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Abstract 

Background: The increasing availability of whole-genome sequence data is expected to increase the accuracy of 
genomic prediction. However, results from simulation studies and analysis of real data do not always show an increase 
in accuracy from sequence data compared to high-density (HD) single nucleotide polymorphism (SNP) chip geno-
types. In addition, the sheer number of variants makes analysis of all variants and accurate estimation of all effects 
computationally challenging. Our objective was to find a strategy to approximate the analysis of whole-sequence 
data with a Bayesian variable selection model. Using a simulated dataset, we applied a Bayes R hybrid model to ana-
lyse whole-sequence data, test the effect of dropping a proportion of variants during the analysis, and test how the 
analysis can be split into separate analyses per chromosome to reduce the elapsed computing time. We also investi-
gated the effect of imputation errors on prediction accuracy. Subsequently, we applied the approach to a dataset that 
contained imputed sequences and records for production and fertility traits for 38,492 Holstein, Jersey, Australian Red 
and crossbred bulls and cows.

Results: With the simulated dataset, we found that prediction accuracy was highly increased for a breed that was 
not represented in the training population for sequence data compared to HD SNP data. Either dropping part of 
the variants during the analysis or splitting the analysis into separate analyses per chromosome decreased accuracy 
compared to analysing whole-sequence data. First, dropping variants from each chromosome and reanalysing the 
retained variants together resulted in an accuracy similar to that obtained when analysing whole-sequence data. 
Adding imputation errors decreased prediction accuracy, especially for errors in the validation population. With real 
data, using sequence variants resulted in accuracies that were similar to those obtained with the HD SNPs.

Conclusions: We present an efficient approach to approximate analysis of whole-sequence data with a Bayesian 
variable selection model. The lack of increase in prediction accuracy when applied to real data could be due to impu-
tation errors, which demonstrates the importance of developing more accurate methods of imputation or directly 
genotyping sequence variants that have a major effect in the prediction equation.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The increasing availability of whole-sequence data, which 
should contain causative mutations for complex traits, 
is expected to increase the accuracy of genomic predic-
tion and to aid in the identification of these causative 

mutations. There are two advantages of using sequence 
data over single nucleotide polymorphism (SNP) chip 
genotypes. First, if the SNP chip does not explain all of 
the genetic variance explained by the sequence, predic-
tion accuracy will be limited regardless of the prediction 
method used. Second, if there is no single SNP that is in 
complete linkage disequilibrium (LD) with a quantita-
tive trait locus (QTL), prediction accuracy using SNP 
chip genotypes will decrease. In particular, the latter 
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influences Bayesian prediction methods, which work best 
when they identify a single SNP with a large effect. Both 
of these reasons concern the LD between causative muta-
tions and SNPs. In dairy cattle, LD is extensive within 
a breed but the phase of LD varies between breeds [1], 
which is expected to decrease across-breed prediction. 
Use of sequence data is expected to increase the accuracy 
of multi-breed and across-breed prediction, which would 
be beneficial for breeds with small reference population 
sizes [2].

However, results from both simulation studies and 
analysis of real data do not always show an increase in 
accuracy from sequence data compared to SNP chip 
genotypes. The large number of variants makes analysis 
of all sequence variants and accurate estimation of all 
effects computationally challenging. Furthermore, the 
higher rate of genotype errors due to imputation errors 
in sequence data compared to SNP chip data [3], may 
limit the benefit of sequence data over SNP chips. Stud-
ies using whole-sequence data in dairy cattle [4] and 
chicken [5] showed no or very little increase in predic-
tion accuracy compared to high-density SNP data, using 
either genomic best linear unbiased prediction (GBLUP) 
or a Bayesian variable selection model. Several stimula-
tion studies [6, 7] indicate that, rather than analysing all 
sequence variants together, preselecting variants that are 
close to the causative mutations can lead to increased 
prediction accuracy. In dairy cattle [8, 9] and Drosoph-
ila [10], substantial increases in accuracy were obtained 
when several tens, hundreds or thousands variants were 
selected based on a genome-wide association study 
(GWAS) and used for prediction in addition to genome-
wide SNPs.

On the contrary, other studies show that preselecting 
sequence variants can lead to an increase in bias and, 
thus, an increase in accuracy is not evident. Calus et al. 
[11] used split-and-merge Bayesian selection, where the 
analysis was split into several subsets that were ana-
lysed in a first step to select the most informative vari-
ants. Subsequently, selected variants were analysed 
together. This resulted in a prediction accuracy that is 
slightly lower or equal to that obtained with the 50  K 
SNP chip, and increased the bias. Similar results were 
obtained by Veerkamp [12], using a conditional and joint 
GWAS. Both Calus et  al. [11] and Veerkamp et  al. [12] 
used data on one breed only, Holstein, and the long dis-
tance over which LD is conserved within Holstein popu-
lations [1] reduces the potential benefit of sequence data 
over medium- or high-density SNP data [13]. Another 
approach is preselection of variants based on their func-
tional annotations, which results in small increases in 
accuracy in dairy cattle [14] and chickens [15], although 

Heidaritabar et  al. [5] found no increases in prediction 
accuracy using a similar approach in chickens.

While promising results were obtained by select-
ing variants based on a GWAS [9], it required testing a 
large number of scenarios to find a set of variants that 
increased prediction accuracy. Furthermore, because 
a GWAS generally tests only one SNP at a time, it does 
not account for LD between SNPs, which results in the 
selection of many variants associated with the same QTL. 
Limiting the number of variants per QTL resulted in a 
higher accuracy than selecting all variants with a p value 
below a certain threshold. Therefore, a model that analy-
ses multiple SNPs simultaneously may be more efficient 
in identifying sequence variants that increase prediction 
accuracy than a GWAS, which tests SNPs one at a time. 
Bayesian variable selection models are effective for the 
identification of causative mutations [16]. However, ana-
lysing all sequence variants simultaneously is computa-
tionally expensive. To speed up the analysis, Wang et al. 
[17] developed a hybrid version of the Bayes R variable 
selection model, which substantially decreases the com-
puting time by first running an expectation–maximi-
zation (EM) module, followed by a reduced number of 
Monte Carlo Markov chain (MCMC) iterations. To fur-
ther decrease computing time, a proportion of the vari-
ants can be dropped either directly after the EM module, 
or after a number of MCMC iterations.

While the Bayes R hybrid model decreases computing 
time substantially compared to Bayes R [17], estimating 
effects for millions of sequence variants simultaneously 
remains computationally challenging. An approximation 
to analysing all sequence variants simultaneously could 
be achieved by splitting up the analysis per chromosome, 
which makes it feasible to analyse all variants on a chro-
mosome with a Bayesian variable selection model, such 
as the Bayes R hybrid model.

Our objective was to find a strategy to approximate 
multi-breed and across-breed prediction, by analysing 
whole-sequence data with a Bayesian variable selection 
model. First, we used a simulated dataset that consisted 
of a filtered set of whole-genome sequence variants 
to test the accuracy of the Bayes R hybrid model. We 
also considered the effect of dropping variants with lit-
tle or no effect during the analysis and tested how the 
analysis can be split into chromosomes to reduce the 
elapsed computing time. Furthermore, we investigated 
the effect of imputation errors on the prediction accu-
racy. Subsequently, we applied the tested approach to 
a dataset that contains imputed sequences and records 
for production and fertility traits for a large number 
of Holstein, Jersey, Australian Red and crossbred bulls 
and cows.
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Methods
For this study, we used two datasets: a small dataset, with 
a reduced number of variants and simulated phenotypes, 
to speed up initial comparisons of different scenarios and 
a second dataset to test the scenarios in practice, which 
contained a much larger number of sequence variants 
and individuals, with daughter trait deviations (DTD) for 
bulls and trait deviations (TD) for cows for milk, fat, pro-
tein and fertility.

Simulated data
The simulated dataset was the AUS-Sim set that is 
described in more detail by Macleod et al. [14]. This data-
set consisted of realised imputed sequence variants for 
3047 Holstein bulls, 4942 Holstein cows, 770 Jersey bulls, 
1553 Jersey cows, 869 Red Holstein bulls, 741 Australian 
Red cows and 114 Australian Red bulls. All Holstein and 
Jersey individuals were used as reference population and 
the Red Holstein and Australian Red individuals as vali-
dation population.

All individuals were genotyped with the Illumina 
BovineSNP50 chip [18], or custom 50  K chips, and 
either genotyped with or imputed to the 800 K Illumina 
BovineHD beadChip. For part of the analysis, the 600,641 
SNPs on the HD chip were used (HD). In addition, geno-
types for approximately two million sequence variants 
in gene coding regions and variants that were 5000  bp 
up- and down-stream of genes were imputed. Annota-
tions for the sequence variants were collated using NGS-
SNP [19]. After filtering out variants with a minor allele 
frequency (MAF) lower than 0.0002 and variants in 
complete LD, this dataset (SEQ) contained 994,019 vari-
ants, including 45,026 non-synonymous coding (NSC) 
variants, 578,734 variants located within 5  kb upstream 
and downstream of genes, or in 3/5′ untranslated genic 
regions (REG), and 370,259 variants on the HD chip.

QTL were randomly sampled from all SEQ variants. 
In total, 4000 causative mutations were simulated, of 
which 3485, 500 and 15 were categorised as having small, 
medium and large effects on the trait. Effects were sam-
pled from three normal distributions, with a mean of 0 
and variances of 0.0001σ 2

g , 0.001σ 2
g  and 0.01σ 2

g  for small, 
medium and large QTL respectively, where σ 2

g  is the 
additive genetic variance. The true breeding value (TBV) 
of individual j was computed as TBVj =

∑4000
i=1 xijai, 

where xij is the genotype of individual j for QTL i, and ai 
the additive effect of QTL i. To obtain a phenotype with a 
heritability (h2) of 0.6, an environmental effect was sam-
pled from a normal distribution and added to the TBV. 
A Holstein breed effect was sampled from N(10, 1) and 
added to the phenotype for all Holstein individuals.

To investigate the effect of imputation errors on pre-
diction accuracy, errors were added to the SEQ variants 

for the reference population, the validation population 
or both populations. For each allele, the probability of an 
error (e) was simulated as e = r√

MAF
, where r was equal 

to 0.0013, 0.0027, 0.0066, 0.0132 or 0.0264 to simulate an 
average e of 0.005, 0.0101, 0.025, 0.050 or 0.100, respec-
tively. Each imputation error scenario was replicated 10 
times.

Pedigree information for all individuals was obtained 
from the Australian Dairy Herd Improvement Scheme 
(ADHIS) and Interbull.

Real data
The second dataset contained daughter trait deviations 
(DTD) or trait deviations (TD) for milk, fat, protein and 
fertility for 38,540 animals. Animals were genotyped with 
the Illumina BovineSNP50 chip [18] and imputed to or 
directly genotyped with the Illumina 800  K BovineHD 
bead chip. Subsequently, sequences of Holstein, Jersey 
and Australian Red bulls and cows from Run 5 of the 
1000 bulls genome project [20] were used as the refer-
ence set to impute sequence genotypes for all individuals 
using FImpute [21]. During the imputation process, FIm-
pute failed to impute parts of chromosomes 12 and 23, 
and for these regions, only the HD genotypes were availa-
ble. This was the case between 25 and 30 Mb on chromo-
some 12 and between 62 and 70.5 Mb and between 72.5 
and 75 Mb on chromosome 23. These regions contained 
a large number of structural variants and had a low den-
sity of HD SNPs, which may have hindered the imputa-
tion process. After imputation, the dataset contained 
21,379,438 variants, of which 90,010 NSC, 1459,566 
REG, 5520,343 intronic variants, 77,299 synonymous 
variants and 14,232,221 intergenic variants. The HD SNP 
chip contained 3977 and 360,816 of the synonymous and 
intergenic variants, respectively. The number of vari-
ants used for the analysis was substantially smaller after 
removing variants with a MAF lower than 0.002 and LD 
pruning. LD pruning was performed using PLINK [22] 
to remove variants in high LD  (r2  >  0.9). For LD prun-
ing, variants were divided into four groups based on their 
functional annotations: NSC variants, REG variants, 
variants on the HD chip and all other variants. Annota-
tions for the sequence variants were collated using the 
NGS-SNP software [19]. LD pruning was first performed 
within each group, followed by removal of REG variants 
with an  r2 higher than 0.9 with a NSC variant, HD vari-
ants with an  r2 higher than 0.9 with a NSC variant or a 
REG variant and other variants with an  r2 higher than 0.9 
with a NSC variant. After filtering based on MAF and 
LD, 4812,745 variants were retained for further analysis.

The dataset was split up into a reference population 
with Holstein and Jersey bulls born before 2005, and 
Holstein, Jersey and crossbred cows, and a validation 
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population with Holstein and Jersey bulls born in 2005 
and after, and Australian Red bulls and cows. Animals in 
the reference population that had sons in the validation 
population were removed from the dataset. Furthermore, 
seven animals were removed from the dataset because 
their sequence differed for less than 10,000 variants from 
another individual in the dataset. Because of the presence 
of crossbred individuals, a principal component analysis 
(PCA) was used to divide the Holstein and Jersey ani-
mals in five different clusters, as shown in Figure S1 (see 
Additional file 1: Figure S1). Clusters 1, 2 and 3 contained 
mainly Holstein individuals, while clusters 4 and 5 con-
tained mainly Jersey individuals. The crossbred individu-
als were present in all clusters. Three Jersey cows were 
removed from the analysis because they were assigned to 
clusters 1 and 2, and one Holstein cow and one Holstein 
bull were removed from the analysis because they were 
assigned to cluster 5. The clusters were set as fixed effect 
to account for breed differences. In total, the reference 
population for production traits contained 35,775 indi-
viduals, including 22,868 Holstein cows, 3124 Holstein 
bulls, 6144 Jersey cows, 787 Jersey bulls and 2852 cross-
bred cows. An overview of the reference population is in 
Table 1. In the validation population, the number of indi-
viduals in clusters 3 and 4 was small, i.e. 28 and 20 indi-
viduals, respectively. Therefore, the individuals in these 
clusters were not used in the analysis. In total, the vali-
dation population contained 2717 individuals, including 
799 Holstein bulls, 200 Jersey bulls, 1579 Australian Red 
cows and 139 Australian Red bulls. Table 2 summarizes 
the validation population.

Statistical analysis
We used the hybrid version of the Bayes R mixture model 
described by Wang et al. [23] for our analyses:

where y is a vector of phenotypes (TD or DTD), X a 
design matrix that allocates phenotypes to vector b 
with fixed effects, fitting the overall mean, breed and 
sex as fixed effects, Z is a design matrix that allocates 
phenotypes to vector a with polygenic breeding values 
distributed as N (0,Aσ 2

a), where A the pedigree-based 
relationship matrix, σ 2

a  is the polygenic variance, W is a 
design matrix of genotypes, v a vector of variant effects, 
and e a vector of residual errors distributed as N (0,Eσ 2

e ), 
where E is a diagonal matrix with diagonals 1/wj, where 
the weighting coefficient wj is based on the number of 
records available for individual j [24], and σ 2

e  is the resid-
ual variance. Variant effects (v) were drawn from one of 
four normal distributions with N (0, 0σ 2

g ), N (0, 0001σ 2
g ), 

N (0, 001σ 2
g ), and N (0, 01σ 2

g ), respectively, where σ 2
g  is the 

additive genetic variance. The prior distribution for the 

y = Xb+ Za +Wv + e,

proportion of variants in each of these distributions was 
P ∼ Dirichlet(α), α = [1, 1, 1, 1].

The hybrid variant of Bayes R uses first an expectation–
maximization (EM) module to estimate a, P, b, v, and σ 2

e . 
Then, the estimates of these parameters are used as start-
ing values for the subsequent Monte Carlo Marcov chain 
(MCMC) module, for 10,000 iterations, without burn-in.

The accuracy of prediction was defined as the correla-
tion of the predicted breeding value with the TD (cows) 
or DTD (bulls) between validation animals.

Dropping of variants
To speed up the analysis, it is possible to drop some of 
the variants during the different stages of analysis (e.g. 
after the EM step or after a certain number of MCMC 
iterations). Variants were ranked based on their posterior 

Table 1 Reference population

The number of individuals in the reference population is split up per cluster, 
breed and sex for production traits and fertility

Cluster Breed Sex Production Fertility

1 Holstein Cows 8757 7853

Holstein Bulls 1246 1230

Crossbred Cows 447 401

2 Holstein Cows 12,140 10,926

Holstein Bulls 1607 1551

Crossbred Cows 824 735

3 Holstein Cows 1936 1831

Holstein Bulls 271 229

Jersey Cows 10 10

Jersey Bulls 1 1

Crossbred Cows 738 684

4 Holstein Cows 35 30

Jersey Cows 609 584

Jersey Bulls 190 145

Crossbred Cows 710 668

5 Jersey Cows 5525 5281

Jersey Bulls 596 551

Crossbred Cows 133 109

Table 2 Number of  individuals in  the validation popula-
tion

The number of individuals in the validation population is split up per cluster, 
breed and sex for production traits and fertility

Cluster Breed Sex Production Fertility

1 Holstein Bulls 357 294

2 Holstein Bulls 442 338

5 Jersey Bulls 200 167

– Australian Red Cows 1579 1507

– Australian Red Bulls 139 133
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inclusion probability (PIP) to be included in any of the 
distributions with a non-zero variance, and the variants 
with the lowest PIP were dropped in order to drop the 
desired proportion of variants. After dropping, the mix-
ing proportions at the time of dropping were added to 
the prior for the rest of the analysis, to account for the 
dropped variants.

Scenarios in the simulated dataset
Using the simulated dataset, we tested several strate-
gies to analyse sequence data, which are summarized 
in Table  3: all sequence variants analysed together (S_
FULL_D0), all variants analysed per chromosome (S_
CHR_Dd), variants selected based on their PIP from each 
chromosome (CHR) reanalysed with all chromosomes 
together (S_KEPT_Dd), and variants selected by CHR 
and all HD variants reanalysed with all chromosomes 
together (S +  HD_KEPT +  HD_Dd). As a comparison 
to the S_FULL_D0 scenario, we analysed all HD geno-
types (HD_FULL_D0). In the S_FULL_Dd scenarios, the 
sequence variants were analysed simultaneously with 
d = 0, 0.25, 0.5, 0.7 or 0.9 as the target proportion of vari-
ants dropped during the analysis. Variants were dropped 
after the EM step, after 200 MCMC iterations, or after 
10,000 MCMC iterations.

In scenarios S_CHR_Dd with d  =  0, 0.7 or 0.9, the 
sequence variants were split up and analysed per chro-
mosome. The effects of variants that were estimated dur-
ing HD_FULL_D0 were used to correct the DTD and TD 
for all other chromosomes except the chromosome that 
was analysed. After analysing all the chromosomes, the 

estimated effects of variants of all the chromosomes were 
used to estimate a genome-wide breeding value.

Using the variant effects estimated by S_CHR_Dd 
directly to compute breeding values assumes that effects 
are estimated independently between chromosomes. 
Therefore, in scenarios S_KEPT_Dd with d = 0.7 or 0.9, 
variants that were retained in the model by S_CHR_Dd 
were reanalysed in a genome-wide analysis to re-estimate 
effects of variants and GEBV.

The approach used in scenarios S_KEPT  +  HD_Dd, 
with d = 0.7 or 0.9, was the same as S_KEPT_Dd¸ except 
that in addition to the variants that were retained in the 
model for the analyses per chromosome, the HD variants 
were added into the model.

For scenarios HD_FULL_D0, S_FULL_Dd and S_
CHR_Dd, the prior for the number of variants per distri-
bution was α = [1, 1, 1, 1], whereas for S_KEPT_Dd and 
S_KEPT + HD_Dd, this was set to the posterior estimate 
of the number of variants per distribution obtained by 
S_FULL_Dd.

Scenarios with the real data
Using the real dataset, we compared scenarios 
HD_FULL_D0, S_CHR_D0.9, S_KEPT_D0.9 and S_
KEPT + HD_D0.9. For HD_FULL_D0, the prior for the 
number of variant per distribution was α = [1, 1, 1, 1], 
and the posterior estimate of the HD_FULL_D0 scenario 
was used as prior for S_CHR_D0.9 and S_KEPT_D0.9.

Animal ethics statement
No ethical approval was required for this study.

Table 3 Overview of scenarios

HD = HD genotypes used for prediction, S = sequence variants used for prediction, FULL = all variants analysed together, CHR = all variants analysed per 
chromosome, KEPT = variants selected by CHR reanalysed with all chromosomes together, KEPT + HD = variants selected by CHR and all HD variants reanalysed with 
all chromosomes together, dropProp = proportion of variants that is dropped after dropIter MCMC iterations, simulation and real indicate whether the scenario was 
analysed in the simulated and real datasets

Scenario Data Strategy DropIter DropProp Simulation Real

HD_FULL_D0 HD FULL – 0 Y Y

S_FULL_D0 SEQ FULL – 0 Y N

S_FULL_D0.25 SEQ FULL 0, 200 or 10,000 0.25 Y N

S_FULL_D0.50 SEQ FULL 0, 200 or 10,000 0.50 Y N

S_FULL_D0.7 SEQ FULL 0, 200 or 10,000 0.70 Y N

S_FULL_D0.9 SEQ FULL 0, 200 or 10,000 0.90 Y N

S_CHR_D0 SEQ CHR 0 0 Y N

S_CHR_D0.7 SEQ CHR 10,000 0.70 Y N

S_CHR_D0.9 SEQ CHR 10,000 0.90 Y N

S_KEPT_D0.7 SEQ KEPT 10,000 0.70 Y N

S_KEPT_D0.9 SEQ KEPT 10,000 0.90 Y Y

S + HD_KEPT + HD_D0.7 SEQ + HD KEPT + HD 10,000 0.70 Y N

S + HD_KEPT + HD_D0.9 SEQ + HD KEPT + HD 10,000 0.90 Y N
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Results
Simulation
The accuracy and bias of the different strategies are in 
Figs. 1 and 2, respectively. Differences between scenarios 
were more pronounced for Australian Red than for Red 
Holstein. For both breeds, the accuracy was higher using 
sequence data than HD data. The S_FULL_D0 scenario 

resulted in accuracies of 0.60 and 0.66 for Australian 
Red and Red Holstein individuals, respectively, while 
HD_FULL_D0 yielded accuracies of 0.45 and 0.64. Drop-
ping 70 or 90% of the variants after 10,000 MCMC itera-
tions resulted in accuracies that were similar or slightly 
reduced compared to those with S_FULL_D0. Drop-
ping variants directly after the EM module or after 200 

Fig. 1 Accuracy of different strategies using the simulated dataset. Analysing all HD variants together without dropping any variants (HD_FULL_
D0), analysing all sequence variants together while dropping 0% (S_FULL_D0), 70% (S_FULL_D0.7) or 90% (S_FULL_D0.9) of the variants after 10,000 
MCMC iterations, analysing sequence variants per chromosome while dropping 0% (S_CHR_D0), 70% (S_CHR_D0.7) or 90% (S_CHR_D0.9) of the 
variants after 10,000 MCMC iterations, variants selected by S_CHR_D0.7 and S_CHR_D0.9 reanalysed with all chromosomes together (S_KEPT_D0.7 
and S_KEPT_D0.9), or variants selected by S_CHR_D0.7 and S_CHR_D0.9 and all HD variants reanalysed with all chromosomes together (S + HD_
KEPT + HD_D0.7 and S + HD_KEPT + HD_D0.9); ausRed = Australian Red, redHol = Red Holstein

Fig. 2 Bias of different strategies using the simulated dataset. Analysing all HD variants together without dropping any variants (HD_FULL_D0), 
analysing all sequence variants together while dropping 0% (S_FULL_D0), 70% (S_FULL_D0.7) or 90% (S_FULL_D0.9) of the variants after 10,000 
MCMC iterations, analysing sequence variants per chromosome while dropping 0% (S_CHR_D0), 70% (S_CHR_D0.7) or 90% (S_CHR_D0.9) of the 
variants after 10,000 MCMC iterations, variants selected by S_CHR_D0.7 and S_CHR_D0.9 reanalysed with all chromosomes together (S_KEPT_D0.7 
and S_KEPT_D0.9), or variants selected by S_CHR_D0.7 and S_CHR_D0.9 and all HD variants reanalysed with all chromosomes together (S + HD_
KEPT + HD_D0.7 and S + HD_KEPT + HD_D0.9); ausRed = Australian Red, redHol = Red Holstein
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MCMC iterations decreased accuracy, as shown in Fig. 3. 
Accuracy decreased as the proportion of dropped vari-
ants increased and increased as the number of MCMC 
iterations increased before deciding which variants to 
drop. Figure  4 shows the bias as a function of the pro-
portion of dropped variants. There was no consistent 
increase or decrease in bias across breeds when more 
variants were dropped.

Splitting up the analyses per chromosome and analys-
ing all chromosomes in parallel decreased the computing 
time from 55 h for S_FULL_D0 to between 1.9 and 4.5 h 
per chromosome. However, the accuracy was lower than 
that obtained by S_FULL_D0. The reduction in accuracy 
was up to 0.04 in Australian Red and 0.01 in Red Hol-
stein. Combining the process of dropping 70 or 90% of 
the variants with splitting up the analysis per chromo-
some did not decrease accuracy furthermore.

Contrary to the S_CHR_Dd scenarios, reanalysing the 
variants that were kept in the model in a genome-wide 
analysis in the S_KEPT_Dd scenarios resulted in accu-
racies that were similar or only slightly lower than those 
obtained with S_FULL_Dd. Adding the HD variants in 
the S_KEPT +  HD_Dd scenarios resulted in accuracies 
that were similar to those obtained with S_FULL_Dd.

Table  4 compares the number of variants assigned 
to each of the four distributions for the different sce-
narios. Generally, sequence data resulted in a larger 
number of variants with effects drawn from the dis-
tributions with small and large variances compared to 
HD data. Compared to the number of simulated QTL 
(3485 small, 500 medium and 15 large QTL), the num-
ber of variants included in these distributions tended 
to be overestimated, especially the number of vari-
ants with effects drawn from the distribution with the 
largest variance. While only 15 QTL had an effect size 
that corresponded to the distribution with the largest 
variance, the number of variants assigned to this dis-
tribution varied from 21 for HD_FULL_D0 to 71 for 
S_CHR_D0. Overestimation of the number of variants 
in the fourth distribution was largest in the S_CHR_D0 
scenario.

Table 5 shows the proportion of variance explained by 
prediction markers (h2M) and the polygenic component 
(h2A), and the heritability computed as: h2 = h2M + h2A. 
In the HD_FULL_D0 scenario, h2 was equal to 0.59 and 
thus, was close to the simulated heritability of 0.60. In 
the scenarios using sequence data, h2 was highest when 
all sequence variants were used (0.64). When variants 
were dropped, h2A increased slightly, while h2 and h2M 
decreased. In the S_KEPT_D0.7 scenario, h2, h2M and h2A 
were equal to 0.60, 0.59 and 0.01, respectively. The largest 
h2A i.e. 0.05 was obtained with the S_KEPT_D0.9 scenario. 
The highest h2 were obtained with the S_KEPT +  HD_
Dd scenarios, i.e. 0.65 and 0.63 for S_KEPT + HD_D0.7 
and S_KEPT + HD_D0.9, respectively.

Table 6 shows the number of simulated QTL dropped 
or retained with their respective posterior inclusion 
probability (PIP). For all scenarios, the majority of 
QTL had a PIP between 0 and 0.01. In the scenarios in 
which variants were dropped, the majority of QTL were 
dropped, and the number of dropped QTL increased as 

Fig. 3 Prediction accuracy as a function of the proportion of 
dropped variants. Variants were dropped after EM (black), 200 MCMC 
iterations (blue) or 10,000 MCMC iterations (red), line = Red Holstein, 
dashed line = Australian Red, dropProp = proportion of dropped 
variants

Fig. 4 Bias as a function of the proportion of dropped variants. Vari-
ants were dropped after EM (black), 200 MCMC iterations (blue) or 
10,000 MCMC iterations (red), continuous line = Red Holstein, dashed 
line = Australian Red, dropProp = proportion of dropped variants
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the proportion of dropped variants increased. The num-
ber of QTL in the classes with a PIP higher than 0.01 
varied between scenarios. The number of variants with 
a PIP between 0.5 and 1 was largest in the S_CHR_Dd 
scenarios.

Figures 5 and 6 show the prediction accuracy and bias 
as a function of the imputation error. The prediction 
accuracy decreased as the number of imputation errors 
increased but there was no clear pattern for bias and this 
decrease was larger for Australian Red than for Red Hol-
stein. It was larger when imputation errors were added 
only to the validation population than when they were 
added to the training population or to both the training 
and validation populations.

Real data
The accuracy and bias of the scenarios tested with real 
data are in Figs. 7 and 8. For all traits, S_KEPT_D0.9 and 
S_KEPT +  HD_D0.9 tended to result in reduced accu-
racy and increased bias compared to HD_FULL_D0. 
Sequence data resulted in substantially increased accu-
racies only for Australian Red Bulls. Holstein bulls were 
grouped in two clusters, and accuracies were higher for 
the bulls in the HOL2 cluster that was closest to Jersey 
individuals in the PCA. Averaged across traits, the differ-
ence in accuracy of the S_KEPT_D0.9 scenario compared 
to the HD_FULL_D0 scenario was equal to −0.03, −0.01, 
−0.02, −0.03 and 0.11 for HOL1, HOL2, JER, RCOW and 
RBULL, respectively. Adding the HD variants improved 
the accuracy slightly with, averaged across traits, a dif-
ference compared to HD_FULL_D0 of −0.02, 0.01, 
−0.02, −0.02 and 0.11 for HOL1, HOL2, JER, RCOW 
and RBULL, respectively. Decreases in accuracy were 
smallest for fertility and largest for fat yield. The bias of 
the prediction was larger with the S_KEPT_D0.9 and S_
KEPT + HD_D0.9 scenarios than with HD_FULL_D0 for 
HOL1, JER and RCOW. For HOL2, the bias was similar in 
all three scenarios, although with HD_FULL_D0, regres-
sion coefficients were above 1, while for S_KEPT_D0.9 
and S_KEPT  +  HD_D0.9, regression coefficients were 
below 1. For RBULL, the bias was large for all scenarios 
and not consistently better in any one.

The number of variants assigned to each of the four 
distributions is in Table  7. S_KEPT_D0.9 resulted in 
fewer variants in the distribution with zero effect, more 
variants in the distribution with a small variance, and 
generally fewer or a similar number of variants in the 
distributions with medium and large variances. In the 

Table 4 Average number of variants per distribution over the number of iterations in the simulated dataset

HD = HD genotypes used for prediction, S = sequence variants used for prediction, FULL = all variants analysed together, CHR = all variants analysed per 
chromosome, KEPT = variants selected by CHR reanalysed with all chromosomes together, KEPT + HD = variants selected by CHR and all HD variants reanalysed with 
all chromosomes together, dropProp = proportion of variants that is dropped after 10,000 MCMC iterations, σ 2

g  = additive genetic variance

Data Analysis Drop Number of variants per distribution

0 σ
2
g 0.0001 σ

2
g 0.001 σ

2
g 0.01 σ

2
g

HD FULL 0.0 592,931 3286 898 21

S FULL 0.0 914,767 5053 666 48

0.7 369,322 2464 471 43

0.9 172,007 1350 407 42

S CHR 0.0 915,665 4279 519 71

0.7 371,643 2279 396 65

0.9 171,554 1350 358 61

S KEPT 0.7 298,238 2118 499 44

0.9 98,494 908 390 45

S + HD KEPT + HD 0.7 759,835 4459 663 44

0.9 650,252 3813 616 45

Table 5 Proportion of variance explained by markers (h2
M

) 
and polygenic effect (h2

A
) in the simulated dataset

h2 = h2M + h2A, HD = HD genotypes used for prediction, S = sequence variants 
used for prediction, FULL = all variants analysed together, CHR = all variants 
analysed per chromosome, KEPT = variants selected by CHR reanalysed with 
all chromosomes together, KEPT + HD = variants selected by CHR and all HD 
variants reanalysed with all chromosomes together, dropProp = proportion of 
variants that is dropped after 10,000 MCMC iterations

Data Analysis Drop h2M h2A h2

HD FULL 0.0 0.57 0.02 0.59

S FULL 0.0 0.63 0.01 0.64

0.7 0.60 0.02 0.62

0.9 0.58 0.02 0.60

S KEPT 0.7 0.59 0.01 0.60

0.9 0.52 0.05 0.57

S + HD KEPT + HD 0.7 0.64 0.01 0.65

0.9 0.62 0.01 0.63
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S_KEPT  +  HD_D0.9 scenario, there were more vari-
ants in both the distributions with zero effect and with 
a small variance than in the other scenarios, and gen-
erally fewer or a similar number of variants in the dis-
tribution with medium and large variances. Contrary to 
the milk production traits, for fertility, both S_KEPT_
D0.9 and S_KEPT  +  HD_D0.9 resulted in more vari-
ants in the distribution with a medium variance than 
HD_FULL_D0.

Table  8 shows h2M, h2A and h2 obtained with real data. 
h2M and h2 were lowest in the HD_FULL_D0 scenario 

and highest in the S_KEPT + HD_D0.9 scenario, and h2A 
was highest in the HD_FULL_D0 scenario and lowest 
in the S_KEPT +  HD_D0.9 scenario. For milk produc-
tion traits, differences between S_KEPT + HD_D0.9 and 
HD_FULL_D0 varied between 0.22 and 0.24 for h2M, 0.10 
and 0.12 for h2, and were equal to 0.12 for h2A. Differences 
between S_KEPT  +  HD_D0.9 and S_KEPT_D0.9 were 
smaller, varying between 0.04 and 0.05 for h2M, 0.03 and 
0.05 for h2, and were equal to −0.01 for h2A. For fertility, 
h2 was much lower, which resulted in smaller differences 
between scenarios, although the overall trend was the 
same as for production traits.

Table 6 Number of simulated QTL dropped or retained with their respective posterior inclusion probability (PIP)

FULL = all variants analysed together, CHR = all variants analysed per chromosome, KEPT = variants selected by CHR reanalysed with all chromosomes together, 
KEPT + HD = variants selected by CHR and all HD variants reanalysed with all chromosomes together, drop = proportion of variants that are dropped after 10,000 
MCMC iterations

Analysis Drop Dropped PIP

0–0.01 0.01–0.05 0.05–0.1 0.1–0.2 0.2–0.5 0.5–1

FULL 0.0 0 3368 435 40 15 19 20

0.7 2159 1179 463 35 19 19 23

0.9 2981 293 520 36 24 18 25

CHR 0.0 0 3337 465 36 12 21 26

0.7 2177 1164 460 36 14 20 26

0.9 3025 306 461 42 15 19 29

KEPT 0.7 2177 1088 531 38 21 22 20

0.9 3025 251 514 41 22 19 25

KEPT+ 0.7 2177 1193 446 32 17 15 17

HD 0.9 3025 347 440 34 18 16 17

Fig. 5 Prediction accuracy as a function of imputation error. Imputa-
tion errors were added to both reference and validation population 
(black), only the reference population (blue) or only the validation 
population (red), continuous line = Red Holstein, dashed line = Aus-
tralian Red

Fig. 6 Bias as a function of imputation error. Imputation errors were 
added to both reference and validation populations (black), only the 
reference population (blue) or only the validation population (red), 
continuous line = Red Holstein, dashed line = Australian Red
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Discussion
We focus the discussion on two points, i.e. (1) on the 
ability to reduce the computing time needed for analysis 
of whole-genome sequence data by using an EM-MCMC 
hybrid approach, dropping some variants from the analy-
sis and processing chromosomes in parallel, and (2) on 
the reasons why genome sequence data may or may not 
result in higher accuracies than HD SNP genotypes.

Approximate analysis of full sequence data with Bayes R
The simulated datasets were previously analysed by 
Macleod et al. [14], using Bayes R. We obtained the same 
accuracy using full sequence data with the hybrid ver-
sion of Bayes R. This is in agreement with Wang et  al. 
[23] who show that the accuracy with the hybrid model 
was equal to that with Bayes R, which confirms that the 
hybrid model is an efficient alternative to Bayes R.

We tested a new option of the hybrid model, which 
drops a proportion of the variants during the analysis 
to decrease the required computing time even more. 
The dropping of variants was tested at different stages 
of the analysis, and the proportion of variants that were 
dropped varied. While dropping variants reduced com-
puting time, it resulted in a decrease in accuracy. The 
decrease in accuracy became smaller as fewer variants 

were dropped, and when variants were dropped after a 
large number of MCMC iterations. However, the goal of 
dropping variants is to reduce computing time, and the 
gain in computing time is smaller when fewer variants 
are dropped. Running the full MCMC chain before drop-
ping any variants resulted in an accuracy that was simi-
lar to that in the analyses that did not drop any variants. 
However, if the analysis was run first for 10,000 itera-
tions before dropping the variants, and subsequently run 
for another 10,000 iterations with the dropped variants 
computing time increased rather than decreased com-
pared to analysing all the variants for 10,000 iterations 
without dropping any variants. Therefore, if the goal is to 
increase the speed of the analysis, it is better to use all 
the variants. However, if it is necessary to select variants 
that are associated with the trait, the results of the hybrid 
model can be used to select variants, but a large number 
of MCMC iterations is advisable. We note that dropping 
variants from the analysis can lead to bias. We prevented 
this by recording the mixing proportions for the four dis-
tributions immediately before any SNPs were dropped 
and adding this to the prior.

Analysing a few millions of sequence variants simul-
taneously is computationally challenging and would 
take a long time to complete. Therefore, we tested if it 

Fig. 7 Accuracy of different scenarios using real data. Analysing all HD variants together without dropping any variants (HD_FULL_D0), dropping 
90% of the variants per chromosome and reanalysing the remaining variants with all chromosomes together (S_KEPT_D0.9), or dropping 90% of 
variants per chromosome and reanalysing the remaining variants and all HD variants with all chromosomes together (S + HD_KEPT + HD_D0.9); 
HOL1 = Holstein cluster 1, HOL2 = Holstein cluster 2, JER = Jersey, RCOW = Australian Red cows, RBULL = Australian Red bulls
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is possible to split up the analysis per chromosome. 
However, using the effects of SNPs estimated per chro-
mosome directly to estimate breeding values resulted 
in a decreased accuracy compared to S_FULL_Dd. Our 

approach is somewhat similar to that tested by Calus 
et  al. [11]. Calus et  al. [11] split up the variants, but in 
their approach, the LD between variants in a subset was 
minimized. By splitting up the analysis per chromosome, 

Fig. 8 Bias of different scenarios using real data. Analysing all HD variants together without dropping any variants (HD_FULL_D0), dropping 
90% of the variants per chromosome and reanalysing the remaining variants with all chromosomes together (S_KEPT_D0.9), or dropping 90% of 
variants per chromosome and reanalysing the remaining variants and all HD variants with all chromosomes together (S + HD_KEPT + HD_D0.9), 
HOL1 = Holstein cluster 1, HOL2 = Holstein cluster 2, JER = Jersey, RCOW = Australian Red Cows, RBULL = Australian Red Bulls

Table 7 Average number of variants per distribution over the number of iterations in the real dataset

Prot = protein, fert = fertility, HD = HD genotypes used for prediction, S = sequence variants used for prediction, FULL = all variants analysed together, 
KEPT = variants selected per chromosome reanalysed with all chromosomes together, KEPT + HD = variants selected per chromosome and all HD variants reanalysed 
with all chromosomes together, dropProp = proportion of variants dropped after 10,000 MCMC iterations, σ 2

g  = additive genetic variance

Trait Data Analysis DropProp Number of variants per distribution

0 σ
2
g 0.0001 σ

2
g 0.001 σ

2
g 0.01 σ

2
g

Milk HD FULL 0 627,503 4299 22 10

S KEPT 0.9 483,521 6603 17 6

S + HD KEPT + HD 0.9 1076,643 8927 22 6

Fat HD FULL 0 627,510 4312 9 4

S KEPT 0.9 483,614 6307 7 4

S + HD KEPT + HD 0.9 1080,078 8890 9 3

Prot HD FULL 0 627,347 4476 9 3

S KEPT 0.9 482,957 6352 8 3

S + HD KEPT + HD 0.9 1078,647 9025 9 2

Fert HD FULL 0 625,899 5668 260 8

S KEPT 0.9 548,382 5715 310 5

S + HD KEPT + HD 0.9 1135,712 10,569 436 7
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we maximised the LD. Calus et  al. [11] observed that 
the performance of the model decreased when subsets 
contained variants in very high LD. This could explain 
why we found a reduced accuracy for the S_CHR_Dd 
scenarios compared to S_FULL_Dd, although we tried 
to address this issue by pruning out variants in high LD 
with each other. Furthermore, the dataset used by Calus 
et  al. [11] contained only Holstein individuals, while 
our dataset contained individuals from multiple breeds, 
and LD is conserved over much longer distances within 
breeds than across breeds [1]. Our approach differs from 
that described by Calus et  al. [11], in that we used the 
HD estimated effects to correct for all chromosomes 
except the chromosome being analysed. This would be 
the same as analysing full sequence data if the prediction 
based on full sequence data for other chromosomes was 
the same as the prediction based on HD SNPs. It appears 
that since the analysis based on sequence data changes 
the estimated effects of sequence variants, it is necessary 
to analyse the retained variants from all chromosomes 
together to maximise accuracy. Therefore, the analy-
ses per chromosome were used to select variants rather 
than directly to predict breeding values. Rerunning the 
selected variants from all the chromosomes combined 
together increased the accuracy to a value that was 
equal or close to that obtained with S_FULL_Dd in the 
simulation. However, this required to drop a large num-
ber of variants, which resulted in a decrease in accuracy 
even for the S_FULL_Dd scenarios. The vast majority of 
variants that were dropped would probably have very 
small effects, and therefore were not likely to be linked 
to major QTL. They could, however, be used to explain 
part of the polygenic effects. Therefore, we added the 

HD variants to the analysis, which further increased the 
accuracy.

Potential advantage of sequence data over HD SNP 
genotypes
Using the simulated data, analysis of sequence data 
resulted in a higher accuracy than analysis of HD SNP 
genotypes, i.e. there was a large advantage of S_FULL_
D0 over HD_FULL_D0, and consequently, the accuracy 
of any scenario using sequence data was higher than 
HD_FULL_D0, even for the scenarios with an accuracy 
lower than that of S_FULL_D0. For the Red Holstein 
validation population, the advantage of S_FULL_D0 over 
HD_FULL_D0 was much smaller than for the Austral-
ian Red validation population. This is likely because the 
Red Holstein is much more closely related to the Holstein 
individuals in the reference populations. Because LD is 
conserved over much shorter distances across breeds 
than within breeds, sequence data is thought to be espe-
cially beneficial for multi-breed and across-breed predic-
tion [2].

There are two reasons for the use of sequence data 
resulting in higher accuracy: it might capture more of 
the genetic variance and it might include QTL with large 
effects when there are no HD SNPs in complete LD with 
these QTL. However, the variance not explained by SNPs 
(h2A) was only 0.01  to  0.02 higher than when sequence 
data was analysed. Therefore, this does not explain the 
large increase in accuracy observed, and it appears that 
the prediction equation based on HD SNPs used SNPs 
in LD with the QTL and that the phase of LD differed 
in the validation and training populations. By compari-
son, the prediction based on sequence data must have 

Table 8 Proportion of variance explained by prediction markers (h2
M

) and polygenic effect (h2
A

)

h2 = h2M + h2A, HD = high density SNP, HD = HD genotypes used for prediction, S = sequence variants used for prediction, FULL = all variants analysed together, 
KEPT = variants selected per chromosome reanalysed with all chromosomes together, KEPT + HD = variants selected per chromosome and all HD variants reanalysed 
with all chromosomes together, drop = proportion of variants dropped after 10,000 MCMC iterations

Trait Data Analysis DropProp h2M h2A h2

Milk HD FULL 0.0 0.29 0.16 0.45

S KEPT 0.9 0.49 0.05 0.53

S + HD KEPT + HD 0.9 0.53 0.04 0.57

Fat HD FULL 0.0 0.22 0.15 0.37

S KEPT 0.9 0.39 0.04 0.42

S + HD KEPT + HD 0.9 0.44 0.03 0.47

Protein HD FULL 0.0 0.21 0.16 0.37

S KEPT 0.9 0.39 0.05 0.43

S + HD KEPT + HD 0.9 0.44 0.04 0.48

Fertility HD FULL 0.0 0.02 0.00 0.02

S KEPT 0.9 0.03 0.00 0.03

S + HD KEPT + HD 0.9 0.04 0.00 0.04
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emphasised variants that were closer to the QTL (or even 
were the QTL) and this LD was better conserved in the 
validation population. In reality, the missing heritability 
in HD SNP chip data is likely to be higher than 0.02, and 
consequently, the analysis of simulated data may under-
estimate the advantage of sequence data in this respect. 
Indeed, in the analysis of the real data, h2A was much 
higher than in the simulation study. In the S_KEPT_D0.9 
and S_KEPT +  HD_D0.9 scenarios using real data, h2M 
and h2 were substantially higher than in HD_FULL_D0, 
while h2A was lower, which suggests that using sequence 
data reduced the amount of missing heritability.

Difference between results obtained with simulated 
and real data
When real data was analysed, sequence data resulted in 
an accuracy that was similar to that of HD_FULL_D0. 
This is in line with several studies that reported little or 
no advantage of sequence data over HD or 50  K geno-
types, especially within breed [4, 11, 12], but it differs 
from results obtained in our simulation study. These dif-
ferences may have been caused by differences between 
the simulated and real data. In the simulated data, we 
simulated a moderate number of QTL, which were pre-
sent in the sequence data but not in HD data. In the real 
data, it is possible that the number of QTL was larger but 
that fewer QTL had medium to large effects, which made 
it more difficult for Bayes R to distinguish between vari-
ants in high LD with the causative mutations and variants 
that have no effect on the trait. In the simulated data, we 
assumed that all causative mutations had the same effect 
in all breeds, but in reality, breed x QTL interactions may 
result in different effects. In addition, not all sequence 
variants were included in the data analysed and it is likely 
that some causal mutations were absent. Furthermore, 
while an Australian Red validation population was used 
in both the simulated and real data, the Red Holstein 
bulls used as validation population were more distantly 
related to the Holstein individuals in the reference pop-
ulation than the Holstein bulls used as validation in the 
real dataset. Sequence data is expected to be more advan-
tageous for multi-breed and across-breed prediction than 
for within-breed prediction, and therefore, using two 
relatively distantly related validation populations likely 
resulted in the sequence data to be more advantageous in 
the simulated dataset than in the within-breed scenarios.

Another potential cause of lack of accuracy in pre-
diction using sequence data is that most sequence data 
are obtained by imputation rather than direct sequenc-
ing, and consequently, imputation errors are introduced. 
Because the genotypes used in the simulated dataset 
were obtained by imputation, it is likely that the imputa-
tion errors in this dataset are similar to those in the real 

dataset. However, in the simulation, the estimation of 
the effects of the causative mutations was based on the 
imputed genotypes, while in reality, the effects are based 
on the true genotypes. Therefore, the effect of imputation 
errors in the real data is expected to be larger. To inves-
tigate this, additional imputation errors were simulated, 
either in all individuals, only in the training population or 
only in the validation population. As expected, increasing 
the number of imputation errors decreased the accuracy, 
and the largest decrease in accuracy was observed when 
the errors were present in the validation population. In 
the training population, the effect of imputation errors is 
likely less marked, because the genotype errors can dif-
fer between individuals, and if the genotype is correct in 
the majority of animals, it may not have a large influence 
on the estimated effect. In contrast, errors in the geno-
types of the validation population directly influence their 
estimated breeding value, and thereby the accuracy. For 
a few chromosomes, the correlation and concordance 
rate between imputed and true sequence genotypes were 
computed (see Additional file 2: Table S1). The expected 
reduction in prediction accuracy based on these corre-
lations and concordance rates, is even greater than the 
observed reduction in accuracy in the scenarios using 
sequence data compared to HD_FULL_D0.

The correlation ranged from 0.92 for chromosome 5 
to 0.94 for chromosomes 1 and 20, and the concordance 
from 0.94 to 0.95 (see Additional file 2: Table S1). While 
some imputation software programs provide a measure 
of imputation accuracy for each variant, this is not the 
case for FImpute, and we only filtered variants based 
on MAF. Filtering out incorrectly imputed variants may 
increase prediction accuracy.

In the real data, the only large increase in accuracy with 
sequence data was observed for Australian Red bulls. 
Because LD is conserved over shorter distances across 
breeds than within breeds [1], sequence data is expected 
to be especially beneficial for across-breed prediction [7]. 
However, for the Australian Red cows, the accuracy of 
the scenarios using sequence data was at most similar to 
that using HD data. While the vast majority of the Aus-
tralian Red bulls were genotyped at HD, most cows were 
genotyped at lower densities. Consequently, imputation 
accuracy may be lower for the cows than for the bulls, 
which could be a possible explanation for the reduced 
accuracy observed in the Australian Red cows.

Conclusions
We present an efficient approach to approximate analy-
sis of full sequence data with a Bayesian variable selection 
model. While the simulation study provided promising 
results, when we applied the method to a real dataset, the 
accuracy obtained was at most similar to that obtained 
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with HD genotypes, and bias increased. The lack of 
increase in prediction accuracy could be due to errors 
introduced in the genotypes by imputation. Therefore, it 
is necessary to develop more accurate methods of impu-
tation or to directly genotype sequence variants that have 
an important effect in the prediction equation.
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