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T-dependent humoral immune responses to infection involve a collaboration between 
B and CD4 T cell activation, migration, and co-stimulation, thereby culminating in the 
formation of germinal centers (GCs) and eventual differentiation into memory cells and 
long-lived plasma cells (PCs). CD4 T cell-derived signals drive the formation of a tailored 
B cell response. Downstream of these signals are transcriptional regulators that are the 
critical enactors of immune cell programs. In particular, a core group of transcription 
factors regulate both B and T cell differentiation, identity, and function. The timing and 
expression levels of these transcription factors are tightly controlled, with dysregulated 
expression correlated to immune cell dysfunction in autoimmunity and lymphomagene-
sis. Recent studies have significantly advanced our understanding of both extrinsic and 
intrinsic regulators of autoreactive B cells and antibody-secreting PCs in systemic lupus 
erythematosus, rheumatoid arthritis, and other autoimmune conditions. Yet, there are 
still gaps in our understanding of the causative role these regulators play, as well as the 
link between lymphoid responses and peripheral damage. This review will focus on the 
genesis of immunopathogenic CD4 helper and GC B cells. In particular, we will detail 
the transcriptional regulation of cytokine and chemokine receptor signaling during the 
pathogenesis of GC-derived autoimmune conditions in both murine models and human 
patients.
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iNTRODUCTiON: eNTRY POiNTS ON THe PATH TOwARD 
AUTOReACTive ANTiBODY PRODUCTiON

Effective humoral immune responses depend on the ability to form and expand a population of 
B cells with high affinity for the foreign antigen. Both B cells and T helper cells employ a number 
of mechanisms to produce effector cells that help clear the antigen and form specialized immune 
memory cells. Yet, it is also the deployment of these mechanisms that put lymphocytes at risk of 

Abbreviations: ABCs, age-associated B cells; cTfh, circulating T follicular helper cells; GC, germinal center; IFN, interferon; Ig, 
immunoglobulin; PC, plasma cell; SHM, somatic hypermutation; STAT, signal transducer and activator of transcription; Tfh, T 
follicular helper cells; Tfr, T follicular regulatory cells; YFP, yellow fluorescent protein.
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creating and expanding autoreactive cells that attack the host 
rather than the foreign invader and can lead to lifelong chronic 
disease.

Production of autoreactive B cells can occur at multiple stages 
of B cell development or differentiation. B cells that develop in the 
bone marrow, as well as those that differentiate in the periphery, 
undergo a number of checkpoints to exclude autoreactive cells 
from the immune repertoire. In particular, cells that produce an 
autoreactive B cell receptor will undergo deletion, receptor edit-
ing, or will be made anergic, such that autoreactive cells cannot 
participate in an immune response [reviewed in detail by Ref. 
(1)]. After development in the bone marrow, B cells migrate to 
the secondary lymphoid organs and undergo the final stages of 
maturation. Together, these developmental checkpoints result in 
a mature naïve B cell repertoire that is ready to respond to virtu-
ally any foreign antigen without the risk of cells that are specific 
to self-antigens mounting an attack. It is when these checkpoints 
fail (2) or are subverted by excessive extrinsic signals (3) that 
autoreactivity ensues.

Another major risk for generating newly autoreactive cells 
arises during an immune response. During a T-dependent 
response, activated antigen-specific B  cells can either form an 
early wave of plasmablasts, which are low affinity for the antigen 
and mainly IgM, or they can form transient sites of proliferating 
cells to fine-tune the affinity of their receptor to antigen. This 
major site for affinity maturation is the germinal center (GC). 
GCs are transient sites formed within secondary lymphoid tis-
sue from which high-affinity memory B  cells and plasma cells 
(PCs) emerge. GC B cells activate the enzyme activation-induced 
cytidine deaminase (AID) which permits somatic hypermutation 
(SHM), a process in which random mutations are introduced into 
the B cell receptor. This is followed by selection and survival of 
high-affinity clones mediated by follicular dendritic cells (FDCs) 
and T follicular helper cells (Tfh). As mutations are random, 
SHM may result in a number of different outcomes for the 
antigen receptor, which can range from helpful to detrimental. 
Ideally, SHM will increase the affinity of the receptor for antigen. 
However, resulting clones may also no longer be specific, or have 
lower affinity for the antigen. Finally, mutated receptors may 
detect self-antigen. If left unchecked, these cells may result in the 
production of autoreactive antibody-secreting cells.

Transcription factors are molecular regulators that can acti-
vate or repress programs of gene expressions. They have critical 
roles in regulating cellular behavior during immune responses, 
including proliferation, differentiation, and migration of cells 
in response to the microenvironment. Both B and T  cells rely 
on cytokines, chemokines, and other extrinsic signals to dictate 
their behavior throughout a response. Following these environ-
mental cues, it is the molecular regulators downstream of these 
signals that orchestrate changes in gene expression and make 
functional and fate decisions. In particular, transcription factors 
regulate formation of the immunologic repertoire, as well as the 
differentiation of antigen-specific cells into effector and memory 
subsets during an immune response. These same extrinsic and 
intrinsic mechanisms that promote effective antibody responses 
and formation of immunity can also lead to autoimmunity. This 
review will focus on the points during an immune response at 

which B and Tfh cells can become dysregulated, and the under-
pinning transcription factors that balance appropriate responses 
to foreign pathogens with autoreactive cell formation. As such, 
we will focus on GC-derived autoimmune conditions, principally 
systemic lupus erythematosus (referred to within as lupus).

TRANSCRiPTiONAL ReGULATiON OF 
CLASS BiAS iN T AND B CeLLS

The production of an effective humoral response relies on the 
coordinate orchestration of B and T  cell behavior in unique 
areas of secondary lymphoid organs throughout the response. 
Depending on the pathogen type, such as a virus or bacteria, 
antigen-activated CD4 T  cells will be skewed toward a Th1 
(driven by T-bet), Th2 (driven by Gata3), or Th17 (driven by 
BATF and Rorγt) phenotype early in the response (Figure 1) (4). 
This results in secretion of specialized cytokines by these subsets 
that modulate the microenvironment and, in turn, direct B cell 
behavior.

B  cells will tailor their B  cell receptor to utilize the heavy 
chain with the effector function most suited to clearing the 
infecting pathogen. This is termed immunoglobulin (Ig) iso-
type switching, and is a process which relies on CD4 T  cells. 
Cytokines produced from CD4 T cells, such as IL-4, IFNγ, or 
TGFβ, are able to direct Ig isotype switching, thus modulating 
the effector function of the antibody (5). AID expression and 
the transcription factor BATF are required for switching to all 
isotypes downstream of IgM (6–9). In addition, diversity in 
antibody isotypes is regulated by a small group of transcription 
factors that play context-specific roles in switching to the appro-
priate isotype in response to different cytokines (Figure 1). The 
most well characterized of these is the T-box transcription factor 
T-bet, which mediates production of murine IgG2a/c (referred 
to within as IgG2a) in response to IFNγ (10) as well as type 
I interferons (IFNs). By contrast, Nfil3 is required for IL-4-
mediated induction of IgE (11), and Rorα in TGFβ-mediated 
induction of IgA (12). Furthermore, the transcription factor 
Ikaros can block the induction of murine IgG2a and IgG2b (13). 
It has not yet been determined whether other IgG subclasses 
(14), such as IgG1 or IgG3, have specific transcription factors 
that regulate their production.

Specific isotypes can also mediate immune disorders. For 
instance, mouse models of lupus are linked with excessive produc-
tion of autoreactive IgG2a, which triggers antibody-dependent 
cell-mediated cytotoxicity. T-bet-mediated switching in response 
to IFN signaling is important not only for anti-viral humoral 
responses in mice (15, 16) but can also be immunopathogenic in 
murine models of lupus. T-bet is regulated by the transcription 
factor c-Myb in B cells, which represses the expression of T-bet 
during Th2 cell-biased responses (17). In both T and B cells, T-bet 
induces a number of gene expression changes that can affect 
cellular function and migration. For example, T-bet regulates 
CXCR3 expression and thus migration to sites of inflammation 
(18) and into kidneys of mice with lupus nephritis (19). In lupus-
prone mice, IgG2a immune deposition is found on kidneys, in a 
similar fashion to antibody deposition in human patients.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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FiGURe 1 | Transcriptional regulation of B and T follicular helper cell subsets. Unique transcription factors regulate the differentiation of T helper subsets, which in 
turn regulate the tailoring of the B cell response. Cytokines produced from specialized T helper subsets switch on transcription factors in activated B cells (e.g., 
T-bet, Rorα, Nfil3) that direct isotype switching to downstream immunoglobulin isotypes. Specific isotypes can mediate autoimmune conditions such as lupus.
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There are also other isotypes that have been linked to autoim-
munity, such as IgE. For instance, inactivation of the apoptotic 
mediators FAS/FASL causes autoimmune lymphoproliferative 
syndrome (ALPS) in humans and is also the basis of some 
murine lupus models. It was recently revealed that FAS inacti-
vation in mice results in the production of “rogue” GC B cells, 
which gave rise to a high frequency of IgE-secreting PCs (20). 
Correspondingly, a subset of ALPS patients exhibits hyper IgE 
(20). Furthermore, lupus patients can also exhibit anti-DNA 
IgE antibodies. Self-reactive IgE antibodies may synergize with 
IgG autoantibodies to trigger type I IFN responses, correlating 
with disease severity (21). While the transcription factor Nfil3 
is associated with induction of IgE, it is not clear whether inhi-
bition of Nfil3 may ameliorate disease. In sum, it is clear that 
pathogens influence the class bias and hence effector function of 
both B and T cells. This has critical downstream consequences 
for humoral responses both in infectious responses and autoim-
munity. Understanding the molecular regulation that drives the 
context-specific production or repression of different isotypes 
could potentially lead to new clinical targets for modulation in 
disease.

THe iNTeRwOveN PATHS OF B AND CD4 
T CeLLS DURiNG A HUMORAL 
ReSPONSe

Positioning of B and CD4 T cells within different areas of second-
ary lymphoid organs regulates cellular interactions and exposure 
to signals within the microenvironment. The different migratory 
paths that B and T  cells take during an immune response can 
dictate transcription factor expression, and determine the fate 
and function of these cells. In particular, a distinct T helper line-
age, Tfh cells, is distinguished from other T helper cells subsets by 
its unique position within lymphoid organs, transcription factor 
expression (Bcl-6, c-Maf, BATF, IRF4, and Ascl2) (6, 7, 22–25), 
and cytokine production [predominantly IL-21, important for 
B cell proliferation, maintenance of GCs, and differentiation into 
antibody-secreting cells (26–29)]. The requirements for forma-
tion of these cells are imprinted via critical cellular interactions 
during the first few days of a humoral response (30–32), with 
DC–T cell interactions likely responsible for the initial upregula-
tion of Bcl-6 within T cells (33). The expression of Bcl-6 regulates 
the gene encoding Ebi2 and is thus important for the convergence 
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of T and B cells (34, 35). Bcl-6 expression is also important for 
determination of Tfh from Th1 via expression of Bcl6 over T-bet 
[reviewed recently in Ref. (18)]. However, it is important to note 
that in contrast to previous reports, T-bet can be co-expressed 
with Bcl-6 (36–38) during anti-viral responses. Furthermore, the 
absence of Bcl-6 does not automatically commit T helper cells 
to Th1 or other lineages (30). The ability of T cells to co-express 
Bcl-6 and T-bet has implications for the induction of autoreactive 
GCs, as detailed later in the review.

In the initial phase of a T-dependent immune response, 
activated antigen-specific B cells and CD4 T cells migrate to the 
border between B cell follicles and T cell areas. At the B:T border, 
B and T cells cooperate to promote each other’s differentiation 
into GC-precursor cells. This exchange of signals occurs both 
through direct cell surface ligand and receptor pairings, such 
as ICOSL–ICOS (32) and OX40L–OX40 (39, 40), as well as via 
SAP–SLAM signaling (41) and through T cell cytokine secretion. 
ICOS and OX40 have also been correlated to lupus pathogenesis 
in both humans and murine models (39, 40, 42). Tfh cells share 
this migratory path with other newly activated Th1 and Th2 
effectors (43). Following Th1  cell-biased immunization, the 
ligands of CXCR3 are upregulated proximal to the B:T border 
and CXCR3-dependent migration into this area correlates with 
T cell-derived IFNγ production (44). Similarly, CXCR5+ Th2 cells 
also align to the B:T border following nematode infection (45). 
Combined, this work suggests that these early encounters adja-
cent to the B cell follicle expose antigen-specific B cells to CD4 
effector cytokines. This cytokine microenvironment regulates the 
transcription factor programs that determine B and T  cell fate 
to balance continued Bcl-6 (30–32, 46) upregulation and thus 
progression into GCs, or Blimp-1-induced PC differentiation or 
effector T cell differentiation.

B  cells and early Tfh cells have two main paths from the 
B-T border: forming an extrafollicular plasmablast response or 
migrating into the follicles to form GCs. Autoreactive cells may be 
generated and/or expanded in either the extrafollicular response 
or the GC response. For an initial burst of protective antibody 
and/or in responses to bacteria such as Salmonella enterica, B cells 
may move to the extrafollicular areas of secondary lymphoid 
organs and differentiate into plasmablasts driven by transcrip-
tion factors such as Blimp-1 and IRF4. Bcl6-expressing T helper 
cells help program extrafollicular responses both in response to 
T-dependent and T-independent antigens (46), as well in an auto-
reactive model (47), all of which is dependent on IL-21 (46–48). 
In addition to IL-21, a number of signals that are derived from 
T helper subsets, or produced by other cells present in second-
ary lymphoid organs are influential in selection and subsequent 
expansion of autoreactive clones. These include type I and type 
II IFNs (49, 50), toll-like receptor (TLR) signaling together with 
the survival cytokine BAFF (51–53), and other cytokines such 
as IL-6 and IL-17 [reviewed in Ref. (54)]. Generally, they act 
within secondary lymphoid organs, but some (e.g., IL-17) also 
act in peripheral inflamed organs, and some of these cytokines are 
produced in ectopic lymphoid organs (see section below).

B and T cells that do not go down this path instead migrate 
up through the interfollicular areas and into the follicle (31, 44). 
Ascl2 mediates chemokine receptor expression such that Tfh 

downregulate CCR7 and PSGL1 and upregulate CXCR5, which 
is required to migrate into the B cell follicle (24). Bcl-6 is further 
upregulated in the interfollicular regions (30, 31), finalizing com-
mitment to the Tfh lineage. Within the follicle, B cells and Tfh 
collaborate within GCs to produce high-affinity memory B cells, 
long-lived PCs and memory Tfh cells (36, 55).

GCs—A SiTe FOR B AND T CeLL 
COLLUSiON

Germinal centers are specialized sites formed during immune 
responses that are responsible for the increase in affinity of B cells 
for the antigen (56–58). The three essential points of regulation 
of the GC response are: regulation of B  cell behavior, regula-
tion of Tfh, and resolution of the GC response itself (Figure 2). 
Dysregulation of any of these can lead to autoreactivity and/or the 
exacerbation of autoimmune disease.

Germinal centers are segregated into two zones—the dark 
and light zones—within which different functions occur. In the 
dark zone, B cells undergo proliferation and SHM of the B cell 
receptor. B cells will then migrate to the light zone, where they 
undergo selection via immune complexes on FDCs and compete 
for survival signals secreted by Tfh cells. Selected cells may then 
exit the GC and differentiate into memory B cells or long-lived 
PCs, or they will re-enter the dark zone to undergo another 
round of mutation and selection. T cell help of high-affinity GC 
B cells regulates cell cycle speed to mediate selection (56). This 
intricate process of cyclic migration between zones and interac-
tion between different types of immune cells is important for 
appropriate regulation of affinity maturation. GC B  cells have 
relaxed regulatory checkpoints within proliferating and mutat-
ing cells, and both clonal evolution (66) and the frequency of 
apoptotic cells (67) is similar between self-reactive clones and 
those specific to the immunizing antigen. Thus, once there is a 
break in tolerance to self-antigens, autoreactive clones can evade 
negative selection, undergo lymphoproliferation (68), with the 
consequential formation of B cell-mediated autoimmune condi-
tions (69, 70). Dysregulation of T  cell-intrinsic Bcl-6 (61) and 
overproduction of IL-21 by Tfh can further exacerbate disease 
(48, 54). The transcription factors Foxo1, BATF, and Myc medi-
ate cycling between the light and dark zones, as well as selection 
of high-affinity cells (71–74). Whether dysregulation of these 
transcription factors within B  cells enhance the conditions for 
selection and expansion of autoreactive cells remains largely 
uncharacterized.

ReGULATORY FOLLiCULAR T CeLLS AND 
THe ReSOLUTiON OF THe GC

Foxp3-expressing follicular regulatory T  cells (Tfr) are also 
important participants in GC responses (75). Their presence in 
the GC increases over time and they are thought to suppress Tfh 
numbers and function through molecules such as PD-1 (76). 
Chronic GCs increase the likelihood of generating autoreactive 
clones through epitope spreading (66, 68, 77); thus, the resolu-
tion of the GC response is essential to avoid standard immune 

http://www.frontiersin.org/Immunology/
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FiGURe 2 | Regulation of multiple phases of the germinal center (GC) reaction. (A) Appropriate regulation of Tfh formation and function, GC affinity maturation, and 
resolution of the GC are all required to form immune memory. Red box denotes possible point of collusion between pre-Tfh and pre-GC B cells in autoimmune 
disease. (B) Both B cell-intrinsic and T cell-intrinsic mechanisms have been shown to contribute to the production and expansion of autoreactive clones; shown are 
three models described in text: (B) (49, 59, 60); (C) (48, 61); (D) (42, 62–65). (e) Disruption of both B and T cell pathways result in the production and expansion of 
autoreactive clones, and can lead to the migration of circulating T follicular helper cells, autoreactive B cells, and plasma cells that may result in tissue damage.
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responses against foreign pathogen from inducing autoimmun-
ity. It is likely that Tfh, Tfr, and B cells all interact to shut down 
the GC; however, two Tfr-independent-related theories were 
recently put forward to explain the dissolution of the GC. The 
first was by McHeyzer-Williams and colleagues, who suggest that 
PCs directly interact with Tfh to downregulate Bcl-6 and IL-21 
expression within Tfh (78). Supporting this, deletion of the PC 
transcription factor Blimp-1 specifically in B cells increased Tfh 
numbers (78). Furthermore, Toellner and colleagues demon-
strated in silico that high-affinity antibodies feedback to mediate 
selection and to resolve the GC (79). Whether Tfr have a specific 
role in prohibiting autoreactive antibody formation is unclear, 
although there are two recent studies to suggest this possibility. 
Loss of Tfr through deletion of CD28 led to B cell-driven auto-
immunity (80). Additionally, Ballesteros-Tato and colleagues 
recently demonstrated that IL-2-induced Blimp-1 suppression of 
Tfr resulted in an increase of anti-nuclear autoimmune antibodies 
after infection, by specifically promoting expansion of autoreac-
tive antibody-secreting cells independent of GC and Tfh numbers 
(81). Furthermore, interactions between follicular T cell subsets 
and PCs through the inhibitory receptor PD-1 and its ligands may 
also suppress autoreactive GC cells (78, 82). Accordingly, PD-1 
deficiency induces a lupus-like condition in mice (83) and PD-L1 
deficiency can induce hyperactive Tfh responses in autoimmune 
arthritis (84).

THe ROLe OF iFNγ AND T-bet iN THe 
CReATiON AND COLLUSiON OF 
AUTOReACTive GCs

Both type I and type II IFNs play important roles during the 
development of lupus (85), yet until recently it was unknown 
whether both were able to drive the formation of autoreactive 
GC in a B cell-intrinsic manner. Two recent publications tested 
the requirement of IFN signaling and the downstream molecular 
mechanism in B  cell autoimmune models (49, 59). Although 
B cell-intrinsic type I IFN-accelerated lupus development, it was 
not absolutely required (49). By contrast, B  cell expression of 
IFNγR, as well as BCR signals and either TLR or CD40L signals, 
induced Bcl6 and hence spontaneous GC formation (49, 59). 
Furthermore, B cell-derived IL-6 synergized with IFNγ to medi-
ate autoimmunity (60). Interestingly, this process was specific to 
autoimmune GC development, as the combination of IFNγR, 
BCR, and either TLR or CD40L was not essential for the forma-
tion of GCs in response to foreign antigen.

While Domeier and colleagues identified a role for T-bet in 
the formation of spontaneous GCs (59), another study in the 
same issue determined that the B cell-intrinsic deletion of T-bet 
did not impact on GC formation (49). This latter study utilized 
the Wiskott Aldrich syndrome chimera model of autoimmunity. 
Wiskott Aldrich is an X-linked immunodeficiency caused by 
mutations in the WAS gene. Patients are prone to develop sys-
temic autoimmunity, and mice that lack WAS protein is B cells 
establish autoimmune disease (86). While the authors found a 
critical mechanistic role for IFNγR in the formation of autoreac-
tive GCs, this was not through the induction of T-bet (49). Yet, 
there are other studies demonstrating B  cell-intrinsic roles of 

T-bet; in particular for the formation of the T-bet-expressing 
age-associated B cell (ABC) subset. Multiple groups have identi-
fied and characterized ABCs in murine autoimmune models as 
well as in elderly and autoimmune patients (87–89). While T-bet 
expression had been used as a marker of these cells, it was initially 
unclear whether they were causative of autoreactivity. Rubtsova 
and colleagues addressed this by conditionally deleting T-bet in 
mature B cells in lupus-prone mice, resulting in the amelioration 
of autoimmune disease (90).

While these studies demonstrated a B  cell-intrinsic role for 
IFNγR, the role of IFNγR was T  cell-intrinsic in the Roquin 
model of lupus (a model in which a mutation in the roquin gene 
results in an aberrant number of Tfh) (62, 63). Specifically, a 
lack of ICOS repression resulted in excess INFγ and IL-21, con-
comitant with a substantial induction of Tfh and consequently 
GCs (42, 62, 64). Deleting one allele of Bcl-6 ameliorated the 
autoimmune symptoms, thus demonstrating the dependency 
on Tfh for generating disease in this model (65). Together, the 
commonality of these models is the prominent role of IFNγ in 
generating autoreactive responses, and the parallel pathways B 
and T cells can take (depending on the model) to generate auto-
immunity. Studies into the molecular mechanisms that may tip an 
IFNγ-mediated anti-viral immune response to one that promotes 
autoreactivity are needed. Finally, regardless of the cell-intrinsic 
nature of T-bet-induced autoreactivity, it would be beneficial to 
determine regulators of this pathway [such as c-Myb (17)] to 
identify new clinical targets for autoimmune patients. This is 
particularly important in the B cell lineage, as cells with similar 
characteristics to ABCs have now been described in a number 
of different contexts (91, 92), particularly those that still require 
effective interventions such as in chronic infectious diseases (87, 
93) or autoimmune conditions (94–96).

TRANSCRiPTiONAL ReGULATiON OF 
Tfh-DeRiveD CYTOKiNeS

The transcriptional regulation of Tfh cytokine production is 
of central concern to lupus pathogenesis, given the number 
of mechanisms described above in which excessive cytokine 
production by Tfh promotes autoreactivity. In particular, the 
members of the signal transducer and activator of transcription 
(STAT) family of transcription factors are critical regulators of 
Tfh-derived cytokines. A recent study investigated the transcrip-
tional regulation of Tfh-derived cytokines in viral infection (97). 
In this setting, STAT4-dependent upregulation T-bet, in line with 
previous studies showing STAT4 promotes both Th1 and Tfh 
downstream of IL-12 signaling (37). STAT4 was required for both 
IFNγ and IL-21, presumably acting as an upstream inducer of both 
T-bet and Bcl-6 (37, 97). STAT3 and STAT1 are also important 
regulators of Tfh differentiation and function. Functional STAT3 
deficiency in humans compromises the generation of Tfh and 
production of IL-21 (98), while T cells from patients with lupus 
display increased levels of total and phosphorylated STAT3 (99). 
STAT3 regulates the production of IL-21 downstream of IL-6, and 
a positive feedback loop exists between STAT4 and STAT3 to fur-
ther promote IL-21 production (37). STAT3 also works together 
with STAT1 to promote Tfh differentiation, again through 
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IL-6 induced Bcl-6 upregulation (100, 101). Interestingly, the 
reduction in Tfh differentiation observed in STAT3 deficiency is 
partially reversed with type I IFN blocking, which coincides with 
increased Bcl-6 expression (102). By contrast, STAT5 is induced 
in situations of high IL-2 to block Tfh differentiation in preference 
for Th1 via upregulation of Blimp-1 (103–105). Combined, the 
network of STAT transcription factors acts in concert with Bcl-6 
and T-bet to specify key functional characteristics of Tfh which is 
relevant for lupus development.

MiGRATiON TO SiTeS OF 
iMMUNOPATHOLOGY

While a lot of mechanistic insight has been gained by revealing 
the molecular factors underpinning B and T cell differentiation 
in secondary lymphoid organs, a lot less is known about whether 
these mechanisms also underpin local formation of autoreactive 
GCs in the tissues. Investigating human GC and Tfh dynamics 
and functionality is difficult as it relies on the attainment of tis-
sues. As such, circulating Tfh (cTfh)—i.e., cells that possess some 
phenotypic and functional attributes of Tfh that are found in the 
blood—have been investigated as a proxy for what is occurring in 
the organs. It is currently unclear whether these cells are pre-Tfh 
or memory Tfh (106), as they do not express all markers of Tfh 
found in the tissues, notably Bcl-6. However, they have provided 
useful information about the clinical severity of diseases ranging 
from chronic infectious disease to autoimmune diseases. To that 
end, cTfh and associated serum cytokine levels such as IL-21 have 
been found to be elevated in patients with lupus and rheumatoid 
arthritis with active disease (107–112). Furthermore, a recent 
study also demonstrated that circulating Tfr were reduced in 
lupus patients, and that the ratio of Tfh/Tfr positively correlated 
with disease activity (113). As these cells do not express Bcl-6, 
other transcription factors may regulate their formation and/or 
migration. For instance, as previously noted, T-bet induces the 
expression of CXCR3, a chemokine receptor that is expressed by 
cTfh and is known to be important for directing cells to sites of 
inflammation. As cTfh do not express Bcl-6, it may be possible 
that cTfh are actually pre-Tfh that have been recruited into the 
blood before they fully differentiate in the follicle. Tfh-like cells 
in inflamed tissue from rheumatoid arthritis patients have been 
suggested to promote autoreactive plasmablast formation (114), 
but whether these cells originated from cTfh or were instead a 
non-Tfh subset produced locally (115) remains undetermined. 
Future work may resolve the following questions: (1) do cTfh cell 
phenotypes represent the cause or consequence of disease? (2) 
Have these cells been specifically recruited to sites of inflamma-
tion, or are they in the blood because they are dysfunctional and 
have simply been excluded from lymphoid organs?

CHeMOKiNe ReCePTOR SiGNALiNG 
THAT ReGULATeS MiGRATiON OF 
iMMUNe CeLLS iN LUPUS

Lupus is a heterogeneous disease, in which the loss of varied 
tolerance checkpoints may result in similar disease phenotypes. 

Recently, transcriptional fingerprinting of patients has been high-
lighted as a means to deduce disease pathogenesis and stratify 
treatment protocols (116). This analysis has highlighted groups of 
patients with either primarily type I IFN or plasmablast signatures, 
suggesting a dichotomy of disease mechanisms. However, these 
patient phenotypes may be more intertwined. Several chemokines 
which may promote aberrant GC development are key IFN 
signature genes upregulated in lupus patients. Furthermore, the 
expression of the corresponding chemokine receptors has been 
correlated with B cells and/or PCs in autoimmune diseases, par-
ticularly lupus or rheumatoid arthritis. For example, elevated lev-
els of serum CXCL10 (an interferon-inducible gene), CCL2, and 
CCL19 correlated with lupus activity (117–119). Furthermore, 
CCR6 has also been found to be upregulated on certain B cell 
subsets in lupus patients compared to healthy controls; however, 
the significance of this is currently unclear (120). The most well-
characterized chemokine receptor in this context (regulation of 
cellular migration to sites of inflammation) is the T-bet-regulated 
CXCR3. CXCR3 mediates kidney disease in murine lupus 
nephritis (121, 122), and reduction of the transcription factor 
FLI1 results in amelioration of kidney disease in MRL/lpr mice 
with concomitant reduction in CXCR3+ T cells and CXCL9/10 
expression (123). Yet, the role of these chemokine families in 
directly facilitating the development of either self-reactive GC in 
secondary lymphoid organs or ectopic GC structures in inflamed 
tissues (124), or in mediating tissue damage by GC-independent 
mechanisms, remains to be determined.

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

It is clear that dysregulation of either B cells or Tfh cells can result 
in the production of autoreactive GCs and antibody-secreting 
cells. Unchecked proliferation of Tfh and excessive production of 
cytokines, such as IL-21 and IFNγ, can collude with B cell-intrin-
sic mechanisms to induce autoimmune responses. Furthermore, 
transcription factors common to both B and T cells, such as Bcl-6, 
T-bet, and Blimp-1, can be hijacked to assist in driving aberrant 
responses to infection that lead to the formation and migration of 
autoreactive clones. In particular, T-bet, and the T-bet-regulated 
gene CXCR3, appears to be key to controlling the relocation of 
cells from secondary lymphoid organs to other tissues where 
ectopic GCs and/or local autoreactive plasmablast formation 
can result. However, there are still a number of open questions 
relating to how these molecular networks may be dysregulated. 
Studies done in both B and T cells have demonstrated that the 
timing and level of expression of these transcription factors are 
important. For instance, the expression level of T-bet is critical in 
regulating T cell fate decisions, with high levels of T-bet favoring 
Th1 development over Tfh in the CD4 lineage, or effector CD8 
over memory CD8 T cells. While a molecular mechanism under-
pinning graded expression has been put forth for CD8 T  cells 
(125), whether there is a similar mechanism in other lineages 
that express T-bet is currently unknown. There is also evidence 
that gradient expression exists in B cells (17). Given that B cell-
intrinsic T-bet has been postulated to be causative of autoimmune 
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disease in at least two murine models, it will be critical to under-
stand whether the level of expression of T-bet can be causative 
of B cell dysregulation independent of extrinsic factors. Finally, 
while there has been a focus on IFN and T-bet in murine models 
in recent years, how this translates to pathogenesis in humans, 
and whether there are other transcription factor networks that 
drive the migration of cTfh, autoreactive B cells, and formation 
of ectopic lymphoid structures, requires further research. Thus, 
understanding the factors underlying the genesis of autoreactive 
GCs, via dysregulation of factors in the microenvironment and/or 
dysregulation of transcription factor networks, will be important 
in generating new targets for clinical intervention.
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