this small
molecule is toxic to hyperproliferative cells such as cancer
cells and most immortalized cell lines (Table 1). The dif-
ferential effects of Mdivi-1 on cell survival could also be
attributed to the duration of treatment. Most in vitro
studies showing the cytotoxic effect of Mdivi-1 were con-
ducted for longer than 16 h of treatment, whereas studies
reporting the cytoprotective effect of Mdivi-1 were per-
formed in much shorter duration (<8 h treatment)
(Table 1). This suggests that chronic inhibition of Drpl
with Mdivi-1 might well be detrimental to cell function
and survival.

Although the precise mechanisms underlying the differ-
ential effects of Mdivi-1 on cell survival remain unclear,
Drpl has been shown to interact with various proteins,
such as Cdkl/cyclin B, SUMO1/Sentrin/SMT3 Specific
Peptidase 3 (SENP3), Bax/Bak, Noxa, protein kinase A,
AMPK, Akt, and Erk2, depending on its posttranslational
modification (Chang and Blackstone 2007; Taguchi et al.
2007; Wasiak et al. 2007; Guo et al. 2013; Jheng et al.
2015; Kashatus et al. 2015). In this regard, further investi-
gation of functional outcomes which result from different
posttranslational modifications of Drpl will provide more
mechanistic insights on the cytoprotective and cytotoxic
effects of Mdivi-1.

The pharmacokinetics and cytotoxic profile of Mdivi-1
remain poorly understood. Cui et al. (2016) is the only
in vivo pharmacokinetic profile of Mdivi-1 conducted to
date, and they found intraperitoneal administration of
Mdivi-1 at 20 mg/kg resulted in peak plasma and brain
concentrations 2 and 4 h later, respectively, with a half-
life estimated at 12 h (Cui et al. 2016). Future studies
should also characterize the pharmacokinetics of Mdivi-1
via intravenous injection, a more common route of drug
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administration for patients. Furthermore, the toxicological
profile of Mdivi-1 is yet to be fully established. An
in vitro study in the HL-1 cardiac cell line has shown that
Mdivi-1 can inhibit potassium channels which resulted in
longer duration and increased firing rate of action poten-
tials, suggesting a potential arrhythmogenic effect of
Mdivi-1 (So et al. 2012). However, the relevance of this
observation should be confirmed in primary cardiomy-
ocytes and in vivo by electrophysiological studies of the
heart muscle. Future studies should also investigate the
physiological effect of the active metabolites of Mdivi-1 to
ensure that they are devoid of undersirable biological
effects, as aprerequisite to advance Mdivi-1 closer to clini-
cal application.

In summary, current preclinical studies have demon-
strated therapeutic potential of Mdivi-1 as a cytoprotec-
tive, as well as an anticancer agent. However, many
challenges and uncertainties remain to be addressed
before such drugs might be applied clinically. The mecha-
nism of action by which Mdivi-1 affects cell survival also
remains unclear. The pharmacokinetics (absorption, dis-
tribution, metabolism, and excretion) and toxicology pro-
files of Mdivi-1 await further study before clinical
translation. Moreover, the lipophilicity (i.e., poor water
solubility) of Mdivi-1 may limit its utility, and new Drpl
inhibitors with better specificity, potency, and solubility
are highly desirable.
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