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Abstract

Background: Patients with highly mutated tumors, such as melanoma or smoking-related lung cancer, have higher
rates of response to immune checkpoint blockade therapy, perhaps due to increased neoantigen expression. Many
chemotherapies including platinum compounds are known to be mutagenic, but the impact of standard treatment
protocols on mutational burden and resulting neoantigen expression in most human cancers is unknown.

Methods: We sought to quantify the effect of chemotherapy treatment on computationally predicted neoantigen
expression for high grade serous ovarian carcinoma patients enrolled in the Australian Ovarian Cancer Study. In this
series, 35 of 114 samples were collected after exposure to chemotherapy; 14 are matched with an untreated sample
from the same patient. Our approach integrates whole genome and RNA sequencing of bulk tumor samples with
class I MHC binding prediction and mutational signatures extracted from studies of chemotherapy-exposed
Caenorhabditis elegans and Gallus gallus cells. We additionally investigated the relationship between neoantigens,
tumor infiltrating immune cells estimated from RNA-seq with CIBERSORT, and patient survival.

Results: Greater neoantigen burden and CD8+ T cell infiltration in primary, pre-treatment samples were
independently associated with improved survival. Relapse samples collected after chemotherapy harbored a median
of 78% more expressed neoantigens than untreated primary samples, a figure that combines the effects of
chemotherapy and other processes operative during relapse. The contribution from chemotherapy-associated
signatures was small, accounting for a mean of 5% (range 0–16) of the expressed neoantigen burden in relapse
samples. In both treated and untreated samples, most neoantigens were attributed to COSMIC Signature (3),
associated with BRCA disruption, Signature (1), associated with a slow mutagenic process active in healthy tissue, and
Signature (8), of unknown etiology.

Conclusion: Relapsed ovarian cancers harbor more predicted neoantigens than primary tumors, but the increase is
due to pre-existing mutational processes, not mutagenesis from chemotherapy.
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Background
Many chemotherapies including platinum compounds [1],
cyclophosphamide [2], and etoposide [3] exert their effect
through DNA damage, and recent studies have found
evidence for chemotherapy-induced mutations in post-
treatment acute myeloid leukaemia [4], glioma [5], and
esophageal adenocarcinoma [6]. Successful development
of immune checkpoint-mediated therapy [7] has focused
attention on the importance of T cell responses to somatic
mutations in coding genes that generate neoantigens [8].
Patients withmore CD8+T cell infiltration in their tumors
have better prognosis [9, 10], and studies based on bulk-
sequencing of tumor samples followed by computational
peptide-class I MHC affinity prediction [11] have asso-
ciated increased mutations and resulting mutant MHC
I peptide ligands with improved survival [12], especially
in the context of checkpoint blockade immunotherapy
[13, 14]. Ovarian cancers fall into an intermediate group
of solid tumors in terms of mutational load present in pre-
treatment surgical samples [15]. However, the effect of
standard chemotherapy regimes on tumor mutation bur-
den and resulting neoantigen expression in ovarian cancer
is poorly understood.
Investigators associated with the Australian Ovarian

Cancer Study (AOCS) performed whole genome and RNA
sequencing of 79 pre-treatment and 35 post-treatment
cancer samples from 92 high grade serous ovarian car-
cinoma (HGSC) patients, including 12 patients with
both pre- and post-treatment samples [16]. The sam-
ples were obtained from solid tissue resections, autop-
sies, and ascites drained to relieve abdominal distension.
Treatment regimes varied but primary treatment always
included platinum-based chemotherapy. In their analysis,
Patch et al. reported that post-treatment samples har-
bored more somatic mutations than pre-treatment sam-
ples and exhibited evidence of chemotherapy-associated
mutations. Here we extend these results by quantifying
the mutations and predicted neoantigens attributable to
chemotherapy-associated mutational signatures. We find
that, while neoantigen expression increases after treat-
ment and relapse, only a small part of the increase is due
to mutations associated with chemotherapy signatures.
To assess the relevance of neoantigens in HGSC, we also
interrogate associations between predicted neoantigen
burden, immune cell infiltration estimated from RNA-
seq, and patient survival, and find that neoantigen burden
and CD8+ T cell infiltration are non-redundant survival
predictors in this cohort.

Methods
Clinical sample information
We grouped the AOCS samples into three sets —
“primary/untreated,” “primary/treated,” and “relapse/
treated” — according to collection time point and prior

chemotherapy exposure (Table 1). The primary/untreated
group consists of 75 primary debulking surgical samples
and 4 samples of drained ascites. The primary/treated
group consists of 5 primary debulking surgical samples
obtained from patients pretreated with chemother-
apy prior to surgery (neoadjuvant chemotherapy). The
relapse/treated group consists of 24 relapse or recurrence
ascites samples, 5 metastatic samples obtained in autop-
sies of two patients, and 1 solid tissue relapse surgical
sample, all of which were obtained after prior exposure
to one or more lines of chemotherapy. In summary,
these groupings yield 79 primary/untreated samples, 5
primary/treated samples, and 30 relapse/treated samples.
Specimen and clinical information for each sample is
listed in Additional file 1.
Independent of treatment, ascites samples trend toward

harboring more detected mutations, perhaps due to
increased intermixing of clones. We therefore stratified
by tissue type (solid tumor or ascites) when comparing
the mutation and neoantigen burdens of pre- and post-
treatment samples. As some patients provided multiple
samples of the same type, we reweighted the samples so
each patient contributes equally in these comparisons.

Mutation calls
We analyzed the mutation calls published by Patch et al.
[16] (Additional file 2). DNA and RNA sequencing reads
were downloaded from the European Genome-phenome
Archive under accession EGAD00001000877. Adjacent
single nucleotide variants (SNVs) from the same patient
were combined to form multinucleotide variants (MNVs).
We considered a mutation to be present in a sample if it

was called for the patient and more than 5% of the over-
lapping reads and at least 6 reads total supported the alter-
nate allele. We considered a mutation to be expressed if
there were 3 or more RNA reads supporting the alternate
allele. In the analysis of paired pre- and post-treatment
samples from the same donors, we defined a mutation as
unique to the post-treatment sample if the pre-treatment
sample contained greater than 30 reads coverage and no
variant reads at the site.

Variant annotation, HLA typing, and MHC binding
prediction
Protein coding effects were predicted using Varcode
(manuscript in preparation, https://github.com/openvax/
varcode). All transcripts overlapping each mutation were
considered, and the transcript with the most disrup-
tive effect was selected using a prioritization similar to
other tools (from highest priority: frameshift, loss of stop
codon, insertion or deletion, substitution). In the case
of frameshift mutations, all downstream peptides gen-
erated up to a stop codon were considered potential
neoantigens.

https://github.com/openvax/varcode
https://github.com/openvax/varcode
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Table 1 Sample counts by tissue and prior chemotherapy exposure

Patients Samples (with an untreated sample from same patient)

Solid tissue Ascites Total

Primary/untreated 76 75 4 79

Primary/treated 5 5 (0) 0 (0) 5 (0)

Relapse/treated 23 6 (4) 24 (10) 30 (14)

Total 92 86 (4) 28 (10) 114 (14)

Carboplatin Cisplatin Cyc. Etoposide Gemcitabine Paclitaxel

Primary/treated 5 (0) 0 (0) 0 (0) 0 (0) 1 (0) 4 (0)

Relapse/treated 30 (14) 5 (2) 10 (6) 1 (1) 17 (8) 30 (14)

Total 35 (14) 5 (2) 10 (6) 1 (1) 18 (8) 34 (14)

Parentheses indicate chemotherapy-treated samples with a patient-matched primary/untreated sample. Cyc., cyclophosphamide

HLA typing was performed using a consensus of
seq2HLA [17] and OptiType [18] across the samples for
each patient (Additional file 3).
Class I MHC binding predictions were performed for

peptides of length 8–11 using NetMHCpan 2.8 [19] with
default arguments (predicted neoantigens are listed in
Additional file 2).

Mutational signatures
The use of mutational signatures is necessary because it is
not possible to distinguish chemotherapy-induced muta-
tions from temporal effects when comparing primary and
relapse samples by mutation count alone. A mutational
signature ascribes a probability to each of the 96 possible
single-nucleotide variants, where a variant is defined by
its reference base pair, alternate base pair, and base pairs
immediately adjacent to the mutation. Signatures have
been associated with exposure to particular mutagens,
age related DNA changes, and disruption of DNA dam-
age repair pathways due to somatic mutations or germline
risk variants in melanoma, breast, lung and other cancers
[20], and provide a means of identifying the contribution
that chemotherapy may make to the mutations seen in
post-treatment samples. For example, the chemotherapy
temozolomide has been shown to induce mutations con-
sisting predominantly of C → T (equivalently, G → A)
transitions at CpC and CpT dinucleotides [5]. To per-
form deconvolution, the SNVs observed in a sample are
tabulated by trinucleotide context, and a combination of
signatures, each corresponding to a mutagenic process, is
found that best explains the observed counts. Mutational
signatures may be discovered de novo from large cancer
sequencing projects but for smaller studies it is preferable
to deconvolve using known signatures [21].
The Catalogue Of Somatic Mutations In Cancer (COS-

MIC) Signature Resource curates 30 signatures discov-
ered in a pan-cancer analysis of untreated primary tissue
samples. While signatures for exposure to the carbo-
platin/paclitaxel combination that is standard first line

therapy in ovarian cancer have not been established,
two recent reports provide data on mutations detected
in cisplatin-exposed Caenorhabditis elegans [22] and a
Gallus gallus (chicken) cell line exposed to several
chemotherapies including cisplatin, chyclophosphamide,
and etoposide [23]. As cisplatin is thought to induce the
same DNA adducts as carboplatin, we reasoned that the
mutational signatures of these related compounds are
likely similar [24]. In the AOCS cohort, 28 patients with
post-treatment samples were treated with carboplatin,
four with cisplatin, eight with cyclophosphamide, and one
with etoposide.
From the SNVs identified in the animal models,

we defined two signatures for cisplatin, a signature
for cyclophosphamide, and a signature for etoposide
(Additional file 4: Figures S1 and S2). As both stud-
ies sequenced replicates of chemotherapy-treated and
untreated (control) samples, identifying a mutational sig-
nature associated with treatment required splitting the
mutations observed in the treated group into background
and treatment effects. We did this using a Bayesian model
for each study and chemotherapy drug separately.
Let Ci,j be the number of mutations observed in exper-

iment i for mutational trinucletoide context 0 ≤ j < 96.
Let ti ∈ {0, 1} be 1 if the treatment was administered in
experiment i and 0 if it was a control. We estimate the
number of mutations in each context arising due to back-
ground (non-treatment) processes Bj and the number due
to treatment Tj according to the model:

Ci,j ∼ Poisson(Bj + tiTj)

We fit this model using Stan [25] with a uniform
(improper) prior on the entries of B and T. The treatment-
associated mutational signature N was calculated from a
point estimate of T as:

Nj =
(

Tj∑
j′ Tj′

)( hj
mj

)
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where hj and mj are the number of times the reference
trinucleotide j occurs in the human and preclinical model
(C. elegans or G. gallus) genomes, respectively.
Signature deconvolution was performed with the

deconstructSigs [21] package using the 30 mutational sig-
natures curated by COSMIC [26] extended to include the
putative chemotherapy-associated signatures (Additional
files 5 and 6). When establishing whether a signature was
“detected” in a sample, we applied the 6% of SNVs cutoff
recommended by the authors of the deconstructSigs pack-
age. Signatures assigned weights less than this threshold
in a sample were considered undetected.
To estimate the number of SNVs and neoantigens gen-

erated by a signature, for each mutation in the sample
we calculated the posterior probability that the signa-
ture generated the mutation, as described below. The
sum of these probabilities gives the expected number
of SNVs attributable to each signature. For neoantigens,
we weighted the terms of this sum by the number of
neoantigens generated by each mutation.
Suppose a mutation occurs in context j and sample i. We

calculate Pr[ s | j], the probability that signature s gave rise
to this mutation, using Bayes’ rule:

Pr[ s | j]= Pr[ j | s] Pr[ s]∑
s′ Pr[ j | s′] Pr[ s′] = Hs,j Di,s∑

s′ Hs′,j Di,s′

where Di,s is the result matrix from deconstructSigs, giv-
ing the contribution of signature s to sample i, and Hs,j
is the weight for signature s on mutational context j. For
each chemotherapy-associated signature, Hs,j is given by
Nj above. For the other signatures it is defined in the
COSMIC Signature Resource.
For treated samples with a pre-treatment sample avail-

able from the same patient, we deconvolved signatures
for both the full set of mutations and for the muta-
tions detected only after treatment. When calculating
Pr[ s | j] for these samples, for each mutation we selected
the appropriate deconvolution matrix Di,s depending on
whether the mutation was unique to the post-treatment
sample.

Survival analysis
Survival analyses were performed with the Cox propor-
tional hazards model from the lifelines Python package
version 0.9.3.2 (https://github.com/CamDavidsonPilon/
lifelines). Analyses were stratified by tumor stage (III or
IV) and included the logarithm of the tumor cellularity
percentage as a covariate. Key findings were reproduced
with the survival R package (https://cran.r-project.org/
web/packages/survival).

Immune deconvolution
RNA-seq reads were aligned using STAR version 2.4.1d
[27], transcript quantifications were obtained with

Cufflinks version 2.2.1 [28], and immune deconvolution
was performed by CIBERSORT version 1.01 [29].

Results
Cisplatin and cyclophosphamidemutational signatures
correlate with clinical treatment
We identified mutational signatures for cisplatin,
cyclophosphamide, and etoposide from the G. gallus
cell line data (Additional file 4: Figure S1), as well as a
second cisplatin signature from experiments in C. elegans
(Additional file 4: Figure S2). The two cisplatin signatures
were not identical. Both signatures placed most probabil-
ity mass on C → A mutations, but differed in preference
for the nucleotides adjacent to the mutation. TheG. gallus
signature was relatively indifferent to the 5’ base and
favored a 3’ cytosine, whereas the C. elegans signature
was specific for a 5’ cytosine and a 3’ pyrimidine. The G.
gallus cisplatin signature was closest in cosine distance to
COSMIC Signature (24) Aflatoxin, Signature (4) Smoking,
and Signature (29) Chewing tobacco, all associated with
guanine adducts. The C. elegans cisplatin signature was
similar to Signature (4) Smoking, Signature (20) Mis-
match repair, and Signature (14) Unknown. The G. gallus
cyclophosphamide signature favored T → A and C → T
mutations and was most similar to COSMIC Signatures
(25), (8), and (5), all of unknown etiology. The G. gallus
etoposide signature distributed probability mass nearly
uniformly across mutation contexts and was most similar
to COSMIC Signature (5) Unknown, Signature (3) BRCA,
and Signature (16) Unknown. Overall, the chemotherapy
signatures were no closer to any COSMIC signatures than
the two most similar COSMIC signatures (Signature (12)
Unknown and Signature (26) Mismatch repair) are to each
other, suggesting that deconvolution could in principle
distinguish their contributions.
We performed signature deconvolution on each sam-

ple’s SNVs (top and middle of Additional file 4: Figures S3
and S4). Detection of the cyclophosphamide signature at
the 6% threshold was associated with clinical cyclophos-
phamide treatment (Bonferroni-corrected Fischer’s exact
test p = 0.004), occurring in 4/10 samples taken after
cyclophosphamide treatment, 2/79 pre-treatment sam-
ples, and 2/25 samples exposed to chemotherapies other
than cyclophosphamide. In contrast, the two cisplatin sig-
natures were found in no samples, and the etoposide
signature was found only in four pre-treatment samples.
For better sensitivity, we next focused on the 14

relapse/treated samples from the 12 patients with both
pre- and post-treatment samples. For each patient,
we extracted the mutations that had evidence exclu-
sively in the treated samples. Of 206,766 SNVs in the
post-treatment samples for these patients, 93,986 (45%)
satisfied our filter and were subjected to signature decon-
volution (Fig. 1, bottom of Additional file 4: Figures S3

https://github.com/CamDavidsonPilon/lifelines
https://github.com/CamDavidsonPilon/lifelines
https://cran.r-project.org/web/packages/survival
https://cran.r-project.org/web/packages/survival
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Fig. 1 Detected mutational signatures for donor-matched primary/untreated and relapse/treated samples. (Top) Signatures detected in the
pre-treatment samples. The first four signatures were extracted from reports of a G. gallus cell line and C. elegans after exposure to chemotherapy,
and the rest are COSMIC curated signatures. COSMIC signature numbers are shown in parentheses, and the associated mutagenic process is
indicated when known. Signatures not shown were undetected in these samples. (Bottom) Clinical treatments and detected signatures for the
mutations unique to the post-treatment samples. Cases where a chemotherapy signature is detected are annotated with a (*) if the patient received
the associated drug and a (?) otherwise

and S4). Within this subgroup, the G. gallus cisplatin sig-
nature was identified only in the two samples taken after
cisplatin therapy, a significant association (p = 0.04). The
C. elegans cisplatin signature was detected in no sam-
ples, and the cyclophosphamide signature was detected
in 3/6 cyclophosphamide-treated samples, but, unexpect-
edly, also in 6/8 non-cyclophosphamide-treated samples.
These included the two post-treatment samples in which
the signature was detected in the earlier analysis plus four
additional samples. COSMIC Signature (3) BRCA and Sig-
nature (8) Unknown etiology were detected in 14/14 and
9/14 post-treatment samples, respectively, but Signature
(1) Age was absent, consistent with its association with a
slow mutagenic process operative before oncogenesis.
Considering all relapse/treated samples, the G. gallus

cisplatin signature showed a dose-dependent relation-
ship with the total number of cisplatin or carboplatin
chemotherapy cycles administered (Pearson correlation
r = 0.47; Additional file 4: Figure S5). In a linear

regression, each additional cycle of platinum was asso-
ciated with 9.0 (95% CI 3.6–14.3) more genome-wide
mutations attributed to this signature, giving rise to 0.08
(-0.01–0.17) additional neoantigens per cycle. A weaker
trend was observed among patients whose only plat-
inum exposure was carboplatin (r = 0.24; 3.7 (-1.6–9.0)
mutations per cycle). The cyclophosphamide signature
had little association with the number of cycles of
cyclophosphamide (r = 0.11; 30.4 (-58.9–120.0) muta-
tions per cycle). The time elapsed between themost recent
chemotherapy cycle and sample collection did not inde-
pendently correlate with total mutations or mutations
attributed to chemotherapy signatures in a linear model
that included the total number of cycles (p > 0.15 for
all tests).
In summary, the mutational signatures for cisplatin and

cyclophosphamide extracted from experiments of a G.
gallus cell line showed significant but inexact associations
with clinical chemotherapy exposure.
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Pre-treatment neoantigens and CD8+ T cell infiltrate
independently predict survival
Across the cohort, we identified 17,689 mutated peptides
predicted to bind autologous MHC class I with affinity
500 nm or tighter [30]. All but 21 (0.12%) of these pre-
dicted neoantigens were private to a single patient (shared
neoantigens are listed in Additional file 7).
Patients with greater predicted neoantigen burden in

their solid tissue primary/untreated samples had longer
survival (Additional file 4: Figure S6). In a Cox propor-
tional hazards regression analysis, neoantigen count (haz-
ard ratio (HR) of mean/variance standardized count: 0.73
(95% CI 0.54–0.97), p=0.03) and expressed neoantigen
count (HR=0.75 (0.56–0.99), p=0.04) were significantly
associated with survival, whereas mutation burden exhib-
ited a weaker trend (HR=0.85 (0.65–1.11), p=0.2). This
analysis excludes sample AOCS-166-1-2, from a patient
with a germline deficiency in mismatch repair and by
far the most mutations. If this sample is included in
the analysis, the estimated effects of neoantigen count
(HR=0.77 (0.57–1.02), p=0.07) and expressed neoantigen
count (HR=0.78 (0.59–1.03), p=0.08) are relatively unaf-
fected, but mutation burden is skewed (HR=1.0 (0.69–
1.44), p=0.9).
Immune infiltrate deconvolution of each sample’s RNA-

seq was performed using CIBERSORT, which estimates
the relative abundance of 22 immune cell types as a
fraction of the total immune infiltrate (Additional file 4:
Figures S7 and S8). One sample (AOCS-056-1-X) failed
deconvolution and was excluded from these analyses.
Samples taken before or after chemotherapy treatment
were broadly similar in immune infiltrate. Nonactivated
macrophages (M0 macrophages) were the most prevalent
population in both solid tissue (median 22% of infiltrate
(range 0–54%)) and ascites (26% (3–57)) samples. Other
myeloid lineage cells were also prevalent in ascites, includ-
ing activated mast cells (9% (0–69)) and monocytes (6%
(0–50)). Follicular helper (solid tissue: 10% (0–23); ascites:
5% (1–24)) and memory resting (9% (0–31); 6% (0–28))
CD4+ T cells were the most abundant lymphocyte popu-
lations in both solid tissue and ascites samples.
CD8+ T cells accounted for a median of 3% (0–30)

of infiltrate in solid tissue samples and were uniformly
rare in ascites (0% (0–3)). In primary/untreated solid tis-
sue samples, greater CD8+ T cell infiltrate was associated
with improved survival (HR=0.65 (0.47–0.88), p=0.006;
Additional file 4: Figure S6). This appeared to be an inde-
pendent effect from neoantigen burden. No significant
correlation was observed between neoantigens and CD8+
T cell infiltrate, although among ascites samples increased
total mutational burden was narrowly associated with
increased CD8+ T cell infiltrate (p=0.03, Additional file 4:
Figure S9). Both CD8+ T cell infiltrate and neoantigen
burden were independently associated with survival in a

Cox multiple regression analysis (CD8 T cells: HR=0.61
(0.44–0.85), p=0.003; neoantigens: HR=0.72 (0.54–0.97),
p=0.03).
Among relapse/treated ascites samples, no significant

survival association was observed for mutations (HR=1.2
(0.73–2.1), p=0.43), neoantigens (HR=0.81 (0.47–1.4),
p=0.44), expressed neoantigens (HR=0.67 (0.387–1.15),
p=0.14), or CD8+ T cell infiltrate (HR=1.2 (0.741–1.99),
p=0.44). In a search over all other immune cell subsets,
none showed significant survival association after correc-
tion for multiple hypothesis testing.

Neoantigen burden increases at relapse
Relapse/treated samples harbored a median 78% more
expressed neoantigens than primary/untreated samples
(weighted mean of stratum-specific estimates). In partic-
ular, solid tissue relapse samples harbored a median of
71% (bootstrap 95% CI 23–123) more mutations, 107%
(32–187) more neoantigens, and 72% (16–137) more
expressed neoantigens than primary/untreated solid tis-
sue samples (Fig. 2), all significant increases (Mann-
Whitney p < 0.05 for each of the three tests). A similar
trend was observed for ascites samples. Relapse/treated
ascites samples harbored 32% (14–51), 55% (10–118),
and 83% (22–178) more mutations, neoantigens, and
expressed neoantigens than primary/untreated ascites
samples, respectively (p = 0.07, 0.10, 0.05 for the three
tests). This trend was also apparent in a comparison of
paired samples from the same donors and in an analysis
using a Bayesianmodelingmethodology (Additional file 4:
Figure S10 and Additional file 8).
In contrast, primary/treated samples, which were

exposed to neoadjuvant chemotherapy (NACT) prior to
surgery, did not exhibit increased numbers of muta-
tions, neoantigens, or expressed neoantigens, and in fact
trended toward decreased neoantigen expression. The five
primary/treated samples, all from solid tissue resections,
harbored a median of 16 (9–89) expressed neoantigens
compared to the median of 44 (39–60) observed in pri-
mary/untreated solid tissue samples, due to both fewer
neoantigens in the DNA (median of 85 (36–306) vs. 130
(108–150)) and a lower rate of expression (median 19 (14–
37) vs. 39 (36–42)% of neoantigens). This trend did not
reach significance (Mann-Whitney p = 0.08).

Chemotherapy signatures weakly contribute to
neoantigen burden at relapse
While we cannot determine with certainty whether
any particular mutation was chemotherapy-induced, we
can estimate the fraction of mutations and neoantigens
attributable to each signature in a sample (Fig. 3 and
Additional file 4: Figure S11).
Similarly to results reported by Patch et al., the most

prevalent mutational signatures in this cohort were
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Fig. 2 Comparison of mutation and neoantigen burden of chemotherapy-treated and untreated samples. Mutations (upper left), neoantigens
(upper right), and expressed neoantigens by count (lower left) and as a percent of total neoantigens (lower right) are shown for primary/untreated
samples (blue; solid tumor n=75, ascites n=4), primary/treated samples (green; solid tumor n=5), and relapse/treated samples (red; solid tumor n=6
samples from 3 patients, ascites n=24 samples from 21 patients). The shaded boxes indicate the interquartile region and the median line; multiple
samples of the same type from the same patient have been reweighted so that each patient contributes equally. Points indicate individual samples

COSMIC Signature (3), associated with BRCA disrup-
tion, Signature (8), of unknown etiology, and Signa-
ture (1), associated with spontaneous deamination of
5-methylcytosine, a slow process active in healthy tis-
sue that correlates with age. These signatures together
accounted for a median of 67% (95% CI 66–69) of muta-
tions, 58% (56–61) of neoantigens, and 68% (67–71)
expressed neoantigens across samples. These rates did not
substantially differ with chemotherapy treatment.
The chemotherapy signatures accounted for a small

but detectable part of the increased neoantigen bur-
den of relapse samples. In primary/untreated samples,

which indicate the background rate of chance attribu-
tion, chemotherapy mutational signatures accounted for
a mean 2% of mutations (range 0–8), 2% (0–7) of the
neoantigens, and 2% (0–8) of the expressed neoanti-
gens. In each of the five primary/treated samples, less
than 1% of the mutation, neoantigen, and expressed
neoantigen burdens were attributed to chemotherapy sig-
natures. For the relapse/treated samples, chemotherapy
signatures accounted for a mean of 6% (range 0–21) of
the mutations, 5% (0–15) of the neoantigens, and 5%
(0–16) of the expressed neoantigens. The highest attri-
bution to chemotherapy signatures occurred in sample

Fig. 3 Contribution of key SNV signatures, MNVs, and indels on mutations (left), neoantigens (center), and expressed neoantigens (right). The Chemo
category combines the contributions from the chemotherapy signatures. COSMIC signature numbers are in parentheses. The Other SNV category
represents SNVs not accounted for by the signatures shown. Bars give the mean, and points indicate individual samples
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AOCS-092-3-3, a relapse/treated sample from a patient
who received two lines of carboplatin and three lines of
cisplatin, the most in the cohort. For this sample, 21% (or
approximately 3200 of 15,491) of the SNVs, 15% (9 of 61)
of the neoantigens, and 16% (5 of 30) of the expressed
neoantigens were attributed to chemotherapy signatures.
Signature deconvolution considers only SNVs, but stud-

ies of platinum-induced mutations have also reported
increases in the rate of dinucleotide variants and indels.
Indeed, we observed more MNVs overall and specifically
the platinum-associated MNVs CT → AC and CA → AC
reported by Meier et al. [22] in treated patients in both
absolute count and as a fraction of mutational burden
(p < 10−6 for all tests). Sample AOCS-092-3-3, pre-
viously found to have the most chemotherapy-signature
SNVs, also had themost platinum-associated dinucleotide
variants and the second-most MNVs overall. This sample
harbored 59 CT → AC or CA → AC mutations, com-
pared to amean of 3.2 (2.2–4.4) across all samples. Treated
samples also harbored more indels in terms of absolute
count (p = 10−4). Overall, while MNVs and indels gen-
erate more neoantigens per mutation than SNVs, they are
rare, comprising less than 3% of the mutational burden
and 13% of the neantigens in every sample (Fig. 3), making
it unlikely that chemotherapy-induced MNVs and indels
have a large impact on neoantigen burden.

Discussion
In this analysis of neoantigens predicted from DNA and
RNA sequencing of ovarian cancer tumor and ascites
samples, relapse samples obtained after chemotherapy
exposure had a median of 78% more expressed neoanti-
gens than untreated primary samples. However, putative
chemotherapy mutational signatures accounted for no
more than 16% of the expressed neoantigen burden in
any sample. Most of the increase was instead attributable
to mutagenic processes already at work in the primary
samples, including COSMIC Signature (3) BRCA and Sig-
nature (8) Unknown etiology.
It is likely that many of the mutations considered unique

to the relapse/treated samples were actually present
before treatment, but were confined to too few cells to
be detected. After surgery and adjuvant chemotherapy,
outgrowth of a subclone would bring such private muta-
tions to population levels detectable by bulk sequencing
in the relapse/treated samples. Consistent with this inter-
pretation, NACT-treated samples, which were exposed to
chemotherapy as large tumors and for a short duration
(typically 3 cycles), did not show increased mutation or
neoantigen burden over untreated samples and had very
few mutations attributed to chemotherapy.
Our results suggest it would be difficult to ratio-

nally increase neoantigen burden through chemotherapy,
as even the most heavily treated patients show only a

modest number chemotherapy-associated neoantigens.
The patient with the most such neoantigens, AOCS-092,
had 9/61 neoantigens attributed to chemotherapy. At the
relapse/treated time point, no significant survival associ-
ation for neoantigens was observed. In the Cox propor-
tional hazardsmodel fit to the primary/untreated samples,
where neoantigens did correlate with survival, 9 additional
neoantigens are predicted to improve two year survival
rate by only 1.1% points (from 43.7% to 44.8%). These
analyses are in the context of standard treatment regimes;
neoantigensmay have a greater impact for patients treated
with immunotherapies. However, as immunotherapy tri-
als in HGSC have focused on heavily pre-treated patients
with recurrent disease, the substantially increased total
neoantigen burden at recurrence is evidently not suffi-
cient on its own for immunotherapy to be effective for
many patients [31–34]. Other factors, perhaps unique
ascitic or systemic immunosuppressive mechanisms, may
also need to be overcome.
Remarkably, in primary/untreated samples, neoantigen

burden was more closely associated with survival than
overall mutation burden. This did not appear to be medi-
ated by concomitant CD8+ T cell infiltration in the pri-
mary tumor; both factors independently associated with
survival. Previous reports have found neoantigens and
CD8+ T cell infiltrate to be favorable prognostic mark-
ers in a variety of tumor types and clinical contexts
[9, 10, 12, 35, 36]. Analyses of both factors, however, have
generally found a positive association between neoanti-
gen burden andmarkers of tumor infiltrating lymphocytes
[37, 38]. Our smaller sample size may explain the lack of
significant association. Alternatively, some tumors with
low neoantigen burden and high immune infiltration may
have experienced selective loss of neoantigens, a process
termed immunoediting [39]. One study reported a deple-
tion of neoantigens, relative to what would be expected
from the silent mutation rate, in several cancer types, but
no significant effect in ovarian cancer samples with whole
exome sequencing deposited in The Cancer Genome
Atlas [37]. While we did not pursue it here, the present
dataset would be an interesting cohort to re-evaluate such
an effect.
The signatures for cisplatin and, to a lesser extent,

cyclophosphamide extracted from the G. gallus experi-
ments showed a modest correlation with clinical treat-
ment, whereas the G. gallus etoposide and C. elegans
cisplatin signatures were not detected in chemotherapy-
exposed samples. The latter signature may be less accu-
rate than the G. gallus cisplatin signature because it
was derived from fewer mutations (784 vs. 2633). The
number of mutations attributed to the G. gallus cis-
platin signature correlated with the number of cycles
of platinum chemotherapy; a weak trend held among
patients treated only with carboplatin. In the case
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of cyclophosphamide, deconvolution of all mutations
identified the signature in 4/10 samples treated with
cyclophosphamide and 4/104 unexposed samples. How-
ever, when we focused on mutations detected uniquely
in the post-treatment samples, 6/8 samples exposed only
to non-cyclophosphamide chemotherapies exhibited the
signature. As it was rarely detected in pre-treatment sam-
ples, this signature may reflect the effect of other (non-
cyclophosphamide) chemotherapy.
A contrast to our results is a report of NACT

temozlomide-treated glioma, in which it was reported
that over 98% of mutations detectable with bulk sequenc-
ing in some samples were attributable to temozolomide
[5]. Whether this difference is due to the drug used or
disease biology requires further study.
We predicted a median of 64 (50–75) expressed MHC

I neoantigens across all samples in the cohort, signifi-
cantly more than the median of 6 reported by Martin
et al. in this disease [40]. However, Martin et al. did not
consider indels, MNVs, or multiple neoantigens that can
result from the same missense mutation, used a 100 nm
instead of 500 nm MHC I binding threshold, used pre-
dominantly lower quality (50 bp) sequencing, and only
explicitly considered HLA-A alleles. Predicted neoanti-
gen burden is best considered a relative measure of tumor
foreignness, not an absolute quantity readily comparable
across studies.
This study has several important limitations. Most crit-

ically, as the signatures may differ from actual effects
in patients, chemotherapy-induced mutations could erro-
neously be attributed to non-chemotherapy signatures.
This would result in an underestimation of the impact
of chemotherapy. However, the fraction of mutations that
do not match COSMIC signatures (1), (3), or (8) or a
chemotherapy signature, a quantity indicated as “Other
SNV” in Fig. 3, is no greater in the treated vs. untreated
samples. This is evidence against a scenario in whichmany
chemotherapy-induced mutations are unaccounted-for in
our analysis because they do not match any signature or
spuriously match other COSMIC signatures. However, we
cannot exclude the possibility that chemotherapy-induced
mutations could be erroneously attributed to COSMIC
Signatures (1), (3), or (8). Experiments using human cell
lines exposed to the range of chemotherapies used in
recurrent ovarian cancer may fully address this question.
As this study is based on bulk DNA sequencing of

heterogeneous clinical samples, the analysis is limited to
mutations that are present in at least 5-10% of the cells
in a sample. Data from Patch et al. suggests that even
late-stage disease remains polyclonal, therefore poten-
tially obscuring the impact of chemotherapy on the
tumor genome. Single-cell sequencing may be required
to observe most chemotherapy-induced mutations, espe-
cially in the neoadjuvant setting. However, while we may

have been unable to detect highly subclonal mutations, it
is expected that such clones would be unable to trigger an
anti-tumor immune response that is effective against the
bulk of the tumor [41].
Finally, this study does not consider neoantigens result-

ing from structural rearrangements such as gene fusions
and relies on only 35 post-chemotherapy samples.

Conclusion
In this study, we demonstrate a method for connecting
mutational signatures extracted from studies of mutagen
exposure in preclinical models with computationally pre-
dicted neoantigen burden in clinical samples. We found
that relapsed HGSC tumors harbor a median of 78%
more expressed neoantigens than untreated primary sam-
ples, and that cisplatin and cyclophophamide chemother-
apy treatments account for a small but detectable part
of this effect. The mutagenic processes responsible for
most mutations at relapse are similar to those operative
in primary tumors, with COSMIC Signature (3) BRCA,
Signature (1) Age, and Signature (8) Unknown etiology
accounting for most mutations and predicted neoantigens
both before and after chemotherapy.
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