FIOOOResearch F1000Research 2017, 6:2010 Last updated: 20 DEC 2017

W) Check for updates
SOFTWARE TOOL ARTICLE
Easy and efficient ensemble gene set testing with EGSEA
[version 1; referees: 1 approved, 3 approved with reservations]

Monther Alhamdoosh /1, Charity W. Law?-3, Luyi Tian?:3, Julie M. Sheridan =24,
Milica Ng', Matthew E. Ritchie /2.3,

1CSL Limited, Bio21 Institute, Parkville, Victoria, Australia

2Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia

3Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
4Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
5School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia

vi First published: 14 Nov 2017, 6:2010 (doi: 10.12688/f1000research.12544.1) Open Peer Review
Latest published: 14 Nov 2017, 6:2010 (doi: 10.12688/f1000research.12544.1)

Referee Status: 7 7 7 «'
Abstract

Gene set enrichment analysis is a popular approach for prioritising the

biological processes perturbed in genomic datasets. The Bioconductor project Invited Referees

hosts over 80 software packages capable of gene set analysis. Most of these 1 2 3 4
packages search for enriched signatures amongst differentially regulated
genes to reveal higher level biological themes that may be missed when version 1 ? ? ? v
focusing only on evidence from individual genes. With so many different published report report report  report
methods on offer, choosing the best algorithm and visualization approach can 14 Nov 2017
be challenging. The EGSEA package solves this problem by combining results
from up to 12 prominent gene set testing algorithms to obtain a consensus N

. . . . Robert Castel ,U tat P
ranking of biologically relevant results.This workflow demonstrates how EGSEA [ a-s elo niversfiat Fompeu
can extend limma-based differential expression analyses for RNA-seq and Fabra, Spain
microarray data using experiments that profile 3 distinct cell populations 5 Jm B Uiy sk

important for studying the origins of breast cancer. Following data normalization
and set-up of an appropriate linear model for differential expression analysis,
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or human gene set collections obtained from MSigDB, GeneSetDB and KEGG
to the gene expression data being investigated. EGSEA is then configured and
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Introduction

Gene set enrichment analysis allows researchers to efficiently extract biological insights from long lists of
differentially expressed genes by interrogating them at a systems level. In recent years, there has been a proliferation
of gene set enrichment (GSE) analysis methods released through the Bioconductor project' together with a steady
increase in the number of gene set collections available through online databases such as MSigDB’, GeneSetDB*
and KEGG". In an effort to unify these computational methods and knowledge-bases, the EGSEA R/Bioconductor
package was developed. EGSEA, which stands for Ensemble of Gene Set Enrichment Analyses® combines the results
from multiple algorithms to arrive at a consensus gene set ranking to identify biological themes and pathways
perturbed in an experiment. EGSEA calculates seven statistics to combine the individual gene set statistics of base
GSE methods to rank biologically relevant gene sets. The current version of the EGSEA package® utilizes the analy-
sis results of up to twelve prominent GSE algorithms that include: ora’, globaltest’, plage’, safe'’, zscore'', gage'",
ssgsea', padog"', gsva", camera'®, roast" and fry'. The ora, gage, camera and gsva methods depend on a com-
petitive null hypothesis which assumes the genes in a set do not have a stronger association with the experimental
condition compared to randomly chosen genes outside the set. The remaining eight methods are based on a
self-contained null hypothesis that only considers genes within a set and again assumes that they have no association
with the experimental condition.

EGSEA provides access to a diverse range of gene signature collections through the EGSEAdata package
that includes more than 25,000 gene sets for human and mouse organised according to their database sources
(Table 1). For example, MSigDB” includes a number of collections (Hallmark (h) and c1—c7) that explore differ-
ent biological themes ranging from very broad (h, c2, c5) through to more specialised ones focusing on cancer
(c4, c6) and immunology (c7). The other main sources are GeneSetDB* and KEGG* which have similar collections
focusing on different biological characteristics (Table 1). The choice of collection/s in any given analysis should
of course be guided by the biological question of interest. The MSigDB ¢2 and c5 collections are the most widely
used in our own analysis practice, spanning a wide range of biological processes and can often reveal new
biological insights when applied to a given dataset.

The purpose of this article is to demonstrate the gene set testing workflow available in EGSEA on both RNA-seq and
microarray data. Each analysis involves four major steps that are summarized in Figure 1: (1) selecting appropriate
gene set collections for analysis and building an index that maps between the members of each set and the expression
matrix; (2) choosing the base GSE methods to combine and the ranking options; (3) running the EGSEA test and
(4) reporting results in various ways to share with collaborators. The EGSEA functions involved in each of these
steps are introduced with code examples to demonstrate how they can be deployed as part of a limma differential
expression analysis to help with the interpretation of results.

Table 1. Summary of the gene set collections available in the EGSEAdata package.

Database Collection Description
h Hallmarks Gene sets representing well-defined biological states
or processes that have coherent expression.
c1 Positional Gene sets by chromosome and cytogenetic band.
c2 Curated

Gene sets obtained from a variety of sources,
including online pathway databases
and the biomedical literature.

i ¢3 Motif Gene sets of potential targets regulated by
MSigDB transcription factors or microRNAs.
¢4 Computational Gene sets defined computationally by mining
large collections of cancer-oriented microarray data.
c6GO Gene sets annotated by Gene Ontology (GO) terms.
¢6 Oncogenic Gene sets of the major cellular pathways
) disrupted in cancer.
¢7 Immunologic Gene sets representing different cell types
and stimulations relevant to the immune system.
Signalling
KEGG Disease Gene sets obtained from the KEGG database.
Metabolic
Pathway
Disease
GeneSetDB Drug Gene sets obtained from various online databases.
Regulation
GO Terms
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Figure 1.The main steps in an EGSEA analysis and the functions that perform each task.

Gene expression profiling of the mouse mammary gland

The first experiment analysed in this workflow is an RNA-seq dataset from Sheridan er al. (2015)' that consists of
3 cell populations (Basal, Luminal Progenitor (LP) and Mature Luminal (ML)) sorted from the mammary glands of
female virgin mice. Triplicate RNA samples from each population were obtained in 3 batches and sequenced on an
Illumina HiSeq 2000 using a 100 base-pair single-ended protocol. Raw sequence reads from the fastq files were aligned
to the mouse reference genome (mm10) using the Rsubread package'”. Next, gene-level counts were obtained using
featureCounts” based on Rsubread’s built-in mmI0 RefSeq-based annotation. The raw data along with further
information on experimental design and sample preparation can be downloaded from the Gene Expression Omnibus
(GEO, www.ncbi.nlm.nih.gov/geo/) using GEO Series accession number GSE63310 and will be preprocessed accord-
ing to the RNA-seq workflow published by Law er al. (2016)*'.

The second experiment analysed in this workflow comes from Lim ef al. (2010)* and is the microarray equivalent
of the RNA-seq dataset mentioned above. The same 3 populations (Basal (also referred to as “MaSC-enriched”), LP
and ML) were sorted from mouse mammary glands via flow cytometry. Total RNA from 5 replicates of each cell
population were hybridised onto 3 Illumina MouseWG-6 v2 BeadChips. The intensity files and chip annotation file
available in Illumina’s proprietary formats (IDAT and BGX respectively) can be downloaded from http://bioinf.wehi.
edu.au/EGSEA/arraydata.zip. The raw data from this experiment is also available from GEO under Series accession
number GSE19446.

Analysis of RNA-seq data with EGSEA

Our RNA-seq analysis follows on directly from the workflow of Law et al. (2016) which performs a differential gene
expression analysis on this data set using the Bioconductor packages edgeR*, limma** and Glimma* with gene anno-
tation from the Mus .musculus package’. The limma package offers a well-developed suite of statistical methods
for dealing with differential expression for both microarray and RNA-seq datasets and will be used in the analyses of
both datasets presented in this workflow.

Reading, preprocessing and normalisation of RNA-seq data
To get started with this analysis, download the R data file from http://bioinf.wehi.edu.au/EGSEA/mam.rnaseq.rdata.
The code below loads the preprocessed count matrix from Law ef al. (2016), performs TMM normalisation”’” on the
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raw counts, and calculates voom weights for use in comparisons of gene expression between Basal and LP, Basal and
ML, and LP and ML populations.

> library (limma)
> library (edgeR)
> load("mam.rnaseq.rdata")
> names (mam.rnaseqg.data)
[1] "samples" "counts" '"genes"
> dim(mam.rnaseq.data)
[1] 14165 9
> x = calcNormFactors (mam.rnaseq.data, method = "TMM")
> design = model.matrix (T0+x$samplesSgroup+xS$SsamplesSlane)
> colnames (design) = gsub ("x\\Ssamples\\$Sgroup", "", colnames (design))
> colnames (design) = gsub ("x\\S$samples\\$lane", "", colnames (design))
> head (design)

Basal LP ML L00O6 L0O08
1 0 1 0 0 0
2 0 0 1 0 0
3 1 0 O 0 0
4 1 0 O 1 0
5 0 0 1 1 0
6 0 1 0 1 0
> contr.matrix = makeContrasts(
+ BasalvsLP = Basal-LP,
+ BasalvsML = Basal - ML,
+ LPvsML = LP - ML,
+ levels = colnames (design))
> head (contr.matrix)

Contrasts

Levels BasalvsLP BasalvsML LPvsML

Basal 1 1 0

LP -1 0 1

ML 0 -1 -1

L00O6 0 0 0

L008 0 0 0

The voom function® from the limma package converts counts to log-counts-per-million (log-cpm) and calculates
observation-level precision weights. The voom object (v) contains normalized log-cpm values and gene information
used by all of the methods in the EGSEA analysis below. The precision weights stored within v are also used
by the camera, roast and fry gene set testing methods.

> v = voom(x, design, plot=FALSE)
> names (v)
[1] "genes" "targets" "E" "weights" "design"

For further information on preprocessing see Law er al. (2016), as a detailed explanation of these steps is beyond
the scope of this article.

Gene set testing

The EGSEA algorithm makes use of the voom object (v), a design matrix (design) and an optional contrasts
matrix (contr.matrix). The design matrix describes how the samples in the experiment relate to the coeffi-
cients estimated by the linear model”. The contrasts matrix then compares two or more of these coefficients to allow
relative assessment of differential expression. Base methods that utilize linear models such as those from limma and
GSVA (gsva, plage, zscore and ssgsea) make use of the design and contrasts matrices directly. For methods that do
not support linear models, these two matrices are used to extract the group information for each comparison.
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1. Exploring, selecting and indexing gene set collections

The package EGSEAdata includes more than 25,000 gene sets organized in collections depending on their
database sources. Summary information about the gene set collections available in EGSEAdata can be displayed as

follows:

> library (EGSEAdata)
> egsea.data ("mouse")
The following databases are available in EGSEAdata for Mus musculus:

Database name: KEGG Pathways

Version: NA

Download/update date: 07 March 2017

Data source: gage::kegg.gsets|()

Supported species: human, mouse, rat

Gene set collections: Signaling, Metabolism, Disease
Related data objects: kegg.pathways

Number of gene sets in each collection for Mus musculus
Signaling: 132

Metabolism: 89

Disease: 67

Database name: Molecular Signatures Database (MSigDB)
Version: 5.2

Download/update date: 07 March 2017

Data source: http://software.broadinstitute.org/gsea
Supported species: human, mouse

Gene set collections: h, c¢l, c2, c3, c4, c5, c6, c7
Related data objects: msigdb, Mm.H, Mm.c2, Mm.c3, Mm.c4, Mm.c5, Mm.c6,
Number of gene sets in each collection for Mus musculus
h Hallmark Signatures: 50

c2 Curated Gene Sets: 4729

c3 Motif Gene Sets: 836

c4 Computational Gene Sets: 858

c5 GO Gene Sets: 6166

c6 Oncogenic Signatures: 189

c7 Immunologic Signatures: 4872

Database name: GeneSetDB Database

Version: NA

Download/update date: 15 January 2016

Data source: http://www.genesetdb.auckland.ac.nz/

Supported species: human, mouse, rat

Gene set collections: gsdbdis, gsdbgo, gsdbdrug, gsdbpath, gsdbreg
Related data objects: gsetdb.human, gsetdb.mouse, gsetdb.rat
Number of gene sets in each collection for Mus musculus
GeneSetDB Drug/Chemical: 6019

GeneSetDB Disease/Phenotype: 5077

GeneSetDB Gene Ontology: 2202

GeneSetDB Pathway: 1444

GeneSetDB Gene Regulation: 201

Type ?<data object name> to get a specific information
about it, e.g., ?kegg.pathways.

Mm.c7
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As the output above suggests, users can obtain help on any of the collections using the standard R help (?) command,
for instance ?Mm. c2 will return more information on the mouse version of the c2 collection from MSigDB. The above
information can be returned as a list:

> info = egsea.data("mouse", returnInfo = TRUE)
> names (info)

[1] "kegg" "msigdb" "gsetdb"
> info$msigdbS$infoS$collections
[1] "h" "Cl" "c2" "C3" "c4" "C5" "c6" "C7"

To highlight the capabilities of the EGSEA package, the KEGG pathways, c2 (curated gene sets) and c5 (Gene
Ontology gene sets) collections from the MSigDB database are selected. Next, an index is built for each gene set
collection using the EGSEA indexing functions to link the genes in the different gene set collections to the rows of
our RNA-seq gene expression matrix. Indexes for the ¢2 and c5 collections from MSigDB and for the KEGG path-
ways are built using the buildIdx function which relies on Entrez gene IDs as its key. In the EGSEAdata gene set
collections, Entrez IDs are used as they are widely adopted by the different source databases and tend to be more con-
sistent and robust since there is one identifier per gene in a gene set. It is also relatively easy to convert other gene IDs
into Entrez IDs.

> library (EGSEA)

> gs.annots = buildIdx (entrezIDs=vS$genes$ENTREZID, species="mouse",
+ msigdb.gsets=c ("c2", "c5"), go.part = TRUE)
[1] "Loading MSigDB Gene Sets ... "

[1] "Loaded gene sets for the collection c2 ..."

[1] "Indexed the collection c2 ..."

[1] "Created annotation for the collection c2 ..."

[1] "Loaded gene sets for the collection c5 ..."

[1] "Indexed the collection c5 ..."

[1] "Created annotation for the collection c5 ..."
MSigDB c5 gene set collection has been partitioned into
c5BP, c¢5CC, c5MF

[1] "Building KEGG pathways annotation object ... "

> names (gs.annots)

[1] "c2" "c5BP" "c5CC" "cS5MF" "kegg"

To obtain additional information on the gene set collection indexes, including the total number of gene sets, the version
number and date of last revision, the methods summary, show and getSetByName (or getSetByID) can be invoked on an
object of class GSCollectionIndex, which stores all of the relevant gene set information, as follows:

> class (gs.annots$c2)

[1] "GSCollectionIndex"

attr (, "package")

[1] "EGSEA"

> summary (gs.annots$c2)

c2 Curated Gene Sets (c2): 4726 gene sets - Version: 5.2, Update date: 07 March 2017
> show (gs.annots$c2)

An object of class "GSCollectionIndex"

Number of gene sets: 4726

Annotation columns: ID, GeneSet, BroadUrl, Description, PubMedID, NumGenes, Contributor
Total number of indexing genes: 14165

Species: Mus musculus

Collection name: c2 Curated Gene Sets

Collection unique label: c2

Database version: 5.2

Database update date: 07 March 2017

> s = getSetByName (gs.annots$c2, "SMID BREAST CANCER LUMINAL A DN")

ID: M13072
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GeneSet: SMID BREAST CANCER LUMINAL A DN

BroadUrl: http://www.broadinstitute.org/gsea/msigdb/cards/SMID BREAST CANCER
LUMINAL A DN.html

Description: Genes down-regulated in the luminal A subtype of breast cancer.

PubMedID: 18451135

NumGenes: 23/24

Contributor: Jessica Robertson

> class(s)

[1] "list"

> names (s)

[1] "SMID BREAST CANCER LUMINAL A DN"

> names (s$SMID BREAST CANCER LUMINAL A DN)

[1] "I1D" "GeneSet" "BroadUrl" "Description" "PubMedID"

[6] "NumGenes" "Contributor"

Objects of class GSCollectionIndex store for each gene set the Entrez gene IDs in the slot original, the indexes in
the slot idx and additional annotation for each set in the slot anno.

> slotNames (gs.annots$c2)
[1] "original" "idx" "anno" "featureIDs" "species"
[6] "name" "label" "version" "date"

Other EGSEA functions such as buildCustomIdx, buildGMTIdx, buildKEGGIdx, buildMSigDBIdx
and buildGeneSetDBIdx can be also used to build gene set collection indexes. The functions buildCustomIdx
and buildGMTIdx were written to allow users to run EGSEA on gene set collections that may have been curated
within a lab or downloaded from public databases and allow use of gene identifiers other than Entrez IDs. Example
databases include, ENCODE Gene Set Hub (available from https://sourceforge.net/projects/encodegenesethub/),
which is a growing resource of gene sets derived from high quality ENCODE profiling experiments encompassing
hundreds of DNase hypersensitivity, histone modification and transcription factor binding experiments®. Other
resources include PathwayCommons (http://www.pathwaycommons.org/)’’ and the KEGGREST* package that
provides access to up-to-date KEGG pathways across many species.

2. Configuring EGSEA

Before an EGSEA test is carried out, a few parameters need to be specified. First, a mapping between Entrez IDs
and Gene Symbols is created for use by the visualization procedures. This mapping can be extracted from the
genes data.frame of the voom object as follows:

> colnames (vSgenes)

[1] "ENTREZID" "SYMBOL" "CHR"
> symbolsMap = v$genes|[, c(l, 2)]
> colnames (symbolsMap) = c("FeatureID", "Symbols")

> symbolsMap[, "Symbols"] = as.character (symbolsMap[, "Symbols"])

Another important parameter in EGSEA is the list of base GSE methods (baseMethods in the code below), which
determines the individual algorithms that are used in the ensemble testing. The supported base methods can be listed
using the function egsea.base as follows:

> egsea.base()
[l] llcamerall llroastll llsafell llgagell llpadogll llplagell
[7] "zscore" "gsva" "ssgsea" "globaltest" "ora" "fry"

The plage, zscore and ssgsea algorithms are available in the GSVA package and camera, fry and roast are implemented
in the limma package”. The ora method is implemented using the phyper function from the stats package*, which
estimates the hypergeometric distribution for a 2 x 2 contingency table. The remaining algorithms are implemented in
Bioconductor packages of the same name. A wrapper function is provided for each individual GSE method to utilize
this existing R code and create a universal interface for all methods.
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Eleven base methods are selected for our EGSEA analysis: camera, safe, gage, padog, plage, zscore, gsva, ssgsea,
globaltest, ora and fry. Fry is a fast approximation of roast that assumes equal gene-wise variances across samples to
produce similar p-values to a roast analysis run with an infinite number of rotations, and is selected here to save time.

> baseMethods = egsea.base() [-2]

> baseMethods

[1] "camera" "safe" "gage" "padog" "plage" "zscore"
[7] "gsva" "ssgsea" "globaltest" "ora" "fry"

Although, different combinations of base methods might produce different results, it has been found via simulation
that including more methods gives better performance’.

Since each base method generates different p-values, EGSEA supports six different methods from the metap
package® for combining individual p-values (Wilkinson™ is default), which can be listed as follows:

> egsea.combine ()
[1] "fisher" "wilkinson" "average" "logitp" "sump" "sumz"

[7] "votep" "median"

Finally, the sorting of EGSEA results plays an essential role in identifying relevant gene sets. Any of EGSEA’s
combined scores or the rankings from individual base methods can be used for sorting the results.

> egsea.sort ()

[1] "p.value" "p.adj" "vote.rank" "avg.rank" "med.rank"
[6] "min.pvalue" "min.rank" "avg.logfc" "avg.logfc.dir" "direction"
[11] "significance" "camera" "roast" "safe" "gage"
[16] "padog" "plage" "zscore" "gsva" "ssgsea"
[21] "globaltest" "ora" "fry"

Although p.adj is the default option for sorting EGSEA results for convenience, we recommend the use of either
med.rank or vote.rank because they efficiently utilize the rankings of individual methods and tend to produce
fewer false positives”.

3. Ensemble testing with EGSEA
Next, the EGSEA analysis is performed using the egsea function that takes a voom object, a contrasts matrix,
collections of gene sets and other run parameters as follows:

> gsa = egsea (voom.results=v, contrasts=contr.matrix,
+ gs.annots=gs.annots, symbolsMap=symbolsMap,
+ baseGSEAs=baseMethods, sort.by="med.rank",
+ num.threads = 8, report = FALSE)

EGSEA analysis has started

#h-———-—- Fri Jun 16 09:49:11 2017 ------ ##

Log fold changes are estimated using limma package

limma DE analysis is carried out

Number of used cores has changed to 3

in order to avoid CPU overloading.

EGSEA is running on the provided data and c2 collection
EGSEA is running on the provided data and c5BP collection
EGSEA 1is running on the provided data and c5CC collection
EGSEA is running on the provided data and c5MF collection
EGSEA is running on the provided data and kegg collection
FH—————- Fri Jun 16 09:57:56 2017 -----—- ##

EGSEA analysis took 525.812 seconds.

EGSEA analysis has completed
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In situations where the design matrix includes an intercept, a vector of integers that specify the columns of the design
matrix to test using EGSEA can be passed to the contrasts argument. If this parameter is NULL, all pairwise com-
parisons based on v$targets$group are created, assuming that group is the primary factor in the design matrix.
Likewise, all the coefficients of the primary factor are used if the design matrix has an intercept.

EGSEA is implemented with parallel computing features enabled using the parallel package™ at both the method-
level and experimental contrast-level. The running time of the EGSEA test depends on the base methods selected and
whether report generation is enabled or not. The latter significantly increases the run time, particularly if the argument
display.top is assigned a large value (> 20) and/or a large number of gene set collections are selected. EGSEA
reporting functionality generates set-level plots for the top gene sets as well as collection-level plots.

The EGSEA package also has a function named egsea.cnt, that can perform the EGSEA test using an
RNA-seq count matrix rather than a veom object, a function named egsea.ora, that can perform over-
representation analysis with EGSEA reporting capabilities using only a vector of gene IDs, and the egsea.ma
function that can perform EGSEA testing using a microarray expression matrix as shown later in the workflow.

Classes used to manage the results. The output of the functions egsea, egsea.cnt, egsea.ora and
egsea.ma is an S4 object of class EGSEAResults. Several S4 methods can be invoked to query this object.
For example, an overview of the EGSEA analysis can be displayed using the show method as follows:

> show (gsa)

An object of class "EGSEAResults"

Total number of genes: 14165

Total number of samples: 9

Contrasts: BasalvsLP, BasalvsML, LPvsML

Base GSE methods: camera (limma:3.32.2), safe (safe:3.16.0), gage (gage:2.26.0),
padog (PADOG:1.18.0), plage (GSVA:1.24.1), zscore (GSVA:1.24.1), gsva (GSVA:1.24.1),
ssgsea (GSVA:1.24.1),

P-values combining method: wilkinson

Sorting statistic: med.rank

Organism: Mus musculus

HTML report generated: No

Tested gene set collections:

c2 Curated Gene Sets (c2): 4726 gene sets - Version: 5.2, Update date: 07 March 2017

c5 GO Gene Sets (BP) (cb5BP): 4653 gene sets - Version: 5.2, Update date: 07 March 2017

c5 GO Gene Sets (CC) (cbCC): 584 gene sets - Version: 5.2, Update date: 07 March 2017

c5 GO Gene Sets (MF) (cbMF): 928 gene sets - Version: 5.2, Update date: 07 March 2017

KEGG Pathways (kegg): 287 gene sets - Version: NA, Update date: 07 March 2017

EGSEA version: 1.5.2

EGSEAdata version: 1.4.0

Use summary (object) and topSets (object, ...) to explore this object.

This command displays the number of genes and samples that were included in the analysis, the experimental
contrasts, base GSE methods, the method used to combine the p-values derived from different GSE algorithms, the
sorting statistic used and the size of each gene set collection. Note that the gene set collections are identified using
the labels that appear in parentheses (e.g. c2) in the output of show.

4. Reporting EGSEA results
Getting top ranked gene sets. A summary of the top 10 gene sets in each collection for each contrast in addition to the
EGSEA comparative analysis can be displayed using the S4 method summary as follows:

> summary (gsa)

***x*x Top 10 gene sets in the c2 Curated Gene Sets collection ****

** Contrast BasalvsLP **

LIM MAMMARY STEM CELL DN | LIM MAMMARY LUMINAL PROGENITOR UP

MONTERO THYROID CANCER POOR SURVIVAL UP | SMID BREAST CANCER LUMINAL A DN
NAKAYAMA SOFT TISSUE TUMORS PCA2 UP | REACTOME LATENT INFECTION OF HOMO SAPIENS...
REACTOME TRANSFERRIN ENDOCYTOSIS AND RECYCLING | FARMER BREAST CANCER CLUSTER 2
KEGG_EPITHELIAL CELL SIGNALING ... | LANDIS BREAST CANCER PROGRESSION UP
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** Contrast BasalvsML **

LIM MAMMARY STEM CELL DN | LIM MAMMARY STEM CELL UP

LIM MAMMARY LUMINAL MATURE DN | PAPASPYRIDONOS_UNSTABLE_ATEROSCLEROTIC_PLAQUE_DN
NAKAYAMAfSOFTiTISSUEiTUMORsiPCA27UP | LIM MAMMARY LUMINAL MATURE UP

CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL UP | RICKMAN HEAD AND NECK CANCER A
YAGUE PRETUMOR DRUG RESISTANCE DN | BERTUCCI MEDULLARY VS DUCTAL BREAST CANCER DN

** Contrast LPvsML **

LIM MAMMARY LUMINAL MATURE UP | LIM MAMMARY LUMINAL MATURE DN

PHONG TNF RESPONSE VIA P38 PARTIAL | WOTTON RUNX TARGETS UP

WANG MLL TARGETS | PHONG TNF TARGETS DN

REACTOME PEPTIDE LIGAND BINDING RECEPTORS | CHIANG LIVER CANCER SUBCLASS CTNNB1 DN
GERHOLD RESPONSE TO TZD DN | DURAND STROMA S UP

** Comparison analysis **

LIM MAMMARY LUMINAL MATURE DN | LIM MAMMARY STEM CELL DN

NAKAYAMA SOFT TISSUE TUMORS PCAZ UP | LIM MAMMARY LUMINAL MATURE UP

COLDREN GEFITINIB RESISTANCE DN | LIM MAMMARY STEM CELL UP

CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL UP | LIM MAMMARY LUMINAL PROGENITOR UP
BERTUCCI MEDULLARY VS DUCTAL BREAST CANCER DN | MIKKELSEN IPS WITH HCP H3K27ME3

***%* Top 10 gene sets in the c5 GO Gene Sets (BP) collection ****

** Contrast BasalvsLP **

GO_SYNAPSE_ORGANIZATION | GO_IRON_ION_TRANSPORT

GO _CALCIUM INDEPENDENT CELL CELL ADHESION VIA PLASMA MEMBRANE CELL ADHESION
MOLECULES | GO_PH REDUCTION

GO HOMOPHILIC CELL ADHESION VIA PLASMA MEMBRANE ADHESION MOLECULES | GO VACUOLAR
ACIDIFICATION

GO_FERRIC_IRON TRANSPORT | GO TRIVALENT INORGANIC CATION TRANSPORT

GO_NEURON_PROJECTION_GUIDANCE | GO_MESONEPHROS_DEVELOPMENT

** Contrast BasalvsML **

GO _FERRIC IRON TRANSPORT | GO TRIVALENT INORGANIC CATION TRANSPORT

GO _IRON ION TRANSPORT | GO NEURON PROJECTION GUIDANCE

GO GLIAL CELL MIGRATION | GO SPINAL CORD DEVELOPMENT
GO_REGULATION OF SYNAPSE ORGANIZATION | GO _ACTION POTENTIAL
GO_MESONEPHROS_DEVELOPMENT | GO_NEGATIVE_REGULATION_OF_SMOOTH_MUSCLE_CELL_MIGRATION

** Contrast LPvsML **

GO _NEGATIVE REGULATION OF NECROTIC CELL DEATH | GO PARTURITION

GO _RESPONSE _TO VITAMIN D | GO GPI ANCHOR METABOLIC PROCESS

GO REGULATION OF BLOOD PRESSURE | GO DETECTION OF MOLECULE OF BACTERIAL ORIGIN
GO_CELL_SUBSTRATE ADHESION | GO PROTEIN TRANSPORT ALONG MICROTUBULE
GO_INTRACILIARY_TRANSPORT | GO_CELLULAR_RESPONSE_TO_VITAMIN

** Comparison analysis **

GO _IRON ION TRANSPORT | GO FERRIC IRON TRANSPORT

GO TRIVALENT INORGANIC CATION TRANSPORT | GO NEURON PROJECTION GUIDANCE

GO MESONEPHROS DEVELOPMENT | GO SYNAPSE ORGANIZATION

GO REGULATION OF SYNAPSE ORGANIZATION | GO MEMBRANE DEPOLARIZATION DURING CARDIAC
MUSCLE CELL ACTION POTENTIAL

GO_HOMOPHILIC CELL ADHESION VIA PLASMA MEMBRANE ADHESION MOLECULES | GO NEGATIVE
REGULATION OF SMOOTH MUSCLE CELL MIGRATION

**%% Top 10 gene sets in the c¢5 GO Gene Sets (CC) collection ****

** Contrast BasalvsLP **

GO_PROTON TRANSPORTING V TYPE ATPASE COMPLEX | GO VACUOLAR PROTON TRANSPORTING
V_TYPE ATPASE COMPLEX
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GO MICROTUBULE END | GO MICROTUBULE PLUS END

GO ACTIN FILAMENT BUNDLE | GO CELL CELL ADHERENS JUNCTION

GO NEUROMUSCULAR JUNCTION | GO AP TYPE MEMBRANE COAT ADAPTOR COMPLEX

GO INTERMEDIATE FILAMENT | GO CONDENSED NUCLEAR CHROMOSOME CENTROMERIC REGION

** Contrast BasalvsML **

GO_FILOPODIUM MEMBRANE | GO_LATE ENDOSOME MEMBRANE

GO PROTON TRANSPORTING V TYPE ATPASE COMPLEX | GO NEUROMUSCULAR JUNCTION
GO COATED MEMBRANE | GO ACTIN FILAMENT BUNDLE

GO CLATHRIN COAT | GO _AP TYPE MEMBRANE COAT ADAPTOR COMPLEX
GO_CLATHRIN_ADAPTOR_COMPLEX | GO_CONTRACTILE_FIBER

** Contrast LPvsML **

GO CILIARY TRANSITION ZONE | GO TCTN B9D COMPLEX

GO NUCLEAR NUCLEOSOME | GO INTRINSIC COMPONENT OF ORGANELLE MEMBRANE

GO _ENDOPLASMIC RETICULUM QUALITY CONTROL COMPARTMENT | GO KERATIN FILAMENT
GO PROTEASOME COMPLEX | GO CILIARY BASAL BODY

GO_PROTEASOME_CORE_COMPLEX | GO_CORNIFIED_ENVELOPE

** Comparison analysis **

GO _PROTON TRANSPORTING V TYPE ATPASE COMPLEX | GO ACTIN FILAMENT BUNDLE
GO NEUROMUSCULAR JUNCTION | GO AP TYPE MEMBRANE COAT ADAPTOR COMPLEX

GO CONTRACTILE FIBER | GO INTERMEDIATE FILAMENT

GO LATE ENDOSOME MEMBRANE | GO CLATHRIN VESICLE COAT

GO _ENDOPLASMIC RETICULUM QUALITY CONTROL COMPARTMENT | GO MICROTUBULE END

****x Top 10 gene sets in the c5 GO Gene Sets (MF) collection ****

** Contrast BasalvsLP **

GO _HYDROGEN EXPORTING ATPASE ACTIVITY | GO SIGNALING PATTERN RECOGNITION RECEPTOR
ACTIVITY

GO LIPID TRANSPORTER ACTIVITY | GO TRIGLYCERIDE LIPASE ACTIVITY

GO_AMINE_BINDING | GO_STRUCTURAL_CONSTITUENT_OF_MUSCLE

GO_NEUROPEPTIDE_RECEPTOR_ACTIVITY | GO_WIDE_PORE_CHANNEL_ACTIVITY

G07CATIONiTRANSPORTINGfATPASEiACTIVITY | GOiLIPASEiACTIVITY

** Contrast BasalvsML **

GO G PROTEIN COUPLED RECEPTOR ACTIVITY | GO TRANSMEMBRANE RECEPTOR PROTEIN KINASE
ACTIVITY

GO_STRUCTURAL_CONSTITUENT_OF_MUSCLE | GO_VOLTAGE_GATED_SODIUM_CHANNEL_ACTIVITY

GO_CORECEPTOR_ACTIVITY | GO_TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_ACTIVITY

GO _LIPID TRANSPORTER ACTIVITY | GO _SULFOTRANSFERASE ACTIVITY

GO CATION TRANSPORTING ATPASE ACTIVITY | GO PEPTIDE RECEPTOR ACTIVITY

** Contrast LPvsML **

GO _MANNOSE BINDING | GO PHOSPHORIC DIESTER HYDROLASE ACTIVITY
GO_BETA_1_3_GALACTOSYLTRANSFERASE_ACTIVITY | GO_COMPLEMENT_BINDING
GO_ALDEHYDE_DEHYDROGENASE_NAD_ACTIVITY | GO_MANNOSIDASE_ACTIVITY

GO LIGASE ACTIVITY FORMING CARBON NITROGEN BONDS | GO _CARBOHYDRATE PHOSPHATASE ACTIVITY

GO LIPASE ACTIVITY | GO _PEPTIDE RECEPTOR ACTIVITY

** Comparison analysis **

GO STRUCTURAL CONSTITUENT OF MUSCLE | GO _LIPID TRANSPORTER ACTIVITY

GO CATION TRANSPORTING ATPASE ACTIVITY | GO CHEMOREPELLENT ACTIVITY

GO HEPARAN SULFATE PROTEOGLYCAN BINDING | GO TRANSMEMBRANE RECEPTOR PROTEIN
TYROSINE KINASE ACTIVITY

GO LIPASE ACTIVITY | GO _PEPTIDE RECEPTOR ACTIVITY

GO CORECEPTOR ACTIVITY | GO TRANSMEMBRANE RECEPTOR PROTEIN KINASE ACTIVITY
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***x Top 10 gene sets in the KEGG Pathways collection ****

** Contrast BasalvsLP **

Collecting duct acid secretion | alpha-Linolenic acid metabolism

Synaptic vesicle cycle | Hepatitis C

Vascular smooth muscle contraction | Rheumatoid arthritis

cGMP-PKG signaling pathway | Axon guidance

Progesterone-mediated oocyte maturation | Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

** Contrast BasalvsML **

Collecting duct acid secretion | Synaptic vesicle cycle

Other glycan degradation | Axon guidance

Arrhythmogenic right ventricular cardiomyopathy (ARVC) | Glycerophospholipid
metabolism

Lysosome | Vascular smooth muscle contraction
Protein digestion and absorption | Oxytocin signaling pathway

** Contrast LPvsML **

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis | Histidine metabolism
Drug metabolism - cytochrome P450 | PI3K-Akt signaling pathway

Proteasome | Sulfur metabolism

Renin-angiotensin system | Nitrogen metabolism

Tyrosine metabolism | Systemic lupus erythematosus

** Comparison analysis **

Collecting duct acid secretion | Synaptic vesicle cycle
Vascular smooth muscle contraction | Axon guidance
Arrhythmogenic right ventricular cardiomyopathy (ARVC) | Oxytocin signaling pathway

Lysosome | Adrenergic signaling in cardiomyocytes
Linoleic acid metabolism | cGMP-PKG signaling pathway

EGSEA’s comparative analysis allows researchers to estimate the significance of a gene set across multiple experimen-
tal contrasts. This analysis helps in the identification of biological processes that are perturbed in multiple experimental
conditions simultaneously. This experiment is the RNA-seq equivalent of Lim e al. (2010)*, who used Illumina micro-
arrays to study the same cell populations (see later), so it is reassuring to observe the I.IM gene signatures derived from
this experiment amongst the top ranked c2 gene signatures in both the individual contrasts and comparative results.

Another way of exploring the EGSEA results is to retrieve the top ranked N sets in each collection and contrast using
the method topSets. For example, the top 10 gene sets in the c2 collection for the comparative analysis can be retrieved
as follows:

> topSets(gsa, gs.label="c2", contrast = "comparison", names.only=TRUE)
Extracting the top gene sets of the collection

c2 Curated Gene Sets for the contrast comparison

Sorted by med.rank

[1] "LIM MAMMARY LUMINAL MATURE DN"

(2] "LIM MAMMARY STEM CELL DN"

[3] "NAKAYAMA SOFT TISSUE TUMORS PCA2 UP"
(4] "LIM MAMMARY LUMINAL MATURE UP"

[5] "COLDREN GEFITINIB RESISTANCE DN"

]
]
]
]
(6] "LIM MAMMARY STEM CELL UP"
]
]
]
]

[7] "CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL UP"
[8] "LIM MAMMARY LUMINAL PROGENITOR UP"

[9] "BERTUCCI MEDULLARY VS DUCTAL BREAST CANCER DN"
[10] "MIKKELSEN IPS WITH HCP H3K27ME3"

The gene sets are ordered based on their med. rank as selected when egsea was invoked above. When the argument
names.only is set to FALSE, additional information is displayed for each gene set including gene set annotation,
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the EGSEA scores and the individual rankings by each base method. As expected, gene sets retrieved by EGSEA
included the L.IM gene sets* that were derived from microarray profiles of analagous mammary cell populations (sets
1,2, 4, 6 and 8) as well as those derived from populations with similar origin (sets 7 and 9) and behaviour or charac-
teristics (sets 5 and 10).

Next, topSets can be used to search for gene sets of interest based on different EGSEA scores as well as the rankings
of individual methods. For example, the ranking of the six LIM gene sets from the c2 collection can be displayed
based on the med. rank as follows:

> t = topSets(gsa, contrast = "comparison",

+ names.only=FALSE, number = Inf, verbose = FALSE)

> t[grep("LIM ", rownames(t)), c("p.adj", "Rank", "med.rank", "vote.rank")]
p.adj Rank med.rank vote.rank

LIM MAMMARY LUMINAL MATURE DN 1.646053e-29 1 36 5
LIM MAMMARY STEM CELL DN 6.082053e-43 2 37 5
LIM MAMMARY LUMINAL MATURE UP 2.469061e-22 4 92 5
LIM MAMMARY STEM CELL_UP 3.154132e-103 6 134 5
LIM MAMMARY LUMINAL PROGENITOR UP 3.871536e-30 8 180 5
LIM MAMMARY LUMINAL PROGENITOR DN 2.033005e-06 178 636 115

While five of the LIM gene sets are ranked in the top 10 by EGSEA, the values shown in the median rank (med. rank)
column indicate that individual methods can assign much lower ranks to these sets. EGSEA’s prioritisation of these
gene sets demonstrates the benefit of an ensemble approach.

Similarly, we can find the top 10 pathways in the KEGG collection from the ensemble analysis for the Basal versus LP
contrast and the comparative analysis as follows:

> topSets(gsa, gs.label="kegg", contrast="BasalvsLP", sort.by="med.rank")
Extracting the top gene sets of the collection

KEGG Pathways for the contrast BasalvsLP

Sorted by med.rank

[1] "Collecting duct acid secretion” "alpha-Linolenic acid metabolism"
[3] "Synaptic vesicle cycle" "Hepatitis C"

[5] "Vascular smooth muscle contraction" "Rheumatoid arthritis"

[7] "cGMP-PKG signaling pathway" "Axon guidance"

[9] "Progesterone-mediated oocyte maturation" "Arrhythmogenic right ventricular

cardiomyopathy (ARVC)"

> topSets(gsa, gs.label="kegg", contrast="comparison", sort.by="med.rank")
Extracting the top gene sets of the collection

KEGG Pathways for the contrast comparison

Sorted by med.rank

[1] "Collecting duct acid secretion" "Synaptic vesicle cycle"
[3] "Vascular smooth muscle contraction" "Axon guidance"
[5] "Arrhythmogenic right ventricular "Oxytocin signaling pathway"
cardiomyopathy (ARVC)"
[7] "Lysosome" "Adrenergic signaling in
cardiomyocytes"
[9] "Linoleic acid metabolism" "cGMP-PKG signaling pathway

EGSEA highlights many pathways with known importance in the mammary gland such as those associated with dis-
tinct roles in lactation like basal cell contraction (Vascular smooth muscle contraction and Oxytocin
signalling pathway) and milk production and secretion from luminal lineage cells (Collecting duct
acid secretion, Synaptic vesicle cycle and Lysosome).

Visualizing results at the gene set level. Graphical representation of gene expression patterns within and between gene

sets is an essential part of communicating the results of an analysis to collaborators and other researchers. EGSEA
enables users to explore the elements of a gene set via a heatmap using the plotHeatmap method. Figure 2 shows
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Figure 2. Heatmaps of log-fold-changes for genes in the LIM_MAMMARY_STEM_CELL_UP and LIM_MAMMARY _
STEM_CELL_DN gene sets across the three experimental comparisons (Basal vs LP, Basal vs ML and LP vs ML).

examples for the LIM MAMMARY STEM CELL UP and LIM MAMMARY STEM CELL DN signatures which can
be visualized across all contrasts using the code below.

> plotHeatmap (gsa, gene.set="LIM MAMMARY STEM CELL UP", gs.label="c2",

+ contrast = "comparison", file.name = "hm cmp LIM MAMMARY STEM CELL_UP")
Generating heatmap for LIM MAMMARY STEM CELL UP from the collection

c2 Curated Gene Sets and for the contrast comparison

> plotHeatmap (gsa, gene.set="LIM MAMMARY STEM CELL DN", gs.label="c2",

+ contrast = "comparison", file.name = "hm cmp LIM MAMMARY STEM CELL DN")
Generating heatmap for LIM MAMMARY STEM CELL DN from the collection

c2 Curated Gene Sets and for the contrast comparison

When using plotHeatmap, the gene.set value must match the name returned from the topSets method.
The rows of the heatmap represent the genes in the set and the columns represent the experimental contrasts. The
heatmap colour-scale ranges from down-regulated (blue) to up-regulated (red) while the row labels (Gene symbols)
are coloured in green when the genes are statistically significant in the DE analysis (i.e. FDR < 0.05 in at least
one contrast). Heatmaps can be generated for individual comparisons by changing the contrast argument
of plotHeatmap. The plotHeatmap method also generates a CSV file that includes the DE analysis results from
limma::topTable for all expressed genes in the selected gene set and for each contrast (in the case of contrast =
"comparison"). This file can be used to create customised plots using other R/Bioconductor packages.

In addition to heatmaps, pathway maps can be generated for the KEGG gene sets using the plotPathway method which
uses functionality from the pathview package®. For example, the third KEGG signalling pathway retrieved for the
contrast BasalvsLP is Vascular smooth muscle contraction and can be visualized as follows:

> plotPathway(gsa, gene.set = "Vascular smooth muscle contraction",
+ contrast = "BasalvsLP", gs.label = "kegg",
+ file.name = "Vascular smooth muscle contraction")

Generating pathway map for Vascular smooth muscle contraction from the collection
KEGG Pathways and for the contrast BasalvsLP
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Pathway components are coloured based on the gene-specific log-fold-changes as calculated in the limma DE analysis
(Figure 3). Similarly, a comparative map can be generated for a given pathway across all contrasts.

> plotPathway(gsa, gene.set = "Vascular smooth muscle contraction",
+ contrast = "comparison", gs.label = "kegg",
+ file.name = "Vascular smooth muscle contraction cmp")

Generating pathway map for Vascular smooth muscle contraction from the collection
KEGG Pathways and for the contrast comparison

The comparative pathway map shows the log-fold-changes for each gene in each contrast by dividing the gene nodes
on the map into multiple columns, one for each contrast (Figure 4).

VASCULAR. SMOOTH MUZSCLE CONTRACTION

M- le
2 2

Wascular smooth muscle cell
2+

S|

—_

Intravasal pressureiStretch—

Coniraction

Vasoconsirictors
Norepi:lephﬂn@\

Angiotensin [

P Iyosin
Sarcoplasraic
reticulum (SR}

Crossbridge

demosine( ) Reduction of Iyofilarments
coa;}tmn]@ system

Ca* sensitivity

|

A
{
|
|
|
|
|
|
|
|
|
|
|
|

¥

———————————————— — — ——# Relaxation

*p
EET ~
e ® Myosin

Sarcoplasraic
reticulum (SE)

Natriuretic
peptides BMF

CNF

Figure 3. Pathway map for Vascular smooth muscle contraction (KEGG pathway mmu04270) with log-fold-
changes from the Basal vs LP contrast.
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Figure 4. Pathway map for Vascular smooth muscle contraction (KEGG pathway mmu04270) with log-fold-
changes across three experimental contrasts shown for each gene in the same order left to right that they appear
in the contrasts matrix (i.e. Basal vs LP, Basal vs ML and LP vs ML).

Visualizing results at the experiment level. Since EGSEA combines the results from multiple gene set testing
methods, it can be interesting to compare how different base methods rank a given gene set collection for a selected
contrast. The plotMethods command generates a multi-dimensional scaling (MDS) plot for the ranking of gene sets
across all the base methods used (Figure 5). Methods that rank gene sets similarly will appear closer together in this
plot and we see that certain methods consistently cluster together across different gene set collections. The clustering of
methods does not necessarily follow the style of null hypothesis tested though (i.e. self-contained versus competitive).

> plotMethods (gsa, gs.label = "c2", contrast = "BasalvsLP",

+ file.name = "mds c2 BasalvsLP")

Generating MDS plot for the collection

c2 Curated Gene Sets and for the contrast BasalvsLP

> plotMethods (gsa, gs.label = "c5BP", contrast = "BasalvsLP",
+ file.name = "mds c5 BasalvsLP")

Generating MDS plot for the collection

c5BP GO Gene Sets and for the contrast BasalvsLP
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Figure 5. Multi-dimensional scaling (MDS) plot showing the relationship between different gene set testing methods
based on the rankings of the c2 (a) and c5 (b) gene sets on the Basal vs LP contrast.

The significance of each gene set in a given collection for a selected contrast can be visualized using EGSEA’s
plotSummary method.

> plotSummary(gsa, gs.label = 3, contrast = 3,
+ file.name = "summary kegg LPvsML")
Generating Summary plots for the collection
KEGG Pathways and for the contrast LPvsML

The summary plot visualizes the gene sets as bubbles based on the — log,, (p-value) (X-axis) and the average
absolute log fold-change of the set genes (Y-axis). The sets that appear towards the top-right corner of this plot are
most likely to be biologically relevant. EGSEA generates two types of summary plots: the directional summary plot
(Figure 6a), which colours the bubbles based on the regulation direction of the gene set (the direction of the majority
of genes), and the ranking summary plot (Figure 6b), which colours the bubbles based on the gene set ranking in a
given collection (according to the sort.by argument). The bubble size is based on the EGSEA significance score in
the former plot and the gene set size in the latter. For example, the summary plots of the KEGG pathways for the LP
vs ML contrast show few significant pathways (Figure 6). The blue colour labels on the ranking plot represents
gene sets that do not appear in the top 10 gene sets that are selected based on the sort.by argument, yet their
EGSEA significance scores are among the top 5 in the entire collection based on the significance score. This is
used to identify gene sets with high significance scores that were not captured by the sort.by score. The gene
set IDs and more information about each set can be found in the EGSEA HTML report generated later.

By default, plotSummary uses a gene set’s p.adj Score for the X-axis. This behaviour can be easily modified by
assigning any of the available sort.by scores into the parameter x . axis, for example, med . rank can be used to cre-
ate an EGSEA summary plot (Figure 7a) as follows:

> plotSummary(gsa, gs.label = 1, contrast = 3,

+ file.name = "summary c2 LPvsML",

+ X.axls = "med.rank")

Generating Summary plots for the collection

c2 Curated Gene Sets and for the contrast LPvsML
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Figure 6. Summary plots of the significance of all gene sets in the KEGG collection for the LP vs ML contrast.
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Figure 7. Summary plots of the significance of selected gene sets in the c2 collection for the LP vs ML contrast.

(b).

The x-axis in each plot is the med.rank. A cut-off of 300 was used to select significant gene sets in the filtered plot

The summary plot tends to become cluttered when the size of the gene set collection is very large as in Figure 7a.
The parameter x.cutoff can be used to focus in on the significant gene sets rather than plotting the entire gene

set collection, for example (Figure 7b):

> plotSummary(gsa, gs.label = 1, contrast = 3,

+ file.name = "summary sig c2 LPvsML",
+ x.axis = "med.rank", x.cutoff=300)
Generating Summary plots for the collection

c2 Curated Gene Sets and for the contrast LPvsML

Comparative summary plots can be also generated to compare the significance of gene sets between two contrasts,
for example, the comparison between Basal vs LP and Basal vs ML (Figure 8a) shows that most of the KEGG
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Figure 8. Comparative summary plots of the significance of all gene sets in the KEGG collection for the
comparison of the contrasts: Basal vs LP and Basal vs ML.

pathways are regulated in the same direction with relatively few pathways regulated in opposite directions (purple
coloured bubbles in Figure 8a). Such figures can be generated using the plotSummary method as follows:

> plotSummary(gsa, gs.label = "kegg", contrast = c(1,2),

+ file.name = "summary kegg lvs2")

Generating Summary plots for the collection

KEGG Pathways and for the comparison BasalvsLP vs BasalvsML

The plotSummary method has two useful parameters: (i) use.names that can be used to display gene set
names instead of gene set IDs and (ii) interactive that can be used to generate an interactive version of this plot.

The c¢5 collection of MSigDB and the Gene Ontology collection of GeneSetDB contain Gene Ontology
(GO) terms. These collections are meant to be non-redundant, containing only a small subset of the entire GO and
visualizing how these terms are related to each other can be informative. EGSEA utilizes functionality from the
topGO package’’ to generate GO graphs for the significant biological processes (BPs), cellular compartments (CCs)
and molecular functions (MFs). The plotGOGraph method can generate such a display (Figure 9) as follows:

> plotGOGraph (gsa, gs.label="cbBP", contrast = 1, file.name="BasalvsLP-c5BP-top-")
Generating GO Graphs for the collection c5 GO Gene Sets (BP)

and for the contrast BasalvsLP based on the med.rank

> plotGOGraph (gsa, gs.label="c5bCC", contrast = 1, file.name="BasalvsLP-c5CC-top-")
Generating GO Graphs for the collection c5 GO Gene Sets (CC)

and for the contrast BasalvsLP based on the med.rank

The GO graphs are coloured based on the values of the argument sort.by, which in this instance was taken as
med. rank by default since this was selected when EGSEA was invoked. The top five most significant GO terms are
highlighted by default in each GO category (MF, CC or BP). More terms can be displayed by changing the value of
the parameter noSig. However, this might generate very complicated and unresolved graphs. The colour of the nodes
varies between red (most significant) and yellow (least significant). The values of the sort .by scoring function are
scaled between 0 and 1 to generate these graphs.
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Figure 9. GO graphs of the top significant GO terms from the c5 gene set collection for the contrast Basal vs
LP.

Another way to visualize results at the experiment level is via a summary bar plot. The method plotBars can
be used to generate a bar plot for the top N gene sets in an individual collection for a particular contrast or
from a comparative analysis across multiple contrasts. For example, the top 20 gene sets of the comparative
analysis carried out on the c2 collection of MSigDB can be visualized in a bar plot (Figure 10) as follows:

> plotBars(gsa, gs.label = "c2", contrast = "comparison", file.name="comparison-c2-bars")
Generating a bar plot for the collection c2 Curated Gene Sets
and the contrast comparison

The colour of the bars is based on the regulation direction of the gene sets, i.e., red for up-regulated, blue
for down-regulated and purple for neutral regulation (in the case of the comparative analysis on experimental contrasts
that show opposite behaviours). By default, the — log, (p.ad j) values are plotted for the top 20 gene sets selected
and ordered based on the sort.by parameter. The parameters bar.vals, number and sort.by of plotBars
can be changed to customize the bar plot.

When changes over multiple conditions are of interest, a summary heatmap can be a useful visualization.
The method plotSummaryHeatmaps generates a heatmap of the top N gene sets in the comparative analysis across
all experimental conditions (Figure 11). By default, 20 gene sets are selected based on the sort.by parameter and
the values plotted are the average log-fold changes at the set level for the genes regulated in the same direction as
the set regulation direction, i.e. avg.logfc.dir. The parameters number, sort.by and hm.vals of the
plotSummaryHeatmaps can be used to customize the summary heatmap. Additionally, the parameter show.vals
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can be used to display the values of a specific EGSEA score on the heatmap cells. An example summary heatmap
can be generated for the MSigDB c2 collection with the following code:

> plotSummaryHeatmap (gsa, gs.label="c2", hm.vals = "avg.logfc.dir",

+ file.name="summary heatmaps c2")

Generating summary heatmap for the collection c¢2 Curated Gene Sets
sort.by: med.rank, hm.vals: avg.logfc.dir, show.vals:

> plotSummaryHeatmap (gsa, gs.label="kegg", hm.vals = "avg.logfc.dir",
+ file.name="summary heatmaps kegg")

Generating summary heatmap for the collection KEGG Pathways

sort.by: med.rank, hm.vals: avg.logfc.dir, show.vals:

c2 Curated Gene Sets (sorted by med.rank)

Regulation Direction
@ Up-regulated
am» Neutral

@  Down-regulated

LIM_MAMMARY_LUMINAL_MATUR ...
LIM_MAMMARY_STEM_CELL_DN

NAKAYAMA_SOFT_TISSUE_TUMO ...

LIM_MAMMARY_LUMINAL_MATUR ...
COLDREN_GEFITINIB_RESISTA ...

LIM_MAMMARY_STEM_CELL_UP
CHARAFE_BREAST_CANCER_LUM ...

LIM_MAMMARY_LUMINAL_PROGE ...
BERTUCCI_MEDULLARY_VS_DUC ...
MIKKELSEN_IPS_WITH_HCP_H3 ...
CHARAFE_BREAST_CANCER_BAS ...
WOO_LIVER_CANCER_RECURREN ...
LIU_PROSTATE_CANCER_DN
ZHENG_GLIOBLASTOMA_PLASTI ...
ACEVEDO_FGFR1_TARGETS_IN_ ...
REACTOME_INSULIN_RECEPTOR ...
SENESE_HDAC2_TARGETS_DN
REACTOME_TRANSFERRIN_ENDO ...
BENPORATH_PRC2_TARGETS
DAVICIONI_MOLECULAR_ARMS_ ...
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Figure 10. Bar plot of the -log10(p-value) of the top 20 gene sets from the comparative analysis of the c2
collection.
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Figure 11. Summary heatmaps for the top 20 gene sets from the c2 (a) and KEGG (b) collections obtained from the
EGSEA comparative analysis.

We find the heatmap view at both the gene set and summary level and the summary level bar plots to be useful
summaries to include in publications to highlight the gene set testing results. The top differentially expressed
genes from each contrast can be accessed from the EGSEAResults object using the limmaTopTable method.

> t = limmaTopTable (gsa, contrast=1l)

> head (t)

ENTREZID SYMBOL CHR logFC AveExpr t P.Value adj.P.Val B
19253 19253 Ptpnl8 1 -5.63 4.13 -34.5 5.87e-10 9.62e-07 13.2
16324 16324 Inhbb 1 -4.79 6.46 -33.2 7.99e-10 9.62e-07 13.3
53624 53624 Cldn7 11 -5.51 6.30 -40.2 1.75e-10 9.62e-07 14.5
218518 218518 Marveld2 13 -5.14 4.93 -34.8 5.56e-10 9.62e-07 13.5
12759 12759 Clu 14 -5.44 8.86 -41.0 1.52e-10 9.62e-07 14.7
70350 70350 Baspl 15 -6.07 5.25 -34.3 6.22e-10 9.62e-07 13.3

Creating an HTML report of the results. To generate an EGSEA HTML report for this dataset, you can either
set report=TRUE when you invoke egsea or use the S4 method generateReport as follows:

> generateReport (gsa, number = 20, report.dir="./mam-rnaseg-egsea-report")
EGSEA HTML report is being generated

The EGSEA report generated for this dataset is available online at http://bioinf.wehi.edu.au/EGSEA/mam-
rnaseq-egsea-report/index.html (Figure 12). The HTML report is a convenient means of organising all of the
results generated up to now, from the individual tables to the gene set level heatmaps, pathway maps and summary
level plots. It can easily be shared with collaborators to allow them to explore their results more fully. Interactive
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S ~ Gene Set Testing Report

Analysis Parameters

Total number of genes: 14165

Total number of samples: 9

Number of contrasts: 3

Base GSEA methods: camera (limma:3.32.2), safe (safe:3.16.0), gage (gage:2.26.0), padog (PADOG:1.18.0), plage (GSVA:1.24.1), zscore (GSVA:1.24.1), gsva
(GSVA:1.24.1), ssgsea (GSVA:1.24.1), globaltest (globaltest:5.30.0), ora (stats:3.4.0), fry (limma:3.32.2)

P-value combine method: wilkinson

Sorting statistic: med.rank

Fold changes calculated: Yes

Gene IDs - Symbols mapping used: Yes

Organism: Mus musculus

Gene set collections: c2 Curated Gene Sets (5.2, 07 March 2017), ¢5 GO Gene Sets (BP) (5.2, 07 March 2017), ¢5 GO Gene Sets (CC) (5.2, 07 March 2017), ¢5 GO Gene
Sets (MF) (5.2, 07 March 2017), KEGG Pathways (NA, 07 March 2017)

EGSEA version: 1.52

EGSEAdata version: 1.4.0

Analysis Results

BasalvsLP

2 Curated Gene Sets (Stats Table, Heatmaps, Summary Plots, Download Stats)

¢5 GO Gene Sets (BP) (Stats Table, Heatmaps, GO Graphs, Summary Plots, Download Stats)
¢5 GO Gene Sets (CC) (Stats Table, Heatmaps, GO Graphs, Summary Plots, Download Stats)
¢5 GO Gene Sets (MF) (Stats Table, Heatmaps, GO Graphs, iummmy_Elms. Download Stats)
KEGG Pathways (Stats Table, Heatmaps, Pathways, Summary Plots,

©oo0o000

BasalvsML
o ¢2 Curated Gene Sets (Stats Table, Heatmaps, Summary Plots, Download Stats)
© ¢5 GO Gene Sets (BP) (Stats Table, Heatmaps, , Download Stats)
o ¢5 GO Gene Sets (CC) (Stats Table, Heatmaps, GO Graph Summary Plots, Download Stats)
o ¢5 GO Gene Sets (MF) (Stats Table, Heatmaps, B , Download Stats)
o KEGG Pathways (Stats Table, Heatmaps, Pathways, Summary Plots, Download Stats)
LPvsML
o ¢2 Curated Gene Sets (Stats Table, Heatmaps, Summary Plots, Download Stats)
o ¢5 GO Gene Sets (BP) (Stats Table, Heatmaps, GO Graphs, Summary Plots, Download Stats)
o ¢5 GO Gene Sets (CC) (Stats Table, , Download Stats)
o ¢5 GO Gene Sets (MF) (Stats Table, Heatmaps, GO Graohs Summary Plots, Download Stats)
o KEGG Pathways (Stats Table, Heatmaps, Pathways, Summary Plots, Download Stats)
Comparison Analysis
o c2 Curated Gene Sets (Stats Table, Heatmaps, Summary Plots, Download Stats)
o ¢5 GO Gene Sets (BP) (Stats Table, Heatmaps, GO Graphs, Summary Plots, Download Stats)
o ¢5 GO Gene Sets (CC) (Stats Table, Heatmaps, GO Graphs, Summary Plol Download Stats)
o ¢5 GO Gene Sets (MF) (Stats Table, Heatmaps, GO Graphs, Download Stats)
o KEGG Pathways (Stats Table, Heatmaps, Pathways, Summary Plots, Download Slal_s

(Page generated on Mon Jun S 11:36:14 2017 by huriter )

Figure 12. The EGSEA HTML report main page. This summary page details the analysis parameters (methods
combined and ranking options selected) and organises the gene set analysis results by contrast, with further separation
by gene set collection. The final section on this page presents results from the comparative analysis. For each contrast
and gene set collection analysed, links to tables of results and plots are provided.

tables of results via the DT package (https://CRAN.R-project.org/package=DT) and summary plots from
plotly (https://CRAN.R-project.org/package=plotly) are integrated into the report using htmlwidgets (https://
CRAN.R-project.org/package=htmlwidgets) and can be added by setting interactive = TRUE in the com-
mand above. This option significantly increases both the run time and size of the final report due to the large number
of gene sets in most collections.

This example completes our overview of EGSEA’s gene set testing and plotting capabilities for RNA-seq data. Read-
ers can refer to the EGSEA vignette or individual help pages for further details on each of the above methods and
classes.

Analysis of microarray data with EGSEA

The second dataset analysed in this workflow comes from Lim er al. (2010)* and is the microarray equivalent
of the RNA-seq data analysed above. Support for microarray data is a new feature in EGSEA, and in this exam-
ple, we show an express route for analysis according to the steps shown in Figure 1, from selecting gene sets and
building indexes, to configuring EGSEA, testing and reporting the results. First, the data must be appropriately
preprocessed for an EGSEA analysis and to do this we make use of functions available in limma.
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Reading, preprocessing and normalisation of microarray data

To analyse this dataset, we begin by unzipping the files downloaded from http://bioinf.wehi.edu.au/EGSEA/arraydata.
zip into the current working directory. Illumina BeadArray data can be read in directly using the readIDAT and
readBGX functions from the illuminaio package®. However, a more convenient way is via the read.idat function
in limma which uses these illuminaio functions and outputs the data as an EListRaw object for further processing.

> library (limma)

> targets = read.delim("targets.txt", header=TRUE, sep=" ")

> data = read.idat (as.character (targets$File),

+ bgxfile="GPL6887 MouseWG-6 V2 0 RO 11278593 A.bgx",

+ annotation=c ("Entrez Gene ID","Symbol", "Chromosome"))

Reading manifest file GPL6887 MouseWG-6 V2 0 RO 11278593 A.bgx ... Done
4481850214 B Grn.idat ... Done
4481850214 C Grn.idat ... Done
4481850214 D Grn.idat ... Done
4481850214 F Grn.idat ... Done
4481850187 A Grn.idat ... Done
4481850187 B Grn.idat ... Done
4481850187 D Grn.idat ... Done
4481850187 E Grn.idat ... Done
4481850187 F Grn.idat ... Done
4466975058 A Grn.idat ... Done
4466975058 B Grn.idat ... Done
4466975058 C Grn.idat ... Done
4466975058 D Grn.idat ... Done
4466975058 E Grn.idat ... Done
4466975058 F Grn.idat ... Done

Finished reading data.

> dataSotherS$Detection = detectionPValues (data)
> dataStargets = targets

> colnames (data) = targets$Sample

Next the negc function in limma is used to carry out normexp background correction and quantile normali-
sation on the raw intensity values using negative control probes®. This is followed by log,-transformation of the
normalised intensity values and removal of the control probes.

> data = neqgc (data)

We then filter out probes that are consistently non-expressed or lowly expressed throughout all samples as
they are uninformative in downstream analysis. Our threshold for expression requires probes to have a detection
p-value of less than 0.05 in at least 5 samples (the number of samples within each group). We next remove genes
without a valid Entrez ID and in cases where there are multiple probes targeting different isoforms of the same
gene, select the probe with highest average expression as the representative one to use in the EGSEA analysis. This
leaves 7,123 probes for further analysis.

> table (targets$Celltype)
Basal LP ML

5 5 5
> keep.exprs = rowSums (data$Sother$Detection<0.05)>=5
> table (keep.exprs)
keep.exprs
FALSE TRUE
23638 21643
> data = datalkeep.exprs, ]
> dim(data)
[1] 21643 15
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> head (data$genes)

Probe Id Array Address Id Entrez Gene ID Symbol Chromosome
3 ILMN_1219601 2030280 <NA> C920011N12Rik
4 TLMN_1252621 1980164 101142 2700050P07R1k 6
6 ILMN 3162407 6220026 <NA> Zfp36
7 ILMN 2514723 2030072 <NA> 1110067B18Rik
8 ILMN 2692952 6040743 329831 4833436C18Rik 4
9 ILMN 1257952 7160091 <NA> B930060K05Rik
> sum(is.na(data$genesSEntrez Gene ID))
[1] 11535

> datal = datal!is.na(data$genes$Entrez Gene ID), ]
> dim(datal)

[1] 10108 15

> ord = order (lmFit (datal) $Amean, decreasing=TRUE)

> ids2keep = datalSgenes$SArray Address Id[ord] [!duplicated(datalSgenes$Entrez

Gene ID[ord])]
> datal = datal[match(ids2keep, datal$genesSArray Address Id),]
> dim(datal)
[11 7123 15

> expr = datalSE
> group = as.factor(datal$Stargets$Celltype)
> probe.annot = datal$genes[, 2:4]
> head (probe.annot)
> head (probe.annot)

Array Address_ Id Entrez Gene 1D Symbol
39513 4120224 20102 Rpsidx
9062 2260576 22143 Tubalb
15308 5720202 12192 7Zfp36ll
39894 1470600 11947 Atp5b
24709 2710477 20088 Rps24
9872 1580471 228033 Atp5g3

Setting up the linear model for EGSEA testing

As before, we need to set up an appropriate linear model” and contrasts matrix to look for differences between the
Basal and LP, Basal and ML and LP and ML populations. A batch term is included in the linear model to account for

differences in expression that are attributable to the day the experiment was run.

> head (datal$targets)
File Sample Celltype Time Experiment

2-2 4481850214 B Grn.idat 2-2 ML Atl 1
3-3 4481850214 C Grn.idat 3-3 LP Atl 1
4-4 4481850214 D Grn.idat 4-4 Basal Atl 1
6-7 4481850214 F Grn.idat 6-7 ML At2 1
7-8 4481850187 A Grn.idat 7-8 LP At2 1
8-9 4481850187 B Grn.idat 8-9 Basal At2 1
> experiment = as.character (datalS$targetsS$Experiment)
> design = model.matrix ("0 + group + experiment)
> colnames (design) = gsub("group", "", colnames (design))
> design

Basal LP ML experiment?2
1 0 0 1 0
2 0 1 O© 0
3 1 0 O 0
4 0 0 1 0
5 0 1 O 0
6 1 0 O 0
7 0 0 1 0
8 0 1 O© 0
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9 1 0 O 0
10 0 0 1 1
11 0 1 0 1
12 1 0 O 1
13 1 0 O 1
14 0 0 1 1
15 0 1 0 1
attr(,"assign")

[1] 1112

attr (, "contrasts")
attr(,"contrasts") Sgroup
[1] "contr.treatment"

attr(,"contrasts") Sexperiment

[1] "contr.treatment"

> contr.matrix = makeContrasts(

+ BasalvsLP = Basal-LP,

+ BasalvsML = Basal-ML,

+ LPvsML = LP-MIL,

+ levels = colnames (design))

> contr.matrix

Contrasts

Levels BasalvsLP BasalvsML LPvsML
Basal 1 1 0
LP -1 0 1
ML 0 -1 -1
experiment2 0 0 0

1. Creating gene set collection indexes
We next extract the mouse c2, c5 and KEGG gene signature collections from the EGSEAdata package and build
indexes based on Entrez IDs that link between the genes in each signature and the rows of our expression matrix.

> library (EGSEA)

> library (EGSEAdata)

> gs.annots = buildIdx (entrezIDs=probe.annotl[, 2],

+ species="mouse",

+ msigdb.gsets=c ("c2", "c5"), go.part = TRUE)
[1] "Loading MSigDB Gene Sets ... "

[1] "Loaded gene sets for the collection c2 ..."

[1] "Indexed the collection c2 ..."

[1] "Created annotation for the collection c2 ..."

[1] "Loaded gene sets for the collection c5 ..."

[1] "Indexed the collection c¢5 ..."

[1] "Created annotation for the collection c5 ..."
MSigDB c5 gene set collection has been partitioned into
c5BP, c¢5CC, c5SMF

[1] "Building KEGG pathways annotation object ... "

> names (gs.annots)

[1] "c2" "c5BP" "c5CC" "c5MF" "kegg"

B R R e e

2. Configuring and 3. Testing with EGSEA
The same 11 base methods used previously in the RNA-seq analysis were selected for the ensemble testing of the

microarray data using the function egsea.ma. Gene sets were again prioritised by their median rank across the
11 methods.
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> baseMethods = egsea.base() [-2]

> baseMethods

[1] "camera" "safe" "gage" "padog" "plage" "zscore"
[7] "gsva" "ssgsea" "globaltest" "ora" "fry"

gsam = egsea.ma (expr=expr, group=group,
probe.annot = probe.annot,
design = design,
contrasts=contr.matrix,
gs.annots=gs.annots,
baseGSEAs=baseMethods, sort.by="med.rank",
num.threads = 8, report = FALSE)
EGSEA analysis has started
#H—————- Tue Jun 20 14:27:32 2017 --—--—- ##
Log fold changes are estimated using limma package
limma DE analysis is carried out
Number of used cores has changed to 3
in order to avoid CPU overloading.
EGSEA is running on the provided data and c2 collection

+ 4+ + + + + VoV

EGSEA is running on the provided data and c5BP collection
EGSEA is running on the provided data and c5CC collection
EGSEA is running on the provided data and c5MF collection
EGSEA is running on the provided data and kegg collection

##-————- Tue Jun 20 14:33:37 2017 -----—- ##
EGSEA analysis took 365.359 seconds.
EGSEA analysis has completed

4. Reporting EGSEA results

An HTML report that includes each of the gene set level and summary level plots shown individually for the
RNA-seq analysis was then created using the generateReport function. We complete our analysis by displaying
the top ranked sets for the c2 collection from a comparative analysis across all contrasts.

> generateReport (gsam, number = 20, report.dir="./mam-ma-egsea-report")
EGSEA HTML report is being generated
> topSets (gsam, gs.label="c2", contrast = "comparison", names.only=TRUE, number=5)
Sorted by med.rank
[1] "LIM MAMMARY STEM CELL UP"
[2] "LIM MAMMARY LUMINAL MATURE DN"
[3] "LIM MAMMARY STEM CELL DN"
[4] "CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL DN"
[5] "LIU PROSTATE CANCER DN"

The EGSEA report generated for this dataset is available online at http://bioinf.wehi.edu.au/EGSEA/mam-ma-
egsea-report/index.html. Reanalysis of this data retrieves similar c2 gene sets to those identified by analysis of
RNA-seq data. These included the LIM gene signatures (sets 1, 2 and 3) as well as those derived from populations
with similar cellular origin (set 4).

Discussion

In this workflow article, we have demonstrated how to use the EGSEA package to combine the results
obtained from different gene signature databases across multiple GSE methods to find an ensemble solution.
A key benefit of an EGSEA analysis is the detailed and comprehensive HTML report that can be shared with
collaborators to help them interpret their data. This report includes tables prioritising gene signatures accord-
ing to the user specified analysis options, and both gene set specific and summary graphics, each of which can be
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generated individually using specific R commands. The approach taken by EGSEA is facilitated by the diverse
range of gene set testing algorithms and plotting capabilities available within Bioconductor. EGSEA has
been tailored to suit a limma-based differential expression analysis which continues to be a very popular and
flexible platform for transcriptomic data. Analysts who choose an individual GSE algorithm to prioritise their
results rather than an ensemble solution can still benefit from EGSEA’s comprehensive reporting capability.

Software availability
Code to perform this analysis can be found in the EGSEA123 workflow package available from Bioconductor:
https://www.bioconductor.org/help/workflows/EGSEA123.

Latest source code is available at: https://github.com/mritchie/EGSEA123.
Archived source code as at the time of publication is available at: https://doi.org/10.528 1/zenodo.1043436%,

Software license: Artistic License 2.0.
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GSEA analysis methods do not all produce same results. Score-based gene set analysis methods like the
Broad Institute GSEA tool are considered to perform better than normal Fisher’s exact test
(overrepresentation analysis). But analysts often use methods they know to be less than ideal in order to
reduce complexity and save time. So it is good to have a unified interface for GSEA analyses with R — it
helps save programming time and reduces complexity. In addition EGSEA is a unique method that
combines up to 12 gene set analysis methods into a single score. Independent test also corroborate that
the tool using the 12 has more specificity and good sensitivity compared to using some of the tests alone.

The EGSEA 1-2-3 workflow is easy to use and generate good-quality figures with the ggplot2 R package.
So9me of the figures are novel compared to other packages e.g., scatter plots designed to compare
different contrasts. It is also very useful that the tool can be applied to multiple contrasts at a time,
although if there are too many contrasts then the number of plots becomes unwieldly (increases
combinatorically).

Some more technical comments:

The results object is very complicated for retrieving individual method analysis results (although
summaries are readily available). | quite like the "biobroom" Bioconductor package that does "tidy" data
frames from limma results objects.

Allin all a very useful package both for automating the running of lots of methods at the same time and of
course for the "ensemble" method. It is recommended to be considered to be part of a standard
bioinformatics workflow.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes
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Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

Referee Report 13 December 2017

doi:10.5256/f1000research.13583.r27970

?

Weijun Luo
Department of Bioinformatics and Genomics, UNC Charlotte (University of North Carolina at Charlotte),
Charlotte, NC, USA

EGSEA is a new gene set analysis tool that combines results from multiple individual tools in R as to yield
better results. The authors have published EGSEA methodology previously. This paper focuses on the
practical analysis workflow based on EGSEA with specific examples. As EGSEA is a compound and
complicated analysis procedure, this work serves as a valuable guidance for the users to make full use of
this tool. I've gone through the workflow line by line, it seems to work well. However, authors can improve
their work by addressing the following issues.

1. There should be an R code script which includes all source code and concise comments like the
one in company with the vignette in any Bioconductor package. It would be much easy for the
users/reviewers to try the example code. It is not convenient to follow the code in this manuscript,
the code need to be edit to remove the prompt symbols (> or +) at each line when copying/pasting.

2. It takes too long to run the egsea analysis example on modest machine. It is advisable to show a
lesser example in the workflow with only one gene set collection like kegg and just a few base
methods like:

gsa = egsea(voom.results=v, contrasts=contr.matrix,
gs.annots=gs.annots$kegg, symbolsMap=symbolsMap,
baseGSEAs=baseMethods[1:4], sort.by="med.rank",
num.threads = 3, report = FALSE)

3. The rank of the gsa results shown following the t = topSets(..) line is confusing. The p.adj for the
top 1 gene set is not the smallest, actually much bigger than top 2, 6 and 8. Presumably, the gene
sets are ranked by med.rank instead of p.adj here. However, the opposite was described in the text
above near the egsea.sort() line: “Although p.adj is the default option for sorting EGSEA results for
convenience, ...”
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4. In addition, there is big difference between the final rank and med.rank (e.g. 1 vs 36). This may
suggest inconsistent results came from different base methods. This may also be due to the large
number of gene sets being tested. Again, using a smaller gene set collection and a few base
methods could make the ranking more consistent.

5. All visualization functions, i.e. plotHeatmap, plotPathway, plotGOGraph, plotMethods,
plotSummary and plotBars share largely the same set of arguments, they can have a unified
wrapper function like plot.gsa() with an extra argument type to specify the plot type.

6. Functions plotPathway, plotGOGraph are wrapper functions for those in the pathview and topGO
package as the author noted in the text. It would be good to explicit show some message like
“calling plotting function from pathview or topGO package etc”, just like the message when running
egsea().

7. HTML report of the results is a very valuable feature for the users. However, the code can run a
long time, it would be helpful to add some progress reminder message to generateReport()
function like egsea(). BTW, the KEGG Pathway graphs are not shown properly in the report
example at http://bioinf.wehi.edu.au/EGSEA/mam-rnaseq-egsea-report/index.html.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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Jenny Drnevich
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This F1000 software tool article describes the EGSEA package that incorporates many different gene set
testing methods from various packages and also allows access to a wide array of gene sets from different
databases through the accompanying EGSEAdata package. These packages will enable researchers to
conveniently test many different methods and incorporate their results to get more robust biological
insights’, and this article gives a well-written walk-through of how to use the packages.

The biggest limitation | see it that EGSEA is focused only on human and mouse data (and rat? The article
does not list rat but the help page for buildldx() lists rat as one of the species). | understand that many of
the gene set collections like MSigDB and GeneSetDB are only available for human/mouse, but KEGG
currently lists 429 Eukaryotic organisms (http://www.genome.jp/kegg/catalog/org_list.html) and GO terms
are readily available for 19 species using BioC's pre-built OrgDB packages and hundreds of other through
AnnotationHub. It is unclear whether EGSEA functions buildCustomldx and buildGMTIdx that were
"written to allow users to run EGSEA on gene set collections that may have been curated within a lab or
downloaded from public databases and allow use of gene identifiers other than Entrez IDs" can be used
to run EGSEA on additional species. If so, this should be clearly stated in both the Abstract and in the
body of the article, plus an example given on how to use buildCustomldx for another species. If there is
some reason that EGSEA cannot currently extend to other species, this should be acknowledged as a
limitation and future versions should strive to allow this (although not required before approval).

Other issues to address before approval:
1. 1 am unable to create the html report on my Windows machine, getting the following error:

Build GO DAG topology ..........

There are no adj nodes for node: GO:0061857
Error in switch(type, isa = 0, partof =1, -1) :
EXPR must be a length 1 vector

However, | reported this error to the support site (
https://support.bioconductor.org/p/103640/#103748) and got a speedy reply from the author. It
hopefully will be resolved soon, although there is a concern of why the error was not found on
another Windows machine.

2. lam concerned that as demonstrated in this paper, EGSEA seems to take the place of standard
limma differential expression analysis, in that the model fitting takes place within the egsea()
function. Certain gene set testing functions do need the individual expression values and not just
the fitted values in an MArrayLM object but given the computational time (8 min as shown in the
article code block and 19 min on my own computer) you should never run egsea() without first
assessing the model fit on your own! Ideally the egsea function could be written to accept
MArrayLM, or at least the article should clearly state that users should have first assessed the
validity of the model fit through the usual workflow of Law et al. (2016)? prior to running EGSEA.

3. lalso wonder why there are different interfaces for voom-based analysis and microarray data given
that both use EList objects. | understand that the voom weights need to be used internally, but
limma's ImFit function handles both without trouble, although it was originally coded for microarray
data and the voom functionality came later. Even if there needs to be a separate
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function egsea.ma() for non-voom, non-count data, it should still accept an EList object so that the
user does not have to pull out the expression data and the grouping info.

4. Back to the computational time required, there are several vague references to removing the roast
method "to save time" and that the report generation "significantly" increases run time. it would be
nice to have an example of the time required to run roast and the report generation for
the computational architecture that created the article.
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Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.
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This article describes a gene set enrichment analysis (GSEA) workflow for the "Ensembil of

GSEA" (EGSEA) R/Bioconductor software package. EGSEA is an ensemble-like method recently
published' by the authors of this workflow that allows the user to simultaneously apply different GSEA
algorithms on a high-throughput molecular profiling data set, by combining p-values associated with each
algorithm using classical meta-analysis approaches such as the Fisher's method.

Because the statistical methodology is already described in detail in the corresponding publication, the
present software tool article focuses on showing a step-by-step workflow with EGSEA. However, the
vignette of the software package already provides a very detailed description about how to use EGSEA
through its 39 pages. Therefore, it would be useful for the interested reader to find upfront when he/she
should be consulting the vignette and when he/she should be consulting this workflow. Besides this
introductory aspects, the following issues should be addressed before approval:

1. The code given in the article breaks, at least in my computer, more concretely, at this line:

gsa = egsea(voom.results=v, contrasts=contr.matrix,
gs.annots=gs.annots, symbolsMap=symbolsMap,
baseGSEAs=baseMethods, sort.by="med.rank",
num.threads = 8, report = FALSE)
EGSEA analysis has started
#i#f----- Mon Nov 27 12:37:42 2017 ------ ##
Log fold changes are estimated using limma package ...
limma DE analysis is carried out ...
Number of used cores has changed to 4
in order to avoid CPU overloading.
EGSEA is running on the provided data and c2 collection
....... camera®....safe*...gage*.padog*....gsva*..fry*...plage*...globaltest*...zscore*...ora*...ssgsea*
Error in temp.results[[baseGSEA]][[i]][names(gs.annot@idx), ] :
incorrect number of dimensions

while running it with the latest release version 1.6.0. This is strange since the package builds and
runs the vignette without problems. So, this might be related to the different sample data sets. A
possible hint may come from the fact that the 'buildidx()' call is not returning the expected class of
object, according to the workflow:

class(gs.annots$s2)
## [1] "NULL"
summary(gs.annots$s2)
## Length Class Mode
## 0 NULL NULL

2. The workflow contains a rather high amount of code, often with a non-trivial use of externally
instantiated objects and nested calls to functions. It would be helpful for the interested reader to be
able to easily copy and paste the instructions, but the fact that R commands are given with the R
shell '>' and '+' symbols makes it less easy. A non-expert user may even copy those characters
and get an error. | would recommend removing those characters from the illustrated code, just as it
happens with the vignette.
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3. The workflow assumes that the user has a 'DGEList' object with gene metadata including the
mapping between Entrez identifiers' and HGNC symbols. This is a rather unrealistic assumption
and | would recommend that the workflow starts building that object from scratch and showing how
to build that table of gene metadata.

Below | also describe other issues that | would recommend to be considered in future versions of the
software but which | do not consider them to be required for approval of this article:

1. The so-called "summary plot" shows the -log10 p-value on the x-axis and average absolute log
fold-change of the set genes on the y-axis. Because this is in a way analogous to a rotated volcano
plot, | would suggest to use the same arrangement of axes as in the volcano plot, which is a rather
standardized display of significance and magnitude of the effects of interest.

2. One of the key features of the Bioconductor project, to which the EGSEA package is contributing
to, is enabling software interoperability through sharing the use of common data structures across
different software packages. Using specialized data structures, where analogous ones have been
already designed by the Bioconductor core team or by a wider community of developers, locks the
user into that package and limits the possibilities of using it as a building block in other more
complex workflows. I'm making this comment because | have the impression that the EGSEA
package would benefit of using the infrastructure provided by the Bioconductor GSEABase
package, in which data structures are defined to store and access gene sets and collections of
gene sets of different kinds. A salient feature of that infrastructure is the possibility to seamlessly
map gene identifiers of different kinds. This would simplify and improve the user experience of
EGSEA since mapping between genes coded with a particular kind of identifier, and gene sets
defined with another kind, is one of the most common tasks in a GSEA-like analysis.
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