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Abstract

The Illumina Infinium MethylationEPIC provides an efficient platform for profiling DNA meth-

ylation in humans at over 850,000 CpGs. Model organisms such as mice do not currently

benefit from an equivalent array. Here we used this array to measure DNA methylation in

mice. We defined probes targeting conserved regions and performed differential methyla-

tion analysis and compared between the array-based assay and affinity-based DNA

sequencing of methyl-CpGs (MBD-seq) and reduced representation bisulfite sequencing.

Mouse samples consisted of 11 liver DNA from two strains, C57BL/6J (B6) and DBA/2J

(D2), that varied widely in age. Linear regression was applied to detect differential methyla-

tion. In total, 13,665 probes (1.6% of total probes) aligned to conserved CpGs. Beta-values

(β-value) for these probes showed a distribution similar to that in humans. Overall, there

was high concordance in methylation signal between the EPIC array and MBD-seq (Pear-

son correlation r = 0.70, p-value < 0.0001). However, the EPIC probes had higher quantita-

tive sensitivity at CpGs that are hypo- (β-value < 0.3) or hypermethylated (β-value > 0.7). In

terms of differential methylation, no EPIC probe detected a significant difference between

age groups at a Benjamini-Hochberg threshold of 10%, and the MBD-seq performed better

at detecting age-dependent change in methylation. However, the top most significant probe

for age (cg13269407; uncorrected p-value = 1.8 x 10−5) is part of the clock CpGs used to

estimate the human epigenetic age. For strain, 219 EPIC probes detected significant differ-

ential methylation (FDR cutoff 10%) with ~80% CpGs associated with higher methylation in

D2. This higher methylation profile in D2 compared to B6 was also replicated by the MBD-

seq data. To summarize, we found only a small subset of EPIC probes that target conserved

sites. However, for this small subset the array provides a reliable assay of DNA methylation

and can be effectively used to measure differential methylation in mice.
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Introduction

There has been a surge in large-scale epigenetic studies in recent years. In particular, epigen-

ome-wide association studies (EWAS) of DNA methylation have shown associations with

physiological traits [1, 2], diseases [3–5], environmental exposures [6, 7], aging [8], and even

socioeconomic [9] and emotional experiences [10]. The development of robust and reliable

methylation microarrays has been an important driving force. In particular, the Illumina

Human Methylation BeadChips have made it both convenient and cost-effective to incorpo-

rate an epigenetic arm to large epidemiological studies [11, 12]. The latest version, the Illumina

Infinium MethylationEPIC BeadChip (EPIC), provides an efficient high throughput platform

to quantify methylation at 866,836 CpG sites on the human genome [13, 14]. A remarkable

biological insight that has emerged from these array-based studies is the definition of the

methylation-based “epigenetic clock,” a biomarker of human age and aging (i.e., the epigenetic

clock) that is defined using specific probes represented on these arrays [8].

Currently there is no equivalent microarray platform for model organisms and work in

experimental species have largely relied on high-throughput sequencing. For instance, while

the human DNA methylation age can be calculated from a few hundred probes on the Illumina

BeadChips, a similar effort in mice required a more extensive sequencing of the mouse methy-

lome [15]. However, CpG islands (CGIs) are largely conserved between mice and humans and

the two species share similar numbers of CGIs and similar proportions of CGIs in promoter

regions of genes [16]. Considering that these CpGs and CGIs are highly conserved in gene reg-

ulatory regions, it is feasible that probes on the human microarrays that target these sites may

have some application in research using rodent models. This was previously evaluated for the

two older versions of the Illumina HumanMethylation BeadChips [17]. A more recent study

has also evaluated the EPIC array for conserved probes [18]. These studies have shown that a

subset of the probes target highly conserved sites and can be used to measure DNA methyla-

tion in mice and possibly other mammalian species.

In the present work, we extend the conservation analysis of the EPIC platform by applying

a quantitative approach to evaluate the capacity of these probes to detect differential methyla-

tion in mice. We begin by defining the conserved probes and the key features of the corre-

sponding CpG sites in the context of the larger mouse and human genomes. We also compare

the methylation signal detected by the conserved probes with affinity-based methyl-CpG

enriched DNA sequence (MBD-seq) data from the same samples and evaluate if the conserved

probes are informative of age and strain differences in mice. Additionally, we perform com-

parison with a publicly available mouse CpG methylation data generated by reduced represen-

tation bisulfite sequencing (RRBS).

Materials and methods

Defining conserved EPIC probes

Sequences for the 866,836 CpG probes were obtained from Illumina (http://www.illumina.

com/). The probe sequences were aligned to the mouse genome (mm10) using bowtie2 (ver-

sion 2.2.6) with standard default parameters. A total of 34,981 probes aligned to the mouse

genome of varying alignment quality. Conserved probes were then defined based on quality of

alignment. For this, we filtered out all sequences with a low mapping quality (MAPQ) of less

than 60 (15,717 excluded) and those that contain more than two non-matching base pairs

(1,092). To retain only the high-quality probes, we further filtered probes based on confidence

in DNA methylation signal and based on this, 4,507 probes with detection p-values > 0.0001

were removed. This generated a list of 13,665 high quality probes that are conserved sequences
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and provide reliable methylation assays in mice (these are listed in S1 Data). CpG island anno-

tations [19] for the respective genome were downloaded from UCSC Genome Browser (http://

genome.ucsc.edu) and distribution of conserved probes and positions of CGIs were plotted to

the human (GRCh37) and mouse (mm10) genomes using CIRCOS [20].

For conserved sequences, there is high correspondence in functional and genomic features

between mouse and human genomes and we referred to the human probe annotations pro-

vided by Illumina to define the location of conserved probes with respect to gene features and

CpG context (i.e., islands, shores, shelves) (S1 Data). To evaluate if the conserved set is

enriched in specific features relative to the full background set, we performed a hypergeomet-

ric test using the phyper function in R.

Animals and sample preparation

Tissues samples were derived from mice that were part of an aging cohort maintained at the

University of Tennessee Health Science Center (PI: Robert W. Williams). Details on animal

rearing and sample collection are described in Mozhui and Pandey 2017 [21]. All animal pro-

cedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the

University of Tennessee Health Science Center.

Liver tissues were collected from mice aged at ~4 months (mos; young), ~12 mos (mid),

and ~24 mos (old). The mice were of two different strains—C57BL/6J (B6) and DBA/2J (D2)

—and as the colony was set up to study aging in females, the majority of the mice in this study

are females (Table 1). Mice were euthanized by intraperitoneal injection of Avertin (250 to

500 mg/kg of a 20 mg/ml solution), followed by cardiac puncture and exsanguination. All sam-

ple collection procedures were done on the same day within a 3-hour timeframe. Liver samples

were snap-frozen and stored at -80˚C until use.

DNA was purified from the liver tissue using the Qiagen AllPrep kit (http://www.qiagen.

com) on the QIAcube system. Nucleic acid quality was checked using a NanoDrop spectro-

photometer (http://www.nanodrop.com). As reference, we also included two human samples.

These are DNA derived from the buffy coats from two individuals.

Table 1. Sample details and average methylation signal intensity.

Full set

(850K)

Conserved set

(13665)

Sample Age Age (months) Strain1 Sex Mean Median Mean Median

Mouse1 young 4 D2 F 505 394 3206 1898

Mouse2 young 4 D2 F 926 524 10989 10278

Mouse7 young 4 B6 F 877 538 9866 8702

Mouse8 young 4 B6 F 766 397 10386 9975

Mouse3 mid 12 D2 F 852 483 10615 9880

Mouse4 mid 12 D2 F 818 430 10866 10542

Mouse5 mid 12 D2 M 845 456 11545 10982

Mouse9 mid 12 B6 M 852 444 11433 11187

Mouse6 old 24 D2 F 737 379 10206 9611

Mouse10 old 24 B6 F 845 448 10767 10436

Mouse11 old 24 B6 F 886 490 11302 10741

Human1 7568 7218 8710 8616

Human2 10668 10288 11761 11599

1 D2: DBA/2J; B6: C57BL/6J

https://doi.org/10.1371/journal.pone.0193496.t001
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DNA methylation microarray and data processing

DNA methylation assays were performed as per the standard manufacturer’s protocol (http://

www.illumina.com/). In brief, 500 ng of DNA extracted from the mouse liver was treated with

sodium bisulfite to convert cytosine to uracil. The 5-methyl cytosine remains unreactive to

sodium bisulfite. The DNA is then hybridized to the EPIC BeadChip. After washing off unhy-

bridized DNA, a single base extension was recorded to calculate the methylation level at the

CpG probe site. DNA methylation assays were performed at the Genomic Services Lab at the

HudsonAlpha Institute for Biotechnology (http://hudsonalpha.org). Raw intensity data files

(idat files) for both mouse and human samples were processed using the R package Minfi [22].

The full mouse data is available from NCBI NIH Gene Expression Omnibus (GEO accession

ID GSE110600).

The intensity and β-values were used to evaluate the performance of the EPIC probes in

mice and humans. Comparisons were based on the full set of 850K probes and the conserved

set of 13,665 probes. We also used the β-values and signal intensity scores for the 13,665 probes

to perform hierarchical clustering and principal component analysis for the mouse samples.

From initial quality checks, we identified one outlier mouse sample (S1 Fig) that had lower

intensity and higher detection p-value compared to the other mouse samples. This sample was

excluded from the statistical tests.

Comparison with high-throughput sequencing data

The mouse samples we report here were previously assayed for DNA methylation using MBD-

seq [21]. This is an affinity-based enrichment of methylated CpGs using the methyl binding

domain (MBD) of methyl-CpG-binding protein 2, followed by high throughput sequencing

(MBD-seq) [23–25]. Sequencing was performed on Life Technologies’ Ion Proton platform.

Data have been deposited to the NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.

nih.gov/geo/; GEO accession ID GSE95361) and Sequence Repository Archive (https://www.

ncbi.nlm.nih.gov/sra/; SRA accession ID SRP100703). To compare methylation signal detected

by the conserved EPIC arrays, we extracted MBD-seq reads at the corresponding sites. MBD-

seq does not provide single-base resolution as the resolution is limited to the fragment size, in

this case ~300 bp. However, since methylation levels at neighboring CpGs are largely corre-

lated [26], we derived quantitative data from the number of read fragments that map to a CpG

region. For the sites in the mouse genome targeted by the conserved EPIC probes, we

expanded the window to 300 bp bins, and extracted the MBD-seq fragment counts. The CpG

density-normalized methylation level was then quantified using the MEDIPS R package [27].

We then used Pearson’s correlation to compare the EPIC β-values and the relative methylation

score (rms or the CpG density normalized methylation) detected by MBD-seq [28].

For additional comparison, we used a publicly available mouse RRBS data (GEO accession

ID GSE93957, sample GSM2465617 at http://www.ncbi.nlm.nih.gov/geo/). This data was gen-

erated from liver tissue of mouse strain C57BL/6-BABR and alignment was to the GRCm38/

mm10 mouse genome build [15]. By matching genome coordinates, we identified CpGs that

were interrogated by both conserved EPIC probes and the RRBS. From the RRBS data, we

used the methylation percentage (counts for methylated/unmethylated) to correlate with the

β-values.

Analysis of differential methylation

Statistical analyses were done in R (https://www.r-project.org/) and JMP Statistics (JMP Pro

12). Mice were grouped into three age categories (young, mid, and old; additional sample

details are in Table 1). To evaluate differential methylation detected by the 13,655 conserved
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probes, we applied a regression model with age, strain and sex as predictors (~ageGroups +

strain + sex) for each probe using the R glm function and type III anova to calculate test statis-

tics (equations are provided in S1 Data). For the MBD-seq reads, we performed differential

methylation analysis of the read counts using the edgeR R package [29]. The same linear regres-

sion model was applied (~ageGroups + strain + sex) and equations are provided in S1 Data.

We then cross-compared differential methylation detected by the two methods. Treating the

EPIC data as a discovery set, we applied the Benjamini-Hochberg (BH) procedure to control

the false discovery rate (FDR) [30, 31]. We then defined differentially methylated CpGs

(DMCpGs) and evaluated the corresponding region in the MBD-seq data to test replication at a

lenient uncorrected p-value threshold of 0.05. Likewise, in the reverse comparison, we applied

an FDR threshold to identify differentially methylated regions (DMRs) in the MBD-seq data,

and tested replication of the corresponding CpG at an uncorrected p-value threshold of 0.05.

Results

Conserved Infinium MethylationEPIC probes

The human EPIC array contains 866,836 50-mer probes. Out of these, we defined a total of

13,665 probes that align to conserved sites in the mouse genome and provide high quality

methylation signal (details on mapping quality scores and methylation signal confidence are

provided in S1 Data). In the full set of EPIC probes, 71% are located within annotated gene

features or within 200–1,500 bp upstream of transcription start sites (TSS). Compared to this

background set, a higher percent of the conserved probes (88%; 11,972 probes) target such

functionally annotated regions. Probes that target CpGs located in exons, 5’ UTR, and within

200 bp upstream of TSS (TSS200) are highly overrepresented among the conserved set

(Table 2). This is expected, since sequences in these functional regions are conserved across

Table 2. Genomic features of CpGs and enrichment in conserved sites.

Full set

(850K)

Conserved set

(13665)

Feature Counts Percent

Total

Counts Percent

Total

Enrichment p3

Gene features1

TSS1500 107193 12 1195 9 ns

TSS200 65152 8 1940 14 <1.0E-15

5’UTR 73070 8 1269 9 1.8E-04

1stExon 26433 3 2028 15 <1.0E-15

Exon 5680 1 282 2 <1.0E-15

3’UTR 21594 2 340 2 ns

Body 318165 37 4918 36 ns

Non-Genic 249549 29 1693 12 ns

CpG islands and flanking regions2

Islands 161598 19 6270 46 <1.0E-15

Shores 154735 18 2267 17 ns

Shelves 61811 7 664 5 ns

Open Sea 488692 56 4464 33 ns

1 CpG position relative to gene features based on annotations from Illumina (UCSC_RefGene_Group). TSS1500 and TSS200 are CpGs at –200 or 200–1500 upstream of

are transcription start sites; Non-genic are CpG with no annotated gene features.
2 Shores = 0–2 kb from islands; shelves = 2–4 kb from islands
3 Enrichment of gene features and CpG regions in the conserved set compared to the full set based on hypergeometric test

https://doi.org/10.1371/journal.pone.0193496.t002
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species. The upstream regulatory regions and the first exon harbor a large percent of CGIs,

and compared to the background set, there is close to a 2.5-fold higher enrichment in CGIs

among the conserved probes (Table 2). In contrast, there is no enrichment in probes that tar-

get CpGs that are between 200–1,500 bp upstream of TSS (TSS1500), gene body (mostly intro-

nic), 3’ UTRs, and non-genic regions. Locations of the conserved probes and CGI densities in

the human and mouse genomes are shown in Fig 1.

Comparison of probe performance in mouse and human samples

We used data generated from two human samples as a reference. Using the full set of 850K

probes, the mouse samples showed low overall signal intensity (Fig 2A). The mean signal

intensity for the two human samples was 9,118 ± 2,192 (Table 1). For the mouse samples, the

mean signal intensity was 810 ± 114 (Table 1). The β-value distribution also showed poor per-

formance for mice with a peak β-value at 0.4 that indicates failure for probes. The methylation

β-values in human samples showed the expected bimodal distribution that characterizes the

Illumina methylation arrays (Fig 2B) [13, 14].

The EPIC BeadChip clearly performed poorly in mice when we considered the full set of

probes. However, when we considered only the 13,665 conserved probes, the methylation sig-

nal became comparable between the mouse and human samples. Total mean signal intensity

for the mouse samples ranged from 9,866 to 11,545 (Mouse1, which failed the initial QC, has

very low signal intensity compared to the other mouse samples; this was excluded from differ-

ential methylation analysis) (Table 1). Mean signal intensity for the two human samples were

8,711 and 11,761 (Table 1). The bimodal β distribution was also observed for this set of con-

served probes in mouse samples (Fig 2C and 2D).

Comparison with MBD-seq and RRBS

To determine if we could find a concordant methylation signal, we compared the microarray

β-values with the CpG density-normalized rms derived from MBD-seq data (average β-values

and rms are provided in S1 Data). As in the case of the EPIC, the MBD-seq data also showed

Fig 1. Location of conserved Illumina human MethylationEPIC probes and CpG densities in the human and mouse genomes.

The outer circle displays the chromosomes and circular karyotype of the human and mouse genomes. CpG island (CGI) density is

shown in the second circle. The innermost circle displays the positions of CpGs targeted by the 13,665 conserved probes.

https://doi.org/10.1371/journal.pone.0193496.g001
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Fig 2. Distribution of signal intensities and methylation β-values in mice and humans. For the full set of 866,836 probes on the Illumina Infinium

MethylationEPIC, the mouse samples have (A) low signal intensity compared to the two human samples, and (B) the β-values have a unimodal distribution

that peaks at ~0.4. The two human samples have the expected bimodal distribution for β-values. For the conserved set of 13665 probes, both the (C) signal

intensity, and the (D) β-value distribution in the mouse samples are comparable to the two human reference samples. The signal intensity for mouse1 is

relatively low for the conserved set of probes and this sample plots as an outlier in the principal component analysis.

https://doi.org/10.1371/journal.pone.0193496.g002

Fig 3. Correlation between MethylationEPIC and high-throughput sequencing data. Two sequencing datasets were considered for comparison. The MBD-seq was

generated in-house from the same samples as the microarray data, and the mouse liver reduced representation bisulfite sequencing (RRBS) data was from a public

repository. For each of the 13,665 conserved probes, the 300 bp window around the corresponding CpG was determined and the CpG density-normalized relative

methylation score (rms) was estimated for that region from the MBD-seq data. (A) While there was overall significant correlation between the β-values and rms

(Pearson’s correlation of 0.70, p< 0.0001), for CpGs with low β-values, the corresponding regions showed rms that cluster close to 0, and for CpG with high β-values,

the corresponding rms tended to cluster close to 0.75. (B) For the RRBS data, 2,548 CpGs intersected with the list of 13,665 CpGs interrogated by the conserved EPIC

probes. For most CpGs, methylation levels were concordant between the RRBS and EPIC (R = 0.78, p< 0.0001). However, sequence coverage was low for several

CpGs in the RRBS data (average total read counts of<7) and such CpGs were associated with estimated methylation fraction of 0 or 1. (C) For the smaller subset of

2,548 CpGs, the β-values showed a more linear correlation with the MBD-seq data (R = 0.84, p< 0.0001).

https://doi.org/10.1371/journal.pone.0193496.g003
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the bimodal distribution. Overall, there was concordance between the two technologies, and

the β-values and rms were significantly correlated (Pearson’s correlation of 0.70, p< 0.0001;

Fig 3A). However, several CpGs also showed discrepant signal between the two technologies

(i.e., CpGs with low β-values associated with high rms and vice versa). To assess the number of

probes associated with concordant or discordant methylation levels, we grouped the CpGs

into three categories based on β-values—hypomethylated for β< 0.3, hemimethylated for 0.3

� β� 0.7, and hypermethylated for β> 0.7—and examined the corresponding rms values.

Given the high representation of islands and CpGs in 5’ regions of genes, which generally

remain hypomethylated [16, 32], the majority of the conserved probes fell into the hypomethy-

lated category (Table 3). For the hypomethylated probes, 82% of the corresponding CpG

regions also had rms < 0.3 (Table 3). For many of the CpGs regions that correspond to the

hypomethylated probes, the rms were close to 0, which indicates poor coverage by MBD-seq.

For hemimethylated probes, 58% of the corresponding regions had 0.3� rms� 0.7 and 31%

had rms < 0.3. For hypermethylated probes, only 40% of corresponding regions were associ-

ated with rms> 0.7, and 54% had 0.3� rms� .7. The corresponding CpG regions for this

hypermethylated set tended to have rms close to 0.75. This clustered rms distribution for CpG

regions at the lower and upper levels of methylation indicate that the MBD-seq has lower

quantitative sensitivity at these regions.

For comparison with a bisulfite-based assay, we obtained RRBS data for mouse liver. We

found only 2,548 CpGs in the RRBS data that were also interrogated by the conserved EPIC

probes. Using this smaller subset, we compared the array-based β-values with the RRBS-based

methylation percent (here represented as fraction methylated; Fig 3B). Overall, there is signifi-

cant correlation between the two data (R = 0.78, p< 0.0001) and this is particularly true for

CpGs with methylation percent that range between 0 and 100 in the RRBS. However, compari-

son with the RRBS was limited by the poor read coverage for several of the CpGs that resulted

in either 0% or 100% methylation values. For these CpGs that clustered at either 0 or 100%, the

average total read counts was less than 7. For this 2,548 CpGs, we found a better linear correla-

tion between the β-values and the MBD-seq (R = 0.84, p< 0.0001; Fig 3C). Overall, the signifi-

cant correlations with both the MBD-seq and RRBS shows that the conserved EPIC probes

provide a reliable quantification of methylation in mice for majority of the CpGs. Further-

more, for CpGs that are hypomethylated or hypermethylated, the EPIC technology may have

an advantage and provide higher quantitative sensitivity compared to the. MBD-seq.

Differential methylation analysis

We applied linear regression to examine differential methylation by age group and strain, and

cross-referenced the DMCpGs detected by the EPIC array with DMRs detected by MBD-seq.

For the effect of age, no conserved EPIC probe passed a 10% FDR threshold (full results and p-

Table 3. Counts of Illumina human MethylationEPIC probes by β-value and concordance with MBD-seq at corresponding CpG regions.

Counts of CpG regions by rms value2

CpG Category1 Probe counts1 rms < 0.3 0.3� rms� 0.7 rms > 0.7

Hypo (β< 0.3) 7548 6198 1000 350

Hemi (0.3� β� 0.7) 3159 973 1827 359

Hyper(β> 0.7) 2956 171 1599 1186

1Conserved probes on the HumanMethylationEPIC arrays were grouped by β-value. These are counts in each category.
2CpG For each category of probes, the corresponding CpG regions were counted and grouped by CpG density normalized relative methylation score (rms) to determine

concordance between the array and MBD-seq

https://doi.org/10.1371/journal.pone.0193496.t003
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values are provided in S1 Data). However, we note that the probe that detected the most signif-

icant effect of age, cg13269407, is among the 353 CpGs that are used to estimate the human

epigenetic age [8]. This CpG is hemimethylated (average β-value of 0.55) and associated with a

~2.4-fold decline in methylation between young and old age (uncorrected p-value = 1.8 x

10−5). In the MBD-seq, the corresponding region is classified as hypomethylated with rms = 0

for most of the samples and no reliable statistics could be carried out for this region due to

small number of mapped reads. We then performed a reverse comparison to identify age-

dependent DMRs (age-DMRs) in the MBD-seq data and evaluated replication by the EPIC

probes. At the same FDR threshold of 10%, the MBD-seq detected seven age-DMRs. These

strong age-DMRs have rms between 0.3 and 0.7 and are associated with an increase in methyl-

ation with age. Most occur in CGIs that have been reported previously [21]. Out of these seven

age-DMRs, six corresponding EPIC probes replicated the age-dependent increase in methyla-

tion at a nominal p-value cutoff of 0.05 (Table 4).

For strain effect, 219 conserved EPIC probes detected a significant difference in methyla-

tion between B6 and D2 at an FDR threshold of 10% (strain-DMCpGs). Close to 80% of these

CpGs (175 out of 219) are associated with higher methylation in D2 relative to B6. In the

MBD-seq data, only 29 of the 219 corresponding regions replicated strain effect at an uncor-

rected p-value cutoff 0.05 (Table 5). Of these, 9 were associated with higher methylation in B6,

and 20 were associated with higher methylation in D2. In the reverse comparison, we identi-

fied only 37 strain-dependent DMRs (strain-DMRs) at an FDR cutoff of 10%. Consistent with

the EPIC data, the majority of these regions (21 of the 37) showed higher methylation in D2

relative to B6. Of these, 16 strain differences were replicated at the corresponding CpG in the

EPIC data (6 with higher methylation in B6 and 10 with higher methylation in D2) (Table 5).

Discussion

We used the recently released Illumina EPIC microarray to assay DNA methylation at con-

served CpGs in the mouse genome. We evaluated both the qualitative features as well as the

quantitative performance and compared it with MBD-seq data that was generated on the same

DNA samples from mice. Such a cross-species approach has been previously used to examine

gene expression and perform comparative genomics studies [33–36]. The two older versions

Table 4. Age-dependent differentially methylated CpGs/regions detected by conserved Illumina human MethylationEPIC probes and by MBD-seq.

EPIC1 MBD-seq1

ProbeID Gene2 Region2 Position (mm10) 3 Coef. Age (P) logFC Age (P)

cg08949408 C1QL3 Body; Island chr2:13.01 0.32 0.001 3.3 1.3E-10

cg10444382 RFX4 Body; Island chr10:84.76 0.24 9.4E-04 2.9 2.5E-08

cg22384902 LRRC4; SND1 TSS1500; island chr6:28.83 0.22 0.009 2.0 2.0E-06

cg06945399 LRRC4; SND1 TSS200; Island chr6:28.83 0.18 0.057 1.5 2.2E-05

cg23398076 MEIS1 Body; Shelf chr11:19.02 0.13 0.007 1.5 2.4E-05

cg05393688 TSC22D1 Body; Shore chr14:76.51 0.17 0.005 1.5 2.8E-05

cg20563498 USP35 Body; Shelf chr7:97.32 -0.02 0.27 1.1 3.2E-05

1These are age-dependent differentially methylated CpG regions discovered in the MBD-seq at an FDR of 10%; replicated for the corresponding CpG in the EPIC

microarray at an uncorrected p-value cutoff of 0.05. Coef. is the linear regression coefficient (i.e., change in methylation β-value from young to old). LogFC is log2 fold

change in methylation from young to old.
2CpG location in relation to gene features and CpG region based in probe annotations for the human methylation microarray; gene feature annotations are the same for

the corresponding regions in the mouse genome.
3Chromosome and Megabase coordinate based on mm10 mouse reference genome

https://doi.org/10.1371/journal.pone.0193496.t004
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Table 5. Strain-dependent differentially methylated CpGs/regions detected by both Illumina human MethylationEPIC probes and by MBD-seq.

EPIC1 MBD-seq1

ProbeID Gene3 Region4 Position (mm10) 3 Coef.2 Strain (P) logFC2 Strain (P)

Differentially methylated CpGs detected by EPIC probe at FDR 10%; replicated by MBD-seq

cg21064315 SZT2 3’UTR; Shore chr4:118.36 -0.82 5.5E-09 -2.0 1.7E-04

cg14945867 CNIH 1stExon; Island chr14:46.79 0.27 1.3E-06 6.0 1.2E-09

cg04546815 KANK4 Body chr4:98.78 0.34 1.6E-06 1.7 4.4E-04

cg10277781 CNIH 1stExon; Island chr14:46.79 0.35 1.9E-06 6.0 1.2E-09

cg00049718 CSDE1 5’UTR chr3:103.02 0.40 2.6E-06 6.8 9.8E-15

cg07211292 C20orf160 3’UTR; Island chr2:153.08 -0.46 5.0E-06 -1.5 1.4E-05

cg24255125 GRIK4 Body; Island chr9:42.52 -0.36 7.8E-06 -3.0 5.9E-09

cg03517030 MTCH2 1stExon; Island chr2:90.85 0.35 1.6E-05 6.7 2.3E-14

cg05781968 WNT5A Body; Island chr14:28.51 0.31 4.4E-05 2.3 1.0E-05

cg04154281 UBTF Body; Shore chr11:102.31 0.17 6.5E-05 0.7 0.03

cg06861375 ZNF697 Body; Island chr3:98.43 0.36 6.7E-05 4.5 2.8E-04

cg24959134 - - chr10:92.44 -0.33 9.4E-05 -2.4 0.01

cg06552810 - - chr2:106.19 0.26 1.1E-04 2.9 0.002

cg01663821 Shore chr3:98.94 0.19 1.3E-04 0.9 0.02

cg00597112 - - chr11:109.01 0.21 1.4E-04 0.5 0.002

cg26857408 UBTF Body; Shore chr11:102.31 0.24 2.1E-04 0.7 0.03

cg15172734 SLMAP 5’UTR; Shore chr14:26.53 -0.11 3.4E-04 -2.5 0.01

cg09990537 WNT5A 5’UTR; Shore chr14:28.51 0.17 3.4E-04 1.0 0.004

cg12849734 - - chr2:157.71 0.14 4.4E-04 0.9 0.01

cg21746387 NDUFA4L2 TSS1500; Shore chr10:127.51 -0.17 5.5E-04 -3.4 0.001

cg11382417 - - chr2:96.32 -0.21 6.0E-04 -4.7 1.3E-07

cg02865068 - Shore chr2:105.66 0.11 9.7E-04 2.9 0.04

cg14275842 CHRNE Body; Island chr11:70.62 0.18 0.001 1.0 0.005

cg02159996 GABRR1 5’UTR chr4:33.13 0.13 0.001 1.2 2.5E-04

cg00920372 - - chr19:45.33 -0.08 0.001 -1.5 8.8E-04

cg03422015 ERC1 Body chr6:119.69 0.04 0.001 1.1 0.02

cg04340318 - - chr4:86.04 0.16 0.001 2.3 0.001

cg14465355 DYNC1H1 Body; Shore chr12:110.64 0.06 0.001 0.6 0.02

cg15002641 SOX13 Body chr1:133.39 -0.10 0.001 -1.0 0.02

Differentially methylated regions detected by MBD-seq at FDR 10%; replicated by EPIC

cg05362127 WNT5A TSS200; Island chr14:28.51 0.33 0.002 2.3 9.4E-06

cg24142850 - - chr8:92.55 -0.09 0.005 -2.9 9.4E-05

cg15585318 WNT5A Body; Island chr14:28.51 0.22 0.006 1.8 2.1E-06

cg09595163 WNT5A Body; Island chr14:28.51 0.18 0.006 2.3 1.2E-05

cg13868216 BAIAP2L2 Body; Island chr15:79.26 0.11 0.01 1.6 1.8E-04

cg09972454 PDXDC1 Body; Shore chr4:147.94 -0.06 0.01 -2.9 1.5E-06

cg18120446 - Island chr5:41.75 0.01 0.02 -2.2 2.7E-08

1These are strain-dependent differentially methylated CpGs (EPIC microarray) and CpG regions (MBD-seq) based on a “false discovery threshold” (FDR) cutoff of 10%

and replication at an uncorrected p-value threshold of 0.05.
2Coef. is the linear regression coefficient (i.e., difference in methylation relative to C57BL/6J; negative is lower methylation in DBA/2J; and positive is higher

methylation in DBA/2J compared to C57BL/6J). LogFC is log2 fold difference in methylation (i.e., difference in methylation relative to DBA/2J; negative is lower

methylation in DBA/2J; and positive is higher methylation in DBA/2J compared to C57BL/6J).
3CpG location in relation to gene features and CpG region based in probe annotations for the human methylation microarray. For most conserved regions, mouse

annotations are analogous to humans.
4Chromosome and Megabase coordinate based on mm10 mouse reference genome

https://doi.org/10.1371/journal.pone.0193496.t005
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of this Illumina methylation microarrays, the Infinium HumanMethylation 27K (HM27) and

HumanMethylation 450K (HM450), have been carefully evaluated for use in mice [17]. The

number of probes that map to the mouse genome can vary somewhat depending on the align-

ment algorithm. In the work by Wong et al. [17], alignment to the bisulfite-converted mouse

genome resulted in the highest number of conserved probes. Using a stringent parameter of

100% sequence identity to the bisulfite genome, Wong et al. identified a total of 1,308 (4.7% of

total) uniquely aligned probes in the 27K array, and 13,715 (2.8% of total) uniquely aligned

probes in the 450K array that can be used to interrogate conserved CpGs in the mouse. In our

present work, we performed alignment in a non-bisulfite space. While we required unique

alignment, we tolerated up to two non-matching base pairs and added detection confidence as

another parameter to identify probes that we can use for reliable quantitative assays. With

these parameters, we identified 1.6% of total probes (13,665 in the EPIC array) that aligned

uniquely to the mouse genome and associated with high confidence in signal detection. While

alignment to the bisulfite-converted genome may have yielded a higher number of probes for

measuring DNA methylation in mouse, the degenerate nature of bisulfite conversion would

capture probes with off-target degenerate alignments. Indeed, a recent study did find this with

a number of uniquely aligned probes ranging from 4,984 to 19,420 depending on the mapping

stringency [18]. When we compared our list of probes to the 19,420 mouse EPIC probes

reported by Needhamsen et al. [18], we found a high overlap of 77%. For our purposes, the

probes we have identified here provide a representative subset with high confidence in

sequence specificity and conservation in mouse and we have used these to assess quantitative

performance in mouse samples and utility in detecting methylation variation.

In the set of 13,665 conserved probes, 9,429 (69%) were CpG loci carried over from the

HM450 array and 7,483 of these were also in Wong’s list of conserved HM450 probes [17].

Only 4,234 of the 13,665 probes (31%) were new content that are unique to the EPIC array

(i.e., not ported over from the HM450). A similar proportion of probes in the set reported by

Needhamsen et al. was also ported over from the HM450 (13,005 out of 19,420) [18]. This low

proportion of conserved probes is likely due to the design of the EPIC array. In the case of the

HM450, the emphasis was on CGIs and flanking regions (i.e., shores and shelves) [11, 37].

These CGIs generally overlap proximal regulatory sites and are highly conserved across mam-

malian species with humans and mice having very similar complement of CGIs [16, 32, 38]. In

contrast to the HM450, the emphasis of the EPIC array was on enhancers and CpGs outside of

islands, and these are sequences that generally have lower conservation across mammalian spe-

cies [13, 39]. Based on Illumina probe annotations, only 22% of the newly added content

unique to the EPIC cover CGI associated regions. Out of the 4,234 conserved probes we identi-

fied that are unique to EPIC, 1,767 target CGI associated regions and 1,573 target 5’ regions

such as TSS, 5’ UTR and exon 1. This is consistent with the overall higher enrichment in proxi-

mal gene regulatory sites among the conserved probes. Our observations show that despite the

higher probe content in the EPIC compared to the older HM450, the number of probes with

utility in cross-species studies is not proportionally increased.

In terms of quantitative variation in methylation, CGIs and promoter region CpGs show

significant population variation [40]. However, compared to intergenic CpGs, the extent of

inter-individual variability in methylation is reported to be much lower in these conserved

sites [41, 42]. Hence, an obvious limitation in using the conserved EPIC probes is that we

attain only a narrow perspective of the mouse methylome and we may be sampling the portion

of CpGs that shows the least quantitative variability in a population. Nonetheless, CpGs in reg-

ulatory regions and CGIs play crucial roles in development and cell differentiation, and are

implicated in tumor development and aging [16, 32, 38, 43, 44]. While narrow in perspective,
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the conserved probes likely represent a subset of CpGs with high functional relevance and

application in cross-species study of DNA methylation.

We compared the methylation signal detected by the EPIC probes to two datasets generated

by DNA sequencing—MBD-seq that was measured using the same samples as the EPIC, and a

publicly available mouse liver RRBS data. While the sequencing approach theoretically pro-

vides more comprehensive coverage than microarrays, both RRBS and MBD-seq come with

their own characteristic biases and have limitations in the types of CpGs that are most effec-

tively interrogated [26, 45, 46]. The RRBS data we used in this comparison had poor read cov-

erage for a large proportion of CpGs. Nonetheless, an overall significant correlation between

the β-values and methylation percent measured by RRBS was observed. Unlike the bisulfite

based RRBS and EPIC, the MBD-seq relies on affinity capture of DNA fragments by the

methyl-CpG binding domain protein [23–25]. The methylation level is indirectly estimated

based on the counts of sequenced reads that map to that region and the MBD-seq provides

information on the methylation level of correlated CpGs in a region rather than one CpG [47–

49]. We found a stronger concordance between the EPIC and MBD-seq, likely because these

were generated from matched samples. However, for CpGs that are hypomethylated and

hypermethylated, the rms for the corresponding regions showed a more clustered distribution

and indicated a limited quantitative sensitivity for MBD-seq and limited capacity in discerning

quantitative variation at such CpG regions. Our observations agree with a previous study that

compared HM450 and MBD-seq data generated using the same commercial kit we used [50].

For a direct comparison between the EPIC probes and MBD-seq, we applied the same

regression model and crosschecked the DMCpGs and DMRs detected by the two technologies.

While we expected a higher quantitative sensitivity for the EPIC probes, the EPIC probes did

not detect significant differential methylation between age groups at an FDR threshold of 10%.

However, the topmost significant probe, cg13269407, is part of the 353 clock CpGs that are

used to estimate the human DNA methylation age [8]. Consistent with the negative correlation

with age in humans, this age-informative CpG was associated with a ~2.4-fold reduction in

methylation in the old mice relative to the young mice. Aside from cg13269407, only 10 other

human clock CpG probes were in the conserved set and none of these are associated with age

in mice. Overall, the effect of age was weak when we considered individual CpGs. When we

examined the corresponding CpG regions, the MBD-seq was more effective at detecting age-

dependent methylation. At an FDR cutoff of 10%, we identified seven CpG regions that are

classified as age-DMRs. These age-DMRs have been previously reported and show increases in

methylation with age in mice [21]. For these age-DMRs identified by MBD-seq, we then

checked whether the EPIC probes could verify the age effect. For this cross-verification, we

used a less stringent statistical threshold of 0.05 for uncorrected p-values and found that six of

the targeted CpGs are also associated with a significant age-dependent increases in β-values.

Our observations suggest that age-dependent changes in methylation at these conserved sites

may be more pronounced if we consider the correlated change of neighboring CpGs rather

than methylation status of a single CpG. Despite the low overall quantitative sensitivity, the

MBD-seq provides a complementary approach that may perform better for detecting methyla-

tion changes in regions harboring multiple correlated CpGs.

DNA methylation can vary substantially between mouse strains and a large fraction of this

is likely due to underlying sequence differences between strains [21, 51, 52]. Strain variation in

methylation has been shown to associate with complex phenotypes in mice such as insulin

resistance, adiposity, and blood cell counts [53]. In our analysis, we detected 219 CpGs (i.e.,

1.6% of the 13,365 interrogated CpGs) with a significant difference between strains at an FDR

cutoff of 10%. A large majority (175 out of 219 CpGs) was associated with higher methylation

in D2 compared to B6. While the overall lower methylation in B6 is intriguing, such variation
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between strains must be cautiously interpreted. It is well known that SNPs in probe sequences

can have a strong confounding effect. This is particularly pernicious for mouse specific micro-

arrays in which probe sequences are usually based on the B6 mouse reference, and as a result,

there is more efficient hybridization for B6-derived samples, which results in a positive bias for

this canonical mouse strain [54–56]. In the present work, since the EPIC array is based on the

human sequence, we do not expect a systematic bias for one strain over the other. For replica-

tion, we referred to the MBD-seq data and only 29 out of the 219 corresponding CpG regions

had consistent differential methylation between B6 and D2 in the MBD-seq.

Unlike using a human array that should not bias one mouse strain over another, the MBD-

seq data is more vulnerable to technical artifacts caused by sequence differences. As is the gen-

eral practice, we performed the alignment of the MBD-seq reads to the mouse reference

genome. This means the alignment will be more efficient for sequences from B6, while

sequences from D2 will have more mismatches. Since methylation quantification is estimated

from the relative number of aligned reads, this may result in a systematic negative bias for D2,

and methylation levels in regions with sequence differences will tend to have lower methyla-

tion due to poorer alignment. As a result, a higher fraction of strain-DMR will have lower

methylation in D2 compared to B6 [21]. In the case that these conserved CpGs have higher

methylation in D2 compared to B6, then the negative bias will lessen the quantitative differ-

ence between the strains. This may explain why the effect of strain is less pronounced in the

MBD-seq data. In the MBD-seq, there were only 37 DMRs between B6 and D2 at an FDR

threshold of 10%, and the EPIC probes replicated 16 of these. Out of the 37 strain-DMRs, the

majority (21 of the 37) was associated with higher methylation in D2. Both the EPIC and

MBD-seq therefore show an overall lower methylation profile in B6 compared to D2 that war-

rants further investigation and verification. Such strain differences in overall methylation have

been previously reported for A/J and WSB/EiJ, with the A/J strain exhibiting higher methyla-

tion of CGIs in normal liver tissue compared to WSB/EiJ. This difference in the methylome

was suggested to contribute to differential susceptibility for nonalcoholic fatty liver disease

that characterizes the two strains [51]. In the case of B6 and D2, the two strains are highly

divergent in a number of complex phenotypes ranging from behavioral and physiological to

aging traits. The panel of recombinant inbred progeny derived from B6 and D2 (the BXD

panel) has been used extensively in genetic research [57–61]. If there is indeed a distinct profile

in DNA methylation between B6 and D2, then it will be of interest to evaluate if it segregates

in the BXDs and how the methylome contributes to some of the phenotypic differences. The

BXD panel could be an extremely rich and as yet untapped resource for methylome-wide anal-

ysis of complex traits that can then be integrated with the extensive systems genetics work that

has already been done with this mouse family [62, 63]. No doubt, large-scale analysis of

genome-wide DNA methylation in mouse genetic reference panels will be greatly accelerated

with the development of a mouse version of the Infinium methylation arrays. And as is the

case with other types of arrays, it will be crucial that the probes are designed against a more

diverse panel of strains so that investigators can derive a more unbiased readout of methylation

[64].

To conclude, we have catalogued a small subset of EPIC probes that target conserved CpGs

in the mouse genome and that provide reliable quantification of DNA methylation in mouse

samples. While detection for age-dependent methylation was weaker for the EPIC probes

compared to MBD-seq, we have identified significant strain variation in methylation at the

conserved CpGs. Our results indicate lower methylation for B6 compared to D2 at sites that

have significant strain effect. It is unclear how much of the strain variation results from under-

lying sequence differences between B6 and D2, and this strain-specific profile needs to be fur-

ther evaluated and verified
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Supporting information

S1 Data. Information on 13665 conserved EPIC probes and results on differential methyla-

tion analysis (EPIC vs MBD-seq).

(XLSX)

S1 Fig. Quality check for samples using β-values. (A) Hierarchical clustering of β-values for

the 13665 conserve probes on the Illumina Infinium MethylationEPIC shows a clear separa-

tion between the mouse and human samples. For the mouse samples, DBA/2J and C57BL/6J

samples group separately. Mouse sample 1 (M1) is an outlier and has low average signal inten-

sity compared to the other mouse samples. (B) Principal component analysis was performed

for the 11 mouse samples using β-values for the 13665 conserve probes. A scatter plot of the

first two principal components, PC1 and PC2, clearly demonstrate the outlier status of mouse

sample 1 (arrow) and this sample was excluded in the differential methylation analyses.

(DOCX)
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