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Abstract

Introduction

Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder.

However, its brain structural and/or functional correlates are uncertain.

Methods

Thirty-three euthymic bipolar patients with preserved memory and executive function and

28 euthymic bipolar patients with significant memory and/or executive impairment, as

defined using two test batteries, the Rivermead Behavioural Memory Test (RBMT) and the

Behavioural Assessment of the Dysexecutive Syndrome (BADS), plus 28 healthy controls

underwent structural MRI using voxel-based morphometry (VBM). Twenty-seven of the

cognitively preserved patients, 23 of the cognitively impaired patients and 28 controls also

underwent fMRI during performance of the n-back working memory task.

Results

No clusters of grey or white matter volume difference were found between the two patient

groups. During n-back performance, the cognitively impaired patients showed hypoactiva-

tion compared to the cognitively preserved patients in a circumscribed region in the right

dorsolateral prefrontal cortex. Both patient groups showed failure of de-activation in the

medial frontal cortex compared to the healthy controls.

PLOS ONE | DOI:10.1371/journal.pone.0158867 July 22, 2016 1 / 17

a11111

OPEN ACCESS

Citation: Alonso-Lana S, Goikolea JM, Bonnin CM,
Sarró S, Segura B, Amann BL, et al. (2016) Structural
and Functional Brain Correlates of Cognitive
Impairment in Euthymic Patients with Bipolar
Disorder. PLoS ONE 11(7): e0158867. doi:10.1371/
journal.pone.0158867

Editor: Consuelo Walss-Bass, UTHSCSH, UNITED
STATES

Received: October 28, 2015

Accepted: June 23, 2016

Published: July 22, 2016

Copyright: © 2016 Alonso-Lana et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by several grants
from the Instituto de Salud Carlos III, European
Regional Fund, European Union, “Una manera de
hacer Europa” (pre-doctoral Grant FI11/00221to to
SA-L; Miguel Servet Research Contracts (CP06/
00359 to BA, CP07/00048 to RS and CP10/00596 to
EP-C); Intensification grant (INT10/231 to SS and
INT12/325 to PM); Research Project Grant (PI10/
02622 to EP-C, PI12/00912 to EV); CIBERSAM
(2009 Intramural grant); and the Comissionat per a

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0158867&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Conclusions

Cognitive impairment in euthymic bipolar patients appears from this study to be unrelated to

structural brain abnormality, but there was some evidence for an association with altered

prefrontal function.

Introduction
Studies over the last two decades have demonstrated that a proportion of patients with bipolar
disorder show cognitive impairment that persists beyond episodes of illness into euthymia [1].
The deficits are wide ranging [2], but may involve executive function and long-term memory
particularly [1], and they are associated with impaired functioning in daily life [3, 4]. Presence
of residual mood disturbance does not appear to fully account for the impairment seen [5],
nor, according to a meta-analysis, does treatment with antipsychotic drugs [6]. Lithium [7]
and anticonvulsants [8] have been found to impair only some areas of cognitive function in
bipolar patients and so also appear to be unlikely to be the whole explanation.

Since patients with bipolar disorder do not show evidence of premorbid intellectual disad-
vantage [9–11], some form of brain dysfunction presumably underlies this form of persistent
cognitive impairment. One possibility is that it is a consequence of structural brain pathology.
Bipolar disorder is known to be associated with lateral ventricular enlargement [12–14], and
there is evidence for a small reduction in brain size, although this reached significance in only
one of two meta-analyses [13, 14]. Studies using whole-brain techniques such as voxel-based
morphometry (VBM) have additionally found evidence for volume reductions in the anterior
cingulate cortex, the insula and the inferior frontal cortex, among other regions [15–18]. White
matter changes are also well documented in bipolar disorder, both in the form of subcortical
signal hyperintensities [19] and reduced fractional anisotropy on diffusion tensor imaging
(DTI); the latter changes have been found most consistently in the right temporo-parietal and
the left anterior and mid-cingulate regions [20].

Relatively few studies have examined whether structural changes in bipolar patients are
related to presence of cognitive impairment. Early studies reviewed by Bearden et al [21] found
some evidence of associations with increased lateral ventricular volume and volume reductions
in the prefrontal cortex, and more robustly with presence of white matter signal intensities.
However, more recent studies examining multiple grey and white matter regions have generally
found few significant correlations with executive, memory or other cognitive deficits [22–26].

Findings from many functional imaging studies in bipolar disorder have led to a consensus
that it is characterized by reduced resting and task-related activity in the prefrontal cortex and
some other cortical regions, coupled with overactivity in the amygdala, hippocampus and para-
hippocampal gyrus and the basal ganglia [27]. Not all of these abnormalities are seen in euthy-
mia, however. Thus, in a meta-analysis pooling effect size data from PET, SPECT and fMRI
studies, Kupferschmidt et al [28] found that euthymic patients showed evidence of task-related
hypoactivations in the inferior and middle frontal cortex and the dorsolateral prefrontal cortex
(DLPFC), as well as hyperactivity in the superior temporal gyrus and ventrolateral prefrontal
cortex. On the other hand, in a meta-analysis of voxel-based studies, Chen et al [29] found evi-
dence only for reduced activation in the lingual gyrus in euthymic patients.

To date, very few studies have investigated brain activations in relation to cognitive
impairment in bipolar disorder [30–32]. In one study that examined patients in the euthymic
phase, Oertel-Knöchel et al [33] found that 26 euthymic bipolar patients were impaired on a
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verbal learning and recognition task, and also showed a pattern of reduced activation compared
to healthy controls when they performed the same task while being scanned. The areas affected
included the left middle and superior frontal gyrus during encoding, and the bilateral middle
and inferior frontal gyrus, plus the parahippocampal and other posterior medial cortical areas
during retrieval.

The aim of this study was to determine whether and to what extent cognitive impairment in
euthymic bipolar patients has brain structural and/or functional correlates. To do this, we
recruited groups of demographically well-matched patients who either showed or did not show
executive and/or memory impairment, defined according to predetermined criteria, in the
euthymic phase. Healthy controls were also employed. Both whole-brain structural imaging
(VBM) and functional imaging (cognitive task-related fMRI) were carried out.

Materials and Methods

Participants
The patient sample consisted of two groups of adults with bipolar disorder, who were prospec-
tively recruited on the basis of showing (N = 28) or not showing (N = 33) cognitive impairment
(as defined below) in the euthymic phase. Patients were from the outpatient departments of
two psychiatric hospitals in Barcelona: Benito Menni CASM and the University of Barcelona
Hospital Clínic. They all met DSM-IV criteria for bipolar I disorder and were required to have
had at least two episodes of illness. Patients were excluded if a) they were younger than 18 or
older than 55; b) they had a history of brain trauma or neurological disease, c) they had shown
alcohol/substance abuse within 12 months prior to participation; d) they had undergone elec-
troconvulsive therapy in the previous 12 months; and e) they showed evidence of general intel-
lectual impairment/handicap, as indexed by a current IQ outside the normal range (i.e. below
70) as measured using four subtests of the Wechsler Adult Intelligence Scale III (WAIS-III)
(vocabulary, similarities, block design, and matrix reasoning). All patients were right-handed.

Patients were considered to be euthymic if they had had no episodes of illness for at least
three months and if they had a score on Hamilton Rating Scale for Depression (HDRS-21)
of� 8 and Young Mania Rating Scale (YMRS) of� 8 at the time of testing. These quite strict
requirements were used in order to avoid the potentially confounding effects of subthreshold
depressive and manic symptoms on cognitive function [34]. The upper age limit of 55 was cho-
sen in order to exclude late-onset affective disorder which has an association with vascular and
neurodegenerative disease and so might be independently associated with cognitive
impairment [35].

Patients in the cognitively preserved group were on treatment with mood stabilizers (lith-
ium alone n = 13, other mood stabilizers alone n = 6; lithium in combination with other mood
stabilizers n = 9), antidepressants (n = 8) and antipsychotics (n = 21; second generation n = 21,
first generation n = 2; mean chlorpromazine equivalent dose 284.65 ±337.31 mg/day). The cog-
nitively impaired patients were also on treatment with mood stabilizers (lithium alone n = 13,
other mood stabilizers alone n = 4; lithium in combination with other stabilizers n = 7), antide-
pressants (n = 7); 17 were taking antipsychotics (second generation n = 15, first generation
n = 1, both n = 1; mean chlorpromazine equivalent dose 245.20± 209.77 mg/day).

A group of 28 right-handed healthy controls were recruited via poster and web-based adver-
tisement in the hospital and local community, plus word-of-mouth requests from staff in the
research unit. The controls met the same exclusion criteria as the patients. They were also
excluded if they reported a history of mental illness or treatment with psychotropic medication,
and/or had a first-degree relative with a psychiatric illness.
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The three groups were selected to be matched for age, sex and estimated IQ (premorbid IQ
in the patients). IQ was estimated using the Word Accentuation Test (Test de Acentuación de
Palabras, TAP) [36] a pronunciation test that is conceptually similar to the National Adult
Reading Test (NART) used in the UK [37] and the Wide Range of Achievement Test (WRAT)
in the USA [38]. Subjects have to pronounce low-frequency Spanish words whose accents have
been removed. Scores can be converted into IQ estimates [39].

Cognitive assessment
This was based on Spanish versions of two well-validated memory and executive test batteries,
the Rivermead Behavioural Memory Test (RBMT) [40] and the Behavioural Assessment of the
Dysexecutive Syndrome (BADS) [41]. These two tests provide a wide ranging assessment of
different aspects of memory and executive function, respectively, and are designed to be ‘eco-
logically valid’, that is to capture the broad range of executive and memory functions required
in real-life settings. Both have been subjected to extensive validation in healthy adults and nor-
mative data for healthy adults are available.

The RBMT consists of 12 subtests examining verbal recall, recognition, orientation, remem-
bering a route and three measures of prospective memory, the ability to remember to do things.
Pass/fail scores are summed to give a ‘screening’ score. The BADS consists of 6 subtests cover-
ing cognitive estimation, rule shifting, planning, problem solving and decision making under
multiple task demands (the Modified Six Elements Test). Scores from 0 to 4 on each subtest are
summed to give an overall ‘profile’ score.

The patients were classified as cognitively preserved or impaired using 5th percentile cutoffs
based on normative data for adults. Thresholding for impairment at the 5th percentile for the
normal population is an established method in neuropsychology [42]. Specifically, patients
were considered cognitively impaired if they scored below the 5th percentile on the RBMT
and/or the BADS (screening score of�7 on the RBMT and profile score of�11 on the BADS),
and were considered cognitively preserved if they scored at or above the 5th percentile on both
tests (�8 or more on the RBMT and�12 on the BADS).

Scanning procedure
All subjects underwent structural and functional MRI scanning using a 1.5 Tesla GE Signa
scanner (General Electric Medical Systems, Milwaukee, Wis) located at the Sant Joan de Déu
Hospital in Barcelona (Spain).

Structural neuroimaging. High resolution structural T1-weighted MRI data were acquired
with the following acquisition parameters: matrix size 512x512; 180 contiguous axial slices; slice
thickness of 1 mm, no slice gap; voxel resolution 0.47x0.47x1 mm3; echo time (TE) = 3.93 ms,
repetition time (TR) = 2000 ms and inversion time (TI) = 710 ms; flip angle 15°.

Brain structure (grey matter) was examined using FSL-VBM, an optimized VBM style anal-
ysis [43, 44] carried out with FSL tools; this yields a measure of difference in local grey matter
volume. First, structural images were brain-extracted [45]. Next, tissue-type segmentation was
carried out. The resulting grey matter partial volume images were then linearly aligned to MNI
152 standard space [46, 47], followed by nonlinear registration. The resulting images were aver-
aged to create a study-specific template, to which the native grey matter images were then non-
linearly re-registered. The registered partial volume images were then modulated by dividing
by the Jacobian of the warp field. The modulated gray matter segments were then smoothed
with an isotropic Gaussian kernel using a sigma of 4mm (equivalent to Full Width at Half Max-
imum (FWHM) of 9.4 mm) (technical details are available at www.fmrib.ox.ac.uk/fsl/fslvbm/).
Voxel-size after VBM processing was 2x2x2mm.
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Group comparisons were performed using permutation-based non-parametric tests. The
TFCE (Threshold-Free Cluster Enhancement) method, also implemented in FSL, was used for
this purpose. TFCE finds clusters in the data without having to define the initial cluster-form-
ing threshold [48]. Cluster-like structures are enhanced but the image remains fundamentally
voxel-wise. In the resulting maps, obtained with 5000 permutations, family-wise error (FWE)
rate was used to control for multiple comparisons and only FWE-corrected cluster p-values
<0.05 were considered.

We also examined white matter volume. Since the VBM analysis in FSL has only been vali-
dated for grey matter, this was carried out with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). The following standard pre-processing steps were carried out: (1) tissue-
type segmentation, (2) normalization to standard space of the obtained white matter images
and (3) modulation. The resulting images were then smoothed with an isotropic Gaussian ker-
nel with a sigma of 4 mm. In order to make the results comparable to those reported for grey
matter using FSL-VBM, statistical analysis were conducted with the same correction method.
That is, all comparisons were carried out with the TFCE method included in FSL, using 5000
permutations and a FWE-corrected threshold of p<0.05.

Functional neuroimaging. For this we used the n-back task [49], which has been widely
employed as a probe for executive function, specifically working memory, in fMRI studies in
healthy subjects [50] and psychiatric disorders including schizophrenia [51] and bipolar disor-
der [52]. Two levels of memory load (1-back and 2-back) were presented in a blocked design
manner; in the 1-back task, participants had to respond with a key press when a letter was the
same as the one that was presented immediately previously, whereas in the 2-back task they
had to respond when the letter was the same as that presented two letters previously (Fig 1).
Each block consisted of 24 letters which were shown every two seconds (1 second on, one sec-
ond off) and all blocks contained five repetitions (1-back and 2-back depending on the block)
located randomly within block. Individuals had to detect these repetitions and respond by
pressing a button. In order to identify which task had to be performed, characters were shown
in green in the 1-back blocks and in red in the 2-back blocks. Four 1-back and four 2-back
blocks were presented in an interleaved way, and between them, a baseline stimulus (an asterisk
flashing with the same frequency as the letters) was presented for 16 seconds. All individuals
went through a training session before entering the scanner.

Performance was measured using the signal detection theory index of sensitivity (d’) of abil-
ity to discriminate targets from non-targets [53]. Higher values of d’ indicate better ability to
discriminate between targets and distractors. Subjects who had negative d’ values in either the
1-back and 2-back versions of the task, which suggests that they were not performing it, were
excluded from the analysis.

Fig 1. Sequential-letter version of the n-back task with two levels of memory load, 1-back (green) and
2-back (red).

doi:10.1371/journal.pone.0158867.g001
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In each individual scanning session 266 volumes were acquired. A gradient echo echo-pla-
nar sequence depicting the BOLD contrast was used. Each volume contained 16 axial planes
acquired with the following parameters: TR = 2000 ms, TE = 20 ms, flip angle = 70 degrees, sec-
tion thickness = 7 mm, section skip = 0.7 mm, in-plane resolution = 3x3 mm. The first 10 vol-
umes were discarded to avoid T1 saturation effects.

fMRI image analyses were performed with the FEAT module, included in FSL software [54].
Pre-processing with FSL-FEAT included: a) motion correction [47]; b) non-brain removal
[45]; c) isotropic 5mm-FWHMGaussian smoothing; d) high-pass temporal filtering; e) time-
series statistical analysis with local autocorrelation correction [55]; and f) registration to the
MNI 152 standard space [46, 47]. To minimize unwanted movement-related effects, partici-
pants with an estimated maximum absolute movement>3.0 mm or an average absolute move-
ment>0.3 mm were excluded from the study.

General linear models (GLMs) were fitted to generate the individual activation maps for the
1-back vs. baseline, 2-back vs. baseline and 2-back vs. 1-back comparisons. Differences in fMRI
activation maps between patients and controls were generated within the FEAT module, using
mixed effects GLMmodels [56]. FEAT uses Gaussian random field theory to properly account
for the spatially distributed patterns when performing statistical tests. Specifically, the analyses
were performed with the FLAME stage 1 with default height threshold (z> 2.3) [55, 57] and a
p-value< 0.05 corrected for multiple comparisons [58, 59].

Ethics statement
All subjects gave written informed consent prior to participation in accordance to the Declara-
tion of Helsinki. Only individuals judged to have decision-making capacity were included. The
subjects in the cognitively impaired group were included on the basis that they showed mem-
ory and/or executive function as detected during the course of the neuropsychological testing
carried out for the purpose of the study, not because they had been found to show clinically sig-
nificant cognitive impairment by their treating clinicians. The research protocol was approved
by the Clinical Research Ethics Committee of the Sisters Hospitallers (Comité de Ética de
Investigación Clínica de las Hermanas Hospitalarias), which also approved this method of
obtaining informed consent for the study.

Data analysis
Demographic, clinical and cognitive variables were compared among the groups using SPSS
version 17. Normality of continuous variables was examined for and parametric (t-test or
ANOVA) or non-parametric tests (Mann-Whitney or Kruskal-Wallis test) were applied as
appropriate.

In order to examine the relationship between presence of cognitive impairment and brain
structure and function, we carried out two comparisons using a strategy we have employed pre-
viously for schizophrenia [60]. First, we contrasted the cognitively preserved group with the
control group; this gives a measure of changes in brain structure and/or function that are
attributable to bipolar disorder uncontaminated by presence of cognitive impairment. Sec-
ondly, to detect changes attributable to the presence of cognitive impairment, we contrasted
the cognitively preserved and cognitively impaired patient groups.

Results
Demographic characteristics of the patients and controls are shown in Table 1. The groups
were matched for age, sex and TAP-estimated IQ. There were no differences in psychopatho-
logical measures (YMRS and HRSD scores), duration of the illness, functioning (GAF score)
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and antipsychotic dosage between the cognitively preserved and the cognitively impaired
patients (Table 1).

As expected, the two patient groups differed in their performance on the BADS and RBMT
(Table 1). The cognitively preserved group was also found to show significant differences from
the healthy controls. A scatter plot of scores for all three subject groups is shown in Fig 2 and
indicates that this latter finding was due to more cognitively preserved patients falling into low
average ranges than the healthy controls.

VBM findings
Controls vs. cognitively preserved patients. At p<0.05 corrected, the cognitively pre-

served patients showed significantly reduced grey matter volume in a single small cluster
located in the right precentral gyrus [173 voxels, p = 0.03; peak in BA6, MNI (38,-10,38)]
(Fig 3).

The cognitively preserved patients also showed bilaterally symmetrical clusters of signifi-
cantly reduced white matter volume compared to the controls. On the left side, a cluster
extended from the inferior occipito-frontal and uncinate fasciculus to the genu of corpus callo-
sum [2966 voxels, p = 0.01, peak in MNI (-30, 46.5, 1.5)]. A second smaller cluster on the same
side was located in the white matter adjacent to the inferior frontal cortex [337 voxels, p = 0.03,
peak in MNI (-36, 21, 22.5)]. On the right side, there was only one cluster [4294 voxels,
p = 0.02, peak in MNI (27, 46.5, 3)] (Fig 3).

Cognitively preserved vs. cognitively impaired patients. There were no areas of signifi-
cant grey matter volume difference between the cognitively preserved patients and the cogni-
tively impaired patients at P<0.05, corrected. Lowering the threshold to p<0.005 uncorrected

Table 1. Demographic, neurocognitive and psychopathological characteristics of the groups.

Controls (n = 28) Cognitively preserved
(n = 33)

Cognitively impaired
(n = 28)

Statistics Post hoc testing

Age 44.01 (6.03) 44.13 (6.63) 46.17 (7.40) F = 0.94 p = 0.40

Sex (male/female) 12/16 18/15 17/11 χ2 = 1.85 p = 0.40

Estimated premorbid IQ
(TAP)

105.93 (7.25) 106.03 (6.32) 102.71 (8.81) H = 3.08 p = 0.21

BADS profile score 19.18 (2.40) 17.12 (2.25) 13.89 (3.54) F = 26.09 p<0.001 CI < CP (p<0.001)

CI < CON (p<0.001)

CP < CON
(p = 0.01)

RBMT screening score 10.61 (1.64) 9.76 (1.41) 6.11 (1.29) H = 55.43 p<0.001 CI < CP (p<0.001)

CI < CON (p<0.001)

CP < CON
(p = 0.02)

Duration of illness (years) - 16.76 (7.44) 19.13 (8.16) t = 1.17 p = 0.25

YMRS score - 1.18 (1.81) 1.77 (2.10) U = 360.50
p = 0.25

HRSD score - 2.55 (2.02) 2.19 (2.35) U = 367.00
p = 0.33

GAF score - 79.07 (11.35) 75.75 (12.72) t = -0.99 p = 0.33

Values are given as mean (SD). IQ, intelligence quotient; TAP, Word Accentuation Test; BADS, Behavioural Assessment of the Dysexecutive Syndrome;

RBMT, Rivermead Behavioural Memory Test; YMRS, Young Mania Rating Scale; HRSD, Hamilton Rating Scale for Depression; GAF, Global Assessment

of Functioning; F, one-way ANOVA test; χ2, Chi-square test; H, one-way Kruskal-Wallis test; U, Mann-Whitney test; CON, controls; CP, cognitively

preserved; CI, cognitively impaired.

doi:10.1371/journal.pone.0158867.t001
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did not result in the appearance of any clusters. Substituting non-modulated images in the
analysis also failed to reveal any clusters of significant difference.

Functional imaging findings
Twenty-eight of the healthy controls, 27 of the cognitively preserved patients and 23 of the cog-
nitively impaired patients participated in this part of the study (5 cognitively preserved patients
and 5 cognitively impaired patients could not be included because of technical problems with
the acquisition and processing of the images; 1 cognitively preserved patient was excluded
because of excessive movement). There continued to be no significant differences between the
three groups in demographic characteristics, and between the two patient groups in clinical rat-
ings (S1 Table).

Behavioural performance. The mean level of performance (d’) on the 1-back and 2-back
versions of the n-back task was lower in the cognitively preserved patients than in the healthy
controls, and lower in the cognitively impaired patients than in the cognitively preserved
patients [1-back: 4.40 (0.57) vs. 4.17 (0.63) vs. 3.67 (1.09); H = 7.56; p = 0.02; 2-back: 3.33
(0.83) vs. 3.00 (0.69) vs. 2.52 (0.73); F = 7.32, p<0.001]. However, only the differences between
the controls and the cognitively impaired patients reached significance (S1 Table).

Within-group activations and de-activations. In the 2-back vs. baseline comparison the
healthy controls showed bilateral activations in the DLFPC, precentral gyri, supplementary
motor area, anterior insula, cerebellum, thalamus, basal ganglia, and parts of the temporal and
parietal cortex. In the 1-back vs. baseline, activations followed a broadly similar pattern but the
clusters were less extensive, the basal ganglia were activated only in the left side and no activa-
tions were seen in cerebellum and thalamus (S2 Table, S1 and S2 Figs).

Task-related de-activations in the 2-back vs. baseline contrast were seen bilaterally in the
medial frontal cortex, amygdala, hippocampus, the medial parietal cortex, the posterior insula
and the lateral parietal cortex. In the 1-back vs. baseline contrast, only the medial frontal cortex
showed de-activation (S1 and S2 Figs).

Activations and de-activations in the two groups of euthymic bipolar patients followed a
broadly similar pattern to that seen in the controls. However, both the activation and

Fig 2. Scatter plots for the controls, cognitively preserved and cognitively impaired groups. Scatter plot of scores on (A) the RBMT
and (B) the BADS. The horizontal lines show 5th percentile cutoffs for impairment.

doi:10.1371/journal.pone.0158867.g002
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de-activation clusters were noticeably less extensive. The cognitively impaired patients in
particular showed less extensive prefrontal activation in 2-back vs. baseline contrast and no
de-activation in the medial prefrontal, amygdala, hippocampus and posterior insula in both
the 1-back vs. baseline and 2-back vs. baseline contrasts (S1 and S2 Figs).

Controls vs. cognitively preserved patients. There were no activation differences between
the healthy controls and the cognitively preserved patients in the 1-back vs. baseline or the
2-back vs. baseline contrasts, or in the 2-back vs. 1-back contrast. The cognitively preserved

Fig 3. Brain regions showing significant gray and white matter volume reduction in the cognitively preserved patients with bipolar
disorder compared with controls.

doi:10.1371/journal.pone.0158867.g003
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patients did, however, show a cluster of failure of de-activation in comparison to the healthy
controls in both contrasts. In the 2-back vs. baseline contrast this cluster was located in the
medial prefrontal cortex affecting the gyrus rectus and extended to the medial orbitofrontal
and anterior cingulate cortex [4743 voxels, p = 2.18x10-9; peak activation in BA11, MNI (4,
34,-8), z score = 4.5]. In the 2-back vs. 1-back contrast the cluster occupied a similar but smaller
area in the medial prefrontal cortex [1718 voxels, p = 2.04x10-4; peak activation in BA25, MNI
(2,36,6), z score = 4.16]. The findings for the 2-back vs. 1-back contrast are shown in Fig 4A.
Boxplots of the averaged values in the medial prefrontal region-of-interest (ROI) for the con-
trols and the cognitively preserved patients for this contrast confirm that the differences repre-
sented failure of de-activation: the controls showed de-activation whereas in the patients the
mean value was close to zero (Fig 4B).

Cognitively preserved vs. cognitively impaired patients. There were no differences
between the two patient groups in the 1-back vs. baseline and the 2-back vs. baseline contrasts.
The 2-back vs. 1-back contrast, however, revealed a cluster of reduced activation in the cogni-
tively impaired group in the right lateral frontal cortex, extending from the inferior frontal
operculum to lateral superior frontal regions and including parts of the DLPFC [905 voxels,
p = 0.008; peak activation in BA8, right superior frontal, MNI (24, 20, 46), z score = 4.12]. The
findings are shown in Fig 5. The two patient groups did not show differences in de-activation.

Discussion
Cognitive impairment in the euthymic phase—i.e. that is persistent and unrelated to mood dis-
turbance—is now a well-established finding in bipolar disorder. Our study suggests that its
basis does not lie in brain structural change. However, there was a positive signal in relation to
brain function, with the cognitively impaired patients showing reduced activation in the right
DLPFC compared to the cognitively preserved patients.

Given that in neurological disease structural brain damage is commonly associated with
neuropsychological deficits, our failure to find differences in grey or white matter volume
between bipolar patients with and without cognitive impairment might be considered surpris-
ing. One possible reason for this might be that, with sample sizes of 33 and 28 patients, the
study might simply have lacked sufficient power to detect differences. Against this, however, is

Fig 4. Brain functional changes between controls and cognitively preserved patients. (A) Brain regions where the cognitively
preserved patients showed significant failure of de-activation compared with the controls in the 2-back vs. 1-back contrast. MFC: medial
frontal cortex. (B) Boxplots of mean de-activations within this ROI.

doi:10.1371/journal.pone.0158867.g004
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the fact that grey matter changes were still not seen when a more liberal threshold of p<0.005
uncorrected was used in the VBM analysis, or when the modulation step was omitted, which
also increases sensitivity [61].

Our negative structural imaging findings might also be considered inconsistent with the cur-
rent widely held view that the occurrence of persistent cognitive impairment in some patients
with bipolar disorder reflects a neurodegenerative process [62]. Of course, being cross-sectional
in nature, the study does not speak directly to this issue. Nevertheless, it is interesting to note
that the evidence that progressive brain structural change takes place at all in bipolar disorder is
actually quite weak. Thus, reviewing the small number of longitudinal studies carried out to
date, Lim et al [63] found no evidence for change in whole brain volume over time. Progressive
volume reductions were found in the frontal lobe cortex in two small studies (N = 8 and
N = 10) but not in a third, larger study (N = 58) which also employed healthy controls. Findings
were likewise conflicting for the anterior cingulate cortex, amygdala and hippocampus.

On the other hand, we found evidence that cognitive impairment in euthymic bipolar
patients was associated with brain functional changes, specifically reduced activation in a
region that conformed reasonably closely to the right DLPFC, although this was only seen in
the 2-back vs. 1-back contrast. Our findings here show a notable similarity to those of Oertel-
Knöchel et al [33] described in the Introduction—they found reduced activation in the left
middle superior frontal gyrus in 26 euthymic bipolar patients, who as a group showed poor
memory test performance, during the encoding phase of a memory task (reduced activation
was seen in other lateral frontal regions during retrieval). The DLPFC is implicated in both the
cognitive, i.e. executive, aspects of frontal lobe function [64] and in long-term memory [65],
and so is a plausible location for brain functional changes associated with performance of both
types of task in bipolar disorder.

A factor complicating the interpretation of this finding concerns the ‘chicken and egg’
nature of the relationship between cognition and brain activity. Does reduced activation in cog-
nitively impaired euthymic bipolar patients point to underlying regional cerebral dysfunction?
Or does it merely index the fact that the patients performed the task more poorly than the cog-
nitively preserved patients and so activated their frontal lobes to a correspondingly lesser
degree? To put it another way, would healthy subjects who were below the 5th percentile on a
memory or executive test (as some will inevitably be) show less DLPFC activation during n-

Fig 5. Brain functional changes between cognitively impaired and preserved patients. (A) Brain regions where the cognitively
impaired patients showed significantly reduced activation compared with the preserved patients in the 2-back v. 1-back contrast. (B)
Boxplots of mean activations within this ROI.

doi:10.1371/journal.pone.0158867.g005
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back performance than those who are above this threshold? This problem has been considered
in some depth in the schizophrenia literature e.g. [66–70], where the main conclusion reached
has been that there is no simple linear relationship between cognitive performance and regional
cortical activation. However, to our knowledge the same issue has not so far been addressed
with respect to the cognitive impairment that sometimes accompanies bipolar disorder.

The other functional imaging finding in our study was failure of de-activation in the medial
frontal cortex, which was seen in both groups of bipolar patients. This abnormality has been
found in several other studies of bipolar disorder [71–73], with one additional study [74] find-
ing failure of de-activation in the posterior cingulate cortex/precuneus. Both the medial frontal
cortex and the posterior cingulate cortex/precuneus are components of the default mode net-
work, a series of interconnected brain regions that are active at rest but which de-activate dur-
ing performance of attention-demanding tasks [75]. Resting state connectivity studies have
also implicated the default mode network in bipolar disorder [76]. The function or functions of
the default mode network are currently uncertain, although a role in a range of high-level, self-
related cognitive operations seems likely [75]. It has also been suggested that the network exerts
a general influence on cognitive function—thus, in healthy subjects lower default mode net-
work activity has been found to be associated with more successful task performance, and
lapses of attention are associated with reduced de-activation (for a review see [77]). The fact
that we found that medial frontal failure of de-activation did not distinguish cognitively pre-
served from cognitively impaired euthymic patients, suggests that this general modulatory
function carried out by the default mode network dysfunction does not play a role in the cogni-
tive impairment seen in euthymic patients with bipolar disorder.

Conclusions and Limitations
Our findings do not suggest that brain structural alterations are related to the persistent cogni-
tive impairment that is seen in a proportion of patients with bipolar disorder. However, we
find evidence that it might be related to functional changes in the prefrontal cortex. Limitations
of the study include that our strategy for recruiting patients meant that the cognitively pre-
served patients were not explicitly matched with the healthy controls for cognitive function,
and in fact they were significantly impaired compared to them. Accordingly, this group should
be considered to have been only relatively cognitively preserved. Also, the sample sizes in the
structural imaging comparison may have been too small to detect subtle volume differences
between the two patient groups. Finally, we scanned at 1.5 Tesla, and our examination of white
matter was limited to volume measurement only. Use of 3 Tesla scanning and/or examining
white matter integrity using DTI might lead to changes related to cognitive impairment in
bipolar disorder being found.
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