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Abstract

Deep mutational scanning is a widely used method for multiplex measurement of functional consequences of
protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for
each measurement, capturing both sampling error and consistency between replicates. We apply our model to one
novel and five published datasets comprising 243,732 variants and demonstrate its superiority in removing noisy
variants and conducting hypothesis testing. Simulations show our model applies to scans based on cell growth or
binding and handles common experimental errors. We implemented our model in Enrich2, software that can
empower researchers analyzing deep mutational scanning data.

Background
Exploring the relationship between sequence and function
is fundamental to enhancing our understanding of biology,
evolution, and genetically driven disease. Deep mutational
scanning is a method that marries deep sequencing to
selection among a large library of protein variants, measur-
ing the functional consequences of hundreds of thousands
of variants of a protein simultaneously. Deep mutational
scanning has greatly enhanced our ability to probe the
protein sequence-function relationship [1] and has become
widely used [2]. For example, deep mutational scanning
has been applied to comprehensive interpretation of
variants found in disease-related human genes [3, 4],
understanding protein evolution [5–9], and probing
protein structure [10, 11] with many additional possibilities
on the horizon [2].
In a deep mutational scan, a library of protein variants is

first introduced into a model system [12]. Model systems
that have been used in deep mutational scanning include
phage, bacteria, yeast, and cultured mammalian cells. A
selection is applied for protein function or another molecu-
lar property of interest, altering the frequency of each
variant according to its functional capacity. Selections can

be growth-based or implement physical separation of vari-
ants into bins, as in phage display or flow sorting of cells.
Next, the frequency of each variant in each time point or
bin is determined by using deep sequencing to count the
number of times each variant appears. Here, the variable
region is either directly sequenced using a single-end or
paired-end strategy, or a short barcode that uniquely iden-
tifies each variant in the population is sequenced instead
[12, 13]. Barcoding enables accurate assessment of variable
regions longer than a single sequencing read [4, 13, 14].
Analysis of the change in each variant’s frequency through-
out the selection yields a score that estimates the variant’s
effect. Scoring the performance of individual variants is
distinct from a related class of methods that quantify toler-
ance for change at each position in a target protein [15].
Those approaches enable a different set of biological
inferences that we do not seek to address here. Guidelines
for the design of deep mutational scanning experiments
have been discussed elsewhere [12, 16–18].
Fundamental gaps remain in our ability to use deep

mutational scanning data to accurately measure the
effect of each variant because practitioners lack a unifying
statistical framework within which to interpret their re-
sults. Existing methods are diverse in terms of their
scoring function, statistical approach, and generalizability.
Two established implementations of deep mutational
scanning scoring methods, Enrich [19] and EMPIRIC [20],
calculate variant scores based on the ratio of variant
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frequencies before and after selection. This type of ratio-
based scoring has been used to quantify the effect of non-
coding changes in promoters as well [21]. However, while
intuitive and easy to calculate, ratio-based scores are highly
sensitive to sampling error when frequencies are low. For
experimental designs that sample from more than two time
points to improve the resolution of changes in frequency,
ratio-based scoring is insufficient so a regression-based
approach has been used instead [4, 16, 22, 23]. Both ratio
and regression analyses can incorporate corrections for
wild-type performance [8, 16, 19, 20, 24] or nonsense vari-
ants [20, 22] at the expense of restricting the method to
protein-coding targets only.
The lack of a common standard for calculating scores

makes comparison between studies difficult and existing
bespoke methods are not applicable to the diverse array
of experimental designs currently being used. Further-
more, no existing method quantifies the uncertainty
surrounding each score, which limits the utility of the
data. For example, one of the most compelling applica-
tions of deep mutational scanning is to annotate variants
found in human genomes with the goal of empowering
variant interpretation [4], where estimation of the uncer-
tainty associated with each measurement in a common
framework is crucial. At best, current approaches em-
ploy ad hoc filtering of putative low-quality scores, often
using manually determined read-depth cutoffs.
To address these limitations, we present Enrich2, an

extensible and easy-to-use computational tool that im-
plements a comprehensive statistical model for analyzing
deep mutational scanning data. Enrich2 includes scoring
methods applicable to deep mutational scans with any
number of time points. Unlike existing methods, Enrich2
also estimates variant scores and standard errors that
reflect both sampling error and consistency between
replicates. We explore Enrich2 performance using novel
and published deep mutational scanning datasets com-
prising 243,732 variants in five target proteins, as well as
simulated data. We demonstrate that Enrich2’s scoring
methods perform better than existing methods across
multiple experimental designs. Enrich2 facilitates super-
ior removal of noisy variants and improved detection of
variants of small effect and enables statistically rigorous
comparisons between variants. Enrich2 is platform-
independent and includes a graphical interface de-
signed to be accessible to experimental biologists with
minimal bioinformatics experience.

Results and discussion
Overview of Enrich2 workflow
We distilled the common features of a deep mutational
scan into a generalized workflow (Fig. 1). After the experi-
ment, each FASTQ file is quality filtered and variants are
counted. For directly sequenced libraries, this involves

calling the variant for each read (see “Methods”). For bar-
coded libraries, barcode counts are assigned to variants
using an additional file that describes the many-to-one
barcode-to-variant relationship. Next, the counts for each
variant are normalized and a score is calculated that quan-
tifies the change in frequency of each variant in each selec-
tion. Finally, each variant’s scores from replicate selections
are combined into a single replicate score using a random-
effects model. Variant standard errors are also calculated for
each selection and replicate score, allowing the experi-
menter to remove noisy variants or perform hypothesis test-
ing. Enrich2 is designed to enable users to implement other
scoring functions, so long as they produce a score and a
standard error. Thus, Enrich2 can serve as a framework for
any counting-based enrichment/depletion experiment.

Scoring a single selection using linear regression
For experimental designs with three or more time
points, Enrich2 calculates a score for each variant using
weighted linear least squares regression. These time
points can be variably spaced, as in samples from a yeast
selection withdrawn at different times, or they can be
uniformly spaced to represent rounds or bins, as in suc-
cessive rounds of a phage selection. This method as-
sumes the selection pressure is relatively constant during
the course of the selection. Each variant’s score is de-
fined as the slope of the regression line. For each time
point in the selection, including the input time point, we
calculate a log ratio of the variant’s frequency relative to
the wild-type’s frequency in the same time point and
regress these values on time. Regression weights are
calculated for each variant in each time point based on
the Poisson variance of the variant’s count (see
“Methods”). We estimate a standard error for each score
using the weighted mean square of the residuals about
the fitted line. We calculate p values for each score using
the z-distribution under the null hypothesis that the
variant behaves like wild-type (i.e. has a slope of 0).
A problem with linear regression-based scoring is that

the wild-type frequency often changes non-linearly over
time in an experiment-specific and selection-specific
manner (Fig. 2). Some linear model-based approaches
subtract the wild-type score from each variant’s score
[4, 22], ignoring this issue and potentially reducing score
accuracy. A solution for this problem, which has been
used extensively, is normalizing each variant’s score to
wild-type at each time point [16, 20, 25–27]. We imple-
mented per-time point normalization and compared
variant standard errors calculated with and without
wild-type normalization for a total of 14 replicates in
three different experiments: a phage selection for
BRCA1 E3 ubiquitin ligase activity; a yeast two-hybrid
selection for BRCA1-BARD1 binding; and a phage se-
lection for E4B E3 ubiquitin ligase activity (Table 1).
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In all cases, wild-type normalization resulted in signifi-
cantly smaller variant standard errors (p ≈ 0, binomial test,
Additional file 1). Variants that remain non-linear after
normalization are poorly fit by our regression model and
have high standard errors. Thus, they can easily be identi-
fied for further examination or removal.
Wild-type normalization is not always the best option.

For example, some experimental designs do not have a
wild-type sequence in the library, which precludes wild-
type normalization. Furthermore, experiments subject to
high levels of stochasticity arising from low read depth
or limited sampling can benefit from normalization to
the total number of reads rather than to wild-type [16].
Normalization to wild-type is also inappropriate in cases
where the effect of the wild-type is incorrectly estimated
or subject to high levels of error [16, 28]. To deal with
these cases, Enrich2 also offers normalization using the
number of reads instead of the wild-type count.
Wild-type non-linearity is not the only problem in

scoring a typical selection. Each time point has a different
number of reads per variant and time points with low

coverage are more affected by sampling error. An example
of this issue is found in one of the replicate selections for
BRCA1 E3 ubiquitin ligase activity (Fig. 3a). To address
this problem, Enrich2 downweights time points in the
regression with low counts per variant. Without weighted
regression, the experimenter is forced to choose between
three undesirable options: using the low coverage time
point and adding noise to the measurements; removing
the time point and complicating efforts to compare
replicates; or spending time and resources to re-sequence
the time point. Weighting avoids these undesirable
options, achieving lower variant standard errors as
compared to ordinary regression (Fig. 3b). To show that
this effect is general and not a feature of the specific
BRCA1 replicate we analyzed, we downsampled reads
from a single time point in the E4B E3 ubiquitin ligase
dataset. We find that weighted regression reduces the
mean standard error regardless of the fraction of reads
removed (Fig. 3c, d). Finally, we show that weighted
regression improves reproducibility between replicates in
the BRCA1 E3 ubiquitin ligase dataset, even in the

Fig. 1 Deep mutational scanning and Enrich2. In a deep mutational scan, a library of protein variants is subjected to selection, which perturbs the
frequency of variants. Samples of the library are collected before, during, and after selection and subjected to high-throughput sequencing (left panel).
Enrich2 processes the high-throughput sequencing files generated from each sample. Sequencing reads are quality filtered and variants are counted
by comparing each read to the wild-type sequence. Enrich2 estimates variant scores and standard errors using the variant counts and combines
these estimates for replicates (middle panel). Enrich2 displays the scores and standard errors as a sequence-function map. A sequence-
function map of eight positions of the hYAP65 WW domain is shown (right panel). Cell color indicates the score for the single amino acid
change (row) at the given position in the mutagenized region (column). Positive scores (in red) indicate better than wild-type performance
in the assay and negative scores (in blue) indicate worse than wild-type performance. Diagonal lines in each cell represent the standard
error for the score and are scaled such that the highest standard error on the plot covers the entire diagonal. Standard errors that are
less than 2% of this maximum value are not plotted. Cells containing circles have the wild-type amino acid at that position. Gray squares denote
amino acid changes that were not measured in the assay
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absence of any filtering (Fig. 3e, f ). A previously developed
Bayesian MCMC approach could be used to generate
a posterior variance, which would be of similar value
to our standard errors [28]. However, this approach
would be impracticably slow for tens of thousands of
variants.
For experiments with only two sequenced populations

or time points (e.g. “input” and “selected”), Enrich2
calculates the slope between the two time point log ra-
tios, which is equivalent to frequently used ratio-based
scoring methods [1, 19, 20, 24]. Unlike previous imple-
mentations of ratio-based scoring, we provide standard
error estimates for each score using Poisson assumptions
(see “Methods”).

A random-effects model for scoring replicate selections
Deep mutational scans are affected by various sources of
error in addition to sampling error. One way to deal
with this problem is to perform replicates. Usually, each
variant’s score is calculated by taking the mean across
replicates, which ignores the distribution of replicate
scores. Furthermore, if an error is calculated, it is
derived only from the replicate scores’ distribution and
ignores any error associated with each replicate score.
One alternative is to combine replicate scores using a
fixed-effect model [29]. We examined this approach for
the BRCA1 E3 ubiquitin ligase dataset (Fig. 4) and found
that because variant scores can vary widely between
replicates, this method dramatically underestimates the
standard error of the combined variant score. We there-
fore implemented a random-effects model that estimates
each variant’s score based on the distribution of that
variant’s scores across all replicates. This random-effects
model also produces a standard error estimate for each
variant that captures selection-specific error as well as
error arising from the distribution of replicate scores
(see “Methods”).
The random-effects model furnishes variant scores

that are less sensitive to outlier replicates than a fixed-
effect model (Fig. 4). Additionally, standard errors esti-
mated by the random-effects model better reflect the
distribution of replicate scores, providing a better basis

Table 1 Datasets analyzed with Enrich2

Target Assay Replicates Time points Scored variants Reads (millions) Run time (h:min) Reference

BRCA1 Phage display 6 6 11,530 423
6:23 [4]

BRCA1 Yeast two-hybrid 6 4 17,165 306

E4B Phage display 2 4 158,939 67 2:27 [14]

Neuraminidase Growth in cell culture 6a 2 6834 24 0:08 [30]

C2 domain Phage display 3 3 1081 48 1:17 This work

WW domain Phage display 2b 4 48,183 33 10:32 [1]
aThree replicate selections each of two experimental conditions, with a shared input library
bResequencing of the same selection

a

b

c

Fig. 2 Wild-type frequency can change non-linearly. The change in
frequency of the wild-type over the course of replicate selections is
shown for (a) BRCA1 E3 ubiquitin ligase, (b) BRCA1-BARD1 binding, or
(c) E4B E3 ubiquitin ligase. Each colored line represents a single replicate
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for subsequent hypothesis testing. The same random-
effects model can be used for experiments with any
number of time points or replicates or with any Enrich2
scoring function (Additional file 2: Figure S1). A key
advantage of this approach is that error is quantified on a

per-variant basis, unlike the usual approach of comparing
replicate selections using pairwise correlation [4, 15, 22].
This allows experimenters to use replicate data to make
inferences about individual variants, rather than simply as
a quality control check for whole experiments.

a e

f

b

c d

Fig. 3 Weighted least squares regression reduces standard error and improves replicate correlation. a The number of reads (shaded blue bars) and
the distribution of variant regression weights (boxplots, solid green line is the median, dotted green line is the mean, box spans the first to third quartile,
whiskers denote the data range) for each time point in a single BRCA1 E3 ubiquitin ligase selection is shown. Time points with fewer reads per variant are
downweighted in the regression. The weights for later time points are lower on average because most variants decrease in frequency during the course
of the selection. b A density plot of standard errors for all variants in the selection shown in (a) calculated using weighted least squares regression (blue
line) or ordinary least squares regression (green line) is shown. The weighted least squares regression method returns lower standard errors using the
same underlying data by minimizing the impact of sampling error in low read count time points. c The mean standard error of variants after randomly
downsampling reads in a single time point in one of the E4B E3 ubiquitin ligase selections is shown. Mean standard errors for all variants at each read
downsampling percentage were calculated using either weighted least squares regression (blue) or ordinary least squares regression (green). Error bars
indicate the 95% confidence interval of five random downsampling trials at each percentage. d Read counts per time point in the selection described in
(c) is shown. The lines on the bar for time point 2 correspond to the level of downsampling on the x-axis of (c). e, f Plots of variant scores in two replicate
selections from the BRCA1 E3 ubiquitin ligase dataset are shown. Replicate agreement for scores calculated using the weighted least squares regression
model (e) is higher than agreement for scores calculated using ordinary least squares regression (f). The dashed line shows the line of best fit for the
replicate scores in each plot. Hex color indicates point density
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Standard error-based variant filtering
Per-variant standard error estimates enable the removal
of variants with unreliable scores. This contrasts with
previous filtering schemes, which employed an empirical
cutoff for the minimum number of read counts for each
variant in the input library or throughout the selection
[1, 4, 12, 14, 30–36]. Read count cutoffs eliminate low-
count variants that may be unreliably scored due to
sampling error, but ignore other sources of noise and
may introduce a bias against variants that become de-
pleted after selection. Enrich2 retains low-count variants
and enables the experimenter to determine which scores
are reliable directly from the associated standard error.
To assess whether standard error-based filtering per-

forms better than read count-based filtering, we analyzed
data from a deep mutational scan of the C2 domain of
Phospholipase A2 (Table 1). Here, a library of 84,252
phage-displayed C2 domain variants was selected for
lipid binding over several rounds. This dataset was
un-analyzable using previous methods due to the appar-
ent extreme variability between replicate selections. We
compared filtering based on four different parameters:
variant standard error calculated using the random-
effects model or the fixed-effect model, read count in
the input round, and total read count in all rounds of
selection. To quantify filtering method performance, we
took the top quartile of variants selected by each filter-
ing method. Then, we calculated the pairwise Pearson
correlation coefficient between variant scores for each
possible pair of the three replicates in the C2 domain
dataset (Fig. 5, Additional file 3). We found that filtering
based on standard errors from the random-effects model
was the only method that recovered a replicable subset
of variants from this dataset. In fact, input count filter-
ing selected a subset of variants whose scores were more
poorly correlated than the unfiltered set. We performed

a similar analysis on the higher-quality E4B, neuraminid-
ase, and BRCA1 replicate datasets using the top three
quartiles of variants. As for the C2 domain, we found
that filtering based on random-effects standard error out-
performs the other filtering methods (Additional file 3).
For example, in the E4B dataset random-effects standard
error filtering performed better (pairwise Pearson r2 =
0.80) than fixed-effect standard error (r2 = 0.59), input
library count (r2 = 0.58), or total count filtering (r2 = 0.59).
We note that any filtering strategy removes variants and
reduces coverage. To explore how the stringency of
variant filtering affects replicate correlation, we calculated
replicate correlations after removing increasing numbers
of variants according to each of the four filtering methods
(Additional file 2: Figure S2). We found that filtering by
standard errors from the random-effects model was the
only approach that yielded high correlations between
replicates for the C2 domain data. Furthermore, random-
effects standard error filtering performed better at nearly
all filtering stringencies in both the C2 domain and
BRCA1 E3 datasets.
To further demonstrate the utility of Enrich2 standard

error-based filtering, we re-analyzed a deep mutational
scan of the influenza virus neuraminidase gene (Table 1).
In this experiment, 22 neuraminidase variants were
individually validated and used to assess the quality of
the deep mutational scanning data. Of these individually
validated variants, four had large variant score standard
errors as determined by Enrich2’s random-effects model
(Fig. 6a, Additional file 2: Figure S3, Additional file 4).
Removing these high-standard error variants improved
the correlation between the deep mutational scanning
scores and individual validation scores from Pearson r2

= 0.81 to r2 = 0.87. Removal of these variants also im-
proved the correlation when scores were calculated as
originally described in the study (Pearson r2 = 0.80

Fig. 4 A random-effects model for scoring replicate selections. Variant scores for 20 randomly selected variants from the BRCA1 E3 ubiqutin ligase
dataset are shown. The replicate scores (green) were determined for each variant using Enrich2 weighted regression. Combined variant score estimates
were determined using a fixed-effect model (orange) or the Enrich2 random-effects model (blue). In all cases, error bars show +2 or –2 standard errors

Rubin et al. Genome Biology  (2017) 18:150 Page 6 of 15



versus r2 = 0.84) (Additional file 2: Figure S3) [30]. This
suggests that scores of variants with low Enrich2 stand-
ard errors are more likely to reflect the results of gold
standard validation experiments and supports the use of
standard error-based filtering for selecting candidate
variants for follow-up studies. We note that in the neur-
aminidase experiment, the three replicates used a com-
mon starting library. This design fails to capture some
artifacts, especially those introduced during cloning.
Ideally, full biological replicates should be collected.

Standard error-based hypothesis testing
An important challenge in analyzing deep mutational
scanning data is determining whether a variant behaves
differently from wild-type or differently under altered
conditions. Enrich2 standard errors empower experi-
menters to perform statistical tests for such differences.
By default, Enrich2 calculates raw p values for each score
under the null hypothesis that the variant’s score is in-
distinguishable from wild-type using a z-test. This allows
the user to discriminate between variants with extreme
scores due to sampling error or other noise from those
that are confidently estimated to be different from wild-
type. We note that Enrich2 provides raw p values and

users should correct for multiple testing using their pre-
ferred method.
We can also use a z-test to determine whether variants

have different functional consequences under altered
experimental conditions. For example, deep mutational
scans of the neuraminidase gene were conducted in the
presence and absence of the small molecule neuraminidase
inhibitor oseltamivir (Table 1). The original study identified
five “drug-adaptive” variants, defined as those that
outperformed wild-type in the presence of oseltamivir [30].
These five drug-adaptive variants included three known
oseltamivir-resistant variants. In our reanalysis, we identi-
fied 22 drug-adaptive variants including all five variants
found in the original study (Fig. 6b, Additional file 5).
Fifteen of these 22 drug-adaptive variants also had a signifi-
cantly higher score than wild-type in the absence of the
inhibitor and therefore might be more likely to occur in
natural virus populations. Our results agree broadly with
the original analysis. By using Enrich2 to calculate scores
and standard errors for variants across replicates, we were
able to identify additional candidate variants with small but
statistically significant effects, some of which could be of
biological interest. Of course, any new candidate variants
could be false positives and they would need to be individu-
ally validated, as was done in the original study.

Fig. 5 Standard error-based filtering improves replicate correlation. Variant scores from two replicates of the C2 domain dataset are shown. Each
panel plots the top quartile of variants selected by standard error from the random-effects model (leftmost column, blue points), standard error
from the fixed-effect model (middle-left column, green points), input library count (middle-right column, orange points), or total count in all libraries
(rightmost column, purple points). Scores and standard errors are calculated using only the input and final round of selection (top row) or using all
three rounds (bottom row). The dashed line is the best linear fit and the Pearson correlation coefficient is shown
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Simulations of deep mutational scanning data
Our analyses of experimental data suggest that Enrich2
is a useful tool for exploring and understanding deep
mutational scanning datasets. In support of this, we gen-
erated simulated datasets with predetermined variant
effects and compared mathematically predicted Enrich2

variant effect scores to scores calculated from simulated
data. Using this approach, we demonstrate that the
Enrich2 method can be applied to data from either cell
growth or binding assays and can handle different types
of noise.
Deep mutational scanning datasets can be generated

using different selection assays. Nearly all scans employ
either cell growth assays or binding assays, which are
typically conducted using phage or yeast display [12]. To
demonstrate that the Enrich2 method can meaningfully
assign variant scores for both assay types, we simulated
data where each variant’s true effect was predetermined
(see “Methods”). In growth simulations, a variant’s true
effect was the growth rate of a cell carrying that variant;
in binding simulations, a variant’s true effect was the
probability of a cell or phage carrying that variant pro-
gressing to the subsequent round of selection. In our
simulations, each variant’s true effect was drawn from a
normal distribution with the wild-type true effect in the
75th percentile of the distribution, which is consistent
with empirical datasets (Additional file 6).
Each simulated dataset contained 10,000 unique vari-

ants including wild-type. For each selection, a starting
variant population was independently generated and then
five rounds of growth or binding selection were performed
(see “Methods”). Five replicate selections were simulated
for each dataset. Sequencing was simulated such that each
variant had, on average, 200 reads. The resulting datasets
were scored by Enrich2 using the weighted least squares
regression method and replicates were combined using
the random-effects model. We found that the Enrich2
scores are strongly correlated with predicted scores based
on the true variant effects (r2 = 0.995 for binding and r2 =
0.992 for growth) (Fig. 7a). Thus, the Enrich2 method cap-
tures true variant effects for both growth-based and
binding-based assays. We note that the relationship of
these variant effects to a physical parameter of interest
(e.g. Kd for binding) depends on the specific conditions of
the experiment [37–39].
We also simulated noisy data and evaluated Enrich2’s

ability to identify affected variants. One type of noise is
inconsistent variant effects between replicates, which
can arise from cloning errors or experimental variation.
We simulated datasets in which 2% of variants in each
of the five biological replicates were randomly assigned a
new true effect. As expected, noisy variants have higher
standard errors than other variants (Fig. 7b) and stand-
ard error-based filtering is an effective tool for removing
them (Fig. 7c). The magnitude of a noisy variant’s
standard error is proportional to the magnitude of the
difference between the variant’s original true effect and
the resampled true effect (r2 = 0.85 for binding and r2 =
0.93 for growth; Additional file 2: Figure S4). Another
type of noise arises from unexpected amplification or

a

b

Fig. 6 Standard errors enable hypothesis testing. a Enrich2 variant
scores are plotted against single-variant growth assay scores for the
22 individually validated variants of the neuraminidase dataset. Four
(18%) of these variants have Enrich2 standard errors larger than the
median standard error. The dotted line shows the best linear fit for
all variants and the dashed line shows the best linear fit for variants
with standard errors less than the median. b Enrich2 variant scores
are plotted for selections performed in the presence or absence of
the small molecule inhibitor oseltamivir. Colored points indicate variants that
significantly outperformed wild-type in the drug’s presence. Red points also
scored significantly higher than wild-type in the drug’s absence. Triangles
indicate the five “drug-adaptive”mutations identified originally [30]
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depletion of variant counts in a single time point, which
can be due to polymerase chain reaction (PCR) jackpotting
or other artifacts during the DNA isolation, amplification,
and sequencing steps. We simulated datasets in which 10%
of variants are over-represented or under-represented in a
single time point. We found that the random-effects model
accurately assigns scores to these amplified or depleted
variants (Additional file 2: Figure S5A) and the affected
variants are easily identified by their replicate standard
errors (Additional file 2: Figure S5B). These results illus-
trate that the Enrich2 method is robust to common types
of noise present in deep mutational scanning data.

Conclusions
We developed a statistical framework for analyzing deep
mutational scanning data that is applicable to many com-
mon experimental designs. We showed that our statistical
method is superior to existing methods for removing noisy
variants and detecting variants of small effect, enabling
researchers to extract more from their datasets. We im-
plemented our method in Enrich2, a computationally effi-
cient graphical software package intended to improve
access to deep mutational scanning for labs without data
analysis experience. Enrich2 is extensible, so users can im-
plement and easily share new scoring functions as new

a

b

c

Fig. 7 Variant scoring for growth and binding experiments using simulated data. a Enrich2 variant effect scores derived from simulated data are
plotted against expected Enrich2 scores based on true variant effects in the simulation. Enrich2 accurately scores variants in both simulated binding
assays (left) and growth assays (right). Shading indicates point density from low (blue) to high (white). b Noisy variants were generated by randomizing
their true effect in one replicate selection (green line). Noisy variants have higher overall standard errors than other variants (dashed gray line) in both
binding and growth assay simulations. c The percentage of variants removed at each standard error percentile cutoff (5% intervals) is plotted. Standard
error filtering preferentially removes noisy variants (green points)
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deep mutational scanning experimental designs are
developed.
Enrich2 builds upon previous approaches to regression-

based scoring, which we improved in two ways. First, per-
time-point wild-type normalization helps reduce the ef-
fects of non-linear behavior under the assumption that
many sources of non-linearity affect most variants simi-
larly. Second, weighting each regression time point based
on variant counts helps alleviate sampling error. In
addition to these improvements, Enrich2 combines repli-
cate selections into a single set of variant scores with
standard errors to help identify variants that behave con-
sistently in a given assay. Though variant score precision
does not guarantee accuracy, we showed that removing
variants with high standard errors from the neuraminidase
dataset did improve the correlation between deep muta-
tional scanning results and gold-standard measurements.
Enrich2 furnishes generalized variant effect scores,

which we showed are applicable to both growth-based
and binding-based deep mutational scans. In the case of
growth-based deep mutational scans, variant scores are
linearly related to growth rate. In the case of binding-
based deep mutational scans, variant scores are linearly
related to the log of the likelihood of selection in each
round. We note that the relationship between the likeli-
hood of selection and variant binding affinity depends
on experimental specifics including the number of mole-
cules displayed per cell or phage, ligand concentration,
and degree of non-specific binding [39]. Furthermore,
the regression-based approach described here is de-
signed for deep mutational scans with constant selection
pressure. Selections conducted over longer timescales or
selections in which the selection pressure is modulated
by the experimenter may not be modeled accurately by
our approach [8, 40, 41]. Specific scoring methods that
take into account experimental details such as ligand
concentration or variable selection pressure could easily
be added to Enrich2, taking advantage of the program’s
existing read counting, variant calling, replicate combin-
ing, and visualization machinery.
Enrich2 standard errors can also be used to conduct

hypothesis tests comparing variants within a single
experimental condition or between multiple conditions.
When comparing variants between conditions, we as-
sume that the distribution of scores between conditions
is roughly similar, but this assumption does not hold in
all cases. For example, the shape of the score distribu-
tion is a function of the strength of the selective pressure
applied [8] and, more generally, the experimental condi-
tions employed. Thus, Enrich2 standard errors should be
used with caution when comparing variants between
differing selections unless the variant scores are similarly
distributed and the selection conditions are comparable.
A general method for normalizing scores to facilitate

comparisons across different conditions or selection
pressures remains an important open question, as exist-
ing approaches are computationally intensive [28].
The use of deep mutational scanning is expanding

rapidly and better tools for analysis will help it flourish. As
with other widely used high-throughput experimental
methods, a robustly implemented common statistical
framework reduces barriers to entry, ensures data quality,
and enables comparative analyses. We suggest that
Enrich2 can help deep mutational scanning continue to
grow by providing a foundation for meeting these chal-
lenges and facilitating further exploration and collaboration.

Methods
Variant calling and sequence read handling
Enrich2 implements alignment-free variant calling.
Variant sequences are expected to have the same length
and start point as the user-supplied wild-type sequence,
which allows Enrich2 to compare each variant to the wild-
type sequence in a computationally efficient manner. In
addition to this alignment-free mode, an implementation
of the Needleman-Wunsch global alignment algorithm
[42] is included that will call insertion and deletion events.
Enrich2 supports overlapping paired-end reads and
single-end reads for direct variant sequencing, as well as
barcode sequencing for barcode-tagged variants.

Calculating enrichment scores
For selections with at least three time points, we define
T, which includes all time points, and T ′, which includes
all time points except the input (t0). The frequency of a
variant (or barcode) v in time point t is the count of the
variant in the time point (cv,t) divided by the number of
reads sequenced in the time point (Nt).

f v;t ¼
cv;t
Nt

The change in frequency for a variant v in a non-input
time point t ∊ T ′ is the ratio of frequencies for t and the input.

rv;t ¼
f v;t
f v;0

Instead of using this raw change in variant frequency, we
divide each variant’s ratio by the wild-type (wt) variant’s ratio.

rv;t
rwt;t

¼ cv;tcwt;0
cv;0cwt;t

Because the library size terms (Nt and N0) in the
frequencies cancel out, the ratio of ratios is not
dependent on other non-wild-type variants in the selec-
tion. In practice, we add 1

2 to each count to assist with
very small counts [43] and take the natural log of this
ratio of ratios.
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Lv;t ¼ log
cv;t þ 1

2

� �
cwt;0 þ 1

2

� �

cv;0 þ 1
2

� �
cwt;t þ 1

2

� �
 !

This equation can be rewritten as

Lv;t ¼ log
cv;t þ 1

2

cwt;t þ 1
2

� �
− log

cv;0 þ 1
2

cwt;0 þ 1
2

� �

If we were to regress Lv,t on t ∊ T ′, we note that the
second term is shared between all the time points and there-
fore only affects the intercept of the regression line. We do
not use the intercept in the score, so instead we regress on
Mv,t and use all values of t ∊ T.

Mv;t ¼ log
cv;t þ 1

2

cwt;t þ 1
2

� �

The score is defined as the slope of the regression line,

β̂v . In practice, we regress on t
maxT to facilitate compari-

sons between selections with different magnitudes of time
points (e.g. 0/1/2/3 rounds versus 0/24/48/72 hours).
To account for unequal information content across time

points with variable sequencing coverage, we perform
weighted linear least squares regression [44]. The regression
weight for Mv,t is Vv,t

−1, where Vv,t is the variance of Mv,t

based on Poisson assumptions [43] and is approximately

Vv;t ¼ 1
cv;t þ 1

2

þ 1
cwt;t þ 1

2

For selections with only two time points (e.g. input and
selected), we use the slope of the line connecting the two
points as the score. This is equivalent to the wild-type ad-
justed log ratio (Lv) derived similarly to Lv,t above.

Lv ¼ log
cv;sel þ 1

2

cwt;sel þ 1
2

� �
− log

cv;inp þ 1
2

cwt;inp þ 1
2

� �

As there is no residual error about the fitted line, we
must use a different method to estimate the standard
error. We calculate a standard error (SEv) for the enrich-
ment score Lv under Poisson assumptions [24, 43].

SEv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
cv;inp þ 1

2

þ 1
cwt;inp þ 1

2

þ 1
cv;sel þ 1

2

þ 1
cwt;sel þ 1

2

s

For experiments with no wild-type sequence, scores
can be calculated using the filtered library size for each
time point t, which is defined as the sum of counts at
time t for variants that are present in all time points.

Combining replicate scores
To account for replicate heterogeneity, we use a simple
meta-analysis model with a single random effect to com-
bine scores from each of the n replicate selections into a
single score for each variant. Each variant’s score is

calculated independently. Enrich2 computes the re-
stricted maximum likelihood estimates for the variant

score (β̂ ) and standard error (σ̂s) using Fisher scoring it-

erations [45]. Given the replicate scores ( β̂i ) and esti-
mated standard errors ( σ̂ i ) where i = 1, 2, …, n, the

estimate for β̂ at each iteration is the weighted average:

β̂ ¼
Xn

i¼1
β̂i σ̂

2
s þ σ̂ 2

i

� �−1
Xn

i¼1
σ̂ 2
s þ σ̂ 2

i

� �−1

The starting value for σ̂ 2
s at the first iteration is:

σ̂ 2
s ¼

1
n−1

Xn

i¼1

β̂i−β̂
� �2

Enrich2 calculates the following fixed-point solution
for σ̂ 2

sþ1:

σ̂ 2
sþ1 ¼ σ̂ 2

s

Xn

i¼1
σ̂ 2
s þ σ̂ 2

i

� �−2
β̂i−β̂
� �2

Xn

i¼1
σ̂ 2
s þ σ̂ 2

i

� �−1
−

Xn

i¼1
σ̂ 2
sþσ̂ 2

ið Þ−2Xn

i¼1
σ̂ 2
sþσ̂ 2

ið Þ−1

Because it is more computationally efficient to per-
form a fixed number of iterations for all variant scores
in parallel than to test for convergence of each variant,
Enrich2 performs 50 Fisher scoring iterations. In prac-
tice, this is more than sufficient for σ̂ 2

s to converge. We

record the difference εs ¼ σ̂ 2
s−σ̂

2
s−1 for the final iteration

and identify any variants with high values for ɛs as vari-
ants that failed to converge. No such variants were en-
countered in the analyses detailed here.
For the fixed-effect model [29], we calculate the variant

score (β̂ 0) and standard error (σ̂ s
0 ) using a weighted average

of the replicate scores (β̂i) where the weight for each score
is the inverse of that variant’s variance (σ̂ 2

s−1). The standard
error of the variant σ̂ s

0 is:

σ̂ s
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Xn

i¼1
σ̂ −2
i

s

The fixed-effect model was used for comparison purposes
only and is not implemented in the Enrich2 software.

Derivation of predicted scores
The behavior of a variant v in a simulated binding
experiment (e.g. phage display, yeast display) can be
described in terms of the displaying entity’s likelihood of
being selected in a given round [39, 46]. This likelihood is
related to the binding affinity of each variant, and, by
extension, the binding probability of an individual protein
molecule under the experimental conditions. The relation-
ship between variant binding affinity, monomer binding

Rubin et al. Genome Biology  (2017) 18:150 Page 11 of 15



probability, and likelihood of selection will depend on the
specifics of the experiment such as the number of
molecules displayed per cell or phage, ligand concentration,
and non-specific binding [39]. Each round of selection is a
time point t in the analysis, so we can assign each variant a
probability of being selected in a given time point (pv,t). We
assume that pv,t = pv,0 = pv (i.e. that the probability is
constant throughout the selection) and that any grow out
or amplification steps are uniform across all variants.
The initial variant population is determined by the

variant population frequencies ( f v;0′ ) and the size of the
starting population (N0

′).

cv; 0′ ¼ f v; 0′ N0
′

We note that cv;t′ , f v;t′ , and N t
′ refer to the variant popu-

lation itself, in contrast to the previously defined cv,t, fv,t,
and Nt, which refer to sequence reads derived from the
variant population.
We define at as a factor describing growth between

round t and the previous round (a0 = 1). We assume that
at is the same for all variants. The count for a variant in
time point t+1 in terms the count in time point t is:

cv; tþ1′ ¼ atþ1pvcv; t′

Therefore, the count for a variant in time point t given
the starting count is:

cv;t
0 ¼ cv;0

0 Y
t

j¼1

ajpv ¼ f v;0
0 N0

0
ptv
Yt

j¼1

aj

We can write the ratio of variant counts in these terms
and define the log ratio for binding experiments (Mv,t

' ).

c
0
v;t

c0wt;t
¼

f 0v;0N
0
0p

t
v

Yt

j¼1
aj

f
0
wt;0N

0
0 ptwt

Yt

j¼1
aj

¼ f
0
v;0p

t
v

f
0
wt;0p

t
wt

M
0
v;t ¼ log

c
0
v;t

c0wt;t

 !
¼ t⋅ log

pv
pwt

� �
þ log

f
0
v;0

f 0wt;0

 !

If we substitute t for t′ ¼ t
maxT , we find that the ex-

pected score for binding experiments under the regres-
sion scoring model (βv

′ ) should be related to the variant

selection probability (pv) by:

βv
′ ¼ ðmaxTÞlog pv

pwt

� �

The behavior of a variant v in a simulated growth experi-
ment can be described by the growth rate at time t (μv(t)).
Unlike in the round-based binding experiment case, time
in growth experiments is modeled as continuous. We as-
sume that μv(t) = μv(0) = μv (i.e. that the growth rate is con-
stant throughout the selection) and that any amplification

steps are uniform across all variants. This derivation is
based on [16, 18]. In interference-free growth, the growth
of individual variants can be described by the first order
equation:

dcv0

dt
¼ μvcv0 ðtÞ

Therefore, the count for a variant at time t given the
starting count is:

cv0 ðtÞ ¼ cv;00 eμvt ¼ f v;0
0
N0

0
eμvt

We can write the ratio of variant counts in these terms
and construct the continuous function Mv″(t).

c
0
v tð Þ

c0wt tð Þ ¼
N

0
0 f

0
v;0e

μvt

N
0
0 f

0
wt;0e

μwt t
¼ f

0
v;0

f
0
wt;0

e μv−μwtð Þt

M″
v tð Þ ¼ log

c
0
v tð Þ

c0wt tð Þ
� �

¼ μv−μwtð Þt þ log
f
0
v;0

f
0
wt;0

 !

We convert to the discrete function Mv,t″ for conveni-
ence by assuming that m timepoints are sampled at
constant intervals, determined by the number of
wild-type doublings (δ) per time point, such that max
T =mδ. We then find that the expected score for growth
experiments under the regression scoring model (βv″)
should be related to the growth rate (μv) by:

β″v ¼ mδ μv−μwtð Þ

Generation of simulated datasets
Simulated datasets contain 10,000 unique variants (including
wild-type), each characterized by a true variant effect: the
probability of selection in each round (pv) for binding simu-
lations or the growth rate (μv) for growth simulations. We
assume that the variant effect distribution is normal and set
the wild-type effect to pwt= 0.5 and μwt= 1. We set the wild-
type effect at the 75th percentile of the distribution and set
the standard deviation to 0.1. We draw 9999 variants
from this distribution, with 0.05 < pv < 0.99 and 0.05
< μv < 5.
In each case, the population size is 10 million, with a

starting wild-type frequency of 1%. Starting counts for
each variant are simulated using a log-normal distribu-
tion of variant counts in the input time point such that
the mean variant input count is 990 and the standard
deviation of the distribution is 0.4 [16, 47]. Starting
counts are independently generated for each replicate.
For each replicate, the starting population undergoes

five rounds of selection. The count of each variant after
binding (kv,t) is generated using a binomial distribution
with parameters n = cv,t−1' and p = pv. The count of each
variant after growth (gv,t) is generated using a negative
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binomial distribution with parameters r = cv,t−1' and
p ¼ e−μvΔt , Δt ¼ δln2

μwt
. For these simulations, δ = 2. The

population count for each variant (cv,t' ) is obtained by
performing weighted random sampling with replace-
ment, where the weight for each variant is proportional
to kv,t or gv,t and the total population size was 10
million.
Read counts for each variant (cv,t) are simulated by

performing weighted random sampling with replace-
ment, where the weight for each variant is proportional
to the population counts (cv,t' ) and the average sequen-
cing depth is 200 reads per variant (approximately 2 mil-
lion reads per time point).
We simulate replicate noise by drawing a new variant

effect from the variant effect distribution for 10% of var-
iants (not including wild-type). These noisy variants
were randomly chosen. This new variant effect was used
to simulate one replicate and the other four replicates
used the original effect. Noisy effects were split uni-
formly between the five replicates, such that 2% of the
variants in each replicate were affected.
We simulate time point amplification and depletion

noise by multiplying or dividing cv,t' by 50 before per-
forming the sampling step to obtain cv,t. We ran-
domly choose 10% of variants to be affected by noise,
5% subject to amplification and 5% subject to deple-
tion, split uniformly among the five replicates. For
each noisy variant in the chosen replicate, one time
point (including input) was randomly chosen for
amplification or depletion.
Python code for generating these simulated data-

sets is available as simdms v0.1 (DOI: 10.5281/
zenodo.546311).

Deep mutational scan of Phospholipase A2
A region proximal to both lipid binding sites of the C2
domain of Phospholipase A2 (PLA2) was targeted for
deep mutational scanning. Positions 94–97 of the C2 do-
main of mouse PLA2-alpha (ANYV) were fully random-
ized using a doped synthetic oligonucleotide. The library
of C2 subdomains containing mutations was cloned into
the AvrII and PpuMI sites of wild-type C2 domain in
pGEM. The library was subcloned into phage arms and
expressed on the surface of bacteriophage using the T7
phage display system according to the manufacturer’s
instructions (Novagen T7Select 10-3b). The library was
amplified in BLT5403 E. coli and variants were selected
for their ability to bind to a lipid mixture containing
ceramide 1-phosphate (C1P) [48]. The mouse PLA2-alpha
cDNA was a generous gift from Michael Gelb, University
of Washington. NiSepaharose Excel, capacity 10 mg/mL,
was purchased from GE. Other reagents were purchased
from Thermo-Fisher.

To select for C1P binding, lipid nanodiscs were devel-
oped as a bilayer affinity matrix. The His6-tagged mem-
brane scaffold protein MSP1D1 [49] was expressed in
BL21 E. coli from a pET28a plasmid and purified on
nickel resin, then used to generate lipid nanodiscs com-
prising 30 mol% phosphatidylcholine, 20 mol% phospha-
tidylserine, 40 mol% phosphatidylethanolamine, and
10 mol% C1P [50]. To separate nanodiscs from large
lipid aggregates and free protein, the mixture was sub-
jected to gel filtration using a Superose 6 10/300 GL col-
umn (Pharmacia) and the major peak following the void
volume was collected. To generate the affinity resin,
70 μg of nanodiscs (quantified by protein content) was
incubated overnight at 4 °C with 10 μL nickel resin in
20 mM Tris pH 7.5 and 100 mM NaCl. The resin was
washed twice in the same solution and used in phage
binding reactions.
Phage expressing the C2 domain variant library were

titered and diluted to a concentration of 5 × 109 pfu/mL
in 20 mM Tris pH 7.5 and 100 mM NaCl, then incu-
bated with lipid nanodisc affinity resin plus 10 μM cal-
cium in a final volume of 350 μL. After a 2-hour
incubation at 4 °C, the resin was washed four times in
1 mL of the incubation buffer containing 20 mM imid-
azole. Phage bound to nanodiscs were eluted with
20 mM Tris pH 7.5 containing 500 mM imidazole.
Phage from the elution were titered, amplified, and sub-
jected to additional rounds of selection. Three replicate
selections were performed on different days using the
same input phage library.
Sequencing libraries were prepared by PCR amplifying

the variable region using primers that append Illumina
cluster generating and index sequences (Additional file 7)
before sequencing using the Illumina NextSeq platform
with a NextSeq high output kit (75 cycles, FC-404-1005).
Reads were demultiplexed using bcl2fastq v2.17 (Illumina)
with the arguments bcl2fastq –with-failed-reads –create-
fastq-for-index-reads –no-lane-splitting –minimum-trim
med-read-length 0 –mask-short-adapter-reads 0. Quality
was assessed using FastQC v0.11.3 [51]. Demultiplexed
reads are available in the NCBI Sequence Read Archive,
BioProject Accession PRJNA344387.

Neuraminidase data analysis
Raw reads were demultiplexed using a custom script
based on three-nucleotide barcodes provided by the
original authors [30]. The reads were analyzed in
Enrich2 v1.0.0 as ten experimental conditions: five non-
overlapping 30-base regions of the neuraminidase gene
in either the presence or absence of oseltamivir. Reads
were required to have a minimum quality score of 23 at
all positions and contain no Ns. The five mutagenized
regions were scored independently and then merged to
create a single set of variant scores for each treatment.
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To be consistent with the original study, we removed
variants containing multiple nucleotide changes with the
exception of p.Ile117Ter and p.Thr226Trp that were
individually validated. The p values for comparing
variant scores to wild-type in each treatment and com-
paring variant scores between treatments were calcu-
lated using a z-test. All three sets of p values were
jointly corrected for multiple testing using the qvalue
package in R [52], and variants with a q value of less
than 0.05 were reported as significant.

Analysis of other datasets
For previously published datasets, raw sequence files in
FASTQ format were obtained from the respective authors.
Datasets (Table 1) were analyzed independently using
Enrich2 v1.0.0. The BRCA1 dataset was analyzed in a single
run with separate experimental conditions for the yeast
two-hybrid and phage display assays. For all datasets except
neuraminidase, reads were required to have a minimum
quality score of 20 at all positions and contain no Ns.
For the WW domain sequence function map (Fig. 1),

scores and standard errors were calculated using weighted
least squares linear regression in two technical replicates
and the replicates were combined using the random-
effects model as described.

Enrich2 software implementation
Enrich2 is implemented in Python 2.7 and requires
common dependencies for scientific Python. The graph-
ical user interface is implemented using Tkinter. A deep
mutational scanning experiment is represented as a tree
of objects with four levels: experiment; condition;
selection; and sequencing library. Each object’s data and
metadata are stored in a single HDF5 file, including
intermediate values calculated during analysis.
Enrich2 is designed to be run locally on a laptop

computer and does not require a high-performance
computing environment. Most analyses can be run
overnight (Table 1). Run times in Table 1 were measured
using a MacBook Pro Retina with 2.8 GHz Intel Core i7
processor and 16GB of RAM.
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