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Understanding the mechanisms of neural communication in large-
scale brain networks remains a major goal in neuroscience. We
investigated whether navigation is a parsimonious routing model
for connectomics. Navigating a network involves progressing to
the next node that is closest in distance to a desired destina-
tion. We developed a measure to quantify navigation efficiency
and found that connectomes in a range of mammalian species
(human, mouse, and macaque) can be successfully navigated with
near-optimal efficiency (>80% of optimal efficiency for typical
connection densities). Rewiring network topology or reposition-
ing network nodes resulted in 45–60% reductions in navigation
performance. We found that the human connectome cannot
be progressively randomized or clusterized to result in topolo-
gies with substantially improved navigation performance (>5%),
suggesting a topological balance between regularity and ran-
domness that is conducive to efficient navigation. Navigation
was also found to (i) promote a resource-efficient distribution of
the information traffic load, potentially relieving communication
bottlenecks, and (ii) explain significant variation in functional con-
nectivity. Unlike commonly studied communication strategies in
connectomics, navigation does not mandate assumptions about
global knowledge of network topology. We conclude that the
topology and geometry of brain networks are conducive to
efficient decentralized communication.
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Nervous systems are networks and one of the key functions
of a network is to facilitate communication. Complex topo-

logical properties such as small worldness (1, 2), modularity
(3), and a core of highly interconnected hubs (4) are univer-
sally found across the brain networks of advanced and simple
species, including mouse (5, 6), macaque (7, 8), and human
connectomes (9). Support for efficient communication between
neuronal populations is conjectured to be one of the main
adaptive advantages behind the emergence of these complex
organizational properties (10, 11).

Understanding how neural information is routed and com-
municated through complex networks of white matter pathways
remains an open challenge for systems neuroscience (12, 13).
To date, connectomics has largely focused on network com-
munication based on optimal routing (14, 15), which proposes
that information traverses the shortest path between two nodes.
However, identifying shortest paths requires individual elements
of nervous systems to possess global knowledge of network
topology. This requirement for centralized knowledge has been
challenged on the basis that nervous systems are decentralized,
motivating alternative models of large-scale neural communi-
cation, such as spreading dynamics (11), path ensembles (16),
communicability (17, 18), and diffusion models (19–21). These
studies indicate that brain networks may support efficient com-
munication without the need for centralized knowledge. For
instance, random walkers can be biased to travel via efficient
routes (22) and shortest paths help facilitate fast spreading of
local stimuli (11).

Navigation is a network communication strategy that routes
information based on the distance between network nodes (23).
Navigating a network is as simple as progressing to the next node
that is closest in distance to a desired target. Navigation is not
guaranteed to successfully reach a target destination. Moreover,
targets might be reached using long, inefficient paths. However,
several real-world networks are known to be efficiently naviga-
ble, including biological, social, transportation, and technological
systems (24–26). Successful navigation depends on certain topo-
logical properties such as small worldness (23) and a combination
of high clustering and heterogeneous degree distribution (24), all
of which are found in the brain networks of several species (9).

Here, we comprehensively investigate the feasibility of nav-
igation routing as a model for large-scale neural communica-
tion. We develop a measure of navigation efficiency and apply
it to publicly available connectomics data acquired from the
macaque, mouse, and human brain. We find that brain networks
are highly navigable, with connectome topology well poised
between regularity and randomness to facilitate efficient nav-
igation. In addition, we characterize the centrality of nodes
and connections under navigability and investigate the relation
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between navigation path lengths and functional connectivity
(FC) inferred from resting-state functional magnetic resonance
imaging (MRI). Compared with shortest path routing, we find
that navigation uses the brain’s resources more uniformly and
yields stronger correlations with FC.

Results
Navigation Performance Measures. We consider neural communi-
cation from the graph-theoretic standpoint of delineating paths
(routes) in the connectome between pairs of nodes (gray matter
regions). A routing strategy defines a set of rules for identifying
a path from a source node to a target node. Path length refers
to the number of connections that compose a path (hops) or the
sum across the lengths of these connections. To minimize con-
duction latency, noise introduced by synaptic retransmission, and
metabolic costs, neural communication should take place along
paths with short path lengths (12, 13).

Navigation is a decentralized communication strategy that is
particularly suited to spatially embedded networks (24, 25). Nav-
igating a network involves following a simple rule: Progress to the
next directly connected node that is closest in distance to the
target node and stop if the target is reached (Fig. 1). To
implement navigation, we defined the distance between pairs
of nodes as the Euclidean distance between node centroids
(27, 28). Importantly, navigation can fail to identify a path.
This occurs when a navigation path becomes trapped between
nodes without neighbors closer to the destination than them-
selves (Fig. 1B). The success ratio (SR) measures the proportion
of node pairs in a network that can be successfully reached
via navigation.
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Fig. 1. Illustrative examples of navigation (green) and shortest (red) paths
from a source to the target node (circled in orange) in a binary network.
Grid indicates spatial embedding of the networks. Efficiency ratios (ER(i, j))
are the ratio of the number of hops in the navigation path to the number
of hops in the shortest path. (A) The shortest path between A and H has
three hops (A-B-E-H) while navigation leads to a four-hop path (A-D-F-G-H).
Navigation routes information from A to H at 75% of optimal efficiency. (B)
Navigation fails to find a path from B to F, becoming trapped between E
and H. (C) Both strategies lead to three-hop paths, and navigation routes
information from G to B at 100% of optimal efficiency. (D) Example of a
successful navigation path in the human connectome that achieves 75%
efficiency.

Let L∈RN×N denote a matrix of connection lengths for a
network comprising N nodes, where Lij measures the length of
the connection from node i to j , and let Λ denote the matrix
of navigation path lengths. If node i cannot navigate to node
j , Λij =∞. Otherwise, Λij =Liu + ...+Lvj , where {u, ..., v} is
the sequence of nodes visited during navigation. We define nav-
igation efficiency as E = 1/(N 2−N )

∑
i 6= j 1/Λij . Analogous

to global efficiency (29) [E∗= 1/(N 2−N )
∑

i 6= j 1/Λ∗ij , where
Λ∗ij is the shortest path length from node i to j ], both mea-
sures characterize the efficiency of information exchange in a
parallel system in which all nodes are capable of concurrently
exchanging information. In the same way that global efficiency
can incorporate network disconnectedness, navigation efficiency
incorporates unsuccessful navigation paths (Eij = 0 if i cannot
reach j under navigation). Therefore, E quantifies both the num-
ber of failed paths and the efficiency of successful paths. We
defined the efficiency ratio

ER =
1

N 2−N

∑
i 6= j

Λ∗ij
Λij

[1]

to compare navigation with shortest path routing. For any net-
work, E∗≥E and thus 0≤ER ≤ 1. The closer ER is to 1, the
better navigation is at finding paths that are as efficient as
shortest paths (Fig. 1).

We focus on binary (E bin
R ) and weighted (Ewei

R ) naviga-
tion efficiency ratios, quantifying how efficient navigation paths
are compared with shortest paths computed on binarized and
weighted connectomes, respectively. In addition, we compute
Edis

R to determine how close navigation paths are to routes that
minimize the sum of physical (Euclidean) connection distances
traversed between nodes.

Navigability of the Human Connectome. High-resolution diffusion
MRI data from 75 healthy participants of the Human Connec-
tome Project (HCP) (30) were used to map structural brain net-
works at several spatial resolutions (N = 256, 360, 512, 1,024).
Whole-brain tractography was performed for each individual and
the number of streamlines interconnecting each pair of nodes
was enumerated to provide a measure of structural connectivity
(SI Appendix, Connectivity Data). A group-level connectome was
computed as the average of all individual connectivity matrices
(22). Connection weights were remapped into binary, weighted,
and distance-based connection lengths to allow for the com-
putation of communication path lengths (SI Appendix, Network
Analysis).

Consistent with previous reports (24, 25), we found that nav-
igation can successfully identify paths for the majority of nodes
pairs composing the human connectome (SR= 89%, 94%, and
96% for 10%, 15%, and 20% connection density, respectively,
N = 360; Fig. 2A). Remarkably, navigation was only marginally
less efficient than shortest paths (e.g., Ewei

R = 72%, E bin
R = 83%,

and Edis
R = 83%, for N = 360 at 15% connection density; Fig.

2 B–D), with navigation performance improving as connection
density increased. Note that navigation does not use connec-
tion weights, and thus Ewei

R quantifies the extent to which
navigation can blindly identify weighted shortest paths. Naviga-
tion remained efficient and successfully identified paths for the
majority of node pairs across various parcellation resolutions (SI
Appendix, Fig. S1), with moderate decreases in success and effi-
ciency ratios as the number of nodes increased (SR= 95%, 91%,
and 90% and E bin

R = 84%, 80%, and 81% for N= 256, 512, and
1,024, respectively, at 15% connection density; Fig. 2E). When
stratified by hop count, navigation performance remained high
for long, multihop paths (61% median Ewei

R and 79% median
Edis

R benchmarked against five-hop shortest paths; Fig. 2F and
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Fig. 2. Navigability of mammalian connectomes. (A–D) Success ratio (SR), binary efficiency ratio (Ebin
R ), weighted efficiency ratio (Ewei

R ), and distance effi-
ciency ratio (Edis

R ) for human connectomes (N = 360) at several connection density thresholds. Empirical measures (red) for group-averaged connectomes
were compared with 1,000 rewired (green) and spatially repositioned (blue) null networks. Shading indicates 95% confidence intervals. (E) The same per-
formance metrics shown across different parcellation resolutions of mammalian structural networks (SR shown in blue, Ewei

R in orange, Ebin
R in yellow, and

Edis
R in purple). Triangles denote nonhuman species while circles denote human data. Dashed lines denote the same connection density (15%) across all

human networks. (F) Navigability stratified by hop count (N = 360 at 15% connection density). Blue box plots indicate the quartiles of Ewei
R navigation paths

benchmarked against shortest paths with matching hop count. Bar plots show the number of shortest paths for a given hop count, with colors indicating
the proportion of successful (green) and failed (red) navigation paths. Brain diagrams reproduced from ref. 9, with permission from Elsevier.

SI Appendix, Fig. S2), suggesting that navigation efficiency is not
due to directly connected node pairs or node pairs that can be
navigated in only a few hops.

Having established that the human connectome can be suc-
cessfully and efficiently navigated, we next sought to determine
whether efficient navigation is facilitated by the connectome’s
topology or its spatial embedding. Navigation performance was
benchmarked against ensembles of random null networks in
which (i) the spatial position of nodes was shuffled; (ii) con-
nectome topology was randomized (31); or (iii) connectome
topology was randomized while preserving total network cost,
defined as the sum of Euclidean distances between structurally
connected nodes (10, 28) (SI Appendix, Network Analysis). Nav-
igability of both the spatial and topological null networks was
markedly reduced in comparison with the empirical networks
(46% and 60% decrease in E bin

R and 48% and 60% decrease in
Ewei

R , for topological and spatial randomization, respectively, at
15% connection density; Fig. 2 A–D, blue and green curves). In
contrast, cost-preserving topological randomization resulted in
null networks that, although significantly less navigable than the
human connectome (P < 10−4; 13% and 11% decrease in E bin

R

and Ewei
R , respectively, at 15% connection density; SI Appendix,

Fig. S3), showed greater navigation performance than the less
constrained null models. Taken together, these results suggest
that navigation is jointly facilitated by both the connectome’s
topology and its geometry. Randomization of either of these
attributes markedly impeded navigation, while restricting topo-
logical randomization to realistic spatial embeddings accounted
for a large extent of empirical navigation performance.

These findings were robust to variations in node distance
measures and streamline count normalizations (SI Appendix,
Supplementary Analyses and Figs. S4 and S5). Navigation per-
formance of individual connectomes was comparable to the
performance determined for the group-averaged connectome
(SI Appendix, Fig. S6). Furthermore, navigation performance sig-
nificantly deteriorated with age (SI Appendix, Fig. S7 and Table
S1), but did not differ between males and females (SI Appendix,
Fig. S8).

Navigability of Nonhuman Mammalian Connectomes. Invasive tract-
tracing studies provide high-quality connectomes for a number
of nonhuman species (9). We aimed to determine whether a
112-region mouse connectome (52% connection density) (5, 6)
and a 29-region macaque connectome (66% connection den-
sity) (8) were navigable. Navigation performed with SR = 100%
and near-optimal communication efficiency for both species
(E bin

R = 99%, 97%; Edis
R = 97%, 94%; and Ewei

R = 87%, 84%,
for the macaque and mouse, respectively; Fig. 2E). As with the
human connectome, navigation performance was significantly
increased compared with the topologically rewired and spatial
null networks (all P < 10−4, with the exception of P = 0.012
and P = 0.002 for the macaque SR of topological and spatial
null networks, respectively). However, the null hypothesis of
equality in navigation performance between the connectomes of
both species and the cost-preserving null networks could not be
rejected (SI Appendix, Fig. S9).

The efficient navigation of connectomes across a variety of
species, scales, and mapping modalities suggests that the topol-
ogy and spatial embedding of nervous systems is conducive to
efficient decentralized communication.

Connectome Topology and Navigation Performance. We sought to
explore the impact of progressive topological alterations on the
navigability of the human connectome. First, we tested whether
navigation efficiency can be improved by progressively alter-
ing the topology of the human connectome to either increase
its regularity (clusterize) or increase its randomness and wiring
cost. Randomization was performed by progressively swapping
connections between randomly chosen node pairs, while pre-
serving connection density and degree distribution (31). With
sufficient iterations, this yielded the topologically randomized
null networks shown in Fig. 2 A–D (green curves). To cluster-
ize topology, the same procedure was used with the additional
constraint that each connection swap must lead to an increase
in the overall clustering coefficient. Applying these procedures
generated two sets of networks that progressively tended toward
different ends of an order spectrum, ranging from orderly and
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regular networks with a high clustering coefficient to disordered
and costly random networks (SI Appendix, Network Analysis).
Clusterization was found to progressively decrease navigation
efficiency, whereas slight randomization of connectome topology
yielded networks with marginal increases in navigation perfor-
mance (Fig. 3A). Specifically, peak Ewei

R was, on average, 0.8%,
1.4%, and 4.7% more efficient than the connectome after 4.0%,
3.3%, and 4.8% of connections were randomly swapped, for
N = 256, 360, 512, respectively. Further randomization beyond
these peaks resulted in deterioration of navigation efficiency.
Similar results were found for E bin

R (SI Appendix, Fig. S10).
Next, we investigated the effects of connectome rewiring

aimed to explicitly increase navigability. To this end, we progres-
sively performed connection swaps between randomly chosen
node pairs that (i) preserved connection density and degree
distribution, (ii) led to an increase of a measure of naviga-
tion performance, and (iii) preserved total network cost. We
performed a total of 2× 106 connection swap attempts, with
rejection of swaps that did not simultaneously meet all three
conditions. Direct optimization of network navigability led to
an 18–20% increase in Ewei

R , with 16–18% of the improve-
ment taking place in the first 106 swap attempts. Therefore,
increasing connectome navigability rapidly became more diffi-
cult as a function of swap attempts, suggesting that the observed
improvements converge to an asymptote. Comparable improve-
ments between 5% and 22% were found for other measures
of navigation performance (SI Appendix, Fig. S11). Collec-
tively, these results indicate that the human connectome is well
poised between randomness and regularity to facilitate efficient
navigation, while explicit optimization by connectome rewiring
converges to 5–22% improvements in navigability.

Navigation Centrality. The number of shortest paths that traverse
a node defines its betweenness centrality (BC), a measure that
finds utility in identifying connectome hub nodes (12) and nodes
mediating the bulk of neural communication (7). We defined a
new path-based centrality measure called navigation centrality
(NC), which quantifies the number of successful navigation paths
that traverse each node (SI Appendix, Network Analysis).

We computed NC and BC for the human connectome (group
average, N = 360, at 15% connection density), with BC based
on weighted shortest paths. We found that both NC and BC
spanned four orders of magnitude and were positively corre-
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rewiring runs.
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the original degree associated with each percentage of most-connected
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lated (Pearson correlation coefficient r = 0.54). Several regions
were central to both shortest paths (BC) and navigation (NC),
including portions of the left and right superior frontal gyrus,
insula, central gyri, and precuneus (Fig. 4 A and B). However,
NC was more uniformly distributed across nodes compared with
BC, suggesting that navigation uses network resources more
homogeneously (Fig. 4C). High values of BC were found only
in a small group of high-degree nodes (r = 0.86 between log-
arithm of BC and degree), which mediated most of the net-
work’s communication routes. For instance, 99.3% of all shortest
paths traveled exclusively through the top 50% most connected
nodes (Fig. 4D). In contrast, although high-degree nodes showed
high NC (r = 0.61 between logarithm of NC and degree),
medium- and low-degree regions were responsible for mediat-
ing a share of navigation paths, with the 50% least-connected
nodes responsible for 26% of navigation paths. Greater diver-
sity in paths may lead to fewer communication bottlenecks
and less signal congestion (32), as well as stronger resilience
against failure of network elements (16, 33). Similar results
were obtained for BC computed in binarized connectomes (SI
Appendix, Fig. S12) and for edge-centric definitions of BCs and
NCs (SI Appendix, Fig. S13). All correlation coefficients (r) were
significant (P < 10−8).

Navigation and Functional Connectivity. Finally, we tested whether
navigation path lengths can explain variation in functional con-
nectivity across nodes pairs of the human connectome. The
strength of functional connectivity between node pairs that are
not directly connected can be attributed to signal propagation
along multisynaptic (multihop) paths (22, 34). Therefore, if mul-
tihop neural communication is indeed facilitated by navigation,
we hypothesized that navigation path lengths should be inversely
correlated with functional connectivity strength. Resting-state
functional MRI data from the same 75 participants of the HCP
were used to map functional brain networks. A group-averaged
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functional network was obtained by averaging FC across all
participants (SI Appendix, Connectivity Data).

Given the geometric nature of navigation, an intuitive defini-
tion of navigation path length is the total distance traveled from
one node to another along the navigation path (SI Appendix,
Network Analysis). Navigation path lengths and FC were sig-
nificantly associated across node pairs (SI Appendix, Fig. S14),
with Pearson correlation coefficient r =−0.32 and r =−0.43,
for the whole brain and right hemisphere, respectively, for N =
360 at 15% connection density. This relationship was consistent
across density thresholds, with navigation path lengths yield-
ing stronger correlations with FC than shortest path lengths
(r =−0.35, right hemisphere) and the direct Euclidean distance
between node pairs (r =−0.40, right hemisphere). Correlations
with navigation path lengths remained significant when strat-
ified by structurally connected (r =−0.51, right hemisphere)
and unconnected (r =−0.28, right hemisphere) node pairs. All
correlations remained significant when interregional Euclidean
distances were regressed from navigation path lengths and the
resulting residuals correlated with FC (P < 10−5).

Discussion
This study investigated navigation as a model for large-scale
neural communication. Using a measure of navigation effi-
ciency, we evaluated the navigability of a range of mammalian
connectomes. We found multiple lines of evidence suggesting
that the topology (wiring) and spatial embedding (geometry)
of nervous systems is conducive to efficient navigation. Our
measure of navigation centrality indicated that navigation uses
network resources more uniformly compared with shortest paths.
We conclude that navigation is a viable neural communica-
tion strategy that does not mandate the centralized knowledge
assumptions inherent to shortest paths, nevertheless achieving
near-optimal routing efficiency.

Navigation performance was assessed for binary, weighted,
and distance-based connectomes, each emphasizing a distinct
attribute of network communication. While binary and weighted
brain networks are commonly used in connectomics (12),
distance-based connectomes were introduced to provide a
geometric benchmark for navigation efficiency. Interestingly,
navigation paths were simultaneously efficient in all three
regimes, suggesting that neural signaling may favor communi-
cation routes that combine few synaptic crossings (binary), high
axonal strength and reliability (weighted), and short propagation
distances (distance based).

The topology of the human connectome was found to be well
poised between regularity and randomness to promote efficient
decentralized communication. While our focus on this order spec-
trum was motivated by canonical work on brain and real-world
networks (1, 10), other dimensions of connectome topology such
as degree diversity or hierarchical structure could be investigated
(35). In fact, progressive rewiring explicitly seeking to optimize
navigation indicates that connectome topology has a 5–22% mar-
gin for improvement in navigability. These findings support the
notion that communication efficiency was likely only one of sev-
eral evolutionary pressures that shaped connectome architecture
(10, 13) (SI Appendix, Supplementary Analyses).

The significant association between navigation and FC is
further evidence that neural communication is not necessarily
constrained to optimal routes (22). This association could not
be entirely attributed to navigation path lengths approximating
interregional distances. Therefore, our findings build on previ-
ous work on the relationship between Euclidean distance and
FC (27, 36), indicating that the combination of topological and
geometric distances may contribute to the relationship between
brain structure and function. Alternative formulations of inter-
regional distances taking into account fiber-tract length or tract
myelination could improve the biological relevancy of node

distances, potentially improving the association between naviga-
tion path lengths and FC.

Connectome Geometry, Topology, and Communication. Several
recent studies have drawn attention to the link between geome-
try and topology in neural and other real-world networks (24, 27,
28). Our findings indicate that the interplay between connectome
geometry and topology may be relevant for neural communica-
tion: The association between network geometry and topology
(28, 37) contributes to the appearance of topological attributes
conducive to navigation (24, 26), while the spatial positioning
of nodes guides navigation of the topology, facilitating efficient
decentralized communication. This notion is supported by our
analyses of the navigation performance of different null models.
Randomization of either connectome topology or geometry was
sufficient to render connectomes less navigable, while topologi-
cal randomizations that preserved characteristics of connectome
geometry led to marked improvements in the navigability of null
networks (see SI Appendix, Supplementary Analyses for further
discussion).

Successful navigation has been linked to small-world topolo-
gies that combine spatially separated hubs and high-clustering
coefficients (23, 24). Hub-to-hub long-range connections facili-
tate rapid information transfer across distant regions of the brain
(although see ref. 38 for a counterpoint), while high clustering
enables navigation to home in on specific destinations (4, 24)
(SI Appendix, Fig. S15). This mechanism for information transfer
is consistent with observations suggesting that nervous systems
are small-world networks, balancing integration supported by
long-range connections and segregation due to locally clustered
modules (10).

Biological Plausibility and Communication Efficiency. To date, the
study of brain network organization has been anchored to the
assumption of communication under shortest path routing (12,
15). Two examples are the characterization of the brain as a
small-world network (1, 2) and the use of global efficiency as a
measure of network integration (10, 14). These topological prop-
erties are derived from the shortest paths between all pairs of
nodes. Building on previous work suggesting that efficient neural
communication may take place in a decentralized manner (11,
22), we found that navigation can approximate the overall effi-
ciency of shortest paths without requiring centralized knowledge
of global network topology. Thus, we provide reassurance that
previous findings obtained under the shortest paths assumption
remain pertinent, despite the biologically implausible require-
ments for the computation of optimal routes, and reaffirm the
importance of the brain’s small-world architecture in the light of
decentralized routing schemes.

Navigation depends on network nodes possessing information
about the relative spatial positioning between their direct neigh-
bors and a target node. While the biological mechanisms that
might endow nodes with this spatial information remain unclear,
it is important to remark that navigation demands less informa-
tion about network topology than shortest path routing and thus
requires fewer assumptions to support its biological plausibility.
Hence, in terms of biological plausibility, navigation occupies a
middle ground between shortest paths and other decentralized
models such as communicability (17, 18) and diffusion processes
(19–21), which mandate fewer assumptions. However, naviga-
tion is near-optimally efficient and metabolically parsimonious
(information is routed through a single path), thus overcoming
important shortcomings of diffusion (39) and communicability
(13) models, respectively.

Future research on large-scale neural communication mod-
els is necessary to explore alternative decentralized, efficient,
and parsimonious network communication strategies. Explor-
ing alternative spatial embeddings of brain networks (e.g., in
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hyperbolic space) may provide further insight into the nav-
igability of nervous systems across species (40). In parallel,
brain stimulation techniques could be used to evaluate evi-
dence for competing communication strategies by means of
electrophysiological tracking of local perturbations (41, 42).

Materials and Methods
Details on the acquisition and preprocessing of network datasets are
described in SI Appendix, Connectivity Data. SI Appendix, Network Analysis
provides details on network modeling. Supporting and replication analyses
are presented in SI Appendix, Supplementary Analyses.

Navigation Implementation. For a network with N nodes, navigation routing
from node i to j was implemented as follows. Determine which of i’s neigh-
bors is closest (shortest Euclidean distance) to j and progress to it. Repeat
this process for each new node until j is reached—constituting a success-
ful navigation path—or a node is revisited—constituting a failed naviga-
tion path.

Navigation paths are identified based on network topology and the
spatial positioning of nodes and thus independent from how connection
lengths are defined. Navigation path lengths, however, are the sum of con-
nection lengths composed in navigation paths and will vary depending on

the definition of L. The matrix of navigation path lengths Λ was computed
by navigating every node pair. Note that Λ is asymmetric, requiring N2−N
navigation path computations. Using different connection length measures
(Lbin, Lwei , Ldis), we computed binary (Λbin), weighted (Λwei), and distance-
based (Λdis) navigation path lengths. Navigation efficiency ratios (Ebin

R , Ewei
R ,

Edis
R ) were computed by comparing navigation path lengths to shortest path

lengths (Λbin∗ , Λwei∗ , Λdis∗ ) using Eq. 1.

Data Sharing. Human, macaque, and mouse datasets are publicly available.
Our implementation of navigation routing is available at https://github.com/
caioseguin/connectomics/.
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