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Abstract

Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how
rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these
measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area.
We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To
achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the
Fisher-Kolmogorov model.

Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell
spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with
proliferation rate, λ, and carrying capacity density, K . By analysing temporal changes in cell density in several
subregions located well-behind the initial position of the leading edge we estimate λ and K . Given these estimates,
we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay
and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We
demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer
cells and obtain estimates of D, λ and K . Comparing estimates of D, λ and K for a control assay with estimates of D, λ
and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances
the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively
unaffected by EGF.

Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about
cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to
quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the
addition of growth factors affects these processes individually.
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Background
Scratch assays are commonly used to quantify the poten-
tial for collective cell spreading by taking a spatially uni-
form population of cells on a two-dimensional substrate,
creating an artificial scratch in the monolayer, and then
making observations about the rate at which the remain-
ing population spreads into the vacant region [1–10].
Scratch assays are routinely used since they are technically
straightforward, fast and inexpensive [11]. Data obtained
from scratch assays can be used to improve our under-
standing of drug design, malignant spreading and tissue
repair [11].
A key limitation of scratch assays is the question of

whether they are reproducible since the scratch can be
made with various types of instruments and varying
degrees of pressure, and the assay can be performed on
several different types of substrates. All of these vari-
ables have the potential to affect the results of the scratch
assay. Inspired by these limitations, new platforms to per-
form scratch assays, such as the IncuCyte™ and IncuCyte
ZOOM™ real time live cell imaging assays have been devel-
oped [12]. IncuCyte ZOOM™ assays have the advantage
that the scratch is reproducibly created with a mechani-
cal tool and live images are obtained without the need to
interrupt the experiment for imaging purposes [12].
Typical approaches to quantify IncuCyte ZOOM™ assay

data involve making use of automated features that allow
the user to quantify the proportion of the initially-
scratched area that becomes re-colonised by cells as a
function of time. As the assay proceeds and the cell
population spreads into the initially-vacant area, the pro-
portion of the area covered by cells increases with time.
Typically, this data is presented as a plot of relative
wound density as a function of time [13–15]. The rela-
tive wound density is a ratio of the occupied area of the
initially-scratched area to the total area of the scratch [12].
To illustrate this typical approach we present a series
of images from an IncuCyte ZOOM™ assay with PC-3
cells [16] in Fig. 1. PC-3 cells are a prostate cancer cell line
with high metastatic potential [16, 17]. The experimental
image in Fig. 1(a) shows the initial scratch, and the subse-
quent re-colonisation of the initially-vacant area is shown
in Fig. 1(b)–(d). The data in Fig. 1(e) demonstrates the
temporal variation in the relative wound density, which
is automatically calculated by the IncuCyte ZOOM™
system [12]. While this kind of standard approach for
quantifying IncuCyte ZOOM™ assays can provide useful
information about how quickly a particular cell popula-
tion is able to re-colonise the initially-vacant area, it does
not distinguish between the relative roles of various cel-
lular functions. The collective spreading of a population
of cells is driven by both cell motility and cell prolifera-
tion [1–4, 18]. However, traditional data extracted from
IncuCyte ZOOM™ assays does not give us any indication

of the relative roles of cell motility and cell prolifera-
tion. This additional information could be important in
terms of understanding how a particular growth factor
or a potential drug treatment affects collective spreading
since it is possible that the addition of a growth factor
or drug treatment could affect: (i) cell motility alone, (ii)
cell proliferation alone, or (iii) both cell motility and cell
proliferation, simultaneously.
In this methodology article we describe an alternative

method for interpreting IncuCyte ZOOM™ assay data
using a continuum mathematical model. Our approach
allows us to quantify the rate of cell migration in terms of
an undirected cell diffusivity, D, and the rate of cell prolif-
eration in terms of the proliferation rate, λ, and carrying
capacity density, K . Applying this approach to a suite of
IncuCyte ZOOM™ assay data using PC-3 prostate cancer
cells allows us to obtain estimates of D, K and λ for these
cells. Under control conditions our method gives D ≈
1.32 × 102 μm2/h, K ≈ 1.13 × 10−3 cells/μm2 and λ ≈
5.07 × 10−2 /h, which corresponds to a cell doubling time
of approximately 14 h. We provide additional datasets
where all experiments are repeated with varying concen-
trations of human epidermal growth factor (EGF) [19, 20],
which leads to enhanced collective spreading. Applying
our technique to this additional data indicates that the
EGF acts affects bothD and λ, but notK . In particular, our
results suggest that D increases monotonically with EGF
concentration whereas we observe a nonmonotonic rela-
tionship between λ and EGF concentration, with a maxi-
mumproliferation rate when the assays are treated with 50
ng/mL EGF. Although the techniques described here have
been used previously to calibrate mathematical models to
experimental data from circular barrier assays [18, 21, 22],
this is the first time that IncuCyte ZOOM™ assay data has
been used to calibrate these parameters, and the first time
that this process has been used to quantify how estimates
of D, λ and K depend on the concentration of EGF in an
IncuCyte ZOOM™ assay.

Methods
IncuCyte ZOOM™ Assay
We perform a monolayer scratch assay using the IncuCyte
ZOOM™ live cell imaging system (Essen BioScience, MI
USA). This system measures scratch closure in real time
and automatically calculates the relative wound den-
sity within the initially-vacant area at each time point.
The relative wound density is the ratio of the occupied
area to the total area of the initial scratched region.
All experiments are performed using the PC-3 prostate
cancer cell line [16], which is obtained from the Amer-
ican Type Culture Collection (ATCC, Manassas, USA).
Cells are routinely propagated in RPMI 1640 medium
(Life Technologies, Australia) in 10% foetal calf serum
(Sigma-Aldrich, Australia), with 110 u/mL penicillin, 100
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Fig. 1 Images from the control IncuCyte ZOOM™ assay with PC-3 cells showing, (a) the initial position of the scratch, and the subsequent collective
cell spreading after 12, 24 and 36 h in (b)–(d), respectively. Scale bar corresponds to 300 μm. The results in (e) show the standard way of presenting
IncuCyte ZOOM™ assay data for these experiments as the relative wound density as a function of time. Here we present the average relative wound
density from n = 3 identically prepared experimental replicates. The error bars in (e) indicate one standard deviation about the mean

μg/mL streptomycin (Life Technologies), in plastic flasks
(Corning Life Sciences, Asia Pacific) in 5% CO2 and air in
a Panasonic incubator (VWR International) at 37 °C. Cells
are regularly screened for Mycoplasma (ATCC). Cells are
removed from the monolayer using TrypLE™(Life Tech-
nologies) in phosphate buffered saline, resuspended in
medium and seeded at a density of 20,000 cells per well in
96-well ImageLock plates (Essen BioScience). After seed-
ing, cells are grown overnight to form a spatially uniform
monolayer. We use a WoundMaker™(Essen BioScience) to
create uniform, reproducible scratches in all the wells of
a 96-well plate. After creating the scratch, the medium
is aspirated and the wells are washed twice with fresh

medium to remove any cells from the scratched area.
Following the washes, for the control assay, 100 μL of
fresh medium is added to each well. We also perform a
series of experiments where, following the washes, fresh
medium containing different concentrations of EGF (Life
Technologies) is added to the wells. The concentrations of
EGF we use are: 25, 50, 75, 100 and 125 ng/mL. We will
refer to these assays as EGF-25, EGF-50, EGF-75, EGF-
100 and EGF-125, respectively. Once the fresh medium
is added, the plate is placed into the IncuCyte ZOOM™
apparatus and images of the collective cell spreading are
recorded every 2 hours for a total duration of 46 hours. For
the control assay and each different EGF concentration
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we perform three identically prepared experimental repli-
cates (n = 3).

Image analysis
WeuseMatlab’s Image Processing Toolbox [23, 24] to esti-
mate the position of the leading edge of the spreading cell
population in the IncuCyte ZOOM™ images. The exper-
imental image is imported and converted to greyscale
using the imread and rgb2gray commands, respec-
tively. We detect edges in the images using edge with the
Canny method [25] and automatically-selected threshold
values. Detected edges outside of these threshold val-
ues are ignored. Remaining edges are dilated using the
imdilate command and a structuring element, defined
using strel, with a circular element of size 15. Using
the bwareaopen command with a component size of
10,000 pixels, we remove any remaining vacant spaces in
the image while preserving the vacant scratch. Edge dila-
tion is reversed using the imerode command with the
same structuring element defined previously to erode the
image. Finally, edges within the image are smoothed using
medfilt2 and the area of the remaining vacant space,
A(t), representing the vacant area, is estimated using the
regionprops command.
We calculate the position of the leading edge, which we

define to be the distance between the centre of the experi-
mental domain and the position of the leading edge using

LE(t) = LxLy − A(t)
2Ly

, (1)

where Lx is the horizontal width of the image and Ly is the
vertical height of the image. For all experiments we have
Lx = 1970 μm and Ly = 1430 μm. Eq. (1) allows us to
examine the time evolution of the scratched area in terms
of LE(t), which is the half-width of the scratch (Fig. 1(a)).

Mathematical model
We interpret our experimental results using the Fisher-
Kolmogorov equation [26–28], which is a continuum
reaction-diffusion model describing the spatiotemporal
evolution of cell density in a population of cells where cell
migration is driven by random (undirected) cell motility
and cell proliferation is driven by carrying capacity limited
logistic growth. The Fisher-Kolmogorov equation, and
extensions of the Fisher-Kolmogorov equation, have been
previously applied to in vitro [29–31] and in vivo [32, 33]
data describing collective cell spreading in a range of con-
texts including wound healing [34, 35], tissue repair [3, 4]
and malignant spreading [8–10, 36, 37].
Since our scratch assay takes place on a two-

dimensional substrate (Fig. 1(a)–(c)), we start with the

two-dimensional analogue of the Fisher-Kolmogorov
equation in Cartesian coordinates

∂C(x, y, t)
∂t

= D
(

∂2C(x, y, t)
∂x2

+ ∂2C(x, y, t)
∂y2

)

+λC(x, y, t)
(
1 − C(x, y, t)

K

)
,

(2)

where C(x, y, t) [cells/μm2] is the cell density, or aver-
age number of cells per unit area, at location (x, y) and
time t. For our experiments we have 0 ≤ x ≤ Lx and
0 ≤ y ≤ Ly. There are three parameters in the Fisher-
Kolmogorov equation: (i) the cell diffusivity, D [μm2/h],
(ii) the cell proliferation rate, λ [/h], and (iii) the carrying
capacity density, K [cells/μm2]. The proliferation rate, λ,
is related to the cell doubling time td = loge(2)/λ.We note
that we make the standard assumption thatD, λ and K are
constants [1–4, 29, 34]
Since the initial cell monolayer is spatially uniform and

the initial scratch is made perpendicular to the x-direction
(Fig. 1(a)), we can simplify the mathematical model by
averaging in the y-direction [8–10]. To do this we average
the two-dimensional cell density

C(x, t) = 1
Ly

∫ Ly

0
C(x, y, t) dy, (3)

which allows us to write Eq. (2) as a one-dimensional
partial differential equation

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
+ λC(x, t)

(
1 − C(x, t)

K

)
. (4)

In general, approximating a two-dimensional nonlin-
ear partial differential equation, such as Eq. (2), by an
averaged one-dimensional nonlinear partial differential
equation, such as Eq. (4), can introduce an averaging error.
However, for initial conditions such as ours where the ini-
tial density is independent of the vertical direction, this
error vanishes, and a detailed analysis of this error is pre-
sented elsewhere [38, 39]. The initial condition for Eq. (4)
is given by the width of the scratch (Fig. 1(a))

C(x, 0) =
⎧⎨
⎩
C0 0 ≤ x < 985 − LE(0) μm ,
0 985 − LE(0) ≤ x < 985 + LE(0) μm ,
C0 985 + LE(0) ≤ x ≤ 1970 μm

(5)

where C0 is the initial density of cells in the monolayer
and LE(0) is the initial position of the leading edge. Since
we use a WoundMaker™tool to create uniform scratches
in all experimental replicates, the initial condition, given
by Eq. (5), applies to all experiments and cannot be varied.
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The physical distribution of cells in each experiment
extends well-beyond the Lx×Ly rectangular region imaged
by the IncuCyte ZOOM™ apparatus. Therefore, since the
cells are spatially uniform except for the scratched region,
there will be no net flux of cells across the vertical bound-
aries along the lines x = 0 and x = Lx. We model this by
using zero-flux boundary conditions

∂C(x, t)
∂x

= 0 at x = 0,

∂C(x, t)
∂x

= 0 at x = Lx. (6)

These boundary conditions do not imply that cells are sta-
tionary at x = 0 and x = Lx. Instead, these boundary
conditions imply that the cell density profile is spatially
uniform, ∂C(x, t)/∂x = 0, so that there is no net flux of
cells across the boundaries at x = 0 and x = Lx.
We solve Eq. (4) using a finite difference numerical

method [40]. The spatial domain, 0 ≤ x ≤ Lx, is dis-
cretised uniformly with grid spacing δx, and the spatial
derivatives are approximated using a central-difference
approximation [40]. This leads to a system of coupled non-
linear ordinary differential equations that are integrated
through time using a backward-Euler approximation with
constant time steps of duration δt [40]. The resulting
system of coupled nonlinear algebraic equations are lin-
earised using Picard (fixed-point) iteration, with absolute
convergence tolerance ε [41]. The associated tridiagonal
system of linear equations is solved using the Thomas
algorithm [40]. For all results presented here we always
chose δx, δt and ε so that our numerical algorithm pro-
duces grid-independent results.
We also apply Eq. (4) to some simplified situations

where we focus on the time evolution of the cell density
in small subregions, located well-behind the initial posi-
tion of the scratch, where the cell density is approximately
spatially uniform. This implies that C(x, t) ≈ C(t) within
these subregions [18, 21, 22]. Since the cell density is
approximately spatially uniform we have ∂C(x, t)/∂x = 0,
and the first term on the right of Eq. (4) vanishes and,
subsequently in these subregions, the partial differential
equation simplifies to the logistic equation,

dC(t)
dt

= λC(t)
(
1 − C(t)

K

)
, (7)

whose solution is given by

C(t) = KC(0)
C(0) − e−λt (C(0) − K)

, (8)

where C(0) = C0 is the initial density at t = 0. The simpli-
fication of approximating Eq. (4) by Eq. (7) in subregions
well-behind the leading edge where the cell density is spa-
tially uniform does not imply that cells are stationary in
these subregions. Instead, Eq. (7) represents the situation
where there is no gradient in cell density and cells are free

to move amongst the extracellular space within these sub-
regions. The key advantage of applying this approximation
is that cell motion in these spatially uniform subregions
does not contribute to any temporal changes in cell den-
sity. Instead, when the cell density is spatially uniform, any
temporal change in cell density is solely associated with
the proliferation term in Eq. (4) [18, 21, 22].

Parameter estimation
We estimate the three parameters in the Fisher-
Kolmogorov model using a sequential approach. First,
using cell counting, we estimate the parameters governing
cell proliferation: K and λ. Second, using data describing
the temporal changes in the position of the leading edge,
we estimate the cell diffusivity, D. Although it is possi-
ble to use a different approach, based on a multivariate
regression technique to estimate D, λ and K simultane-
ously, we prefer to estimate these parameters sequentially.
Estimating the three parameters sequentially, one at a
time, emphasises the differences in the interpretation of
these parameters, as well as emphasising the differences
in the mechanisms of cell proliferation and cell motility.
If, instead, a multivariate approach is used to estimate the
three parameters simultaneously, we anticipate that the
interpretation of the mechanisms associated with these
parameters might not be obvious as it is in our approach.

Carrying capacity density
To estimate K we focus on experimental images from the
latter part of the experiment, t = 46 h, where the cell
population has grown to confluence. We identify three
smaller subregions, located well-behind the initial leading
edge, and count the number of cells within each subre-
gion, N . To quantify the variability in our estimate we
analyse three different subregions in each image and count
N in each replicate subregion. Using this data we estimate
the average carrying capacity density as

K = 〈N〉
ASR

(9)

where 〈N〉 is the average number of cells within the subre-
gion of area ASR = 3.789× 104 μm2. To examine whether
EGF has any impact on the carrying capacity density we
estimate K for the control assay and for each experi-
ment treated with a different EGF concentration. Figure 2
shows IncuCyte ZOOM™ images at t = 46 h with the
location of three subregions superimposed. The images
in Fig. 2(a)–(c) show the control, EGF-50 and EGF-100
assays, respectively. We note that the location of all three
subregions in each image is located well-behind the initial
position of the scratch (Fig. 1(a)) so that after t = 46 h
the local density of cells within each subregion has grown
to confluence. To quantify the variability in our estimate



Johnston et al. BMC Systems Biology  (2015) 9:38 Page 6 of 12

Fig. 2 Final time experimental images (t = 46 hours) for three IncuCyte ZOOM™ assays for (a) Control, (b) EGF-50, and (c) EGF-100. The three
coloured boxes indicate the location of the three subregions used to estimate K and λ. Each coloured square within the subregions indicates the
centre of an individual cell in the cell counting step. Scale bar corresponds to 300 μm

of K , we calculate the sample standard deviation for each
EGF concentration, and report results as a mean value
for K , with the variation in our estimate given by plus or
minus one standard deviation about the mean. Results are
summarised in Table 1.

Proliferation rate
The logistic equation, given by Eq. (7), describes the time
evolution of the cell density where there is, on average,
no spatial variation in cell density. To apply the logistic
equation to our data we analyse three subregions within
each IncuCyte ZOOM™ image at several time points dur-
ing the assay. Counting the total number of cells in each
subregion and dividing by the area of the subregion gives
an estimate of the local cell density in that subregion. In
all cases the subregions we considered always started off
with approximately 20–30 cells at t = 0 h. Repeating this
procedure for three different subregions, at fixed loca-
tions, for each experimental replicate, at five different time
points, allows us to calculate the average cell density as a
function of time, C(t). With this data, together with our
previous estimates of K , we find the value of λ in Eq. (8)
that matches our C(t) data across several time points. For
consistency, when we estimate λ we always analyse the
same three subregions that we used previously to esti-
mateK . The location of these three subregions is shown in
Fig. 3. We estimate the initial cell density, C(0), from the
first image taken immediately after the scratch is made at
t = 0 h. Images of the assay in Fig. 3(a)–(e) correspond
to 0, 8, 16, 24 and 46 h, respectively. The location of each
subregion is chosen to be well-behind the initial position
of the leading edge of the population so that the cell den-
sity is approximately spatially uniform locally within each
subregion. In each subregionC(t) increases with time, and
we attribute this increase to cell proliferation. The data in
Fig. 3(f ) shows the time evolution of the average cell den-
sity, C(t), calculated by averaging the three estimates of
cell density from each subregion, at each time point. Using

our previous estimate of K , we estimate λ by matching the
solution of Eq. (7) with the observed C(t) data.
For each EGF concentration we have three sets of data

describing the temporal variation in average cell density
per experimental replicate. For each set of time series data
we use Matlab’s lsqnonlin function, a nonlinear least
squares minimisation routine [42], to estimate λ. To quan-
tify the average proliferation rate we calculate the average
λ value by averaging the three estimates from each exper-
imental replicate. A comparison of the resulting logistic
growth curve using our average estimate of K and λ with
the observed C(t) data is given in Fig. 3(f ) for the EGF-25
experiment, indicating that the solution of Eq. (7) matches
the data reasonably well. To quantify the variability in λ

we report our mean estimate of λ and the variation as
the mean plus or minus one standard deviation. We also
report the mean and variability in the C0 values used to
obtain estimates of λ. Results are summarised in Table 1.

Cell diffusivity
Several different approaches have been used in previ-
ous studies to estimate D from in vitro assays describing
collective cell spreading processes. For example, Treloar
et al. [22] estimate D in a circular barrier assay by apply-
ing two different methods to the same data set. First,
they estimate D using a cell labelling and cell counting
technique to provide an estimate of the cell density pro-
files near the leading edge of the spreading population.
Treloar et al. [22] calibrate the solution of a partial dif-
ferential equation to that data to give an estimate of D
whichmatches the position and shape of the spreading cell
density profile. Second, using the same data set, Treloar
et al. [22] use automated leading edge image analysis
[23, 24] to quantify temporal changes in the position of the
leading edge of the spreading cell density profile without
counting individual cells. Treloar et al. [22] calibrate their
model to this leading edge data to obtain a second esti-
mate of D. Given that the two approaches implemented
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Table 1 Estimated K , λ, D and C0 values for PC-3 cells for different EGF concentrations. Results are reported as a mean, with the estimate of the variability given in the parenthesis
Experiment K (cells/μm2) λ (/h) D (μm2/h) C0 (cells/μm2)
Control 1.13×10−3 (1.11×10−3 − 1.14×10−3) 5.07×10−2 (4.12×10−2 − 6.03×10−2) 1.32×102 (1.05×102 − 1.98×102) 6.84×10−4 (5.77×10−4 − 7.91×10−4)
EGF-25 1.04×10−3 (1.01×10−3 − 1.07×10−3) 5.59×10−2 (4.40×10−2 − 6.79×10−2) 1.59×102 (1.27×102 − 2.38×102) 6.42×10−4 (5.01×10−4 − 7.83×10−4)
EGF-50 1.12×10−3 (1.11×10−3 − 1.13×10−3) 6.94×10−2 (5.60×10−2 − 8.27×10−2) 1.53×102 (1.21×102 − 2.18×102) 7.79×10−4 (6.32×10−4 − 9.26×10−4)
EGF-75 1.12×10−3 (1.11×10−3 − 1.13×10−3) 5.74×10−2 (5.44×10−2 − 6.05×10−2) 1.64×102 (1.30×102 − 2.44×102) 6.81×10−4 (5.75×10−4 − 7.87×10−4)
EGF-100 1.16×10−3 (1.11×10−3 − 1.20×10−3) 6.13×10−2 (5.17×10−2 − 7.08×10−2) 2.06×102 (1.65×102 − 3.12×102) 7.12×10−4 (6.10×10−4 − 8.15×10−4)
EGF-125 1.11×10−3 (1.09×10−3 − 1.12×10−3) 5.48×10−2 (5.35×10−2 − 5.62×10−2) 2.40×102 (1.90×102 − 3.51×102) 7.68×10−4 (6.55×10−4 − 7.68×10−4)
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Fig. 3 a-e Time evolution of an EGF-75 IncuCyte ZOOM™ assay. Images taken after (a) 0, (b) 8, (c) 16, (d) 24, and (e) 46 h after the scratch was
performed. The three coloured boxes indicate the location of the three subregions used to calculate K and λ. Each coloured square within the
subregions indicates the centre of an individual cell in the cell counting step. Scale bar corresponds to 300 μm. f Comparison of the average
experimental cell density C(t) (crosses) and the logistic growth curve using our estimates of K and λ (solid)

by Treloar et al. [22] produce similar estimates of D, here
we choose to estimate D using a similar technique based
on leading edge data since this is the most straightforward
approach which avoids the need for labelling and counting
individual cells within the spreading population.
Figures 4(a)-(d) show IncuCyte ZOOM™ images at 0,

10, 20 and 30 h, respectively. The position of the two
detected leading edges of the spreading population is
superimposed on each image. A visual comparison of how
the position of the detected leading edges changes with
time suggests that the initially-vacant region closes sym-
metrically with time. The edge detection results allow
us to calculate the area of the vacant region, A(t), and
with this information Eq. (1) allows us to estimate the
half-width, LE(t), which is decreasing function of time.
Previously, Treloar et al. [22, 24] showed that the location
of the automatically detected leading edge corresponds to
a cell density of approximately 2% of the carrying capacity
density.
Given our previous estimates of K and λ, and assum-

ing that the position of the detected leading edge cor-
responds to the location where the density is 2% of the
carrying capacity, we use Matlab’s lsqnonlin function
to find an estimate of D that minimises the difference
between the observed time series of LE(t) and the time
series of LE(t) data from the numerical solution of Eq.

(4). We present an example of the match between the
experimental measurements of LE(t) and numerical pre-
diction of LE(t) in Fig. 4(c). For all time points, the
numerical estimate of LE(t) is always within one standard
deviation of the mean of the experimental measurements.
Given our estimates of D, λ and K , we can use our numer-
ical solution of Eq. (4) to explore how C(x, t) varies across
the entire width of the domain, for the duration of the
assay, as illustrated in Fig. 4(f ). These profiles show that
the cell density remains approximately spatially uniform
well-behind the initial location of the scratch. In fact, we
have indicated the position of the location of the various
subregions used to estimate K and λ on the profiles in
Fig. 4(f ), and we see that the predicted cell density pro-
file is spatially uniform, ∂C(x, t)/∂x = 0, at these locations
for the duration of the assay, which is visually consistent
with the subregions presented in Fig. 2. The cell density
in the three subregions well-behind the initial location
of the scratch increases with time owing to cell prolif-
eration. These profiles also show the cell density front
near the location of the scratch moves inward to close the
initially-scratched region with time.
Using our approach we calculate an average value of

D by estimating the cell diffusivity for each experimen-
tal replicate and then averaging the results. We note that
Treloar et al. found that varying theMatlab edge detection
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Fig. 4 a-d Indicate the area of remaining vacant space, A(t), as determined by the edge detection algorithm at a 0, b 10, c 20, and d 30 h for the
control assay. The position of the detected leading edge is given in green. The straight vertical lines superimposed on a (white) indicate the average
width of the scratch, 2LE(t). Scale bar corresponds to 300 μm. e Average LE(t) data estimated from the control assay experimental images (blue).
The error bars correspond to one standard deviation about the mean. Numerical LE(t) data (red), corresponding to the numerical solution of Eq. (4)
using the relevant estimates of D, λ and K (Table 1). (f) Evolution of C(x, t) profiles at t = 0, 10, 20, 30 h corresponding to the numerical solution of
Eq. (4) using the relevant estimates of D, λ and K (Table 1). Arrows indicate the direction of increasing time. Numerical solutions of Eq. (4) correspond
to δx = 1 μm, δt = 0.1 h and ε = 1 × 10−6. The vertical lines show the locations of the subregions where the estimates of λ and K were obtained

threshold parameters led to a small variation in the posi-
tion of the detected leading edge corresponding to a cell
density in the range of approximately 1–5% of the car-
rying capacity density [24]. To quantify the variability
in our estimate of D we repeated the edge detection by
assuming that the position of the detected leading edge
corresponds to both 1 and 5% of the carrying capacity
density. Results are summarised in Table 1. We note that
the maximum value of D is obtained by assuming that the
detected leading edge corresponds to 5% of the carrying
capacity since this upper bound implies additional spread-
ing. Conversely, the minimum value of D is obtained by
assuming that the detected leading edge corresponds to
1% of the carrying capacity since this lower bound implies
less spreading.

Results
By applying the parameter estimation procedures
described previously, we obtain estimates of K , λ and
D, as well an estimates of the variability in these values.
These results are summarised in Table 1. Comparing our
estimates of K , λ and D for each assay with a different
concentration of EGF provides us with information about

how EGF affects cell proliferation and cell motility for the
PC-3 cell line. Data in Table 1 indicates that K varies by
no more than approximately 8% between the different
experiments with different EGF concentrations relative
to the control experiment. In comparison, our estimates
of λ and D vary by approximately 37 % and 82 %, respec-
tively, between different experiments with different EGF
concentrations, relative to the control experiment. These
results imply that EGF affects both the rate of cell motility
and the rate of cell proliferation; however, EGF appears to
have a smaller influence on the carrying capacity density,
suggesting that it has minimal impact on the physical
shape and maximum packing density of PC-3 cells.
Results in Table 1 suggest that we observe an increase

in the rate of proliferation with small concentrations of
EGF. However, there appears to be a reduction in the
rate of cell proliferation at larger concentration of EGF,
implying that there is an optimal stimulation of prolifer-
ation at an EGF concentration of 50 ng/mL. This kind of
nonmonotonic response to EGF has been observed in pre-
vious experiments involving both PC-3 [17] and other cell
types [43]. However, unlike these previous studies [17, 43],
our approach allows us to estimate how EGF affects both
cell migration and cell proliferation separately.
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Results in Table 1 suggest that EGF significantly
enhances cell motility, D. However, unlike the response
in λ, our results suggest that the diffusivity of PC-3 cells
appears to be an monotonically increasing function of
EGF for the concentrations of EGF that we consider.

Discussion and conclusion
In this work we provide an alternative method for
analysing IncuCyte ZOOM™ assays [12]. The traditional
approach for analysing IncuCyte ZOOM™ assays is to
report the temporal variation in the relative wound den-
sity (Fig. 1), which is the ratio of the occupied area to
the initially-vacant area of the scratch [13–15]. While
this data allows us to quantify the rate of collective cell
spreading, it does not provide any quantitative insight
into the relative roles of different mechanisms that drive
collective cell spreading. As an alternative, we present
a method which allows us to analyse standard images
from IncuCyte ZOOM™ assays by interpreting the results
quantitatively using the Fisher-Kolmogorov equation
[26, 27]. Our approach provides a quantitative measure
of the relative roles of cell migration and cell prolifera-
tion by estimating the carrying capacity density,K , the cell
proliferation rate λ, and the cell diffusivity, D.
To estimate K we focus on images from the latter part

of the IncuCyte ZOOM™ assay, t = 46 h, by which time
the cell monolayer has grown to confluence. We count
the number of cells in several subregions located well-
behind the initial position of the scratch. Dividing the
cell counts by the area of the subregion gives us an esti-
mate of the carrying capacity density, K . To examine the
influence of our choice of the area of the subregion, we
also examine the sensitivity of our estimate of K for the
control assay to variations in the area of the subregion.
For example, with ASR = 3.789 × 104 μm2, we obtain
K = 1.13 × 10−3 ± 0.01 × 10−3 cells/μm2 for the control
assay. Repeating the procedure and doubling ASR gives an
estimate of K which is within 2% of the original estimate.
Therefore, our estimate of K is practically insensitive to
the size of the subregion.
To estimate λ we count the numbers of cells in sev-

eral subregions, located well-behind the initial position of
the scratch, at several time points during the assay. This
allows us to quantify how the cell density behind the ini-
tial scratch increases with time to reach carrying capacity
density. Using this information we calibrate the solution
of the logistic equation, using our previous estimate of K ,
to that data, which provides an estimate of λ. To estimate
λ we focus on relatively early time data, t = 0, 8, 16, 24
and 46 h, since we anticipate that most of the prolifer-
ation activity occurs before the cell population reaches
confluence. Using this approach for the control assay we
obtain λ = 5.07 × 10−2 ± 0.96 × 10−2 /h. To examine
the influence of our choice of time points we re-estimate

λ using data at t = 0, 8, 16, 24, 30 and 46 h, giving λ =
5.53 × 10−2 /h, which is well-within the variability of
the original estimate. Since the process of identifying and
counting cells in various subregions is the most time-
consuming aspect of our method together with the fact
that including additional data at these intermediate times
does not significantly alter our estimates of λ, we con-
clude that our choice of focusing on relatively early-time
observations is adequate to provide estimates of λ.
Given our estimates of λ and K , we then estimate

D by solving the Fisher-Kolmogorov equation numeri-
cally and finding a value of D which provides the best
match between the position of the leading edge observed
in the experiments and the position of the leading
edge predicted by the numerical solution of the Fisher-
Kolmogorov equation. Using this approach, for our con-
trol assays, we estimate D ≈ 1.32 × 102 μm2/h, λ ≈
5.07 × 10−2/h and K ≈ 1.13 × 10−3 cells/μm2 for the
PC-3 prostate cancer cell line [16]. Since typical values of
D reported in the literature vary in the range of approx-
imately 101 - 103 μm2/h [3, 4, 21, 22, 29], our estimate
of D seems reasonable since it is well within previously
reported values for different cell lines.
In addition to analysing the control assay, we also esti-

mate D, λ and K for a suite of assays where the cell culture
medium is supplemented with different concentrations of
EGF (25, 50, 75, 100 and 125 ng/mL) [19, 20]. Using our
approach we estimate D, λ and K for each EGF concen-
tration, which provides insight into how EGF affects the
rate of cell migration, the rate of cell proliferation and the
carrying capacity density for PC-3 cells in these assays. In
summary, we find there is no consistent trend in our esti-
mates of K with the different EGF treatments. The max-
imum variability in our estimate of K between different
EGF concentrations is approximately 8%, indicating that
the carrying capacity density is relatively unaffected by
EGF. In contrast, we find that our estimates of D and λ are
both sensitive to EGF. The maximum variability in D and
λ amongst different EGF treatments is approximately 82%
and 37%, respectively. Therefore, our analysis suggests
that EGF affects both cell motility and cell proliferation,
with the impact on cell motility being more pronounced
than the impact on cell proliferation. Interestingly our
results suggests that we have a monotonic increase of D
with EGF concentration whereas we have a nonmono-
tonic relationship between λ and EGF concentration. We
observe amaximum stimulation of proliferation at an EGF
concentration of 50 ng/mL.
Similar to other applications of the Fisher-Kolmogorov

equation [1–4, 21, 29, 31, 34], we have made the stan-
dard assumption that the parameters in each experiment,
D, λ and K , are constants which do not vary with posi-
tion, time or cell density. Recently, there has been con-
siderable interest in the theoretical physics and applied
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mathematics literature regarding the analysis of exten-
sions of the Fisher-Kolmogorov equation where D and λ

vary with position, time or cell density [44, 45]. Although
these extensions are mathematically interesting, we have
not attempted to apply such an extension here since the
precise form of the putative spatial or temporal depen-
dence is unknown, and at this stage, we anticipate that
more detailed experimental data would be required to cal-
ibrate these more detailed mathematical models. We leave
this extension as a potential topic for future analysis.
The question of whether there is any role for chemo-

taxis in this particular IncuCyte ZOOM™ assay has not
been addressed in this work. Since we have been to obtain
reasonable estimates for D, λ and K by calibrating the
solution of the Fisher-Kolmogorov equation to our exper-
imental data it is not obvious that we need to consider
applying amore complicatedmodel incorporating chemo-
tactic cell migration at this time. However, it is possible
that the cells produce a chemical signal, G(x, t), which as
a result of diffusion and decay, could lead to the formation
of a chemical gradient that stimulates additional directed
cell motion [46]. An extension of the Fisher-Kolmogorov
model which incorporates these effects can be written
as [10, 28, 46, 47]

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
− χ

∂

∂x

(
C(x, t)

∂G(x, t)
∂x

)

+ λC(x, t)
(
1 − C(x, t)

K

)
, (10)

∂G(x, t)
∂t

= Dg
∂2G(x, t)

∂x2
+ k1C(x, t) − k2G(x, t), (11)

where χ is the chemotactic sensitivity coefficient, Dg
is the diffusivity of the chemotactic chemical, k1 is the
rate at which cells produce the chemotactic chemical,
and k2 is the rate at which the chemotactic chemical
undergoes natural decay. This model can be used to
simulate chemoattraction by setting χ > 0 or chemore-
pulsion by setting χ < 0 [28, 46, 47]. Comparing
this chemotactic extension of the Fisher-Kolmogorov
equation with the standard model, Eq. (4), indicates that
there are an additional four parameters to estimate in
order to apply the chemotaxis model: χ , Dg , k1 and
k2. Given that standard applications of the IncuCyte
ZOOM™ assay do not attempt to make any measurement
of the presence of any putative chemotactic factor, G(x, t)
[13–15], nor have we made any measurements of χ , Dg ,
k1 or k2, we do not attempt to calibrate this more compli-
cated chemotaxis model to our IncuCyte ZOOM™ assay
data. Instead, we suggest that if this kind of chemotaxis
model were to be applied to an IncuCyte ZOOM™ assay
data set, additional experimental measurements of these
kinds of details are warranted.
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