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Abstract

Background: Missing data is a common problem in epidemiological studies, and is particularly prominent in
longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods
(fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of
the same time-dependent variable as just another ‘distinct’ variable for imputation and therefore do not make the
most of the longitudinal structure of the data. Only a few studies have explored extensions to the standard approaches
to account for the temporal structure of longitudinal data. One suggestion is the two-fold fully conditional specification
(two-fold FCS) algorithm, which restricts the imputation of a time-dependent variable to time blocks where the
imputation model includes measurements taken at the specified and adjacent times. To date, no study has
investigated the performance of two-fold FCS and standard MI methods for handling missing data in a time-
varying covariate with a non-linear trajectory over time – a commonly encountered scenario in epidemiological studies.

Methods: We simulated 1000 datasets of 5000 individuals based on the Longitudinal Study of Australian Children
(LSAC). Three missing data mechanisms: missing completely at random (MCAR), and a weak and a strong missing at
random (MAR) scenarios were used to impose missingness on body mass index (BMI) for age z-scores; a continuous
time-varying exposure variable with a non-linear trajectory over time. We evaluated the performance of FCS, MVNI, and
two-fold FCS for handling up to 50% of missing data when assessing the association between childhood obesity and
sleep problems.

Results: The standard two-fold FCS produced slightly more biased and less precise estimates than FCS and MVNI. We
observed slight improvements in bias and precision when using a time window width of two for the two-fold FCS
algorithm compared to the standard width of one.

Conclusion: We recommend the use of FCS or MVNI in a similar longitudinal setting, and when encountering
convergence issues due to a large number of time points or variables with missing values, the two-fold FCS with
exploration of a suitable time window.
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Background
Epidemiological research has witnessed a major shift to-
wards life-course studies which investigate how biological,
behavioural, and physical exposures during gestation,
childhood and adolescence are related to the development
of disease in adulthood [1, 2]. Such studies involve follow-
ing up individuals over a long period of time, with mul-
tiple waves of data collection, and consequently missing
data are a major problem [3].
A number of statistical techniques have been developed

to address missing data problems [4]. In the epidemio-
logical literature, common approaches include complete
case analyses and multiple imputation (MI) [5]. Another
approach for longitudinal data is last observation carried
forward; although this method has been shown to result
in biased inference [6–8]. A complete case analysis, which
only includes respondents with data available on all vari-
ables required for the target analysis, is commonly
employed due to its simplicity. The validity of this ap-
proach relies on strong assumptions about the missing
data, often requiring the stringent missing completely at
random (MCAR) assumption, that there is no systematic
difference between participants with complete and incom-
plete data [9]. An additional issue, particularly pertinent in
longitudinal studies with several waves of data collection,
is that a complete case analysis may include only a small
and potentially unrepresentative sample of the original
participants. MI was developed to address the limitations
of a complete case analysis [10] and has grown in popular-
ity over recent years [5]. MI is a two-stage process. In
stage 1 the incomplete dataset is replicated multiple times
and missing values are replaced by plausible values drawn
from a posterior distribution according to a suitable im-
putation model based on the observed data. In stage 2 the
target analysis is performed on each of the imputed data-
sets with the resulting parameter estimate and corre-
sponding standard error of each dataset, combined into a
single estimate (and standard error) [10]. The standard
implementation of MI relies on the more relaxed missing
at random (MAR) assumption, that the probability of a
value missing is independent of unobserved data given the
observed data [9]. MI enables all participants to be in-
cluded in the analysis and may reduce bias and improve
precision of the parameter estimates compared to a
complete case analysis [9, 11].
Two standard MI methods have been proposed to im-

pute missing data in the presence of multiple variables with
missing values [5]. Multivariate normal imputation
(MVNI) [12] fits a joint imputation model to all the vari-
ables containing missing data under the assumption that
the variables follow a multivariate normal distribution [9].
Fully conditional specification (FCS), also known as mul-
tiple imputation by chained equations, fits separate univari-
ate regression models to each variable with missing values

[13–15], iteratively cycling through the univariate regres-
sion models. In longitudinal studies, missing data often
occur in multiple variables across multiple waves. Both
MVNI and FCS can be used to handle missing data in lon-
gitudinal studies by treating repeated measurements (i.e.
same variable measured at different time points) as distinct
variables in the imputation model (often referred to as
“Just Another Variable”) [16]. However, this approach does
not take into consideration the temporal trend in such var-
iables across the waves [16–18]. Although such an ap-
proach may be adequate for a study with only a small
number of time points (e.g. 3 waves of data collection)
[19–22], when there are a large number of variables and
time points, simulation studies (with 5 or more time points
and/ or 3 or more variables with missing data) have shown
that both MVNI and FCS in their standard form face con-
vergence issues [17, 18]. This is primarily due to over-
fitting of the imputation model and co-linearity between
predictor variables [23]. This motivated the proposal of the
two-fold FCS algorithm which imputes missing values at a
certain time point based only on information from that
time point and immediately adjacent time points [16]. The
two-fold FCS method takes advantage of the temporal or-
dering of the repeated measurements to considerably re-
duce the number of predictor variables included in each of
the univariate imputation models, and consequently dimin-
ishes over-fitting and co-linearity issues [17].
While there have been many studies evaluating MVNI

and FCS methods to handle missing data in settings where
the variables are measured at a single time point [9, 24–26],
studies comparing MI methods in the context of longitu-
dinal data are limited [18]. Welch et al. [17] performed a
simulation study of 10 waves of data collection and 70%
missing data, where explanatory variables were assigned to
missing under a MCAR missing data mechanism. Although
the study evaluated the performance of the standard FCS
method and the two-fold FCS algorithm to handle missing
data in time-dependent exposures, they included only time-
independent and baseline values of the longitudinal
variables as covariates in the target analysis [17]. This pre-
vented them from observing how well the MI methods
imputed missing values in the latter waves. A more com-
prehensive evaluation of MI methods for handling missing
values in repeated measurements data was recently com-
pleted by Kalaycioglu et al. [18], comparing the perform-
ance of full Bayesian MI, MVNI, FCS and other variations
of FCS for model reduction.
An important aspect that has not been explored in these

studies is the performance of the various MI methods in
the presence of a time-varying covariate with a non-linear
association with time, a commonly encountered scenario in
longitudinal observational studies [17, 27]. Not accounting
for these non-linear trajectories in the imputation model
(i.e. misspecification of imputation model) could potentially
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result in biased parameter estimates [28]. The aim of this
paper was to assess the performance of MI methods in the
context of an incomplete exposure with a non-linear associ-
ation over time, considering methods that are available in
standard statistical software (i.e. MVNI, FCS, and two-fold
FCS) where up to 50% of data are MCAR or MAR. Specif-
ically, we report the findings of a simulation study based on
the Longitudinal Study of Australian Children (LSAC) [27],
where there was interest in assessing the association be-
tween child’s body mass index (BMI) and sleep problems,
both of which were measured repeatedly over five time
points.

Methods
Motivating example: Longitudinal Study of Australian
Children (LSAC)
“Growing Up in Australia: the Longitudinal Study of
Australian Children (LSAC)” is a national longitudinal
study of child and adolescent development. Two co-
horts of children were recruited: the infant cohort (chil-
dren born between March 2003 and February 2004)
and the child cohort (born between March 1999 and
February 2000). Wave 1 of data collection began in
2004 with subsequent waves every two years. Informa-
tion was collected for each child on many areas includ-
ing; children’s and parent’s physical and mental health,
education, social and cultural environment, and family
socio-economic position [27].
At the time of the current study we had access to five

waves of data. Additional file 1: Table S1 provides details
of waves 1 to 5 respondents.

Epidemiological analysis of interest
Obesity is a common concern in Australian children
[29], and may lead to a number of severe health prob-
lems in adulthood including cardiovascular disease, insu-
lin resistance, and asthma [30, 31]. As sleep affects a
child’s hormone related growth and maturation, it has a
considerable impact on obesity [29, 32]. Conversely it
has also been observed that childhood obesity could re-
sult in early life sleep problems such as obstructive sleep
apnoea [33]. Therefore the relationship between in-
creased rates of childhood obesity and childhood sleep
problems is a research area that has gained much inter-
est recently [29, 32, 33]. In LSAC, this question can be
addressed by evaluating the association between BMI
and sleep problems, and was the motivating example for
the design of our simulation study.

Variables of interest
The exposure of interest was BMI for age z-score, which
was measured repeatedly from ages 4 to 13 years. The raw
BMI measurements were transformed into BMI for age z-
scores (bmiz) as shown in Eq. 1 using the 2000 Centers

for Disease Control (CDC) growth charts [27, 34]. The
longitudinal outcome of interest was childhood sleep
problems over the same time period, as reported by the
primary care-giver (dichotomised into ‘no sleep problem’
(no or small) and ‘sleep problem’ (moderate or large) for
our simulation study). Child’s sex, age, and weight at birth;
maternal age at child birth, smoking, and education were
considered as potential confounders [29, 35, 36]. Table 1
provides information on the variables used in the simula-
tion study.

bmiz ¼
bmi
M

� �L
−1

SL
when L≠0; bmiz ¼ ln bmi

M

� �
S

when L ¼ 0

ð1Þ

where bmi corresponds to the raw BMI measurements, and
the values for parameters L, M and S were obtained from
the 2000 CDC growth charts based on the respondent’s age.

Target analysis
The aim was to evaluate the population-average (marginal)
association between bmiz (exposure) measured at one wave
and sleep problems (outcome) measured at the subsequent
wave based on the repeated measurements of sleep prob-
lems and bmiz. With complete data this parameter would
be estimated using generalized estimating equations with a
logit link and an unstructured correlation structure.

Simulation of complete data
Based on the child cohort of LSAC, which had a partici-
pation of 4983 children at wave 1 (Additional file 1:
Table S1), we simulated 1000 datasets of 5000 individ-
uals. Details of the simulation procedure are provided in
the Additional file and variable labels used in the simula-
tion equations are given in Table 1. Briefly, we first sim-
ulated the time-independent variables using the variable
dependencies shown in Fig. 1a.
We then simulated the two time-dependent variables

according to the following steps:

1. The sleep problem indicators at wave 1 were generated
using the logistic regression model:

logit Pr sleep probi;1 ¼ 1
� �n o

¼ η0 þ η1 m educationi ¼ 1½ �
þη2 sexi ¼ 1½ � þ η3birthweighti

þη4m agei

ð2Þ

2. For waves j = 1,…,5 bmiz measurements were generated
using the linear mixed effects model:
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Table 1 Description of variables used in the simulation study, for the ith child at wave j

Variable Type Grouping/ Units Label

Study child’s BMI for age z-score Continuous bmizij

Study child’s sleep problems Categorical 0 = No sleep problems
1 = Sleep problems

sleep_probij

Study child’s age Continuous Months scageij
a

Maternal education Categorical 0 = Not completed
1 = Completed

m_educationi

Maternal smoking Categorical 0 = No
1 = Yes

m_smokingi

Study child’s sex Categorical 0 = Male
1 = Female

sexi

Study child’s birth weight Continuous Kilograms birthweighti

Maternal age at child birth Continuous Years m_agei
aA new variable scage_sqij was derived as the squared term of scageij to be used in the data generation models

Fig. 1 a) Variable dependencies of simulated time-independent variables; m_age, maternal age at child birth; m_education, maternal education;
m_smoking, maternal smoking; sex, study child’s sex; birthweight, study child’s birth weight; b) Causal diagram for the association between sleep
problems and BMI for age z-scores. For the ease of presentation all time-independent variables are presented using a single node excluding
maternal smoking; scage1-scage5, study child’s age at waves 1 to 5; bmiz1-bmiz5, study child’s BMI for age z-scores at waves 1 to 5; sleep_prob1-
sleep_prob5, study child’s sleep problems at waves 1 to 5; c) Causal diagram for MAR missingness. R is an indicator variable of missingness where
BMI for age z-scores were assigned to missing if R = 1. Only variables required to model the MAR missingness are shown in the figure
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bmizij¼ θ0 þ a0ið Þ þ θ1sleep probi1 þ θ2 þ a1ið Þscageij
þ θ3 þ a2ið Þscage sqij þ θ

4
m educationi ¼ 1½ �

þθ5 m smokingi ¼ 1
� �þ θ6 sexi ¼ 1½ �

þθ7birthweighti þ θ8m ageiþεij

ð3Þ

where εij is identically and independently distributed eN
0; σ2ε
� �

. scage_sqij was derived as the squared term of
scageij to incorporate the non-linear relationship be-
tween BMI for age z-scores with time. The random
intercept a0, and random slopes a1 and a2 were drawn
from a multivariate normal distribution. The mean and
variance-covariance matrices, which were used to draw
these random effects from a multivariate normal distri-
bution, were obtained from the observed LSAC child co-
hort data.

3. The sleep problems indicators for waves j = 2,…,5 were
then generated using the logistic regression model:

logit Pr sleep probi;j ¼ 1
� �n o

¼ λ0 þ λ1bmizi;j−1

þλ2 m educationi ¼ 1½ � þ λ3 sexi ¼ 1½ �
þλ4birthweighti þ λ5m agei

þ λ6 sleep probi;j−1 ¼ 1
h i

ð4Þ

The simulation model was designed to mimic the model
for the epidemiological analysis of interest described previ-
ously so that λ1 of Eq. 4 is the true value for the parameter
of interest. Parameter values used in the simulation
process were chosen to mimic the LSAC data and are pre-
sented in Additional file 1: Table S2. We simulated data
for sleep problems (waves j = 2,…,5) using odds ratios
(ORs) that reflected scenarios of weak (OR = 1.1,
λ1 = log(OR) = 0.1) and strong (OR = 1.5, λ1 = log(OR) = 0.4)
associations between bmiz and sleep problems.
The casual diagram for the association between child-

hood sleep problems and bmiz is shown in Fig. 1b. Ma-
ternal smoking is presented as a separate node from the
other time-independent variables as it is not in the ana-
lysis model but will be used in the imputation model as
an auxiliary variable [11].

Introduction of missing data
For each simulated dataset, bmiz measures were
assigned to missing so by wave 5, 25% and 50% of these
were missing (keeping bmiz at wave 1 as complete).
Twenty-five percent was chosen to mimic the actual per-
centage of missing values in bmiz in LSAC child cohort
(see Additional file 1: Figure S1) and 50% was chosen to

represent a more extreme example, often observed in
studies with long term follow-up [3]. The bmiz values at
each wave were assigned to missing using either a
MCAR scenario or one of the two MAR scenarios
chosen to represent weak and strong associations be-
tween the indicator of missing bmiz (R) and the predic-
tors of missingness. Under MCAR missingness, desired
proportions of bmiz from waves 2–5 were randomly
assigned to missing as intermittent missingness or miss-
ing for all subsequent waves (i.e. after a specific time
point all bmiz measurements of a respondent are miss-
ing) as shown in Additional file 1: Figure S1.
Under MAR, it was assumed that the probability of

missingness in bmiz at each wave followed a logistic re-
gression model dependent on sleep problems measured at
waves 1 and 5, and maternal smoking (Fig. 1c). Maternal
smoking is not directly associated with the outcome and
its effect on the outcome is only through bmiz (Fig. 1c).
The presence of such a variable leads to bias in the
complete case analysis [37].
Specifically, two logistic regression models were speci-

fied to generate missingness in bmiz from waves 2–5
under MAR, one to represent missing for all subsequent
waves (Eq. 5) and the other to represent intermittent
missingness (Eq. 6).
Model A: bmiz missing for all subsequent waves after

wave j

logit Pr Ri;jþ1 ¼ 1
� �� 	 ¼ ν0;j þ ν1 sleep probi;1 ¼ 1

h i
þν2 sleep probi;5 ¼ 1

h i
þ ν3 m smokingi ¼ 1

� �
ð5Þ

Model B: intermittent missingness between waves j
and j + 1

logit Pr Ri;jþ1 ¼ 1
� �� 	 ¼ ω0;j þ ω1 sleep probi;1 ¼ 1

h i
þω2 sleep probi;5 ¼ 1

h i
þ ω3 m smokingi ¼ 1

� �
ð6Þ

where model B was only applied to cases that were not
specified as missing for all subsequent waves in model
A. Assigned parameter values under the two MAR sce-
narios are given in Table 2.
The intercepts for the logistic regression models, ν0 , j

(Eq. 5) and ω0 , j (Eq. 6), were chosen by iteration to
achieve the required proportions of intermittent miss-
ingness or missing for all subsequent waves in bmiz at
each wave. For the strong MAR scenario, we doubled
the log of the ORs used in the weak MAR scenario.

Methods to handle missing data
We compared the performance of three MI methods;
MVNI, FCS and two-fold FCS and additionally
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conducted a complete case analysis as it is a commonly
used approach to handle missing data [5, 28]. For the
complete case analysis all individuals with any missing
values in bmiz measured at waves 2 to 4 were excluded
from the analysis. Under the three MI methods, the im-
putation model included all variables in the analysis
model, and the auxiliary variable, maternal smoking, and
50 imputations were performed. Standard implementa-
tion of MVNI and FCS (Stata commands ‘mi impute
mvn’ and ‘mi impute chained’ respectively) handled the
repeated measures of bmiz and sleep problems by in-
cluding the repeated measurements as distinct variables
in the imputation model. In the two-fold FCS method
(Stata command ‘twofold’), the longitudinal structure of
the variables was taken into consideration and missing
values were imputed using information at the specified
and immediately adjacent time points.

Performance measures for evaluating different methods
The target analysis parameter of interest was the
log(OR) for the association between sleep problems and
bmiz measured at a previous wave, estimated using gen-
eralized estimating equations to account for repeated
measures (see Epidemiological Analysis section). The
true value of the parameter of interest was the value
used in the simulation model for the outcome variable
sleep problems in Eq. 4 (log(1.1) and log(1.5)). For each
of the different simulation scenarios, the performances
of the complete case analysis and the three MI methods
were evaluated using the absolute bias, defined as the
difference between the true value and average of param-
eter estimates calculated across the 1000 simulated data-
sets; the empirical standard error, calculated as the
square root of the variance of the estimates across the
1000 datasets; and coverage probability of the 95% confi-
dence interval, estimated by the proportion of datasets
where the estimated 95% confidence interval contained
the true parameter value. We also reported the relative
bias, defined as the bias relative to the true value, the
model-based standard error (i.e. the arithmetic mean of
standard errors across the 1000 simulated datasets) and
the root mean square error, which is computed as a

combination of the bias and variance of the estimate
[38]. The Monte Carlo error for the MI estimate was
also extracted, which describes how an estimated statis-
tic deviates over repeated simulations [39]. An accept-
ably small Monte Carlo error in the MI estimate would
be expected when the number of imputations is equal to
the percentage of individuals with missing values (i.e. 25
imputations are used when the percentage of respon-
dents with missing data is approximately 25%) [4].
All data simulation and analyses were conducted using

Stata version 13.1 [40].

Results
Table 3, Additional file 1: Tables S3, S4 and S5 summarize
the performance of three MI methods; FCS, MVNI and
two-fold FCS, and complete case analysis, across the dif-
ferent simulation scenarios described above. We observed
minimal bias in the presence of 25% missing data under
all missing data scenarios (MCAR, MAR (weak), and
MAR (strong)) and all missing data methods, with the bias
not exceeding 0.02. Increasing the proportion of missing
bmiz values to 50%, we observed moderate bias when
using complete case analysis under the two MAR
missing data scenarios (Fig. 2; relative bias ranged
from 4% to 20%). We observed minimal bias for both
FCS and MVNI, while the two-fold FCS produced a
slightly higher level of bias, albeit minimal (relative
bias ranged from 0.002% to 3%).
The empirical standard errors are shown in Fig. 3. We

observed similar empirical standard errors for all ap-
proaches. The root mean square error increased with
the proportion of missingness, and for MAR compared
with MCAR, and MI methods showed a gain in root
mean square error under the strong MAR scenario with
50% missing data (see Additional file 1: Figure S2).
As expected the coverage remained within 93.6%

and 96.4% for the nominal level of 95% for all scenar-
ios (based on number of simulations) except when
using complete case analysis under the weak and
strong MAR scenarios, which reported a slight under-
coverage (Fig. 3).

Table 2 Specifications of the logistic regression models used to impose missing data under the MAR scenarios

Variable Odds Ratio

MAR (weak) MAR (strong)a

Model A/ Eq. 5b (exp(νi)) Model B/ Eq. 6b (exp(ωi)) Model A/ Eq. 5b (exp(νi)) Model B/ Eq. 6b (exp(ωi))

1 Sleep problem at wave 1Yes 1.67 1.61 2.80 2.60

2 Sleep problem at wave 5Yes 1.64 1.58 2.70 2.50

3 Maternal smokingYes 1.61 1.58 2.60 2.50

exp exponential, MAR missing at random
aOdds ratio for MAR (Strong) = square of the Odds ratio for MAR (Weak)
bModel A/ Eq. 5 and Model B/ Eq. 6 represent the logistic regression models used to generate missingness in BMI for age z-scores from waves 2–5 under MAR, to
denote bmiz missing for all subsequent waves and intermittent missingness respectively
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Additional file 1: Figures S3 and S4 compare the per-
formance of the two-fold FCS algorithm with a time
window width of 1 and 2. As expected, we observed
slight improvements in bias and precision when using a
time window width of 2, compared to the standard two-
fold FCS algorithm, as more information is being used
to impute the missing values.

Discussion
We evaluated the performance of MI methods, MVNI,
FCS and two-fold FCS, and complete case analysis for
handling up to 50% missing data in a longitudinal expos-
ure variable which had a non-linear association with
time, using a simulation study designed based on the
LSAC child cohort. We found very little bias and cover-
age remained around 95% for the three MI methods;
MVNI, FCS and two-fold FCS (using a time window
width of 1 and 2), whereas moderate bias was observed
for complete case analysis when there was 50% MAR
missing data. We also observed slight gains in precision
from all MI methods when compared with a complete

case analysis. The two-fold FCS produced slightly more
biased and less precise estimates than FCS and MVNI
when using adjacent time points only, however, these
differences were minimal. The simulations didn’t reveal
too large biases for any of the MI approaches in any of
the scenarios. Our results reflect what may actually be
expected in practice as we have assessed realistic scenar-
ios by basing our simulations on the LSAC study.
Our findings are consistent with the results of a simu-

lation study conducted by Kalaycioglu et al. [18], which
focused on a continuous longitudinal outcome, showing
that MI provided greater precision compared with
complete case analysis especially when the outcome
variable was fully observed.
We used maternal smoking measured at baseline as

an auxiliary variable. In the statistical literature it has
been observed that if the imputation model contains
auxiliary variables with strong associations with the
variable subject to missingness, MI could result in
slight gains in precision compared with a complete
case analysis [41, 42].

Table 3 Performance of various methods for handling 50% missingness in BMI for age z-scores; true ORa = 1.1(log(OR) = 0.1)

Performance
Measure

Method

Complete Case Analysis FCS MVNI two-fold FCS (width = 1)c two-fold FCS (width = 2)d

MCAR

Absolute Biasb 0.001 0.000 0.000 0.002 0.001

Relative Bias (%) 0.65 0.28 0.34 1.63 0.77

Empirical SE 0.017 0.017 0.017 0.018 0.017

Model-based SE 0.018 0.017 0.017 0.017 0.017

Coverage (%) 95.6 95.8 95.9 95.3 95.9

RMSE 0.017 0.017 0.017 0.018 0.017

MAR (weak)

Absolute Biasb 0.015 0.000 0.000 0.000 0.000

Relative Bias (%) 15.03 0.16 0.22 0.03 0.28

Empirical SE 0.018 0.017 0.017 0.017 0.017

Model-based SE 0.018 0.017 0.017 0.017 0.017

Coverage (%) 86.3 94.4 94.5 94.3 94.6

RMSE 0.023 0.017 0.017 0.017 0.017

MAR (strong)

Absolute Biasb 0.020 0.000 0.000 0.003 0.002

Relative Bias (%) 20.36 0.23 0.21 3.19 2.16

Empirical SE 0.018 0.017 0.017 0.018 0.017

Model-based SE 0.017 0.017 0.017 0.017 0.017

Coverage (%) 77.8 95.0 94.9 93.6 93.9

RMSE 0.027 0.017 0.017 0.018 0.018

Empirical SE empirical standard error, FCS fully conditional specification, MAR missing at random, MCAR missing completely at random, Model-based SE model
based standard error, MVNI multivariate normal imputation, RMSE root mean square error, two-fold FCS two-fold fully conditional specification algorithm
aTrue OR represents the true odds ratio between sleep problems and BMI for age z-scores
bMonte Carlo standard error did not exceed 0.0006
cResults for the two-fold FCS with a time window width of 1, that is, including immediately adjacent time points
dResults for the two-fold FCS with a time window width of 2, that is, including two adjacent time points

De Silva et al. BMC Medical Research Methodology  (2017) 17:114 Page 7 of 11



Fig. 3 Empirical standard error and Coverage (%) for complete case analysis (CC), fully conditional specification (FCS), multivariate normal
imputation (MVNI), and two-fold fully conditional specification (two-fold FCS) for increasing proportions of missing data (0.25, 0.5) under three
missing data scenarios and two simulation scenarios; true OR represents the true odds ratio between sleep problems and BMI for age z-scores

Fig. 2 Absolute bias and Relative bias (%) for complete case analysis (CC), fully conditional specification (FCS), multivariate normal imputation
(MVNI), and two-fold fully conditional specification (two-fold FCS) for increasing proportions of missing data (0.25, 0.5) under three missing data
scenarios and two simulation scenarios; true OR represents the true odds ratio between sleep problems and BMI for age z-scores. aRelative bias is
calculated as absolute bias relative to the value of the true parameter. As the value of the true parameter (log(OR)) increases from 0.1 to 0.4 in
the second simulation scenario, the magnitude of the relative bias drops even though the absolute bias shows a slight increase

De Silva et al. BMC Medical Research Methodology  (2017) 17:114 Page 8 of 11



Also similar to findings of past literature, we observed
hardly any difference in bias and precision between FCS
and MVNI [24]. Kalayciolgu et al. [18] recommended
MVNI over FCS approaches when imputing longitudinal
continuous exposures as it assumes an unstructured cor-
relation structure, which is more flexible for repeated
measurements data, while FCS approaches are more
suitable for repeated measurements with an auto-
regressive correlation structure.
Our observations differed slightly from the findings of

Welch et al. [17], another simulation study comparing
standard and two-fold FCS methods. Welch et al. re-
ported unbiased and more precise estimates using two-
fold FCS compared to standard FCS, with the latter fail-
ing to converge in approximately 25% of the simulated
datasets due to potential co-linearity issues. While the
study by Welch et al. [17] had 10 time points and many
variables subject to missingness, we used 5 time points
and one variable with missing values in our simulation
study. Past literature shows that FCS fails to converge
more readily when imputing many longitudinal variables
subject to missingness [18]. Of note, the target analysis
model used by Welch et al. only took into consideration
the baseline values of the longitudinal variables restrict-
ing their evaluation of how the MI methods imputed
missing values in latter waves [17]. By using a general-
ized estimating equation as the analysis model we were
able to use information from all time points to estimate
the parameter of interest, enabling us to conduct a more
comprehensive evaluation of how the MI methods han-
dled missing values in repeated measurements. Our
findings of slightly more bias and less precision when
using the two-fold FCS compared to FCS and MVNI
may be due to the continuous time-varying exposure
variable with missing data having a non-linear trajectory
over time. As the two-fold FCS uses information only
from the specified and immediately adjacent time points
to impute missing values, the non-linear trajectory over
time might not be captured sufficiently, potentially
resulting in biased estimates with less precision com-
pared to FCS and MVNI [17]. When we increased the
width of the two-fold FCS algorithm to include two adja-
cent time points we observed slightly less biased and
more precise estimates, implying that the non-linear tra-
jectory over time could be captured better by increasing
the time window width.
The structure of longitudinal studies is becoming more

complex, with studies often including a large number of
time points and having an unbalanced design [43]. If
standard FCS and MVNI are more likely to fail, and if
the two-fold FCS algorithm potentially introduces bias if
a large enough time window width is not considered, al-
ternative methods to handle missing data might be re-
quired. Direct likelihood analysis based on a generalized

linear mixed-effects model and the ‘jomo’ package in R
[44] are alternative approaches to handle missing values
in longitudinal data. The generalized linear mixed-
effects model is suitable for handling missing values in a
time-dependent outcome variable as it allows the inclu-
sion of all respondents in the analytical process, given
that they have at least one outcome measure, and it
captures the longitudinal structure of the data [45].
Unlike in MI, it does not suffer from incompatibility
issues between the target analysis model and imput-
ation models as only one model is specified within this
approach, and any non-linear associations and/ or in-
teractions are directly incorporated into the model.
‘jomo’ is a package specifically for multilevel joint
modelling MI, which can handle both incomplete co-
variates and outcomes. Within this package, cluster-
specific covariance matrices can be used for imput-
ation of missing values in clustered data [44]. While
the package is not yet widely adopted, it was only re-
cently extended for handling missing values in re-
peated measurements, and has only been evaluated for
a small number of time points [44].
Simulation studies based on real cohort studies have

been frequently used in the statistical literature [41, 46–
51]. Using an existing cohort study allowed us to incorp-
orate complex yet realistic associations into the simu-
lated data. We evaluated varied percentages of missing
data, different missing data mechanisms, and varied
levels of dependencies in the predictors of missing data.
The generalizability of our results is limited since the
simulation study was designed based on a single cohort.
Therefore it would be useful to further explore other
simulation models based on real data scenarios to pro-
vide more evidence regarding the performance of the MI
methods [41].
The MI methods evaluated in our study require the

MAR assumption to produce unbiased estimates [9].
However missing data could also be missing not at ran-
dom, which is when missingness is dependent on both
observed and missing data [52]. Further research on sen-
sitivity analysis methods to assess deviations from MAR
in the longitudinal setting is important [5, 53], however,
was beyond the scope of our paper.

Conclusion
The findings from this simulation study, which was de-
signed based on a longitudinal cohort study, indicate
that FCS and MVNI perform better than the two-fold
FCS in terms of bias and precision, when handling up to
50% missing values in a time-varying covariate with a
non-linear trajectory over time. In a similar longitudinal
setting we would generally recommend the use of MVNI
or FCS, instead of the two-fold FCS algorithm. However,
if faced with convergence issues due to a large number
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of time points or variables with missing values, the two-
fold FCS algorithm would be an appropriate method to
use providing that a suitable time window is used in the
imputation model. Of course, caution is required as
these recommendations are based on a single simulation
study and further research is warranted.
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