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Abstract
This paper investigates the dynamics of Ebola virus transmission in West Africa
during 2014. The reproduction numbers for the total period of epidemic and for
different consequent time intervals are estimated based on a simple linear
model. It contains one major parameter - the average infectious period that
defines the dynamics of epidemics.
Numerical implementations are carried out on data collected from three
countries Guinea, Sierra Leone and Liberia as well as the total data collected
worldwide. Predictions are provided by considering different scenarios
involving the average times of infectiousness for the next few months and the
end of the current epidemic is estimated according to each scenario.
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Introduction
The outbreak of the 2014 Ebola virus epidemic in West Africa, 
started in late 2013, does not seem to be under control and accurate 
predictions appear to be extremely difficult. The major reason for 
this might be due to unstable treatment conditions that provide dif-
ferent reproduction numbers at different periods. However, there 
are also other challenges related to the mathematical modeling of 
this epidemic. To address these challenges, several new models 
have been suggested that show quite different results, we note a few 
of them published recently1–8.

In this article we introduce a new model to study the dynamics of 
the current outbreak by considering the average infectious period 
as a time-dependent parameter. It is derived from the well stud-
ied SIR (Susceptible-Infectious-Recovery) model with time delay 
(e.g. 9,11), where the decrease in the number of susceptible popula-
tion in compartment S is the major force stopping epidemics. The 
susceptible population S is often considered as a whole population. 
A major drawback of this model, in terms of the current epidemic, 
is that the population infected constitutes a very small proportion of 
the total population, a very small decrease in S has almost no effect 
on compartment I.

We discuss how this drawback could be tackled and introduce a 
new model that uses only compartment I. This leads to a linear 
model having some similarities to those models based only on 
transmission rates from infectious population at different genera-
tions (e.g. 6). Our main goal is to fit data by estimating fewer and 
most influential parameters without considering many other issues 
like the infectiousness in hospitals and death ceremonies.

This in addition, allows us to have a more robust model with 
easily interpreted parameters that can be used for more accu-
rate predictions. The main parameter in this model is the aver-
age infectious period τ

2
 (time from onset to hospitalization) that 

defines the dynamics of infectious population. This parameter can 
also be considered as a control parameter in the development of 
control models dealing with the spread of infection.

We calculate the basic reproduction numbers R
0
 for each coun-

try (Guinea, Sierra Leone and Liberia) as well as the total Ebola 
data worldwide. We also provide predictions corresponding to 

different scenarios by considering different values for τ
2
 for future 

time periods.

Methods
We use the notation I

a
(t) for the number of “active” infectious 

population at time t; it mainly represents the total number of infec-
tious population that are not yet hospitalized. C(t) and D(t) are the 
cumulative number of infected cases and deaths, respectively. The 
population density of a country is denoted by D. This is used in 
the definition of the infection force of the disease with coefficient 
β. Moreover, μ stands for the natural death rate of the population, α 
for the death rate due to disease, and τ

1
 for the average latent period 

(in days) that infected individuals become infectious and τ
2
 for the 

average infectious period (in days).

The main equations of our model are as follows (see Appendix for 
details):
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Here ω is a gamma (cumulative) distribution function (with p.d.f - ω
p
) 

for deaths due to disease8; for the values of the parameters see 
Appendix. We note that there are only three parameters that need to 
be estimated to fit data for cumulative number of infected and death 
cases. These parameters are:

•	 α - the death rate due to disease;

•	 β - the coefficient of the force of infection;

•	 τ
2
 - the average infectious period.

Here α and β are continuous variables, τ
2
 is a discrete variable with 

integer values (days).

Basic Reproduction Number - R
0
. We calculate the basic reproduc-

tion number by considering the stationary states in (1) as follows:

           

2
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τβ µ µ αω
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=

= − − −∑D

                  
(2)

            Amendments from Version 1

This second version has two new references 5 and 10. Moreover, 
in Section “Methods” the second paragraph in ‘The effective 
reproduction numbers’ subsection has been replaced by two new 
paragraphs.

See referee reports
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Since the natural death rate μ is close to zero; that is, 1– μ ≈ 1, from 
(2) we have

2 1

0 2

0

[ ( )].
i

R i
τ

β τ α ω
−

=

≈ − ∑D

Moreover, since 2 1
0 ( ) 1τα ω−

=∑ <i i  , the reproduction number R
0
 ≈ βDτ

2
. 

This means that the reproduction number depends almost linearly 
on τ

2
.

The effective reproduction numbers - R
k
, k ≥ 1. The effective 

reproduction numbers R
k
 are considered on several consecutive 

time intervals Δ
k
 = [t

k
, t

k+1
], k = 1, 2, …, with corresponding values 

of τ
2
. They are calculated by the same formula as R

0
.

Here we make a reasonable assumption that the transmission rate 
βD describes the interaction of population (that is, in some sense, 
related to the local conditions and the life style) and should become 
relatively stable in the long term for a particular country. Then, the 
efforts in preventing the spread of infection are mainly observed in 
the change (decrease) in the value of τ

2
.

The infection rate is the key factor defining the dynamics of infec-
tious population. The study5 shows that the infection rate is a lin-
early decreasing function of the total case reported. In 10 the 1995 
Ebola outbreak in Congo is considered where the transmission 
coefficient β is assumed to decrease exponentially due to control 
interventions. In our model the transmission of infection depends 
on two parameters β and τ

2
. Here β (having slightly a different 

meaning to what was used in 10) is constant and the dynamics of 
infectious populations depends on the change in τ

2
.

Therefore, to calculate the effective reproduction numbers, we fit 
data and find the optimal values for α and β, that are constant over 
the whole period, and optimal values τk

2
  on each interval Δ

k
. Then 

R
k
 is calculated by formula (2) setting τ2 = τk

2.

The sequence of optimal values τ1
2
,

 τ2
2
,…, is considered as a method 

to describe the effectiveness of measures applied for preventing the 
spread of infection. This sequence very much defines the reproduc-
tion numbers on each consecutive time interval and therefore the 
dynamics of the infected population. It also allows us to consider 
future scenarios in terms of possible average infectious periods (i.e. 
times from onset to hospitalization).

Results and discussion
Data were retrieved from the WHO website (http://www.who.
int/csr/disease/ebola/situationreports/en/) for the cumulative 
numbers of clinical cases (confirmed, probable and suspected) 
collected till 11 November 2014. In all numerical experiments, 
the second half of the available data for each country is used for 

Table 1. Results of best fits: optimal values for 
parameters α, β and τ2. R0 is the reproduction number.

Country α β τ2 (days) R0

Guinea 0.632 0.00321 10 1.09

Sierra Leone 0.371 0.00508 3 1.22

Liberia 0.556 0.01090 3 1.17

World 0.501 0.00362 7 1.21

fitting the cumulative numbers of infected cases and deaths. The 
global optimization algorithm DSO in Global And Non-Smooth 
Optimization (GANSO) library12,13 is applied for finding optimal 
values of parameters.

First we consider the whole period of infection in each country and 
find the best fit in terms of three variables α, β and τ

2
 (Problem 

(DF
1
) in Appendix). The results are presented in Table 1. Although 

from Figure 1 it can be observed that the best fit for Guinea is not 
as good as for the other cases, these results provide some estimate 
for the reproduction number R

0
 for a whole period of infection till 

11-Nov-2014. In all cases (except Guinea), R
0
 is around 1.20 and 

for Guinea - 1.09. We note that the dynamics of infected population 
is much more complicated (especially in Guinea) which suggests 
that the reproduction number has been changing since the start of 
Ebola-2014 in almost all countries. This fact has been studied in 8 
in terms of the instantaneous reproduction number over a 4-week 
sliding windows for each country (see also the next section for dif-
ferent values for τ

2
).

The effective reproduction numbers
According to (2), the basic reproduction number is mainly deter-
mined by β and τ

2
. Since in our model parameter τ

2
 takes discrete 

values (days) it would be interesting to study the change of this 
parameter over time while keeping β the same for the whole period. 
This approach makes it possible to consider different scenarios for 
future developments regarding the change in this parameter and to 
provide corresponding predictions.

We consider three consequent time intervals Δ
k
 = [t

k
, t

k+1
] (k = 1, 2, 3) 

for each country and find optimal values α, β and τk
2  (k = 1, 2, 3) 

(Problem (DF
2
) in Appendix). The results are presented in Table 2. 

The last time point t
4
 is 11-Nov-2014. The values of t

1
, t

2
, t

3
 are as 

follows: 22-March, 23-May and 20-July for Guinea; 27-May, 20-
June and 20-August for Sierra Leone; 16-June, 20-July and 07-Sept 
for Liberia; and 22-March, 23-May and 07-Sept for the total data 
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Table 2. Results of best fits: the (effective) reproduction numbers 
Rk and average infectious period τk

2 (in days) for different intervals 
Δk, k = 1, 2, 3. The optimal values for α and β are also provided; they 
are constant for a whole period.

Country α β R1 (τ
1
2) R2 (τ

2
2) R3 (τ

3
2)

Guinea 0.667 0.00527 0.86 (4) 1.25 (6) 1.07 (5)

Sierra L. 0.353 0.00366 1.72 (6) 1.17 (4) 1.17 (4)

Liberia 0.526 0.00688 1.45 (6) 1.23 (5) 0.99 (4)

World 0.489 0.00519 1.04 (4) 1.29 (5) 1.04 (4)

Figure 1. The best fits for the cumulative numbers of infected cases and deaths in Guinea, Sierra Leone, Liberia and worldwide by 
considering three parameters α, β and τ2 (for the values see Table 1). The lines represent the best fits, red and black circles represent 
the data.
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(World). Each interval Δ
k
 has its own reproduction number R

k
 that 

defines the shape of the best fits presented in Figure 2.

In all cases the effective reproduction number is still greater than 1. 
In Liberia it shows a decrease from 1.45 to 0.99 and this can be seen 
in quite a noticeable decrease in the number of cumulative infected 
cases (Figure 2).

Future scenarios
We consider only the cumulative number of infected population 
worldwide. From Table 2 it can be observed that the number τ

2
 

has changed as 4, 5 and 4 from 22-March to 11-Nov. We keep 
this initial best fit (the optimal values of parameters (World) are 
in Table 2) and consider different scenarios for possible changes 
of this parameter in the future while keeping the values of α and β 
unchanged.

The future time intervals are designed as follows: the first inter-
val Δ

1
 is 12/Nov/2014–31/Dec/2014, followed by each next month 

Δ
2
 – Δ

4
, and the last interval Δ

5
 starts from 1-Apr-2015. The results 

are presented in Table 3. The reproduction numbers are 0.778 (for 
τ

2
 = 3), 1.035 (for τ

2
 = 4) and 1.284 (for τ

2
 = 5).

Figure 2. The best fits for the cumulative numbers of infected cases and deaths in Guinea, Sierra Leone, Liberia and worldwide by 
considering parameters α, β and three consequent time intervals with different values τk

2, k = 1, 2, 3 (for the values see Table 2). The 
lines represent the best fits, red and black circles represent the data.
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In the best scenario in Table 3 it is assumed that the current trend 
stays stable (τ

2
 = 4) and a 25 percent decrease in the hospitalization 

time starts from 1-Jan-2015, then the epidemic may continue till 
Apr-2015 with the total number of infected cases reaching 31,000.

The worst case considered in Table 3 assumes that during the next 
two months (from 12-Nov-2014 to 31-Jan-2015) the average time 
to hospitalization increases by 25 percent (that is, from 4 days to 5 
days) and then gradually decreases in Feb-Mar-2015 (from 5 days 
to 4 days), in Apr-2015 (from 4 days to 3 days) and stays at this 
level afterwards. In this case, the Ebola outbreak could be stopped 
by July-2015 with the total number of infected cases reaching 
166,000.

Table 3. The cumulative number of infected population 
according to different scenarios corresponding different values 
τk

2
+3 for time intervals Δk. The starting values of parameters (α, 

β and τk
2, k = 1, 2, 3) are in Table 2 (World). The first time interval 

(Δ1) is 12/Nov/2014–31/Dec/2014, followed by each next month 
and the last interval (Δ5) starts from 1/Apr/2015. The last column 
presents the date for the end of Ebola epidemic (see also Figure 3) 
with corresponding number of cumulative infected population Cmax 
(-/∞ means no stabilization). The version τk

2 = 4 for all k means the 
current trend remains unchanged. The reproduction number for  
τ2 = 3 is R = 0.778; it is less than 1 which leads to stabilization. For 
corresponding reproduction numbers for τ2 = 4 and 5 see Table 2 
(World).

τ4
2 τ5

2 τ6
2 τ7

2 τ8
2

End/Cmax

4 4 4 4 4 -/∞

4 3 3 3 3 Apr-2015/31,000

4 4 3 3 3 Apr-2015/39,000

4 4 4 3 3 May-2015/47,000

4 4 4 4 3 May-2015/57,000

4 5 4 3 3 Jun-2015/69,000

4 5 4 4 3 Jun-2015/90,000

4 5 5 4 3 Jun-2015/135,000

5 4 4 3 3 Jun-2015/102,000

5 5 4 3 3 Jul-2015/120,000

5 5 4 4 3 Jul-2015/166,000

Figure  3.  The  cumulative  number  of  infected  population 
according to different scenarios corresponding different values 
τk

2
+3 for  time  intervals Δk. The starting values of parameters (α, β 

and τk
2, k = 1, 2, 3) are in Table 2 (World). The first time interval (Δ1) 

is 12/Nov/2014–31/Dec/2014, followed by each next month and the 
last interval (Δ5) starts from 1/Apr/2015. The reproduction number for 
τ2 = 3 is R = 0.778; it is less than 1 which leads to stabilization. For 
corresponding reproduction numbers for τ2 = 4 and 5 see Table 2 
(World).
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Appendix

Model
The idea behind the model introduced in this paper is related to the 
SIR model with time delay. Since we are going to implement it on 
available daily data, a discrete version of this model is considered 
with the step-size one day. Moreover, since the “recovered” popula-
tion is not our focus, we will only consider equations related to sus-
ceptible (S) and infectious (I) individuals. The most commonly used 
SIR model1 in the literature is provided below (see, for example,8):

             ( 1) (1 ) ( ) ( ( ), ( ));S t S t F S t I tλ µ+ = + − −                  (3)

     
1

1 1( 1) (1 ) ( ( ), ( )) (1 ) ( ).I t F S t I t I tτµ τ τ µ α γ+ = − − − + − − −      (4)

Here λ is the recruitment of the population; μ is the natural death 
rate of the population; α is the death rate due to disease; γ is the 
recovery rate; and τ

1
 is the latent period that infected individual 

becomes infectious.

The fraction (1–μ)τ
1 represents the survival rate of population over 

the period of [0, τ
1
] (in continuous-time case it is equivalent to e–μτ1). 

Below we examine this model in detail and develop an improved 
model.

Susceptible individuals. Equation (3) describes the dynamics of 
susceptible individuals S(t). This equation “keeps” the number of 
infectious individuals I(t) bounded. For example, when the basic 
reproduction number is greater than 1, there exists8 an endemic 
equilibrium (S*, I*) and S(t) → S*, I(t) → I* as t → ∞. In the case 
when the birth rate is zero (λ = 0) the relation I(t) → 0 suggests that 
S(t) → 0.

Thus according to this model the epidemic ends because the number 
of susceptible individuals S(t) decreases over time and the effective 
reproduction number (as a function of time) becomes less than 1 at 
some stage; that is, the number of newly infected population F(S(t), 
I(t)) decreases thanks to the “enough” decrease in the number of 
susceptible individuals (while I(t) still increases). This might be 
applicable to epidemics in early 1900s but it is definitely not appli-
cable to recent ones.

This issue significantly restricts the application of the SIR model for 
the study of the current Ebola virus epidemic. Below we consider 3 
possibilities to overcome this difficulty.

1. The simplest way would be to use a “relatively small” number 
S(0) for a possible number of susceptible individuals that may 
become infected. This approach has been implemented in1 where 
the total population size in each country (Guinea, Sierra Leone and 
Liberia) was assumed to be 106 individuals.

2. An interesting (and most reliable in our opinion) approach would 
be considering “relatively small” number of population S(0) as 
a variable that needs to be estimated. We have implemented this 
approach and the results show that currently available curve/data 
is not “long” enough to uniquely determine S(0); that is, almost 
the same quality of data fit can be achieved for different numbers 
S(0) (we have tried 50,000, 100,000 and 200,000) leading to differ-
ent numbers of “stabilized” cumulative infected cases and infection 
periods. Taking this factor into account, we do not consider this 
approach, however we note that it might be quite possible soon with 
the availability of more data points.

3. In this paper we adopt another approach by neglecting the com-
partment S completely and leaving just the compartment I. The 
force of infection F(S, I) in this case is the main factor to be deter-
mined. We take this function in the form

                                  F(S, I) = βDI                                            (5)

where D is the population density of a particular country. In a more 
general setting, one would involve functions nonlinear in I (like 
F(S, I) = βDIξ with ξ ≤ 1). However, since the infectious popula-
tion I is a very small portion of the total population, function F can 
be assumed linear at least in early stages of epidemics. In this case 
equation (4) can be represented in the form

        I(t + 1) = (1 – μ)τ
1 βDI(t – τ

1
) + (1– μ – α – γ)I(t).              (6)

The major drawback of this model is that I may growth infinitely 
if the reproduction number is greater than 1; in this model there 
is no variable/parameter (like S(t) in SIR) that could force I to 
decrease. On the other hand we believe that it can better describe the 
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Data fitting: Optimization Problems
Main parameters. We have formulated the dynamical system 
(7),(8),(9). Given the observed cumulative number of infected cases 
- C0(t) and cumulative number of death cases - D0(t), the parameters 
of the systems can be estimated by the best fit. Before formulating 
this problem we discuss the parameters to be estimated.

The density D and the natural death rate of the population - μ 
is available for each country. We set D = 41, 80, 36 and 50 for 
Guinea, Sierra Leone, Liberia and the worldwide data, respec-
tively. The natural death rate is around 10 deaths for 1000 pop-
ulation per year (1 percent yearly) for all the three countries. 
Thus in all numerical implementations, the daily rate μ  is set to be 
0.01/365 = 0.0000274. It is reasonable to have the same aver-
age latency period - τ

1
 for infected individual to become infec-

tious. The previous studies (e.g. 7) suggest that it is between 2–21 
days with the mean of 11.4 days. Our numerical experiments 
show that the values between 6–8 provide better results; we set 
τ

1
 = 6 in all cases.

Parameters of the gamma distribution can be taken from7. We set

                   

1( ) , 10, 1.3333
( )

a
a bx

p
bx x e a b

a
ω − −= = =

Γ  
(10)

with mean value 7.5. Note that the choice of values a and b within 
reasonable intervals, by keeping the mean value the same, has 
almost no effect on the quality of data fitting. Taking into account 
this fact, the parameters of the gamma distribution are chosen as 
in (10). In all the calculations, we set n=35 (days) in (9) (note that 
for large i function values ω(i) are almost zero).

Initial values I
a
(t), t ≤ 1, for the equation are chosen in the form

                               I
a
(t) = ξC0(1), for all t ≤ 1.                           (11)

where C0(1) is the actual cumulative infectious. Numerical experi-
ments show that the choice of ξ in the interval 0.4–0.7 has very 
little impact on the quality of data fitting. We set ξ = 0.4 in all cases 
except Liberia for which the value 0.7 was better. Accordingly, we 
do not consider ξ as a variable and set the above mentioned values 
for each country/data.

Therefore, the main parameters that define the dynamics of Ebola 
epidemics in different countries are α - the death rate due to disease, 
β - the coefficient of the force of infection and τ

2
 - the average infec-

tious period.

Data fitting. We consider data collected till 11 November 2014 for 
the cumulative number of infectious (confirmed, probable and sus-
pected) and death individuals; they will be denoted by C0(t) and D0(t), 

behavior of an infected population in “small” time intervals and 
provide more accurate reproduction numbers.

Active infectious population. Now we discuss the infectious popu-
lation and equation (6) in more detail. We call “active infectious 
populations” at time t the infected population that are infectious at 
that time but are not hospitalized yet. Denote by I

a
(t) the number of 

active infectious populations at time t. We will rewrite equation (6) 
in terms of I

a
.

Denote by τ
2
 the average infectious period; that is, time from onset 

(τ
1
) to hospitalization. Then, an infected person is assumed to be 

active infectious during the period [τ
1
, τ

1
 + τ

2
]. Since τ

2
 is relatively 

small, we can assume that none is recovering during that period. This 
means that the rate of recovery γ in (6) is no longer needed for I

a
(t).

Thus, we transform equation (6) by taking into account the time 
delay τ

2
. Accordingly, the equation for I

a
(t) can be represented in 

the form

2

1

1

1

0

( 1) (1 ) (1 ) (1 ( )) ( ).i
a a

i

I t i I t i
τ

τµ µ αω β τ
−

=

+ = − − − − −∑ D

       

(7)

Here ω(0) = 0 and ω(i), i ≥ 1, is a gamma cumulative distribution 
function for onset-to-death that well describes the current Ebola 
virus in West Africa7. We note that in this equation, for each i ≥ 1, 
the fraction (1–αω(i)) is applied to the remaining infectious (1–μ)i 
βDI

a
(t–τ

1
–i); that is, the death rate in (7) is slightly different from 

(6) (indeed, both μ and ω(i) are quite small and this leads to 1–μ–
αω(i) ≈ (1–μ)(1–αω(i))).

Cumulative number of infected cases. The first term (1–μ)τ
1β 

DI
a
(t–τ

1
) in (7) describes the number of new cases at time t. The 

cumulative number of infectious cases at (t+1) will be denoted by 
C(t+1). It can be calculated as

            
1

1

1

( 1) (1 ) ( ).
t

a
s

C t I sτµ β τ
=

+ = − −∑ D

                   
(8)

Cumulative number of deaths. To calculate the cumulative 
number of deaths at time t, we consider all infectious cases (hos-
pitalized or not) in the interval [t–τ

1
, t–n] where n is a sufficiently 

large number. In particular we assume that death may occur after the 
onset. As mentioned above, the distribution of death is described by 
a gamma distribution function ω with its p.d.f - ω

p
. Then, the cumu-

lative number of deaths due to disease can be calculated as

 1
1

1 0

( 1) (1 ) (1 ) ( ) ( ).
t n

i
p a

s i

D t i I s iτµ µ α ω β τ
= =

+ = − − − −∑∑ D      (9)
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respectively. We will use the root mean square error. Given time 
interval [T

1
, T

2
] and data points C0(t

i
) and D0(t

i
), i ≥ 1, we define

2 1
2

0 2 0 2
1 2

[ , ]
2

([ , ]) ( ( ) ( )) ( ( ) ( )) .

i

i i i i
T Tt T

O T T C t C t D t D t
−

∈

 = − + − ∑
 
(12)

According to this formula, we fit the second half of given data in 
order to decrease the choice of initial values I

a
(t), t ≤ 1, defined by 

(11).

Basic reproduction number R0

To calculate the basic reproduction number, the above model is 
considered on the whole interval. The corresponding data fitting 
problem is:

Problem (DF
1
): Given data C0(t

i
) and D0(t

i
), i ≥ 1, and time interval 

[1, T
2
]:

2 2Minimize ) ([1, ]);

subject to (7) (11).

f ( , , O Tα β τ =

−

1Continuous time version of this model is
( )

( ) ( ( ), ( )),
dS t S t F S t I t

dt
λ µ= − −

1
1 1

( )
( ( ), ( )) ( ) ( )

dI t e F S t I t I t
dt

µτ τ τ µ α γ−= − − − + +

References

1. Althaus CL: Estimating the reproduction number of ebola virus (EBOV) during 
the 2014 outbreak in West Africa. PLoS Currents Outbreaks. 2014. 
Publisher Full Text 

2. Browne C, Huo X, Magal P, et al.: A model of the 2014 Ebola epidemic in West 
Africa with contact tracing. arXiv preprint arXiv:1410.3817. 2014. 
Reference Source

3. Chowell G, Hengartner NW, Castillo-Chavez C, et al.: The basic reproductive 
number of Ebola and the effects of public health measures: the cases of 
Congo and Uganda. J Theor Biol. 2004; 229(1): 119–126. 
PubMed Abstract | Publisher Full Text 

4. Chowell G, Nishiura H: Transmission dynamics and control of Ebola virus 
disease (EVDI): a review. BMC Med. 2014; 12(1): 196. 
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Chowell G, Simonsen L, Viboud C, et al.: Is West Africa Approaching a 
Catastrophic Phase or is the 2014 Ebola Epidemic Slowing Down? Different 
Models Yield Different Answers for Liberia. PLoS Curr. 2014; Edition 1. 
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Nishiura H, Chowell G: Early transmission dynamics of Ebola virus disease 
(EVD), West Africa, March to August 2014. Euro Surveill. 2014; 19(36). pii: 20894. 
PubMed Abstract 

7. Rivers CM, Lofgren ET, Marathe M, et al.: Modeling the impact of interventions 
on an epidemic of Ebola in Sierra Leone and Liberia. arXiv preprint 

arXiv:1409.4607. 2014. 
Reference Source

8. WHO Ebola Response Team. Ebola virus disease in West Africa--the first 9 months 
of the epidemic and forward projections. N Engl J Med. 2014; 371(16): 1481–95. 
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Li M, Liu X: An SIR epidemic model with time delay and general nonlinear 
incidence rate. 2014; 2014: 1–7. 
Publisher Full Text 

10. Lekone PE, Finkensatdt BF: Statistical inference in a stochastic epidemic SEIR 
model with control intervention: Ebola as a case study. Biometrics. 2006; 62(4): 
1170–1177. 
PubMed Abstract | Publisher Full Text 

11. Wang J, Wang J, Liu M, et al.: Global stability analysis of an SIR epidemic 
model with demographics and time delay on networks Physica A: Statistical 
Mechanics and its Applications. 2014; 410: 268–275. 
Publisher Full Text 

12. Global and Non-Smooth Optimization library (GANSO). Federation university 
Australia. 
Reference Source

13. Mammadov M, Rubinov A, Yearwood J: Dynamical systems described by 
relational elasticities with applications. Continuous Optimisation: Current Trends 
and Modern Applications, V. Jeyakumar and A. Rubinov (Eds). 2005; 99: 365–385. 
Publisher Full Text 

The reproduction numbers Rk, k = 1, 2, 3 for different time 
sections
The reproduction number is mainly determined by β and τ

2
. Since 

in our model parameter τ
2
 takes discrete values (days) it would be 

interesting to study the change of this parameter over time while 
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We consider three consequent time intervals Δ
k
 = [t

k
, t

k+1
] (k = 1, 2, 3) 
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The last time point t
4
 is T
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