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Intergenic disease-associated regions are
abundant in novel transcripts
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Abstract

Background: Genotyping of large populations through genome-wide association studies (GWAS) has successfully
identified many genomic variants associated with traits or disease risk. Unexpectedly, a large proportion of GWAS
single nucleotide polymorphisms (SNPs) and associated haplotype blocks are in intronic and intergenic regions,
hindering their functional evaluation. While some of these risk-susceptibility regions encompass cis-regulatory sites,
their transcriptional potential has never been systematically explored.

Results: To detect rare tissue-specific expression, we employed the transcript-enrichment method CaptureSeq on
21 human tissues to identify 1775 multi-exonic transcripts from 561 intronic and intergenic haploblocks associated
with 392 traits and diseases, covering 73.9 Mb (2.2%) of the human genome. We show that a large proportion (85%) of
disease-associated haploblocks express novel multi-exonic non-coding transcripts that are tissue-specific and enriched
for GWAS SNPs as well as epigenetic markers of active transcription and enhancer activity. Similarly, we captured
transcriptomes from 13 melanomas, targeting nine melanoma-associated haploblocks, and characterized 31 novel
melanoma-specific transcripts that include fusion proteins, novel exons and non-coding RNAs, one-third of which
showed allelically imbalanced expression.

Conclusions: This resource of previously unreported transcripts in disease-associated regions (http://gwas-captureseq.
dingerlab.org) should provide an important starting point for the translational community in search of novel
biomarkers, disease mechanisms, and drug targets.

Background
The success of genome-wide association studies
(GWAS) in discovering risk loci for various traits and
diseases [1–8] is yet to be matched by the identification
of biological roles for these variants. The GWAS meth-
odology inherently presents challenges to the functional
annotation of individual genetic variants. The reported
GWAS single nucleotide polymorphism (SNP) is rarely
the causal variant for the associated trait or disease and
is instead a marker for a co-inherited genomic region:
the linkage disequilibrium (LD) or haplotype block (hap-
loblock) [1, 3, 9–11]. Pinpointing the casual variant is
often restricted by the limited SNP composition of the
genotyping arrays, the small size of studied populations,

as well as their unique haploblock makeup [12–15].
However, the technical limitations are not the main
reason for a small number of GWAS-identified genes
involved in formation of complex phenotypes [16–21].
The key issue is that the majority of haploblocks with
GWAS SNPs do not overlap portions of the genome of
known function and remain classified as intronic or
intergenic [22–26].
The common presence of disease-associated loci in

intronic and intergenic regions is usually attributed to
potential regulatory functions of DNA sequence. Varia-
tions at a single nucleotide may influence large conform-
ational changes of DNA structure by affecting the state
of the chromatin and interactions between distant loci
[25, 27–31]. Furthermore, variants at individual nucleo-
tides can also disrupt protein–DNA or RNA–DNA
interactions [32–34], altering the binding of promoters
and enhancers by regulatory proteins or RNA molecules,
or regulating deposition of epigenetic marks [35–42].
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However, the scarce overlap of disease-associated vari-
ation with known genes is undoubtedly influenced by
the incomplete annotation of the human transcriptome.
Sequencing technologies such as RNA sequencing

(RNA-seq) have revolutionized our understanding of the
transcriptional landscape of the human genome, though
the exhaustive annotation of genes or transcripts is far
from complete. In the last five years, over 10,000 novel
transcribed loci have been added to the GENCODE
catalogue [35, 43, 44] and the exploration of additional
layers of transcriptome complexity, such as splice vari-
ants and gene fusions, is in its infancy [45–49]. Despite
the initial success of RNA-seq, its well-described limita-
tions call for novel techniques that provide higher reso-
lution, especially in the characterization and discovery of
transcripts that may be cell-specific and therefore appear
to be lowly expressed in complex tissues [50–54]. This is
particularly true for long non-coding RNAs (lncRNAs),
which are typically expressed at orders of magnitude
lower abundance than messenger RNAs (mRNAs) and
require larger sequencing coverage for assembly and
quantification [55–58]. This bias further impairs the
detection of lncRNAs present only in specific cells,
tissues or during a limited timeframe [59, 60]. To
overcome this challenge, several experimental and compu-
tational methodologies have been developed [61, 62], with
CaptureSeq as the most recent addition [63–65].
CaptureSeq is a method for targeted RNA-seq of

transcripts expressed from specific genomic regions of
interest (ROIs) [63]. The underlying principle, shared with
other target-enrichment methods [66–69], is based on the
hybridization of nucleic acid libraries with custom oligo-
nucleotides, allowing for enrichment of specific RNA
sequences and the consequent deeper sequencing of
targeted regions [64]. This technique can detect lowly
expressed transcripts with > 100 times higher sensitivity
than standard RNA-seq and has previously provided the
first high-resolution map of human splicing branchpoints
[46, 63]. The specificity and high resolution of this method
make it an ideal technique to detect transcriptional events
in the proximity of intergenic GWAS SNPs.
To investigate the hypothesis that many trait- and

disease-associated SNPs lie within proximity of previ-
ously unannotated transcripts, we employed CaptureSeq
on transcriptomes from 21 tissues and 13 melanoma
samples, targeting 561 intronic and intergenic haplotype
blocks with GWAS SNPs and nine additional melanoma
risk loci. Here, we report and extensively characterize
1775 transcribed loci with multi-exonic transcripts that
are mostly tissue-specific and originate from the vast
majority of haploblocks with GWAS SNPs, as well as 31
novel melanoma transcripts, providing an important
resource to the translational community in search of
targeted therapies, biomarkers, and disease mechanisms.

Results
Majority of intronic and intergenic haploblocks with
GWAS SNPs are transcriptionally active
To capture previously undetected tissue-specific or lowly
expressed transcripts in proximity of GWAS SNPs, we
employed CaptureSeq on the transcriptomes of 21
tissues, enriching for transcription events from 561
intronic and intergenic regions, covering 73.9 Mb (2.2%)
of the human genome, associated with 392 traits and
diseases (Additional file 1: Table S1a). Oligonucleotide
probes were designed to tile haplotype blocks with sig-
nificant GWAS SNPs (339 pilot haploblocks with p
value < 10−5 and 296 with p value < 5 × 10–8), while elim-
inating coding exons from GENCODE (v.12) or RefSeq
(Fig. 1a, Additional file 1: Table S1b–e). These probes
were then used as described in the CaptureSeq protocol
[64] to enrich RNA from individual tissues for novel
transcripts. We subsequently sequenced the transcript
libraries (paired-end, 100 nt reads) and developed an
analysis workflow for their de novo assembly, genome
mapping, and quantification, focusing on the removal of
assembly noise and lowly expressed isoforms to infer
robust transcription (see “Methods”).
In order to assess the amount of potential transcrip-

tional noise, we introduced multiple control regions to
the capture design: a known gene desert on chromo-
some 7 and numerous intronic and exonic loci
(Additional file 1: Table S1f, g). The control gene desert
and introns had significantly lower odds of containing
multi-exonic transcripts, 0.75 times (p value < 4.9 × 10–
324, Χ2 test) and 0.92 times (p value 1.4 × 10–14, Χ2 test),
respectively, which covered 10% and 12% of the control
regions (Additional file 2: Figures S1a, b). The odds were
increased for GENCODE exons (11.1 times, p value <
4.9 × 10–324, Χ2 test). On the other hand, odds of identi-
fying single-exonic transcripts, more likely to represent
spurious transcripts and assembled introns, were 4.95
times higher in gene deserts and 5.41 times in introns.
In addition, the transcripts were expressed across the
haploblocks in a non-random manner (Additional file 2:
Figure S1c).
To avoid the larger false-positive rate for single-exonic

transcripts, we focused only on transcribed loci that
produced spliced transcripts (referred hereafter as “cap-
tured transcripts”). This allowed us to identify 1775
multi-exonic transcribed loci with FPKM > 1 in at least
one tissue (Additional file 1: Table S2). For simplicity,
these captured transcripts were separated into low,
medium, and high categories based on their expression
level (Fig. 1c) and assembly quality (Additional file 2:
Figure S2a). Comparison to standard RNA-seq con-
firmed ~ 100 times enrichment of transcripts from target
regions and 2.6-fold depletion of GENCODE genes
(Fig. 1b). In support of the authenticity of the novel
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splice junctions, the majority were canonical, did not
overlap repeat regions, and were not a result of multi-
mapping reads (Additional file 1: Figures S2b–d). Out of
561 haploblocks, 84.8% contained at least one multi-
exonic transcript, with about one-third of the transcripts
expressed in each individual tissue (Fig. 1c, d). Capture-
Seq methodology allowed us to identify widespread inde-
pendent transcriptional activity throughout disease-
associated intronic and intergenic regions.

Genomic loci of novel transcripts bear hallmarks of active
transcription
Having identified a multitude of captured transcripts in
the haploblocks with GWAS SNPs, we investigated their

sequence and genomic properties to provide further
evidence for their active transcription. We first overlaid
the genomic loci of the captured transcripts with known
gene annotations. GENCODE v.19 as the more conser-
vative database shared 15% of the transcripts, with the
sequence overlap confined to a small portion of the
capture transcript and with a growing proportion over
later GENCODE versions, while the more permissive
databases such as AceView and ESTs reported 20–30%,
with the highest sequence overlap from MiTranscrip-
tome [44, 48, 70, 71] (Fig. 2a). Next, we measured the
coding potential of the captured transcripts with the
Coding-Potential Assessment Tool (CPAT) and Coding
Potential Calculator (CPC) [72, 73]. The majority of

a

b d

c

Fig. 1 Capturing novel transcripts from intronic and intergenic GWAS regions. a Schematic of the experimental design. LD blocks were predicted around GWAS
SNPs (colored pins) by identifying proxy (i.e. co-inherited) SNPs (r2 > 0.5) from Hapmap23 and 1000 genomes (white pins). Oligonucleotide probes were designed
for 561 intronic and intergenic GWAS regions and hybridized to transcriptomes of 21 target tissues. The captured transcripts were sequenced, assembled, and
mapped back to the genome. b Enrichment of captured transcripts. Expression of all captured (red) and non-captured (black) transcripts annotated in GENCODE
(v.19) was compared between testis CaptureSeq sample (y-axis) vs testis RNA-seq from Illumina Body Atlas (x-axis). Correlation coefficients are 0.29 for captured
transcripts and 0.55 for GENCODE genes. FPKM: fragments per kilobase of transcripts per million mapped reads. c Occupancy of 561 intergenic haploblocks by
multi-exonic captured transcripts. The majority of haploblocks (84.8%) contain at least one transcript with FPKM>1. d Counts of captured multi-exonic transcripts
with FPKM>1 across tissues
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transcripts had even lower coding potential than known
lncRNAs (p value < 2.6 × 10–16 CPC, p < 0.0001 (Kruskal–
Wallis with Dunn’s multiple comparisons test) CPAT,
Additional file 2: Figure S3a, b). As expected, other prop-
erties such as conservation, number of exons and isoforms
were on average more similar to lncRNAs than protein-
coding genes (Additional file 2: Figure S3c–e).
To evaluate whether the captured transcripts bear the

typical hallmarks of expression, we matched their tissue-
specific expression with cap analysis gene expression
(CAGE) data from the FANTOM project and histone
methylation marks from Roadmap Epigenomics [74, 75].
CAGE tags define the 5’ end of a transcribed RNA, while
the investigated histone methylation marks are enriched
at the sites of active transcription (H3K4me3, H3K4me1,
and H3K27ac) [76–78]. Even though the transcript
promoters overlapped CAGE clusters in only 8% of cases
(24% over their whole region) the start sites of captured
transcripts were enriched for CAGE tags compared to
the genomic background (Fig. 2b, Additional file 2:
Figure S4, p value < 2.2e-16, Χ2 test, Additional file 1:
Table S3). Furthermore, epigenetic marks that are
usually associated with actively transcribed promo-
ters—H3K4me1, H3K27ac, and H3K4me3—were present
in the majority of promoters of novel transcripts and
enriched compared to the rest of the genome (Fig. 2c,
Additional file S2: Figure S3f, g). In addition, 53.4% of cap-
tured transcripts overlapped H3K36me3 broad peaks from
liver tissue (45.7% for lowly expressed, 62.2% for intermedi-
ate, and 96.1% for high), an overlap which is expected due

to their spliced nature. Despite the previously described
overlaps with CAGE and epigenetic marks, it should be
noted that the CaptureSeq methodology is still limited by
its short-read sequencing component in precisely defining
transcript margins and would require further validation.
To further demonstrate the existence and structure of

the captured transcripts, we selected 30 at random,
successfully validating 90% of transcripts and 89% of
their splice junctions (Additional file 2: Figure S5, Add-
itional file 1: Table S4). Taken together, we find that the
majority of our captured transcripts are novel and are
statistically significantly enriched for some properties of
active non-coding RNAs.

Functional relevance of captured transcripts and their
genomic regions
The challenge of functionally annotating captured tran-
scripts has been addressed with in silico analyses of
tissue-specific expression, enrichment for known func-
tional elements, and GWAS SNPs, as well as through
individual cases of ten independently functionally vali-
dated lncRNAs.
First, we investigated whether the novel transcripts

were expressed in a tissue-specific manner similar to
other lncRNAs, which signifies potential importance in
programming and behavior of cell lineages [1, 3]. We
calculated Tau index (τ) to detect condition-specific pro-
files of the captured transcripts [79]. The majority of
transcripts (81%) presented a tissue-specific profile (τ >
0.80), mostly from known transcriptionally diverse

a b c

Fig. 2 Defining properties of novel transcripts. a Previous observation of portions of captured transcripts in public databases. Percent of captured
transcripts overlapping previously annotated transcripts in GENCODE at the time of the experiment design (v.12), GENCODE v.19 and v.27, AceView,
MiTranscriptome, and the EST database. Gray shades indicate length overlap between the novel transcript and the previously observed sequences. b
Aggregated data for cap analysis gene expression (CAGE) clusters, centered on the 5’ end of captured transcripts. Counts are normalized by the
number of transcripts. Positive control was defined as lncRNAs transcripts with the same median of expression distribution across tissues as captured
transcripts, from Illumina Body Map data. X-axes indicate distance from the 5’ start of transcripts in base pairs. Y-axes represent counts of CAGE clusters,
normalized by the number of transcripts (see “Methods”). c Fraction of promoters of captured transcripts, lncRNAs, pseudogenes, and protein-coding
genes occupied by CAGE and epigenetic marks: CAGE (blue), H3K4me3 (red), H3K27ac (yellow), H3K4me1 (purple). Hollow circles represent randomized
controls, whereby CAGE and epigenetic peaks were randomly distributed across the genome
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tissues including testes and brain, but also placenta,
emphasizing the dynamic and divergent nature of the
placental transcriptome (Fig. 3a, b) [1, 3, 5]. A small sub-
set of tissues that are functionally related—colon and
small intestine, spleen and thymus—formed statistically
significant clusters (p values < 10–3, Pvclust multiscale
bootstrap resampling, Fig. 3b), while randomized expres-
sion across conditions tissues presented no significant
correlations between samples (Additional file 2: Figure
S6). Finally, a number of captured transcripts were also
overexpressed in tissues that are relevant for individual
diseases (Additional file 1: Table S3).
Second, we examined the possible mode of action of

captured transcripts by determining their overlap with
functionally annotated genomic regions. About one-
third of captured transcripts (36.5%) overlapped previ-
ously reported transcribed enhancers (eRNAs) from the
FANTOM project, for which they were enriched com-
pared to the genomic average and randomized locations
(Fig. 3c) [80]. A similar enrichment was obtained by ana-
lysis of ChromHMM genome segmentation, representing
chromatin states defined by combinations of multiple
epigenetic marks. Of captured transcripts, 85.8% over-
lapped enhancer regions and showed enrichment for loci
associated with weak active enhancers (Additional file 2:
Figure S7) [12]. However, 95% of eRNAs are single-
exonic [80], while we report only multi-exonic tran-
scripts. Enhancer RNAs, whether polyadenylated or not,
can be unidirectionally transcribed from enhancer re-
gions (1D eRNAs) or more commonly in a bidirectional
manner [81]. Only one-third of captured transcripts
(34%, see “Methods”) came from bidirectional pro-
moters, though bidirectionality was more prevalent in
our transcripts that overlap FANTOM enhancers (48%).
These results imply that even though a significant pro-
portion of captured transcripts could theoretically have a
role as eRNAs, for which further functional validations
are required, the potential function of the remainder
could encompass the diverse repertoire of mechanisms
available to other types of lncRNAs [82].
Third, we calculated the proportion of bases with

GWAS SNPs in different regions of the captured tran-
scripts, since it has previously been observed that the
polygenic effects of SNPs in GWAS studies are enriched
for those associated with exons and regulatory regions
[18, 48]. Even though tag SNPs are not causative, those
that overlap functional regions explain more variance
and are more likely to be associated with a phenotype
than others. We observed enrichment of the disease-
associated variation in promoters, exons, and 3’ UTRs
compared to introns of captured transcripts, comparable
to that in lncRNAs and protein-coding genes (Fig. 3d).
Out of 1775 transcribed loci, 415 (23%) contain a GWAS
SNP, 166 (9.2%) in their exons. We further investigated

whether transcripts contain a previously established
expression quantitative trait locus (eQTL) SNP from the
GTEx study [54] and we observed such overlap in 83
cases, 55 of which were in exonic regions. We provide
several examples of captured transcripts with exonic
eQTLs that influence expression of protein-coding genes
implicated in the phenotype associated with the captured
transcript’s haploblock of origin (Table 1). In addition,
utilizing our melanoma samples (see below), 152
transcripts exhibit allelic imbalance, showing significant
difference in expression in relation to the SNP variants
they contain (FDR < 0.1). The similar patterns of disease-
associated variation in known genes and our novel
transcripts, along with the presence of eQTL SNPs and
allelic expression changes in response to genetic variation,
supports their functional relevance and suggests some
may play a role in complex human traits and diseases.
Finally, we report ten captured transcripts that have

been independently functionally annotated after the
design of our experiment based on GENCODE v.12
(Fig. 3e, f, Additional file 1: Table S5, Additional file 2:
Figure S8), including two transcripts that were identified
through CaptureSeq technology. Captured transcript
GCS1669 contains most of the splice sites of three inde-
pendently reported lncRNAs—CCAT1, CASC19, and
PCAT2—in addition to multiple novel exons and iso-
forms that encompass all three (Fig. 3e). Even though it
was first reported in colorectal cancer, CCAT1 is
involved in multiple malignancies based on its enhancer
regulation of MYC [83, 84]. Interestingly, GCS1669 is
specifically expressed in liver, while CCAT1 has been
shown to promote hepatocellular carcinoma [84]. Other
examples include GCS1684 that overlaps the lncRNA
CCDC26 in a haploblock associated with growth of
white blood cells. While CCDC26 controls myeloid
leukemia cell growth [85], GCS1684 is specifically
expressed in spleen, a major storage location for leuko-
cytes (Additional file 2: Figure S8i) and shows significant
allelic imbalance in 8/13 melanoma samples (FDR <
0.05). Similarly, GCS0593 is specifically expressed in
thyroid tissue, comes from haploblock associated with
thyroid hormone levels and thyroid cancer, while over-
lapping lncRNA GCS0586 that causes proliferation of
thyroid carcinoma, likely through Wnt signaling pathway
[86]. In addition, two non-coding transcripts, CUPID1
and CUPID2, have been identified with CaptureSeq
technology, functionally validated with RNA-seq, HiC,
and knockout experiments, and have been implicated in
modulating DNA repair in breast cancer [87].

Identification of novel transcripts implicated in cutaneous
melanoma
We investigated the utility of the CaptureSeq approach on
genomic regions associated with disease pathology with
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Fig. 3 Functional properties of captured transcripts. a Comparison of tissue-specific expression of captured transcripts to lncRNAs, pseudogenes, and protein-
coding genes (Illumina Body Map), as measured by Tau tissue specificity index (0 for broadly expressed, 1 for tissue specific genes) [79]. b Heatmap of tissue-
specific captured transcripts (τ>0.8) across tissues. Unsupervised clustering performed on τ components (1-Expression/max(Expression)), colored by tissue
specificity from low (white) to high (red). Statistically significantly non-randomly clustered branches after 10,000 bootstraps, as calculated by Pvclust [115] are marked
by red rectangles. **p value of a cluster branch< 10–3. c Enrichment of genomic regions of captured transcripts for known FANTOM enhancers. Log odds ratios
(ORs) of enrichment (with 95% confidence intervals) compared to lncRNAs, pseudogenes, and protein-coding genes. Genomic regions of both introns and exons
were included in the analysis. FANTOM enhancers in red, randomized regions in blue. d Enrichment of GWAS SNPs in transcript regions. Log OR of enrichment for
GWAS SNPs (p value< 5×10-8), compared to intronic regions. Exons in red, promoters in yellow, 3’ UTRs in blue. Hollow circles denote enrichment for common
SNPs. Statistically significant adjusted p values (Χ2 test, p values < 0.05) are denoted with asterisks. e Example of a captured transcript with independently validated
function. Transcript GCS1669 overlaps three known lncRNAs, with CCAT1 being functionally validated in liver and prostate carcinogenesis. Gray boxmarks captured
region. Previously observed splice sites are denoted in red. f Expression levels of transcript GCS1669 across tissues

Bartonicek et al. Genome Biology  (2017) 18:241 Page 6 of 16



application to melanoma. We performed CaptureSeq on
the transcriptomes of 13 skin cutaneous melanoma sam-
ples, targeting nine additional haploblocks with melanoma
susceptibility GWAS SNPs (Additional file 1: Tables S1h, i).
Vicinity to the previously annotated genes allowed us to
identify a diverse set of interactions between the 31 novel
transcripts and the known genes relevant to melanoma,
such as fusion transcripts (e.g. CUL5-ACAT1, NOX4-
GRM5), novel exons (e.g. ACAT1, TYR, ARNT1, MCL1),
bidirectional transcription from the same promoter (e.g.
ENSA), and antisense lncRNAs (e.g. ADAMTSL4) (Fig. 4a,
Additional file 1: Table S6). We validated our transcripts
selectively by polymerase chain reaction (PCR) and sequen-
cing (80% validation rate, Additional file 2: Figure S9) and
globally with data from The Cancer Genome Atlas (TCGA)
for melanoma tumors and metastases [22, 24, 26] where
one-third of transcripts—nine from primary tumors and
eight from metastases—were present at FPKM> 1 in at
least three samples even without CaptureSeq enrichment.
These novel transcripts and exons were differentially
expressed (FDR < 0.01) in melanoma primary tumors and
metastases compared to normal in 36% and 50% percent
of samples, respectively (Fig. 4b) and five of them con-
tained exonic eQTL SNPS identified by the GTEx consor-
tium (GCSM002, GCSM004, GCSM0019, GCSM0026,
GCSM0028). For example, GCSM0019 contains eQTLs
rs11212525 and rs9666209 that are associated with
expression of ACAT1, regulator of antitumor response of
CD8(+) T-cells [88] as well as expression of angiogenesis
mediator ATM [89]. In addition, transcript GCSM011,
which is located near the known oncogene MCL1 [27],
was associated with significantly decreased survival rate (p
value 0.0002, Χ2 test, FDR < 0.005), marked by a 25%

decrease in survival after five years with metastatic melan-
oma (Fig. 4d, e). As expected for melanomas [90], a high
proportion of transcripts (29%) showed allelic imbalance,
with the significantly different expression of transcripts
depending on the allelic origin (Fig. 4f). In summary,
diversity of melanoma transcripts captured from regions
associated with cutaneous melanoma presents the poten-
tial of CaptureSeq to provide high-resolution patient-
specific information on well-described genomic loci
related to various diseases.

Database of novel transcripts
Our approach allowed us to build an easily accessible re-
source of novel disease-associated transcripts, available
online at http://gwas-captureseq.dingerlab.org for inter-
active examination and visualization. The resource inte-
grates the genomic locations of novel transcripts with
raw experimental data, transcript models and their ex-
pression, as well multiple layers of publicly available data
from epigenetic markers to eQTL-associated variation.

Discussion
Here, we have presented the first targeted assessment of
transcriptional potential for all known intronic and
intergenic haplotype blocks associated with complex
traits. Even though we examined only 2% of the genome,
conservatively focusing on only multi-exonic transcripts,
the higher resolution of the CaptureSeq approach in
combination with information from 21 tissues increased
the number of observed lncRNA genes in GENCODE
(v.19) by 13% and resulted in the discovery of hundreds
of novel transcripts, isoforms, and exons that come from

Table 1 Examples of captured transcripts with exonic eQTLs. Protein-coding genes whose expression is influenced by eQTLs are
characterized by their function and tissue expression in GTEx. In brackets: fold change overexpression of associated genes in specific
tissues compared to their average expression, as given by GTEx or Human Integrated Protein Expression Database (HIPED) [118] in
case of KALRN

Captured
transcript

Highest tissue
expression

Haploblock associated
phenotype

eQTL Associated gene Gene function Tissue expression

GCS0300 Cervix Prostate cancer rs72928357 MYEOV Stimulation of cancer
growth and
proliferation [119]

Vagina (2.6x)

GCS0406 Heart HDL cholesterol rs7134375 PDE3A Hypertension, fat
metabolism [120]

Heart (19x)

GCS0736 Liver, thyroid HDL cholesterol rs11875196 LIPG Modulation of HDL
cholesterol [121]

Liver (14x),
thyroid (78x)

GCS1080 Heart Mean platelet volume rs13058993 KALRN Activates Rho GTPases
to regulate actin
cytoskeleton [122]

Platelets
(10x, HIPED),
heart (2x)

GCS1212 Thyroid Thyroid function rs4835532 Mineralocorticoid
receptor (NR3C2)

Regulation of cellular
ion concentrations [123]

Thyroid (7.0x)

GCS0965 Testes Age at first menstruation rs708984 PCSK2 Conversion of proinsulin
to insulin [124]

Testis (2x),
thyroid (15x)

GCS1190 Kidney Metabolic traits in urine rs2348209 ENPEP Peptide cleavage [125] Kidney (11x)

Bartonicek et al. Genome Biology  (2017) 18:241 Page 7 of 16

http://gwas-captureseq.dingerlab.org


a

d

e

b

c

f

Fig. 4 Identification of novel transcripts expressed in skin cutaneous melanoma. a of novel transcript types identified through CaptureSeq on 13
melanoma transcriptomes, targeting regions proximal to key melanoma genes. Red lines denote novel splice junctions, red blocks novel exons, and
gray boxes the captured regions. From top to bottom: a fusion protein between GRM5 and NOX4, novel exons on ACAT1, novel lncRNAs bidirectional
to ENSA, and an antisense lncRNAs overlapping ADAMTLS4. b, c Violin plot of fold change of novel transcripts in primary tumor and metastatic
samples vs normal. Red dots denote significant differences (FDR < 0.01). Out of 31 novel transcripts, 22 were detectable in both TCGA primary tumors
and metastatic samples. d Kaplan–Meier survival curve for captured transcript GCSM011 in metastatic melanomas. Red lines mark the groups in the
upper half of transcript expression and blue for the lower half. e Schematic representation of genomic loci of GCSM011 between MCL1 and ENSA. f
Allelic imbalance of captured transcripts in haploblocks associated with melanoma. Heterozygous sites were predicted with QuASAR [116] and allelic
imbalance calculated with MBASED [117]. Y-axis represents median allelic expression across heterozygous SNPs. Allelic imbalance displayed as absolute
value of 0.5 – allelic imbalance. Homozygous and heterozygous SNPs with allelic or without allelic imbalance are shown in blue, red, and yellow,
respectively. At least 30 reads had to be observed over a SNP, with significance cutoff of FDR < 0.1
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regions associated with diseases, 70% of which were not
previously detected. In concordance with the previous
observation that 76.6% of all intergenic GWAS SNPs lie
within DNAseI hypersensitive sites that are functionally
related to transcriptional activity [32], we observed
transcriptional events from 85% of the captured inter-
genic regions, using only a select number of tissues and
conservative cutoffs (Fig. 1c).
The comprehensive computational analysis of novel

transcripts indicated similarity to other actively tran-
scribed non-coding RNAs. The captured transcripts
were mostly non-coding and non-conserved, while
enriched for characteristic epigenetic marks of active
transcription (Fig. 2, Additional file 2: Figure S3). The
large overlap with previously observed enhancers (37%)
suggests enrichment of the novel transcripts for enhan-
cer RNAs, a set of regulatory transcripts that are charac-
terized by low expression, tissue specificity, redundancy
in promoter regulation, but also enrichment in variation
[35, 43]. The current view in the field is that while some
eRNA transcripts are likely non-specific noise, the
expression of others correlates with higher binding of
transcriptional co-activators, greater chromatin accessi-
bility, and formation of enhancer-promoter loops [91]
and there is evidence that disruption of their sequences
leads to dysfunctional enhancer activity [92]. On the
other hand, the majority of captured transcripts (63%)
do not overlap with previously reported enhancers from
the FANTOM 5 project, do not show other typical
eRNA properties (bidirectionally expressed in only 25%
of cases, multi-exonic) and therefore likely have a differ-
ent mode of function.
We provide multiple lines of evidence that the new

transcripts are not simply spurious readouts of the
genome by RNA polymerase II. The transcripts were
depleted in gene deserts and introns and enriched in
known exons, while presenting a non-uniform distribu-
tion across the targeted haploblocks. While non-
conserved, they were enriched for epigenetic markers of
active transcription and showed tissue specificity and
enrichment for weak active enhancers. Furthermore,
captured transcripts contained exonic GWAS SNPs and
eQTLs, with multiple examples of allelic imbalance in
melanoma samples, providing further evidence for
importance of disease-associated variation in the func-
tion of captured transcripts.
Non-coding transcripts are often expressed at orders of

magnitude lower levels than protein-coding genes and
therefore considered less likely to be of functional rele-
vance. The lower overall abundance of lncRNAs is, at least
partly, due to heightened spatiotemporal precision in their
expression: some, such as oncogene HOTTIP [93], are
present in only a small proportion of cells, some are dis-
tributed in a highly precise pattern across tissues [94],

while others are present in a short timeframe through
bursts of expression [95]. Furthermore, single-cell RNA-
Seq studies have shown that rare cell types may be repre-
sented by just a few cells within a community of hundreds
or thousands of cells [96] and regulatory molecules that
establish their identity will necessarily be represented at
low overall abundance. Therefore, defining the repertoire
of non-coding RNA regulators that are used by the cells,
though confounded by transcriptional noise and random
readouts of RNA polymerase II, should be based on mul-
tiple lines of evidence and not expression levels alone.
CaptureSeq allows a reversal of the usual approach of

discovering novel transcripts and investigating their ex-
pression from genome regions with indices of function, by
targeting regions with known but unexplained function
and investigating if they are transcriptionally active. We
therefore expect our novel transcripts to be enriched for
functional non-coding RNAs. Though it would be imprac-
tical to functionally validate all of the identified transcripts,
some have already been independently functionally vali-
dated and demonstrate the great potential of the dataset.
In addition to the eight examples that were reported in the
literature, Betts et al. provided evidence that one of the
transcripts we identified at the 11q13 breast cancer risk
locus, named CUPID2, alters breast cancer risk by modu-
lating the DNA damage response [87].
Additionally, by enriching 13 melanoma transcriptomes

for intergenic and intronic loci that are associated with
risk for melanoma, we identified a number of novel bio-
markers and potential regulators, even in the previously
well-characterized melanoma transcriptome [45, 47]. We
discovered fusion transcripts of key melanoma genes,
multiple novel exons as well as a number of previously
unreported lncRNAs whose presence correlates with clin-
ical outcomes. Many of these transcripts were detectable
in the TCGA datasets, but despite differential expression
in cancer compared to normal samples had remained
uncharacterized due to the limits of the reference gene
annotation.
Our results demonstrate that we have only just started

to understand the transcriptome, the complexity of
which may have a profound impact on human develop-
ment and human health. They further point to the crucial
importance of high-resolution technologies such as Cap-
tureSeq to eliminate biases resulting from abundantly
expressed transcripts. We expect that the provided freely
available database of novel transcripts adds to our under-
standing of the human genome and will serve as an im-
portant resource in the study of complex diseases.

Methods
Cell and tissue samples
Normal human tissue RNA was obtained from the First-
Choice Tissue Panel (Ambion AM6000) and Human
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Breast Total RNA (Ambion AM6952). A wide variety of
tissues (21) were investigated to ensure that our results
regarding the number of expressed intergenic regions
and the tissue-restricted nature of transcripts had low
susceptibility to false negatives. Melanoma RNA was ob-
tained from patient cell lines, including three originating
from metastasized stage IV melanoma (A-series) and ten
originating from resected lymph nodes from patients
with stage 3 disease (C-series) [97, 98]. Cell line authen-
tication using short tandem repeats (STRs) confirmed
each as being from a single source and matching the
patient germline. Cell lines have been confirmed
negative for Mycoplasma using the MycoAlert myco-
plasma detection kit (Lonza). Cell lines were established
at the QIMR Berghofer Medical Research Institute, as
described previously [97, 98], with informed patient con-
sent under protocols approved by the QIMR Berghofer
Medical Research Institute Human Research Ethics
Committee (HREC/14/QPAH/495). Breast cancer and
RNA was extracted with RNeasy columns (Qiagen). All
samples are listed in Additional file 1: Table S8.

Design of pilot GWAS capture array
The pilot capture array was designed to target intergenic
linkage disequilibrium (LD) blocks surrounding disease-
linked SNPs from the NHGRI catalog of GWAS [23]. LD
blocks around intergenic GWAS SNPs were estimated as
previously described [99]. All GWAS catalog SNPs (with p
values < 1e-5) were utilized. LD blocks were calculated by
identifying the most distant 3’ and 5’ SNPs with an r2 > 0.5
(using HapMap SNPs release 22 from the CEU population
[100]) then extending the block to the nearest recombination
hotspots [101]. Total LD block size was restricted to 1 Mb.
LD blocks without RefSeq genes were considered as candi-
date intergenic LD blocks. The pilot capture targeted a
total of 339 separate LD regions. Five housekeeping
genes (GUSB, HPRT1, HMBS, TFRC, TBP) were also
included as positive controls for gene detection.

Library preparation and capture sequencing for pilot
experiment
Pilot capture sequencing was performed similar to previ-
ously described [46] by combining and modifying the
NimbleGen SeqCap EZ Library SR User’s Guide V3.0
and the NimbleGen Arrays User’s Guide: Sequence Cap-
ture Array Delivery v3.2. Three micrograms of total
RNA from 20 human tissues (FirstChoice Tissue Panel
[Ambion]) were pooled together and ribodepleted in
5-μg batches (Ribo-Zero™ [Epicentre]) before being
pooled again. Sequencing libraries were made with
400 ng of ribo-depleted RNA using the Illumina TruSeq®
Sample Preparation Kit (unstranded), all libraries utilized
adaptor sequence 12. One-twentieth of completed but
unamplified library was amplified according to the

Illumina “enrich DNA fragments” method and analyzed
by the Bioanalyser to validate correct library construc-
tion. The remaining sample from six libraries was pooled
and amplified according to the Nimblegen Pre-capture
LM-PCR specifications, with the modification of ten cy-
cles of amplification. Input into the capture
hybridization was 1ug of library. Capture hybridization
was performed as previously described [46], with the fol-
lowing modifications. After drying down in a vacuum
concentrator, the samples were resuspended in 9.2 μL of
nuclease and nucleic acid-free water. Hybridization en-
hancing (HE) oligonucleotides used were 1 μL of
1000 μm TS-INV-HE Oligo 12 and TS-HE Universal
Oligo 1 and were added after the sample was solubilized
at 70 °C for 10 min. Pre-capture and post-capture sam-
ples (both a pool of 21 human tissues) were each se-
quenced on a single lane of an Illumina® HiSeq.

Design of GWAS capture pools
Oligonucleotide probes were designed to capture all
GWAS loci LD blocks that did not contain a coding
exon using a Roche NimbleGen SeqCap EZ Choice XL
Library. All intergenic or intronic disease-linked SNPs
from the NHGRI catalog of GWAS [23, 44] (accessed 30
July 2012) were downloaded and filtered to retain only
those with p values < 5e–8. LD blocks were calculated
with a two-step process. First, SNAP [102] was used to
extend GWAS LD blocks from the GWAS SNP to the
furthest SNPs with an r2 > 0.5 using Hapmap23 and
1000 Genomes SNPs [103]. LD block size was limited by
a 500-kb cutoff up and downstream of the GWAS SNP.
Next, in cases where there were insufficient SNPs to de-
fine an LD block; specifically, when there were no SNPs
with an r2 < 0.6 on one or both sides of a GWAS SNP,
the side(s) of the LD block with insufficient SNPs was
extended to the nearest recombination hotspot [101].
Any LD blocks containing GENCODE V12 or RefSeq
coding exons or under 3 kb in total were excluded,
leaving 296 totally intronic or intergenic GWAS blocks.
To ensure continuity between the pilot array and the

GWAS capture pools, all exonic regions from multi-
exonic transcripts identified in the pilot array capture
sequencing were included as probe targets in the up-
dated design (Additional file 1: Table S1e). Control
intronic regions from pilot capture sequence transcripts
were tiled to assist in differentiating exons from introns.
A 200 nt to 1 kb region from one random intron per
expressed loci was selected. Any intronic targets with a
repeat content > 75% were filtered out and another
intron randomly picked from the locus (if possible)
(Additional file 1: Table S1f).
Other control sequences in the design included five

housekeeping genes (GUSB, HPRT1, HMBS, TFRC,
TBP), six single-exon transcripts plus up to 1 kb of
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upstream and downstream genomic sequence, a gene
desert region, and probes to the ERCC Spike-In Control
set (Life Technologies) (Additional file 1: Table S1g).
The design also included genomic loci associated with

breast cancer and melanoma. Breast cancer regions were
selected heuristically, while for melanoma LD blocks
were defined from a SNP as per the GWAS LD blocks
(above). Loci were filtered to remove the exons (plus
100 nt on each side) of highly expressed protein-coding
genes, as well as any target region under 200 nt created
by this step. The remaining coding genes, intergenic and
intronic regions from each genome loci were included in
the design.
Design of probes from target regions and probe

synthesis was performed by Roche NimbleGen. Probes
were allowed a maximum of five matches to the human
genome. Synthesized probes covered 80.4% of target
regions directly, with 90.6% of target regions estimated
as being available for the capture protocol.

Library preparation and capture sequencing
Libraries were prepared and capture hybridizations were
performed as previously described [64] on RNA from 21
tissues and 13 melanoma samples. Briefly, RNA was
DNAse-treated with TurboDNase (Life Technologies),
confirmed DNA-free, RNA integrity was confirmed by
Agilent 2100 Bioanalyzer (Agilent Technologies). rRNA
depletion (Ribo-Zero™ [Epicentre]) was performed on
5 μg of total RNA. ERCC RNA Spike-In Control mix 1
or mix 2 (Life Technologies) were added to ribodepleted
RNA to a final dilution of 1/100. Libraries were prepared
with the TruSeq Stranded mRNA Sample Preparation
Kit (Illumina) and 9–12 cycles of pre-capture LM-PCR
performed on tissue samples as required. All Melanoma
samples were amplified with the same number (10) of
pre-capture LM-PCR cycles to prevent differences
between the samples due to PCR biases. One sample was
excluded at this point as it had a poor yield that required
extra cycles of pre-capture LM-PCR, leaving 13 samples
remaining. Multiplex library pools were created by mixing
equal amounts of five pre-capture sample libraries and
capture hybridization performed on 1 μg of the pooled li-
brary. Melanoma A-series samples were each randomly
assigned to one of three capture hybridizations to ensure
any expression differences between the A and C-series
samples were not due to an A-series batch effect.
Post-capture LMPCR was performed for 17 cycles.

One or two multiple library pools (representing five or
ten original libraries) were sequenced per lane on an
Illumina HiSeq, paired-end sequencing of 100 nt reads.

Enrichment quantitative PCR (qPCR)
Enrichment qPCR was performed as previously de-
scribed [64] using Sybr Green PCR Master Mix and

real-time cyclers (Applied Biosystems). Successful
capture was confirmed by enrichment of Roche cap-
ture controls and transcripts specifically targeted by
the design, while capture specificity was confirmed by
depletion of negative control transcript not targeted
by the capture. A minimum average enrichment of
50-fold (as determined by qPCR) was required for
capture hybridizations to be deemed successful. Any
capture hybridizations with average enrichment under
this threshold were repeated.

Definition of the capture space
The 339 haploblocks from the pilot study (Additional file
1: Table S1b) and the additional 296 haploblocks with
GWAS SNPs of p < 5e–8 were collapsed in R (v.3.1.0) into
561 genomic regions (Additional file 1: Table S1a) from
which we eliminated all GENCODE (v.12) exons with
gene type “protein_coding” or “lincRNA” as well as pilot
introns that serve as a negative control (Additional file 1:
Tables S1b, e–g). Similarly, nine haploblocks containing
SNPs associated with melanoma (Additional file 1: Table
S1h) were cleaned of known exons (Additional file 1:
Table S1i).

De novo transcript assembly and quantification
The sequenced sample libraries were trimmed with Trim
Galore (v.0.2.8) and assembled with Trinity (v.20140710beta)
[104] for each tissue or melanoma sample. After mapping
the transcripts back to the hg19 genome with GMAP
(v.2014-02-28) [105], the transcripts were merged independ-
ently for primary tissues and melanoma samples with Cuff-
merge (v.1.0.0). A fasta file of transcripts was created with
gffread function from Cufflinks (v.2.2.1) [106], the read
libraries were then mapped to the tissue and melanoma tran-
scriptomes with STAR (v.2.4.0d) [107], and counted with
RSEM (v.1.2.12) [108]. The counts reported with RSEM
were normalized with R package DESeq [109] based on the
batch (Sup. Table S8) with method “blind” and sharingMode
“fit-only.” Only transcripts that overlapped the Capture
Space with RKPM>1 in at least one tissue and the isoforms
that contributed > 1% were reported. The transcripts are
located in Additional file 1: Table S2. The samples from the
breast cancer cell lines were trimmed with Trim Galore
(v.0.2.8) and assembled using Cufflinks (v.2.2.1) [106].

Transcript characterization
Overlap with the annotated transcripts for Fig. 2a was
calculated with function “findOverlaps” and width of
sequence overlap with function “pintersect” in R. The
coding potential of the transcripts was assigned with the
Coding-Potential Assessment Tool (CPAT) (v.0.9) [72]
and CPC [73]. Conservation scores were assessed with
Bioconductor package phastCons100way.UCSC.hg19. In
order to define tissue specificity of the transcripts, we
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employed Tau tissue-specificity index after vst trans-
formation of the count data [110]. Assessment of
bidirectional transcription was performed on captured
transcripts by counting the number their promoters
overlapped, once their genomic sequences were
extended at 5’ ends by 500 bp.

Enrichment analyses
Log odds ratio (OR) is calculated from contingency table
of Fisher’s exact test for overlap between a ROI and
annotation whose enrichment is being tested. More
specifically, if we are looking at a region R (either tran-
script or promoter loci) and overlap with annotation A
(GWAS SNPs, epigenetic marks, etc.), then a is the
number of nucleotides of overlap between R and A, b is
the number of nucleotides in annotation A without a, c
is the number of nucleotides in R that do not contain A,
and d is the total number of genomic nucleotides with-
out R and A. The OR is then given as (a/b)/(c/d). Confi-
dence intervals for log OR are then calculated as 1.96
times standard error, which is given as a square root of
1/a + 1/b + 1/c + 1/d. The p value of the enrichment is
calculated through Chi-square test and R function
chiseq.test. For the enhancer enrichment analysis in
Fig. 3c, we excluded genomic regions that were in the
500-bp proximity of GENCODE promoters and that
contained GENCODE exons and 200 bp around them.
For Additional file 2: Figure S4 and CAGE mark enrich-
ment, the length of genome required for this calculation
was reduced by the regions overlapping promoters and
exons of GENCODE genes, and the regions that were
analyzed for enrichment contained 5’ of captured of
transcripts + – 500 bp. Negative controls were defined
with R package ChIPseeker, with 100 randomizations of
whole captured transcript genomic start sites expanded
to the width of + – 500 bp. GWAS enrichment analysis
for transcript elements (promoters, exons, 3’UTRs) in
Fig. 3 was calculated in relation to intronic content of
GWAS and total SNPs. The same number of elements
was used in the analysis for lncRNAs, pseudogenes, and
protein-coding genes, identical to the ones in captured
transcripts. P values were calculated from Χ2 test, with
alternative “greater than.”

Calculation of normalized counts for aggregate plots
Expression of captured transcripts was determined based
on the Illumina Body Map libraries for testis and liver,
using the STAR genome aligner (v.2.4.0d) and RSEM
(v.1.2.12). Genomic regions of 5’ ends of captured tran-
scripts that were detectable in a tissue (FPKM > 0), were
overlapped with CAGE tags (FANTOM5) and epigenetic
marks for the appropriate tissues in the area of + – 5 kb.
The counts were normalized by the number of tran-
scripts. Negative control regions were calculated with R

package ChIPseeker for the same number of transcripts
as the visualized captured transcripts and expanded to
the width of 10 kb [111]. Known promoters and exons
of GENCODE genes were excluded from these areas,
that were then overlapped with CAGE and epigenetic
marks, as described above. Positive control was based on
lncRNAs with median expression over Illumina Body
map tissues matched to median of captured transcripts
in the same libraries.

Analysis of melanoma samples
The transcripts were assembled and quantified as de-
scribed previously. The annotation was performed with
Cuffcompare (v.2.2.1) [112]. Overlap with the TCGA
melanoma samples for primary tumors, metastases, and
normals were calculated in R v.3.2.0, while eliminating
counts from any previously annotated GENCODE exons.
Kaplan–Meier curves based on splitting the populations
into half to highly and lowly expressed transcripts were
plotted with R package survival.

Transcript validation
Thirty transcripts, ten from each of the low, medium,
and high expression categories, were chosen at random
to validate transcription from 30 loci. Primers were
designed using Primer3 to amplify across splice junc-
tions to prevent false positive detection due to DNA
contamination. Primers sequences are available in Add-
itional file 1: Table S4. Acceptable FirstChoice Tissue
Panel (Ambion AM6000) RNA quality and quantity was
determined by Agilent Bioanalyser 7900 Picochip and
Qubit 2.0 Broad Range Assay (ThermoFisher). Reverse
transcription was performed on 70–600 ng of the sample
RNA using the SuperScript IV Reverse Transcription Kit
(Invitrogen) with random hexamers, according to stand-
ard protocol. PCR amplification of targeted transcripts
was performed on 5–100 ng of complementary DNA
using Phusion High-Fidelity PCR Master Mix with HF®
Buffer. An initial denaturation step of 30 s at 98 °C was
performed followed by 30–37 cycles of 10 s at 98 °C,
30 s at 45–65 °C, and 15 s at 72 °C, with a final exten-
sion of 5–10 min at 72 °C. The samples were run at
75 V for 1.5 h on a 1.7% agarose gel containing
GelGreen Nucleic Acid Gel Stain (Biotium). Bands of
the correct amplicon size were excised from the gel and
the DNA purified using the QIAquick Gel Extraction Kit
(QIAGEN). The DNA samples were submitted to the
Garvan Molecular Genetics facility for Sanger sequen-
cing. The resulting sequences were aligned against the
sequences of the targeted transcripts with BLAST [113]
and those with at least 95% homology were reported as
a match. Tissue-specific isoform sequences are available
in the source data files, as described below.
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For melanoma samples, a similar procedure was
performed against five transcripts, with primers described
in Additional file 1: Table S7. PCR products were cleaned
using Agencourt AMPure® beads (Agilent), followed by
Sanger sequencing using BigDye® Terminator v3.1
(Applied Biosystems), which was cleaned by Agencourt
CleanSeq® beads (Agilent). The cleaned sequencing prod-
uct was run on a 3130 × l 16 capillary genetic analyzer
(Applied Biosystems) and the results were analyzed using
Sequence Scanner v2 (Applied Biosystems).

Additional files

Additional file 1: Supplementary Tables S1 to S3 provide genomic
regions and annotation for captured regions and transcripts. Tables S4
and S4 provide information on PCR validation and independent functional
validation, respectively. Tables S6 and S7 provide genomic information on
captured regions and transcripts specific for melanoma. Table S8 provides
information on used samples. (XLS 18124 kb)

Additional file 2: Supplementary figures and Tables S1 to S9.
(DOCX 4403 kb)
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